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1 Introduction

Let W0 = {w ∈ C([0,∞);Rd); w(0) = 0}, F be the Borel algebra over W0 and μ be
the standard Wiener measure on (W0,F). Let Bi : [0,∞) ×W0 → R, i = 1, . . . , d, be
given by Bi(t, w) = wi(t), (t, w) ∈ [0,∞)×W0. Then {(B1(t), . . . , Bd(t)); t ∈ [0,∞)} is a
d-dimensional Brownian motion under μ. Let B0(t) = t, t ∈ [0,∞). Let F t

s, t = s = 0, be
a sub-σ-algebra generated by {Bi(r)−Bi(s); r ∈ [s, t], i = 1, . . . , d}. Then {F t

0}t=0 is the
Brownian filtration.
Let Λ be a set. We denote by UΛC

∞
b (R

N ;RM), N,M = 1, the set of families of smooth
functions {fλ}λ∈Λ from RN to RM such that

sup
λ∈Λ,x∈RN

| ∂
α

∂xα
fλ(x)| <∞

for any multi-index α ∈ ZN=0.
Let {V λ

i }λ∈Λ ∈ UΛC∞b (RN ;RN), i = 0, 1, . . . , d.We regard V λ
i ’s as vector fields onR

N .
Let Xλ(t, x), t ∈ [0,∞), x ∈ RN , λ ∈ Λ, be the solution to the Stratonovich stochastic
integral equation

Xλ(t, x) = x+

dX
i=0

Z t

0

V λ
i (X

λ(s, x)) ◦ dBi(s). (1)

Then there is a unique strong solution to this equation. Moreover we may assume that
Xλ(t, x) is continuous in t and smooth in x, and that Xλ(t, ·) : RN → RN , t ∈ [0,∞), is
a diffeomorphism with probability one.
Let A = Ad = {v0, v1, . . . , vd}, be an alphabet, a set of letters, and A∗ be the set of

words consisting of A including the empty word which is denoted by 1. For u = u1 · · ·uk ∈
A∗, uj ∈ A, j = 1, . . . , k, k = 0, we denote by ni(u), i = 0, . . . , d, the cardinal of
{j ∈ {1, . . . , k};uj = vi}. Let |u| = n0(u)+. . .+nd(u), a length of u, and k u k = |u|+n0(u)
for u ∈ A∗. Let RhAi be the R-algebra of noncommutative polynomials on A, RhhAii be
∗partly supported by the 21st century COE program at Graduate School of Mathematical Sciences,

the University of Tokyo
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the R-algebra of noncommutative formal series on A, L(A) be the free Lie algebra over
R on the set A, and L((A)) be the R-Lie algebra of free Lie series on the set A.
Let r : A∗ \ {1} → L(A) denote the right normed bracketing operator inductively

given by
r(vi) = vi, i = 0, 1, . . . , d,

and
r(viu) = [vi, r(u)], i = 0, 1, . . . , d, u ∈ A∗ \ {1}.

For any w1 =
P

u∈A∗ a1uu, ∈ RhhAii and w2 =
P

u∈A∗ a2uu, ∈ RhAi, we define a kind
of an inner product hw1, w2i by

hw1, w2i =
X
u∈A∗

a1ua2u ∈ R.

We can regard vector fields V λ
i , i = 0, 1, . . . , d, λ ∈ Λ, as first differential operators

over RN . Let DO(RN) denote the set of smooth differential operators over RN . Then
DO(RN ) is a noncommutative algebra over R. Let Φλ : RhAi → DO(RN), λ ∈ Λ, be a
homomorphism given by

Φλ(1) = Identity, Φλ(vi1 · · · vin) = V λ
i1
· · ·V λ

in,

for any n = 1, i1, . . . , in = 0, 1, . . . , d, λ ∈ Λ. Then we see that

Φλ(r(viu)) = [V
λ
i ,Φ

λ(r(u))], i = 0, 1, . . . , d, u ∈ A∗ \ {1}.

Let A∗m = {u ∈ A∗; k u k= m}, m = 0, and let RhAim =
P

u∈A∗mRu, and RhAi5m
=
Pm

k=0RhAik, m = 0. Let L(A)m = L(A) ∩ RhAim, and L(A)5m = L(A) ∩ RhAi5m,
m = 1. Let A∗∗ = {u ∈ A∗; u 6= 1, v0}, and A∗∗5m = {u ∈ A∗∗; k u k5 m}, m = 1.
Now we introduce a condition (UΛFG) on the family of vector field {V λ

i , i = 0, 1, . . . , d,
λ ∈ Λ}, as follows.
(UΛFG) There are an integer `0 and {ϕλu,u0} ∈ UΛC∞b (RN ;R), u ∈ A∗∗5`0+2, u

0 ∈ A∗∗5`0 ,
satisfying the following ondition.

Φλ(r(u)) =
X

u0∈A∗∗5`0

ϕu,u0Φ
λ(r(u0)), u ∈ A∗∗5`0+2.

Now let us define a semigroup of linear operators {P λ
t }t=0 on C∞b (RN ) by

(P λ
t f)(x) = E

μ[f(Xλ(t, x))], f ∈ C∞b (RN ).

We prove the following in this paper.

