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Abstract

In this paper we prove a Carleman estimate with second large parameter for a second order hyper-
bolic operator in a Riemannian manifaldl. Our Carleman estimate holds in the whole cylindrical
domainM x (0,T) independently of the level set generated by a weight function if functions under
consideration vanish on bounda®yM x (0,7")). The proof is direct by using calculus of tensor
fields in a Riemannian manifold.

1 Introduction

Since [6] where the unique continuation for an elliptic equation with non-analytical coefficients is proved,
the theory of Carleman estimates have been comprehensively developed and we refer for example to
Hormander [10], Isakov [14], Lavtent’ev, Romanov and Shistkéf21], Tataru [22] and the references
therein. In particular, for Carleman estimates for hyperbolic operators, see [10], [21], Bellassoued and
Yamamoto [4], Imanuvilov [11]. A Carleman estimate is Bftweight estimate with weight function

2% which is valid uniformly for all large parameter> 0.

Carleman estimates are important tools not only for the unique continuation but also for the observ-
ability inequality (see e.g., [20]) and inverse problems (see e.g., Bukhgeim and Klibanov [5], Bellassoued
and Yamamoto [3], Imanuvilov and Yamamoto [13], Isakov [14], Klibanov [19], Klibanov and Timonov
[20], Yamamoto [23]). In usual Carleman estimates, only one large paramistémvolved. However,
in establishing the unique continuation and the observability inequality, and solving inverse problems
for some systems in the mathematical physics such as the thermoelasticity system, we need a Carleman
estimate wth second large parametewhere we sep = ¢?¥. Such Carleman estimates are proved in
Isakov and Kim [15], [16] and also see Eller [7], Eller and Isakov [8] where functions under consideration
are assumed to have compact supports.

In this paper, considering a second order hyperbolic operator in a Riemannian manifold, we prove
a Carleman estimate with second large paramefer functions not having compact supports and van-
ishing on the boundary. The proof is direct mainly by means of integration by parts and the concept is
similar to the proof of a Carleman estimate for a parabolic equation (e.g., [23]).



We formulate our Carleman estimate. I(4t(, g) be a compact Riemannian manifold with boundary
OM. All manifolds will be assumed smooth (which meaits) and oriented. We denote kY, the
Laplace-Beltrami operator associated to the metrim local coordinatesgs(x) = (gj;x), Ag IS given by

1 0 4 0
Ag = —— [ y/detgg/— ). 1.1
g ,/detgj%;l O < etgg axk> (1.1)

Here(g’*) is the inverse of the metriganddet g = det(g;x).

Let us consider the following second order hyperbolic operator of second order
P=07—- A, + P, (1.2)
whereP; is a first order partial operator with coefficientsiif® (R x M).

Throughout this paper we use the following notations:

n

a(z,&) = Y g/ (x)&é. (1.3)

7,k=1

Given two symbolg andg we define their Poisson bracket as

dp dg Op g ~[dp g Ip O
{p,q}(x,€)=£-£—£.£22< p 9q p q>.

j=1

8£j 6:13]- al’j (95] (14)

The theory about differential calculus of tensor fields on Riemannian manifold can be found in [17]. Let

(M, g) be ann-dimensionaly > 2, compact Riemannian manifold, with smooth boundary and smooth
metricg. Fix a coordinate system = [z, ...,z,] and let [8%1, . %} be the coordinate vector

fields. For each: € M, define the inner product and the norm on the tangent spat¢ by

n
g(X,Y) = (X,Y), = > gire;br,
k=1

- 0 - 0
‘X‘g:<X7X>é/27 VX:Zaigy Y:Zﬁz%
i=1 ! i=1 v

Here and henceforth we identify = > | O‘ia% with (a1, ..., a,) € R™. Moreover(X); denotes the

j-th coordinate ofX. ForC!-function f on M, we define the gradient gf is the vector fieldV, f such
that

X(f) = (Vef. X),
for all vector fieldsX on M. Then, with the above notation, we have

" 9f 0
v E : ij
2 & dx; Oz (1.5)

ij=1

We note that with the above identification, we $8& f); = Z gij%-
i=1 v



The metric tensog induce the Riemannian volunag, = (det g)1/2 dzi A - - Ndx,. We denote by
L?(M) the completion 0> (M) with the usual inner product