Theorem 1 Assume (UΛFG) holds. Then for any n,m = 0 with n + m = 1 and
u1, . . . , un+m ∈ A∗∗, there exists a C > 0 such that

sup
λ∈Λ,x∈RN

|Φλ(r(u1) · · · r(un))(P λ
t (Φ

λ(r(un+1) · · · r(un+m))f))(x)|

5 Ct−(||u1||+···+||un+m||)/2 sup
x∈RN

|f(x)|

for any f ∈ C∞b (RN ).
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Now let Ṽ λ
i : RN → RN , λ ∈ Λ, i = 0, . . . , d, be C2 functions for which their

derivatives are bounded. Let X̃λ(t, x), t ∈ [0,∞), x ∈ RN , be a solution to the following
SDE

X̃λ(t, x) = x+

dX
i=0

Z t

0

Ṽ λ
i (X̃

λ(s, x)) ◦ dBi(s). (2)

Let us define a semigroup of linear operators {P̃ λ
t }t=0 on Cb(RN ) by

(P̃ λ
t f)(x) = E

μ[f(X̃λ(t, x))], f ∈ Cb(RN).

Then we have the following localization result.

Theorem 2 Let x0 ∈ RN and ε0 > 0. Assume that {V λ
i }λ∈Λ, i = 0, 1, . . . , d, belongs to

UΛC
∞
b (R

N ;RN ) and satisfies (UΛFG). Assume moreover that

Ṽ λ
i (x) = V

λ
i (x), x ∈ B(x0; 2ε0), λ ∈ Λ, i = 0, 1, . . . , d.

Then for any ϕ ∈ C∞0 (B(x0; ε0)) and u1, . . . , un ∈ A∗∗, n = 1, there exists a C > 0 such
that

sup
λ∈Λ,x∈RN

|Φλ(r(u1) · · · r(un))(ϕP̃ λ
t f))(x)|

5 Ct−(||u1||+···+||un||)/2 sup
x∈RN

|f(x)|

and
sup

λ∈Λ,x∈RN

|(P̃ λ
t (Φ

λ(r(u1) · · · r(un))(ϕf)))(x)|

5 Ct−(||u1||+···+||un||)/2 sup
x∈RN

|f(x)|

for any f ∈ C∞b (RN ;R). Here B(x0, ε0) denotes ε0-neighborhood of x0.

We use Malliavin calculus to prove above theorems, and use the notation in Shigekawa
[5] for Malliavin calculus. We regard (W0,F ,μ, {F t

0}t=0) as a filtered probability space,
and use the following notation. S denotes the set of continuous {F t

0}t=0-semimartingales.
S : S × A∗ → S and Ŝ : S × A∗ → S are defined inductively by

S(Z; 1)(t) = Z(t), t = 0,

and
Ŝ(Z; 1)(t) = Z(t), t = 0, Z ∈ S,

and

S(Z; uvi)(t) = −
Z t

0

S(Z, u)(s)◦dBi(s), Ŝ(Z; viu)(t) = −
Z t

0

S̃(Z, u)(s)◦dBi(s), t = 0,

for any Z ∈ S, i = 0, 1, . . . , d, u ∈ A∗.
Also, we denote S(1, u)(t) and Ŝ(1, u), u ∈ A∗, by B(t;u) and B̂(t;u) respectvely.
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2 Semimartingale on RhhAii
We say that X : [0,∞)×W0 → RhhAii is an RhhAii-valued continuous semimartingale,
if there are continuous semimartingales Xu, u ∈ A∗, such that X(t) =

P
u∈A∗ Xu(t)u.

For RhhAii-valued continuous semimartingale X(t), Y (t), we can define RhhAii-valued
continuous semimartingales

R t
0
X(s) ◦ dY (s) and

R t
0
◦dX(s)Y (s) byZ t

0

X(s) ◦ dY (s) =
X

u,w∈A∗
(

Z t

0

Xu(s) ◦ dYw(s))uw,

Z t

0

◦dX(s)Y (s) =
X

u,w∈A∗
(

Z t

0

Yw(s) ◦ dXu(s))uw,

where
X(t) =

X
u∈A∗

Xu(t)u, Y (t) =
X
w∈A∗

Yw(t)w.

Then we have

X(t)Y (t) = X(0)Y (0) +

Z t

0

X(s) ◦ dY (s) +
Z t

0

◦dX(s)Y (s).

Since R is regarded a vector subspace in RhhAii, we can define
R t
0
X(s) ◦ dBi(s),

i = 0, 1, . . . , d, naturally.
Now let us consider the following SDE on RhhAii

X̂(t) = 1 +

dX
i=0

Z t

0

X̂(s)vi ◦ dBi(s), t = 0. (3)

One can easily solve this SDE and obtains

X̂(t) =
X
u∈A∗

B(t; u)u.

We also have the following (c.f. [1]).

Proposition 3 log X̂(t) ∈ L((A)), t = 0, with probability one.

Note that

d(X̂(t)−1) = −X̂(t)−1dX̂(t)X̂(t)−1 = −
dX
i=0

viX̂(t)
−1 ◦ dBi(t)

and so

X̂(t)−1 = 1−
dX
i=0

viX̂(t)
−1 ◦ dBi(t)
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3 Uniform Estimates

We assume the condition (UΛFG) throughout this section. The argument in this section is
essentially the same as in Sections 2 and 3 in [1], or [2], and so we state results sometimes
without proofs.

Proposition 4 There are {ϕλu,u0}λ∈Λ ∈ UΛC∞b (RN), u ∈ A∗∗, u0 ∈ A∗∗5`0 such that

Φλ(r(u)) =
X

u0∈A∗∗5`0

ϕλu,u0Φ
λ(r(u0)), u ∈ A∗∗.

Proof. It is obivious that our assetion is valid for u ∈ A∗∗5`0+2. Suppose that our assertion
is valid for any u ∈ A∗∗5m, m = `0. Then we have for any i = 0, 1, . . . , d and u ∈ A∗∗5m,

Φλ(r(viu)) = [V
λ
i ,Φ

λ(r(u))] =
X

u0∈A∗∗5`0

[V λ
i ,ϕu,u0Φ

λ(r(u0))]

=
X

u0∈A∗∗5`0

(V λ
i ϕ

λ
u,u0)Φ

λ(r(u0)) +
X

u0,u00∈A∗∗5`0

ϕλu,u0ϕ
λ
u0,u00Φ

λ(r(u00))

So we see that our assertion is valid for any u ∈ A∗∗5m+1. Thus by induction we have our
Proposition.
For any C∞ vector field W on RN , we see that

d(Xλ(t)−1∗ W )(x) =
dX
i=0

(Xλ(t)−1∗ [V
λ
i ,W ])(x) ◦ dBi(t),

where Xλ(t)∗ is a push-forward operator with respect to the diffeomorphism Xλ(t, ·) :
RN → RN . So we have

d(Xλ(t)−1∗ Φ
λ(r(u)))(x)

=

dX
i=0

((X(t)λ∗)
−1Φλ(r(viu)))(x) ◦ dBi(t)

for any u ∈ A∗ \ {1}.
Let m = 3`0. Let {cλ,mi (·, u, u0)}λ∈Λ ∈ UΛC∞b (RN ,R), i = 0, 1, . . . , d, u, u0 ∈ A∗∗5m, be

given by

cλ,mi (x; u, u0) =

⎧⎨⎩
1, if ||viu|| 5 m and u0 = viu,
ϕλviu,u0(x), if ||viu|| > m and ||u0|| 5 `0,
0, otherwise.

Here ϕλu,u0 ’s are as in Proposition 4. Then we have

d(Xλ(t)−1∗ Φ
λ(r(u)))(x) =

dX
i=0

X
u0∈A∗∗5m

(cλ,mi (Xλ(t, x);u, u0)(Xλ(t)−1∗ Φ
λ(r(u0)))(x) ◦ dBi(t)

for any u ∈ A∗∗5m.
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Let aλ,m(t, x;u, u0), u, u0 ∈ A∗∗5m, be the solution to the following SDE

daλ,m(t, x; u, u0)

=

dX
i=0

X
u00∈A∗∗5m

cλ,mi (Xλ(t, x);u, u00)aλ,m(t, x;u00, u0)dBi(t)

+
1

2

dX
i=1

X
u00∈A∗∗

(V λ
i (X

λ(t, x);u00, u0)λ,m(t, x;u00, u0)dt

+
1

2

dX
i=1

X
u1,u02∈A∗∗5m

(cλ,mi (Xλ(t, x); u, u1)c
λ,m
i (Xλ(t, x);u1, u2)a

λ,m(t, x; u2, u
0)dt,

aλ,m(0, x; u, u0) = hu, u0i.
Such a solution exists uniquely, and moreover, we may assume that aλ,m(t, x;u, u0) is
smooth in x with probability one. Then we have

sup
λ∈Λ,x∈RN

Eμ[ sup
t∈[0,T ]

| ∂
|α|

∂xα
aλ,m(t, x;u, u0)|p] <∞, p ∈ [1,∞), T > 0

for any multi-index α. One can easily see that

daλ,m(t, x; u, u0) =
dX
i=0

X
u00∈A∗∗5m

(cλ,mi (Xλ(t, x);u, u00)aλ,m(t, x; u00, u0)) ◦ dBi(t). (4)

Then the uniqueness of SDE implies

(Xλ(t)−1∗ Φ
λ(r(u)))(x) =

X
u0∈A∗∗5m

aλ,m(t, x;u, u0)Φλ(r(u0))(x), u ∈ A∗∗5m.

Similarly we see that there exists a unique solution bλ,m(t, x;u, u0), u, u0 ∈ A∗∗5m, to the
SDE

bλ,m(t, x;u, u0)

= hu, u0i−
dX
i=0

X
u00∈A∗∗5m

Z t

0

(bλ,m(s, x;u, u00))(c(m)i (Xλ(s, x); u00, u0)) ◦ dBi(t). (5)

Then we see thatX
u00∈A∗∗5m

aλ,m(t, x, u, u00)bλ,m(t, x, u00, u) = hu, u0i, u, u0 ∈ A∗∗5m,

Φλ(r(u))(x) =
X

u0∈A∗∗5m

bλ,m(t, x;u, u0)(X(t)−1∗ Φ
λ(r(u0)))(x), u ∈ A∗∗5m,
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and

sup
λ∈Λ,x∈RN

Eμ[ sup
t∈[0,T ]

| ∂
|α|

∂xα
bλ,m(t, x;u, u0)|p] <∞, p ∈ [1,∞), T > 0

for any multi-index α. Let

R∗m = {v0u;u ∈ A∗, ||u|| = m− 1} ∪
d[
i=0

{viu; u ∈ A∗, ||u|| = m}.

Then we have the following.

Proposition 5 For any m = 3`0,

aλ,m(t, x, u, u0)

=
X

u1∈A∗5m

hu1u, u0iB(t, u1)

+
X

u1∈A∗:u1u∈R∗m

X
u2∈A∗5`0

S(ϕu1u,u2(X
λ(·, x))aλ,m(·, x, u2, u0), u1)(t)

for any t ∈ [0,∞), x ∈ RN , and u, u0 ∈ A∗∗5m.

Proof. The assertion is obvious from the definition, if ||u|| = m. Note that

aλ,m(t, x;u, u0)

= hu, u0i+
dX
i=0

X
u1∈A∗∗5m

S(cλ,mi (Xλ(·, x); u, u1)aλ,m(·, x; u1, u0), vi)(t).