(f1, fo) = /M f1(z) fa(x)dvg, Vfi, f2 € C¥(M).
The Sobolev spacH ! (M) is the completion o€°° (M) with respect to the norri- et ()

17 oty = DI 0ty + 19 F 122 0y

Recalling the co-normal derivative defined below, we have

n

Oy = Vgu-v = Z gjkng (1.6)
k

wherev is the outward vector field toM.
Moreover, using covariant derivatives (see [9]), it is possible to define coordinate invariant norm in
HE(M), k >0, and let

Hy(M) ={ve H(M), v=0o0noM}. (1.7)

In order to state our Carleman estimate we need to introduce the following assumptions.
Assumption (A.1): We assume that there exists a positive functianM — R of classC? such that

{a,{a,9}} (x,6) >0, z€M, ¢¢eT,M\{0}. (1.8)

Since M is compact and(z, £) is a homogenous function with respéctt follows from (1.8) that there
exists a positive constapt> 0 such that

a0} (0,0 > 2] weM, £ TM\{0). (1.9)

Hereg; = g
=1
Assumption (A.2): Moreover we assume thdtx) has no critical points oM:

min [V (2)[2 > 0. (1.10)
zeM

Assumption (A.3): Under assumption (A.1)-(A.2), let a subbound&gysatisfy
{z eT; Vgi-v(x) >0} CTy.

Let us define
Q:MX(OaT)u EO:FUX(OvT)

and
Y(x,t) =0(x) —B(t—1t9)?, 0<f<o O0<to<T (1.11)

where the constantis given in (1.9). We define the weight functign: M x R — R by ¢(z,t) =
e @) wherey > 0 is a large parameter and let

0 = 57¢,
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wheres is real numbers. Let us introduce the following notation

HH(Q) = {u € B(0,T5 L2 (M) N L0, T3 HY(M)), 8fu(r,) =0, 7 € {0,T}, j € {0,1}} .
(1.12)
The following Carleman estimate is our main result:

Theorem 1 Assume that (A.1), (A.2) and (A.3) hold. Then there exist constants0 and-, > 0 such
that for anyy > -, there exist, = s.(v) such that for alk > s, the following Carleman estimate holds

C/ e*%g (\ng@ + |8 + o |v|2> dvgdt < /625<p |Pol|? dvgdt + / 0¢*5%0,v|? dwgdt (1.13)
Q Q 2o

wheneven € H}(Q), and the right hand side is finite. Hete, is the volum form oDM.

Remark 1 We show a simple example of metgcand satisfying (A.1) and (A.2). Letm € R™ be a
bounded domain with smooth boundary.
We take

g* () = p(@)djn,  px) > po >0, VoeM.

Then
P =0} - p(x)A + P

Let us consider, € R"\ M. Putd(z) = |« — zo|*. In this case an elementary calculation shows that

V- (x—

e 0 =200 (1- VT R Ve (6 ). (20

We assume that there exigts (0, 10) such that

3 -
avo%uﬂufmﬂg1fﬁ, zeM, (1.15)
Ko
then we obtain )
1l {a. 1} (@,6) = 20/ €. (1.16)

Then (A.1) is satisfied. Sinc€,J(z) # 0 for all z € M then (A.2) is also satisfied.
Moreover foru(x) satisfying (1.15), alsg’* (z) = pu(z)d;; + ebjr(z) satisfies (A.1) and (A.2) if > 0
is sufficiently small and;;, € C*(Q) (e.g., [4]).

As for other conditions admitting Carleman estimates, see also Amirov and Yamamoto [1] and
Imanuvilov, Isakov and Yamamoto [12].

Theorem 1 is a Carleman estimate which holds over the whole do@aimot only in level sets of

a weight function, for functions which vanish @). We need not assume that the functions under
consideration have compact supports and so ours is different from the Carleman estimates presented in
[15], [16] and [7], [8].



2 Preliminaries

In this section we collect some formulas to be involved in the sequel. Our interset is focused on Rieman-
nian manifolds which are manifolds equipped with metric structure. Precisely a Riemannian manifold
(M, g) is a manifold M with a positive definite2-covariant tensor fielg called the metric tensor. In

local coordonateg; is given by a smooth, positive definite, symetric matrix function (g;x).