Therefore, if ||u|| = m− 1, we have

aλ,m(t, x;u, u0)

= hu, u0i+
dX
i=1

S(hviu, u0iaλ,m(·, x; viu, u0), vi)(t)

+
X

u1∈A∗∗5`0

S(ϕv0u,u1(X(·, x))aλ,m(·, x, u1, u0), v0)(t)

= hu, u0i+
dX
i=1

hviu, u0iB(t, vi)

+
dX
i=1

dX
j=0

X
u1∈A∗∗5`0

S(S(ϕvjviu,u1(X(·, x))aλ,m(·, x, u1, u0), vj), vi)(t)

+
X

u1∈A∗∗5`0

S(ϕv0u,u1(X(·, x))aλ,m(·, x, u1, u0), v0)(t).

So we have our assertion. Similarly by induction in m− ||u|| we have our assertion.
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Corollary 6 For any m = 3`0,

aλ,m(t, x; u, u0)

= hX̂(t)u, u0i
+

X
u1∈A∗:u1u∈R∗m

X
u2∈A∗5`0

S(ϕu1u,u2(X(·, x))aλ,m(·, x;u2, u0), u1)(t)

for any t ∈ [0,∞), x ∈ RN , and u, u0 ∈ A∗∗5m. In particular,

aλ,m(t, x; vi, u)

= hX̂(t)vi, ui+
X

u1∈A∗:u1vi∈R∗m

X
u2∈A∗5`0

S(ϕλu1vi,u2(X
λ(·, x))hX̂(·)u2, vii, u1)(t)

+
X

u1∈A∗:u1u∈R∗m

X
u2∈A∗5`0

X
u3∈A∗:u3u2∈R∗m

X
u4∈A∗5`0

S(ϕλu1vi,u2(X
λ(·, x))S(ϕλu3u2,u4(Xλ(·, x))aλ,m(·, x, u4, u), u3), u1)(t).

Here X̂(t) is a solution to SDE (3).

Proposition 7 Let m = 3`0.
(1) For any u ∈ A∗∗5m, u0 ∈ A∗, i = 0, 1, . . . , d with viu0 ∈ A∗∗5m, if ||viu0|| > `0, then

bλ,m(t, x, u, viu
0) = S̃(bλ,m(·, x, u, u0); vi) + hu, viu0i,

and if ||viu0|| 5 `0, then

bλ,m(t, x, u, viu
0) = S̃(bλ,m(·, x, u, u0); vi)(t) + hu, viu0i

+
dX
j=0

X
u1∈A∗∗5m,vju1∈R∗m

S̃(bλ,m(·, x, u, vju1)ϕλvju1,viu0(Xλ(·, x)); vj)(t)

for any t ∈ [0,∞), x ∈ RN , and λ ∈ Λ.
(2) For any u, u2 ∈ A∗∗5m, u1 ∈ A∗ with ||u2|| = `0, ||u|| 5 ||u2|| and ||u1u2|| 5 m,

bλ,m(t, x, u, u1u2) = S̃(b
λ,m(·, x, u, u2);u1).

Proof. Since we have
bλ,m(t, x, u, viu

0)

= hu, viu0i+
dX
j=0

X
u1∈A∗∗5m

S̃(bλ,m(·, x, u, u1)cλ,mj (Xλ(·, x)); u1, viu0); vj)(t),

we have the assertion (1) from the definition of cλ,mj .
The assertion (2) is an easy consequence of the first part of the assertion (1).
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Let E be a separable real Hilbert space and r ∈ R. Let us denote by W∞,∞−(E)T
s=0,p∈(1,∞)W

s,p(E)). Let KΛ(E) denote the set of families {fλ}λ∈Λ of functionals fλ :
(0, 1]×RN → W∞,∞−(E) satisfying the following two conditions.
(1) fλ(t, x) is smooth in x and

∂α

∂xα
fλ(t, x) is continuous in (t, x) ∈ (0, 1] × RN for any

multi-index α.

(2) sup
λ∈Λ,t∈(0,1],x∈RN

k ∂α

∂αx
fλ(t, x) kW s,p(E)<∞, for any multi-index α,s ∈ R and p ∈ (1,∞).

We denote KΛ(R) by KΛ.
By checking carefully the estimates discussed in Chapter 6 in Shigekawa [5], we see

that {aλ,m(t, x;u, u0)}λ∈Λ and {bλ,m(t, x;u, u0)}λ∈Λ belong to KΛ for any u, u0 ∈ A∗5m.
Then by Corollary 6, we have the following.

Proposition 8 For any u, u0 ∈ A∗5m, {t−m/2(aλ,m(t, x; u, u0)− hX̂(t)u, u0i)}λ∈Λ belong to
KΛ. In particular, {t−((||u0||−||u||)∨0)/2aλ,m(t, x; u, u0)}λ∈Λ belong to KΛ.
Similarly by Proposition 7 we have the following.

Proposition 9 For any u, u0 ∈ A∗5m, {t−((||u
0||−||u||)∨0)/2bλ,m(t, x;u, u0)}λ∈Λ belong to KΛ.

Now let kλ,m(t, x; u) ∈ H, λ ∈ Λ, (t, x) ∈ [0,∞)×RN , u ∈ A∗∗5m, be given by

kλ,m(t, x; u) = (

Z t∧·

0

aλ,m(s, x; vi, u)ds)i=1,...,d.

Then we have the following.

Proposition 10 For any u ∈ A∗5m, {t−||u||/2kλ,m(t, x;u)}λ∈Λ belong to KΛ(H).