We denote by digZX) the divergence of a vector field € H' (M) on M, that is, in local coordinates,

. 9
div(X MZa( detgal), X:;aiami. 2.1)

For X € H'(M) we have the following divergence formula

/ div(X)dv, = / (X, v) dwg (2.2)
M oM
wheredw, is the volume form o®.M, and forf € H' (M) we have following Green formula
/ div(X) fdvs = —/ (X, Vg f)gdvg +/ X v fdw,. (2.3)
M M M
Thenif f € HY(M) andw € H?(M), the following identity holds
/ Agw fdvg = —/ (Vgw, ng>g dvg +/ Oyw fdwg. (2.4)
M M oM

Ford € C?(M), the Hessian of with respect to the metrig is defined by

D*(X, X)(z) = Y o (Z gﬂl @i + Z Dy T k) a;, VX = Zal 0 . (2.5)

ij=1 =1 k=1 T

where we recall that;(z) = (Vg0(x)), is thel—th coordinate oV, (x) and

(Vgd(z)) = i(z) = Zgﬂ(:ﬁ)gfj(m), l=1,...,n (2.6)
j=1

andl‘ﬁk is the connection coefficient (Cristoffel symbol) of the Levi-Civita connediidn the metrig,

that is,
! _ 1 g Ip agkp 8gip . agik

Ox
p=1 P

Let X andY be vector fields with components, and 3,. Then thel-th component of the covariant
derivative ofY” with respect taX is given by

DxY)i= > o (gﬁl +10 @) (2.8)

p,q=1



We list a few formulad that will be used for the proof (see [17], p. 140 and [18], p.41). For any functions
f1, f2 € C?(M) and any vectors fieldX, Y andZ, we have

Z(X,Y),) = (DzX,Y), +(X,DsY),,
(Vef1,Z) Z(f1),
(Dx (Vg /1), Y), D*f1(X,Y),
vg(f1f2) f2vgf1 + flvgf27
div(f1X) = frdiv(X) + (X, ng1>g- (2.9)

The following technical lemma holds true, which is proved in Appendix A of [2].

Lemma 2.1 Letd) be aC? function. Then we have the following identity:

{a,{a,0}} (z,€) = 4D*I(E,€), Ve M, € € TM\{0}. (2.10)
Hereg; = > g (x)¢;.
=1

By assumption (A.1) we derive

D*)(X, X) > 20|X[2, VX = Zai%. (2.11)
i=1 v

3 Proof of Theorem 1
In this section we complete the proof of Theorem 1. We will divide the proof in three steps. Henceforth
we recall that) = M x (0,7) and¥y = I’y x (0,7, and we se{f,g) = / fgdvedt andy =
Q
OM x (0,7T).

3.1 Change of variables

In this step, we set the differential equation satisfied by a new funetiarich will be v up to weight
function. That is, let us introduce the new functions: e*¢u andG = e*# f, wheref = (97 — Ag)u.
We easily obtain that

Miz 4+ Msyz = Gs/y (31)
where
Mz = 0}z — Agz+ o2 (|8th2 - Inglé) z,
MQZ = —20 (8t28t1[) — <VgZ, vg@b)g) — 0 (|at’¢|2 - |vg¢’§> z (32)
and
Gsy =G+ 0 (07¢ — Ag)) 2. (3.3)

With the previous notations, we have

1M 2] + || Moz||* + 2 (Miz, Maz) = || Gy |- (3:4)



Now, we will make the computation @f( M z, M, z). For this, we will develop the six terms appearing
in (M, z, Msz) and integrate by parts several times with respect to the space and time variables.

We have
(Myz,Mrz) = 2/@083,2 (atzat¢ — (Vgz, Vg¢>g) dvgdt
’y/ 002z (|at¢| — V0| )zdvgdt
Q
+2 / 08z (D200 — (Vg2 V), ) dvgelt
Q
+y / oAz (|at¢\ —\vgwg) zdvydt
Q
2 /Q o3 (|at¢12 - yvgwg) p (8,5,26,51/1— <vgz,vg¢>g) dvgdt
2
’y/ o (10002 — [Vgl2) |2l dvgat
Q
= ZIJ-. (3.5)
j=1