Let Mλ,m(t, x;u, u0), (t, x) ∈ [0,∞)×RN , u, u0 ∈ A∗∗5m, be given by

Mλ,m(t, x;u, u0) = t−(||u||+||u
0||)/2(kλ,m(t, x;u), kλ,m(t, x;u0))H

= t−(||u||+||u
0||)/2

dX
i=1

Z t

0

aλ,m(s, x; vi, u)a
λ,m(s, x; vi, u

0)ds. (6)

Also, let M̂ (m)(t; u, u0), (t, x) ∈ [0,∞)×RN , u, u0 ∈ A∗∗5m, be given by

M̂ (m)(t;u, u0) = t−(||u||+||u
0||)/2

dX
i=1

Z t

0

hX̂(t)vi, uihX̂(t)vi, u0i. (7)

We can prove the following from Propositions 8 and 9 by the exactly same method as
in [1] Section 4 .

Proposition 11 (1) For any p ∈ (1,∞),
sup

λ∈Λ,t∈(0,1],x∈RN

Eμ[det(Mλ,m(t, x;u, u0))−pu,u0∈A∗∗5m
] <∞.

(2) For any p ∈ (1,∞),
sup
t∈(0,1]

Eμ[det(M̂ (m)(t;u, u0))−pu,u0∈A∗∗5m
] <∞.

(3) {t−1/2(Mλ,m(t, x;u, u0)− M̂ (m)(t; u, u0))}λ∈Λ belong to KΛ for any u, u0 ∈ A∗∗5m
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Let (M̌λ,m(t, x;u, u0))u,u0∈A∗∗5m be the inverse matrix of (M
λ,m(t, x;u, u0))u,u0∈A∗∗5m and

(M̃ (m)(t;u, u0))u,u0∈A∗∗5m be the inverse matrix of (M̂
(m)(t, x; u, u0))u,u0∈A∗∗5m.

Then we have the following.

Corollary 12 {M̌λ,m(t, x;u, u0)}λ∈Λ and {M̃ (m)(t;u, u0)}λ∈Λ belong to KΛ for any u, u0 ∈
A∗∗5m. Moreover, {t−1/2(M̌λ,m(t, x; u, u0)− M̃ (m)(t; u, u0))}λ∈Λ belong to KΛ for any u, u0 ∈
A∗∗5m.

Note that

Xλ(t)−1∗ DX
λ(t, x) = (

Z t∧·

0

(Xλ(s)−1∗ V
λ
i )(x)ds)i=1,...,d

=
X

u∈A∗∗5m

kλ,m(t, x; u)Φλ(r(u))(x)

for (t, x) ∈ [0,∞)×RN (c.f.[3]). Let f ∈ C∞b (RN). Since we have

D(f(Xλ(t, x))) = T∗x h(Xλ(t)∗df)(x), Xλ(t)−1∗ DX
λ(t, x)iTx ,

we see that
(D(f(Xλ(t, x))), kλ,m(t, x;u))H

=
X

u0∈A∗∗5m

h(Xλ(t)∗df)(x),Φλ(r(u0))ixt(||u||+||u
0||)/2Mλ,m(t, x;u, u0).

So we have

t||u||/2Φλ(r(u))(f(Xλ(t, ·)))(x) = T ∗x h(Xλ(t)∗df)(x),Φλ(r(u))iTx
=

X
u0∈A∗∗5m

M̌λ,m(t, x;u, u0)t−||u
0||/2(D(f(Xλ(t, x)), kλ,m(t, x;u0))H (8)

and

t||u||/2(Φλ(r(u))f)(Xλ(t, x))

=
X

u1,u2∈A∗∗5m

M̌λ,m(t, x; u1, u2)t
−(||u1||−||u||)/2bλ,m(t, x; u, u1)

×t−||u2||/2(D(f(Xλ(t, x)), kλ,m(t, x;u2))H (9)

Therefore we have the following.

Theorem 13 Let f ∈ C∞b (RN). Then we have the following.
(1) For any u ∈ A∗∗5m, p ∈ (1,∞) and r > 0,

sup
t∈(0,1],λ∈Λ,x∈RN

||t||u||/2(Φλ(r(u))f)(Xλ(t, ·))(x)||W r,p <∞.

(2) For any F ∈ W∞,∞− and u ∈ A∗∗5m, we have

t||u||/2Φλ(r(u))(Eμ[Ff(Xλ(t, ·))](x) = Eμ[(Rλ
0(t, x; u)F )f(X

λ(t, x))]
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and
Eμ[Ft||u||/2Φλ(r(u))f)(Xλ(t, x))] = Eμ[(Rλ

1(t, x;u)F )f(X
λ(t, x))].

Here
Rλ
0(t, x;u)F

=
X

u0∈A∗∗5m

D∗(M̌λ,m(t, x;u, u0)t−||u
0||/2kλ,m(t, x;u0)F )

and
Rλ
1(t, x;u)F

=
X

u1,u2∈A∗∗5m

D∗(M̌λ,m(t, x; u1, u2)t
−(||u1||−||u||)/2bλ,m(t, x;u, u1)t

−||u2||/2kλ,m(t, x;u2)F ).

One can easily prove the following.

Proposition 14 If {Fλ(t, x)}λ∈Λ belongs to KΛ, then {Rλ
0(t, x;u)(Fλ(t, x))}λ∈Λ and

{Rλ
1(t, x;u)(Fλ(t, x))}λ∈Λ belong to KΛ.

Now Theorem 1 is an easy consequence of Theorem 13 and the above Proposition.