First we have
0
I, = _/Qaatu;at (12:21*) dvgdt—/QJ<Vg (|0tz|2),vg¢>gdvgdt
—27/ o (0pp0z) <Vg¢,vgz>g dvgdt
Q
= 'y/ a\8t¢\2|8tz]2dvgdt+/ 0021 |02 dvgdt
Q Q
—i—v/@a|8tz|2|ng|§dvgdt+/QJ|8tz|2Ag¢dvgdt
—27/ o (Opp0yz) <Vg¢,vgz>g dvgdt. (3.6)
Q
We also have
I, = —7/6208,522 (10001 — [V l2) 2 dvydt
= o [ o1l (0l — 1Vul2) dvar
Q
2 2 2 2
+7 / o (0p)p0;2) <|8tw\ - |Vg1/J|g> z dvgdt + 27/ 0 (O22) (Opp 07 ) dvgdt
¢ 2 2 3 ¢ 2 2 2
= o [ o1l (10 = (Vi) vt = T | 10w (1l ~190i2) P v

5 2

~y
—57 /J|Z|2|atw\25t2¢dvgdt+Q/QUM afw\vgw\zdvgdt

—7/ o |2 [020|* dvgdt. (3.7)
Q



Furthermore,
Ty = 2 / o8z (D200 — (Vg2 V), ) dvgel
Q
~ oy / 0 (Ve Vi2), (012000 — (Vg2 Vi), ) dvgdt
Q
—2/ 0 (Vgz, (0:Vg20:0)), dvgdt+2/ 0<ng,vg ((ng,vgz/)>g>> dvgdt
Q Q g
—2 [/ 0 |Vaz - v]> Vi - degdt]
%
= —27/ 0 (Vgz, Vgih), (01p0;z) dvgdt+27/
Q Q
d
/ant (1V,212) 8t1/)dvgdt+2/Qa<ng,Vg (<vgz,vg¢>g)>gdvgdt

—2 [/ 0 |Vaz - v]> Vi - degdt] : (3.8)
%

2
o | (Ve vgz>g‘ dvedt

Applying (2.9) withZ = V,z, we obtain

(Vi2, Ve ((vgz,vgwg»g = V= ((Vez, Vov), )
= (Dv,:Vez, vg¢>g +(Vez, Dngvgwg
Dy (Vgz, Vg2) + D%z (Vgz, V1)) (3.9)

and

Vg, Vg \ng\§ = Vgt ((Vgz, Vg2),
g
<]D)ngvgz’ vgz>g + <vgz7]D)vnggz>g
2D%2 (Vg2, Vgih) (3.10)

we deduce that
I3 = —27/620 (Vgth, Vgz), (Orp0Orz) dvgdt + 27/@0 ‘(Vg@b, vg2>g‘2 dvgdt
+7 /Q o \ng@ |043p|? dvigdt + /Q o ]nglz O dvgdt
+2 /Q oD*)(Vyz, Vaz)dvgdt — /Q 0 |Vgz[2 |Vt |2 dvgdt
— /Q 0 |Vgz|5 Agtpdvgdt
- [/E 010,22 V) - udwgdt} . (3.11)
On the other hand, we have
Iy = y/QoAgz <|(9t¢\2 - \ng@) zdvgdt

8



+7/Qa<vgz,vg (|Vg¢|§)>gzdvgdt—7/@0|ng|2 (|at¢|2 - |vg¢|§) dvydt

—f /Q o (Vew Vs (I2°)), (10001 ~ Vg2l dvl
+g/Qa<vg (1) . v (|Vg¢|§)>g (196012 ~ 1902 ) dgl
—V/QUIVgZ@ (IM)I2 - |vg¢|§) dv,dt

f/cga o (Aglﬂ 7 \ng)g (@W - \ng@ dvgdt
_72/Qa|zl2<vgw,vg (Ivgw|§)>gdvgdt—g/Qa|z|2Ag (IV0f2) dveat

_»y/Qa]ng]z (19662 — [Vgul2) dvgt. (3.12)

We also have

15

Furthermore

Since

we obtain

(Myz, Maz)

S /Q o’ <|at¢|2 - ]ngﬁ) z <8t1/18tz — (Vgih, Vg2>g> dvgdt
- _/Qai"gt (1217) a0 (10l = 19012 dvyat