4 Localization

First, we remind the following result ( c.f. Stroock-Varadhan [6] Theorem 2.1.3)

Proposition 15 Let E be a mormed space. Let T,B > 0 β ∈ (0, 1), and p ∈ (2/β,∞).
Suppose that a continuous function φ : [0, T ]→ E satisfiesZ T

0

Z T

0

(
||φ(t)− φ(s)||E

|t− s|β )pdsdt 5 B.

Then we have

||φ(t)− φ(s)||E 5
8β(4B)1/p

β − 2/p |t− s|
β−2/p, t, s ∈ [0, T ].

Now let x0 ∈ RN , ε0 > 0. Ṽ
λ
i : R

N → RN , and V λ
i : R

N → RN , λ ∈ Λ, i = 0, . . . , d,
be as in Theorem 2. Also, let Xλ(t, x) and X̃λ(t, x) be solutions to Equation (1) and (2)
respectively. We may assume that x0 = 0, and ε0 < 1.
By checking the computation in Shigekawa [5] Section 6, we see that for any n = 1,

k = 0 and multi-index α ∈ ZN=0, there is a C > 0 such that

sup
λ∈Λ,x∈RN

Eμ[||Dk ∂
α

∂xα
Xλ(t, x)−Dk ∂

α

∂xα
Xλ(s, x)||2nH⊗k⊗(RN )⊗k+1] 5 C|t− s|n

for all t, s ∈ [0, 1].
Let Ỹ λ(T ) :W0 → [0,∞), T ∈ (0, 1] given by

Ỹ λ(T )

11



=

Z T

0

Z T

0

dt ds

Z
|x|<2

dx
|Xλ(t, x)−Xλ(s, x)|2(N+2) + |∇xXλ(t, x)−∇xXλ(s, x)|2(N+2)

|t− s|N+2

Ỹ λ(T ) is FT
0 measurable. Also, we see that for any k = 0 and p ∈ (1,∞) there is a C > 0

such that
sup
λ∈Λ

||Ỹ λ(T )||Wk,p 5 CT 2, T ∈ (0, 1].

Thus we see that
sup

λ∈Λ,T∈(0,1]
T−2||Ỹ λ(T )||W r,p <∞ (10)

for any r > 0 and p ∈ (1,∞).
Let us take a ρ ∈ C∞0 (R;R) such that 0 5 ρ 5 1, ρ(z) = 1, |z| 5 1, and ρ(z) = 0,

|z| > 2.
Then we have the following.

Proposition 16 (1) There is a C0 > 0 such that

Eμ[ρ(T−1Ỹ λ(T )), sup
x∈B(0,2),t∈[0,T ]

|Xλ(t, x)− x| = C0T 1/3] = 0

for any λ ∈ Λ, T ∈ (0, 1].
(2) For any r > 1

sup
λ∈Λ,T∈(0,1]

T−r(
nX
k=1

Eμ[1− ρ(T−1Ỹ λ(T ))]) <∞.

(3) For any n = 1 p ∈ (1,∞) and r > 1,

sup
λ∈Λ,T∈(0,1]

T−r(
nX
k=1

Eμ[||Dk(ρ(T−1Ỹ λ(T )))||p
H⊗k ]

1/p) <∞.

Proof. Let EN be a normed space such that EN = C
∞(B(0, 2);RN ) as a set and the

norm || ||EN of EN is given by

||f ||EN = (
Z
B(0,2)

(|f(x)|2(N+2) + |∇f(x)|2(N+2))dx)1/(2(N+2), f ∈ EN .

Then by Sobolev’s iequality, there is a constant CN > 0 such that

sup
x∈B(0,2)

|f(x)| 5 CN ||f ||EN , f ∈ EN .

Note that

Ỹ λ(T ) =

Z T

0

Z T

0

dt ds(
||Xλ(t, ·)−Xλ(s, ·)||EN

|t− s|1/2 )2(N+2).

So, applying Proposition 15 for p = 2(N + 2), B = T, and β = 1/2, we see that if
Ỹ λ(T ) 5 2T, then

sup
x∈B(0,2)

|Xλ(t, x)−Xλ(s, x)| 5 CN ||Xλ(t, ·)−Xλ(s, ·)||EN

12



5 4CN(8T )
1/p

β − 2/p |t− s|β−2/p, t, s,∈ [0, T ],

which implies

sup
x∈B(0,2),t∈[0,T ]

|Xλ(t, x)− x| 5 4CN8(2N + 4)

N
T (N+1)/(2N+4).

Since (N + 1)/(2N + 4) = 1/3, we have the assetion (1).
Note that

Eμ[1− ρ(T−1Ỹ λ(T ))] 5 μ(T−1Ỹ λ(T )) = 1) 5 T−rEμ[Ỹ λ(T )r].

This and Equation (10) imply the assertion (2).
Since we have

D(ρ(T−1Ỹ λ(T ))) = Tρ0(T−1Ỹ λ(T )))D(T−2Ỹ λ(T ))),

we see that

Eμ[||D(ρ(T−1Ỹ λ(T )))||pH ]1/p 5 (sup
z∈R

|ρ0(z)|)μ(T−1Ỹ λ(T ) > 1)1/p||Ỹ λ(T )||W 1,p

So we have the assetion (3) for n = 1. Similarly, we have the assertion (3) for n = 2 also.

Proposition 17 Suppose that Uj ∈ W∞,∞−, j = 1, . . . ,m, and assume that |Uj| 5 1
μ− a.s. j = 1, . . . ,m. Then for any n = 1

||Dn(

mY
j=1

Uj)||H⊗n 5 nn
nX
k=1

(

mX
j=1

||DkUj||H⊗k)n/k.

Proof. Note that

||Dn(

mY
j=1

Uj)||H⊗n

5
nX
k=1

X
15i1<···<ik5m

X
`1,...,`k=1,`1+···`k=n

n!

`1! . . . `k!
(
Y

j 6=i1,...in
|Uj|)||D`1Ui1 ||H⊗`1 · · · ||D`kUik ||H⊗`k

5
nX
k=1

X
`1,...,`k=1,`1+···`k=n

n!

`1! . . . `k!
(

mX
i=1

||D`1Ui||H⊗`1 ) · · · (
mX
i=1

||D`kUi||H⊗`k )

5
nX
k=1

X
`1,...,`k=1,`1+···`k=n

n!

`1! . . . `k!
((

mX
i=1

||D`1Ui||H⊗`1 )n/`1 + · · ·+ (
mX
i=1

||D`kUi||H⊗`k )n/`k).

This implies our assertion.
Let θT : W0 → W0, T = 0, be given by

θT (w)(t) = w(T + t)− w(T ), w ∈ W0.
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Then μ ◦ θ−1T = μ.
Let Tn =

P∞
k=n 8

−k = 8−n+1/7, n = 0, and let Zλ
n,m ∈ W∞,∞−, n > m = 1, by

Zλ
n,m =

nY
k=m

ρ(8kỸ (8−k; θTk+1w)).

Note that ρ(8kỸ (8−k; θTk+1w)) is FTk
Tk+1

and so Zλ
n,m is FTm

Tn+1
.

Proposition 18 (1) Let C0 > 0 be as in Proposition 16 and m0 be an integer such that
C02

−m0+1 < ε0/2. Then for any n > m = m0,

Eμ[Zλ
n,m, sup

x∈B(0,1),t∈[0,Tm−Tn]
|Xλ(t, x; θTnw)− x| = ε0/2] = 0.

(2) For any r > 0 and p ∈ (1,∞) we see that

sup
λ∈Λ,n>m=1

||Zλ
n,m||W r,p <∞

Proof. Note that

Xλ(t+ s, x; θTn+1w) = X
λ(t,Xλ(s, x; θTn+1w)); θTn+sw).

Thereofore we have
sup

x∈B(0,1),t∈[0,Tm−Tn]
|Xλ(t, x; θTnw)− x|

5 sup
x∈B(0,1),t∈[0,Tm+1−Tn]

|Xλ(t, x; θTnw)− x|

+ sup
x∈B(0,1),t∈[0,8−m]

|Xλ(t,Xλ(Tm+1 − Tn, x; θTnw)); θTm+1w)−Xλ(Tm+1 − Tn, x; θTnw))|.

and so if n > m = m0

{ sup
x∈B(0,1),t∈[0,Tm−Tn]

|Xλ(t, x; θTnw)− x| > C02−m+1}

⊂ { sup
x∈B(0,1),t∈[0,Tm+1−Tn]

|Xλ(t, x; θTnw)− x| > C02−m}

∪{ sup
x∈B(0,2),t∈[0,8m]

|Xλ(t, x; θTm+1w)− x| > C02−m}.

. Therefore we see that

Eμ[Zλ
n,m, sup

x∈B(0,1),t∈[0,Tm−Tn]
|Xλ(t, x; θTnw)− x| > C02−m+1]

5
nX

k=m

Eμ[Zλ
n,m, sup

x∈B(0,2),t∈[0,8k]
|Xλ(t, x; θTk+1w)− x| > C02−k] = 0.

This implies the assertion (1).
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By Propositions 16 (3) we see that

∞X
k=1

sup
λ∈Λ

Eμ[||D`ρ(8kỸ (8−k; θTk+1w))||pH⊗k ] <∞

for any ` = 1 and p ∈ (1,∞). Since 0 5 ρ 5 1, we see by Propositions 17 that

X̀
k=1

sup
λ∈Λ,n>m=1

Eμ[||DkZλ
n,m||pH⊗k ] <∞

for any ` ≥ 1 and p ∈ (1,∞). Since |Zλ
n,m| 5 1, we have the assertion (2).

Let Zλ
m = limn→∞ Zλ

n,m for λ ∈ Λ and m = 1.
Then we have the following.

Proposition 19 (1) Let C0 > 0 be as in Proposition 16 and m0 be an integer such that
C02

−m0+1 < ε0/2. Then for any m = m0,

Eμ[Zλ
m, sup

x∈B(0,1),t∈[0,Tm]
|Xλ(t, x)− x| = ε0/2] = 0.

(2) Zλ
m ∈ W∞,∞− for any λ ∈ Λ and m = 1, and moreover we see that for any r > 0 and

p ∈ (1,∞)
sup

λ∈Λ,m=1
||Zλ

m||W r,p <∞.

Now let

gk(x; f,λ) = E
μ[(1− ρ(8k−1Ỹ (8−k;w))f(X̃λ(t− Tk, x))], x ∈ RN , k = m0

for any f ∈ C∞b (RN).
Then we see that

|gk(x; f,λ)| 5 Eμ[(1− ρ(8k−1Ỹ (8−k;w))2]1/2 sup
x∈RN

|f(x)|. (11)

By Proposition 16 (2) we see that that

sup
k=0, λ∈Λ

8γkEμ[(1− ρ(8k−1Ỹ (8−k;w))2]1/2 <∞ (12)

for any γ > 0.
For each t ∈ (0, 1], let m = m(t) be a minimum integer m such that m = m0 and

Tm < t. Then we see that Tm = Tm0 ∧ (t/8). Note that for any ϕ ∈ C∞0 (B(0, ε0))

(ϕP̃ λ
t f)(x) = ϕ(x)Eμ[f(X̃λ(t, x))]

= ϕ(x)Eμ[Zλ
mf(X̃

λ(t, x))] +
∞X

k=m+1

ϕ(x)Eμ[Zλ
k (1− ρ(8k−1Ỹ (8−k; θTkw)))f(X̃

λ(t, x))].