—l—/Qa3 <V (12\2) ,Vg¢>g (fatw‘Q _ \ng\@ dvgdt

2
_ 37/03 (19002 — Vgwl2)” [2f2 vyt
Q

[ 0" Il 080 — g0) (1000~ 19501 vy

+2/ g3|zy2yat¢\283¢dvgdt+/ a3yz\z<vgw,vg (\vg¢\§>> dvgdt. (3.13)
Q Q g

2
To=— /Q o (102 ~ [V 2) [2f? dgr (3.14)

(Ve Vi (IVsvl}) ) = Doy (Vi Va),) = 2020 (Vb Viw) . (3.15)

= (fy/ 0\8t2|2|8t1/)|2dvgdt+/ a|8tz|28§wdvgdt+7/ 0|8tz|2|vgw|§dvgdt
Q Q Q
+/ o |02” Ag) dvgdt—4'y/ 0 (00yz) (Vgz, Vgih), dvgdt
Q Q
2 2 2 2
+'y/0|6tz] (|atw| —|Vg¢|g) dvgdt+27/ a’<vg¢,vgz>g‘ dvgdt>
Q Q

—l—(’y/ U|ng]§|8tw|2dvgdt+/ 0 |Vgz|; 07 todvegdt
Q Q

9



+2/ UDQ@b(VgZ,ng)dvgdt—v/ U|ng\§|vg¢|z dvgdt
Q Q
_/QayvgzyzAgwdvgdt—fy/Qa\vgz@ (yatw_\vgw@ dvgdt>
2

+<27/ o (\at¢|2—|vg¢|2) 12|? dvydt

Q g
+ [ 0"l 080 = ) (10001 — 19501 i
+2/ o® |2|* |0s)|? 929 dvgdt

Q

+2 / o 2|2 D2 (V1) ng/})dvgdt> - [ / 010,22 Vgt - vdwgdt| + Ry
Q by
= Nh+D+Ts+B+R (3.16)

where the term#, andR; satisfy
IR1| < C’y/QoZ|z]2dvgdt (3.17)

and
By =— [/ o |0,z)? IR l/dwgdt} (3.18)
by

3.2 Interior estimate

The terms7;, J»> and 73 are given by:

2
T = 2y / o (000 — (V. Vi2),, ) dvgdt + / o |02]? (020 + Agt)) dvdt
Q Q

v

/ o |02|? (07 + Agth) dvydt. (3.19)
Q

Jo =2 / oD*) (Vgz, Vg2) dvgdt + / 0 |Vgz|? (029 — Agy)) dvgdt. (3.20)
Q Q

o= % /Q o (10 — [Vg02) [2f? dvgat
¥ /Q 0% 2f? (0 — Ag0) (06 — [V l2) dvgdt +2 /Q 0% |22 00 O dvidt
+2 /Q o 2> D2 (Vgth, Vgib)dvydt. (3.21)
On the other hand, we have
/Q Miz(ozAgh)dvedt = /Q O} z(02Agp)dvgdt — /Q Agz(20Mg1))dvgdt

+/Qa3 (yatw— \vg@ Agih |2|? dvgdt

10



= —/J|8tz]2Agwdvgdt—7/ 0(04)(0p2) 2 Agtpdvgdt
Q Q
+ / 0 |Vgz|; Agtpdvgdt + / 7 (Vgth, Vg2), Agtpzdvgdt
Q Q
—|—/QU(ng,Vg(Agw)z>g dvgdt
+/Qa3 (|at¢12— \vgw@) Agth |2)? dvgdt. (3.22)
Then fore > 0, we choose a constaét > 0 such that
‘/Qa(|vgz]§—\8tz|2> Agwdvgdt’ < 0/6203]2\2‘\8tw\2—\ngﬂz‘dvgdt
+e || Myz||* 4 Ryl (3.23)
where the ternmk, satisfies
IRs| < C. <7/ |ng|§dvgdt+7/ 02|z|2dvgdt>. (3.24)
Q Q
Therefore, we find that
Ji+T > 2/ U]Dzw(vgz,vgz)dvgdt—2ﬂ/ U(\ng|§+]8tz\2)dvgdt
Q Q