= ϕ(x)Eμ[Zλ
mf(X

λ(t, x))] +

∞X
k=m+1

ϕ(x)Eμ[Zλ
k gk(X

λ(Tk, x); f,λ)].
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Then by Theorem 13 and Proposition 19 we see that for any u1, u2, . . . , un ∈ A∗∗ there is
a constant C > 0 independent of λ ∈ Λ or t ∈ (0, 1] such that

sup
x∈RN

|(Φλ(r(u1) . . . r(un))ϕP̃
λ
t f)(x)|

5 Ct−||u1u2...un||/2 sup
x∈RN

|f(x)|+
∞X

k=m+1

CT
−||u1u2...un||/2
k sup

x∈RN

|gk(x; f,λ)|.

Then Equations (11) and (12) imply the first part of Theorem 2.
Let Ẑλ

n,m ∈ W∞,∞−, n > m = 1, by

Ẑλ
n,m =

nY
k=m

ρ(8kỸ (8−k; θTn−Tk+1w)),

and let Ẑλ
m = limn→∞ Ẑλ

n,m, m = 1. For each t ∈ (0, 1], let m = m(t) be a minimum
integer m such that m = m0 and Tm < t. Then we have

(P̃ λ
t f)(x) = E

μ[f(X̃λ(t, x))]

= Eμ[Ẑλ
m(θt−Tmw)f(X̃

λ(t, x))]

+

∞X
k=m+1

ϕ(x)Eμ[Ẑλ
k (θt−Tkw)(1− ρ(8k−1Ỹ (8−k; θt−Tk−1w))f(X̃

λ(t, x))].

So we have the last assertion similarly.
This completes the proof of Theorem 2.

References

[1] Kusuoka, S., Malliavin Calculus Revisited, J. Math. Sci. Univ. Tokyo 10(2003),
261-277.

[2] Kusuoka, S., Approximation of expectation of diffusion processes based on Lie al-
gebra and Malliavin calculus, in Advances in Mathematical Economics vol. 6, ed.
S.Kusuoka, M.Maruyama , pp. 69-83, Springer 2004.

[3] Kusuoka, S., and D.W.Stroock, Applications of Malliavin Calculus II, J. Fac. Sci.
Univ. Tokyo Sect. IA Math. 32(1985),1-76.

[4] Kusuoka, S., and D.W.Stroock, Applications of Malliavin Calculus III, J. Fac. Sci.
Univ. Tokyo Sect. IA Math. 34(1987),391-442.

[5] Shigekawa, I., ”Stochastic Analysis”, Translation of Mathematical Monographs
vol.224, AMS 2000.

[6] Stroock, D.W., and S.R.S. Vardhan, ”Multidimensional Diffusion Processes”,
Springer 1997, Berlin.

16



Preprint Series, Graduate School of Mathematical Sciences, The University of Tokyo

UTMS

2009–20 Hermann Brunner, Leevan Ling and Masahiro Yamamoto: Numerical simula-
tions of two-dimensional fractional subdiffusion problems.

2009–21 Hajime Fujita, Mikio Furuta and Takahiko Yoshida: Torus fibrations and lo-
calization of index II - Local index for acyclic compatible system -.

2009–22 Oleg Yu. Imanuvilov, Gunther Uhlmann, and Masahiro Yamamoto: Partial
Cauchy data for general second order elliptic operators in two dimensions.

2009–23 Yukihiro Seki: On exact dead-core rates for a semilinear heat equation with
strong absorption.

2009–24 Yohsuke Takaoka: On existence of models for the logical system MPCL.

2009–25 Takefumi Igarashi and Noriaki Umeda: Existence of global solutions in time
for Reaction-Diffusion systems with inhomogeneous terms in cones.

2010–1 Norikazu Saito: Error analysis of a conservative finite-element approximation
for the Keller-Segel system of chemotaxis.

2010–2 Mourad Bellassoued and Masahiro Yamamoto: Carleman estimate with sec-
ond large parameter for a second order hyperbolic operators in a Riemannian
manifold.

2010–3 Kazufumi Ito, Bangti Jin and Tomoya Takeuchi: A regularization parameter
for nonsmooth Tikhonov regularization.

2010–4 Tomohiko Ishida: Second cohomology classes of the group of C1-flat diffeomor-
phisms of the line.

2010–5 Shigeo Kusuoka: A remark on Malliavin Calculus : Uniform Estimates and
Localization.

The Graduate School of Mathematical Sciences was established in the University of
Tokyo in April, 1992. Formerly there were two departments of mathematics in the Uni-
versity of Tokyo: one in the Faculty of Science and the other in the College of Arts and
Sciences. All faculty members of these two departments have moved to the new gradu-
ate school, as well as several members of the Department of Pure and Applied Sciences
in the College of Arts and Sciences. In January, 1993, the preprint series of the former
two departments of mathematics were unified as the Preprint Series of the Graduate
School of Mathematical Sciences, The University of Tokyo. For the information about
the preprint series, please write to the preprint series office.

ADDRESS:
Graduate School of Mathematical Sciences, The University of Tokyo
3–8–1 Komaba Meguro-ku, Tokyo 153-8914, JAPAN
TEL +81-3-5465-7001 FAX +81-3-5465-7012