+/ o (1922 — 1021 ) Agwdvat
Q

> 2/QUD2¢(ng,ng)—2ﬁ/Qa(|ng|§+|8tz|2)dvgdt
_C/QU?’\zFMatW— Vg2 dvgdt — < [ M2~ [Ra]. (3.25)
Similarly, we have
/Q Mz(oz)dvgdt = — /Q 0 |8:2)? dvgdt — /Q 0OppOyz2dv g dt

+ /Q 0 |Vgz| dvgdt + /Q 7 (Vgth, Vg2), zdvgdt
+/Qa3 <|atz/1|2— Ivgq,z)@) |2|? dvgdt. (3.26)
We deduce that
/Qa\atz]degdt < C/Qa3|z]2‘]8t1/1]2—]ngz‘dvgdt
+g||M1zy|2+|R3|+/Qa|vgz|§dvgdt (3.27)

where
R3] < C. (v/ (|vgz|§+ |8tz|2> dvgdww/ 02]2\2dvgdt>. (3.28)
Q Q

11



Combining (3.28), (3.25) and using (2.11), we obtain
T+ T > 2/620D2¢(ng,vgz)dvgdt—46/Qayvgz\zdvgdt

=C [ =P 0 912 vt <Ml — Ral ~ R

> 4(@—5)/@0|ng|zdvgdt—C/Qag|22’]8,31/)\2— Vg2 dvat
—e||Mi2||* — |Ra| — |Rs|
> (0—p) /Q o (]ng@ + |(9tz\2) dvgdt — C(/Qg3 |2)? ‘|6“M2 _ ‘ngmz‘ dvgdt

e l|Mazl? + [Ral + [Rs) ) (3.29)

We also see that
7y = 27/6203 (1002 — V2 |2 dvgat
+/QUS 1212 (930 — Agt)) (|a“/}|2 _ |vg¢|§) dvgdt—4ﬁ/Qg3 1212 02 dvgdt
+2 /Q 0% 2| D2)(Vgth, V) )dvgdt
2 /Q o (10 — Vg0 2)” 2P dvgdt — C /Q 0% 22 |0 |V | vyt

+4/Qa3 (mva}mwﬁ) 2] dvdt. (3.30)

v

Additionally, we find that
2 2 3 2 2 2 2
T+t o = 20=0) [ o (Ve +106) vt + 2y [ o (100 = [Ve0l2)" |2 vt
Q Q
+4/Qa3 (oI Vawl2 — 810 ) |2f dvgat
—C(/Q<73|z2’]3t1/1\2—\ng@‘dvgdt—i—sHMlz\F%—|R2[+|R3]). (3.31)
3.3 Conclusion

Letn > 0 be small such that(1 + n) < o. Let us consider

Q" ={@nea

O6P? — Vgl <n[Vgul?2}

Then
Nh+T+T > 20— ﬁ)/ o (|vgz\§ + |6tz]2> dvgdt
Q

2
w27 [ o (10~ [Vabl2) P dvgit
Q\Q &

12



—077/ U3|Z|2dvgdt—0/ o3 |22 dvydt
" Q\Q"
+4(@—ﬂ(1+n))/Q o |2 |V 2 dvgdt

n
—C (e 1Mz + [Re| + [Rs))

5/ o (|ng|z + ]8t2|2> dvgdt + 2777201/ o |2|* dvgdt
Q Q\Q"

—C’gn/ 0% |2 dvgdt — Cg/ 0% |2|? dvydt
" Q\@7
+Cile — B(1+n)) / 0 2] dvgdt — C (= | Maz]* + [Ra| + Ral)
Qn
5/ o <|ng|§ + ]8t2|2> dvgdt + (2yn*Cy — Cg)/ o3 |22 dvgdt
Q Q

@
+(c4—7702)/ o o dvgdt — C (| Mz + [Re| +1Rs]) . (3:32)
Q"

v

Y

Then forny small andy large, we obtain
Tt Dt T > 5/Qa(|vgz|§+|atz|2) dvgdt+C’/Qg3|Z|2dvgdt
—C (£ IMz + [Ra| + [Rs]) (333)
By (3.16) we find
2(Myz,Myz) — By > C’/Qa (]nglz + |8tZ’2) + 0% |2 dvydt
—C (2 1Mz + 1R | + [Ra| + R ) (3.34)

Then there exists, () such that for any > s, ande small, we have
IGI12 = By > C/Qa (1962 + 102) + 0 |2P) vyt (3.35)

The proof is completed.
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