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Abstract

Scattering theory between the fractional power H0 = κ−1(−∆)κ/2 (κ ≥ 1) of neg-
ative Laplacian and the Hamiltonian H = H0 + V perturbed by short- and long-
range potentials considered in [10] is revisited and a new proof of the existence
and asymptotic completeness of wave operators is given with utilizing the smooth
operator technique.
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1 Introduction

We consider a free Hamiltonian defined in a Hilbert space H = L2(Rn)

H0 = κ−1(−∆)κ/2,

and a perturbation

H = H0 + V (1.1)

of H0 by a simple two-body potential V . Here κ ≥ 1,

∆ =
n∑

j=1

∂2

∂x2
j

,

∗E-mail address: kitada@ms.u-tokyo.ac.jp



and V is decomposed into a sum V = VS(x) + VL(x) of two real-valued measurable
functions VS(x) and VL(x) on Rn which satisfy the following conditions.

Assumption 1.1 There exists a constant 0 < δ < 1 such that

∥⟨x⟩1+δVS(x)(1 + H0)
−1∥ < ∞, (1.2)

where ∥ · ∥ denotes the operator norm and ⟨x⟩ =
√

1 + |x|2.

Assumption 1.2 Let δ ∈ (0, 1) be the same constant as in Assumption 1.1. For all
multi-indices α there exists a constant Cα > 0 such that for all x ∈ Rn

|∂α
x VL(x)| ≤ Cα⟨x⟩−|α|−δ, (1.3)

where ∂α
x = (∂/∂x1)

α1 . . . (∂/∂xn)αn for a mult-index α = (α1, . . . , αn).

Under these assumptions, V is relatively bounded with respect to H0 with H0-bound
< 1. Thus H defines a selfadjoint operator with domain D(H) = D(H0) = Hκ(Rn), the
Sobolev space of order κ. Therefore the solution of the Schrödinger equation

1

i

∂u

∂t
(t) + Hu(t) = 0, u(0) = f(∈ D(H))

is given by a unitary group e−itH (t ∈ R) as follows.

u(t) = e−itHf.

Similarly for the free Hamiltonian H0, the solution u0(t) of the corresponding Schrödinger
equation with initial condition u0(0) = g is given by

u0(t) = e−itH0g.

We remark that the operator H0 is written as a pseudodifferential operator with symbol
H0(ξ) = κ−1|ξ|κ (κ ≥ 1). Namely for f ∈ D(H0)

H0f(x) = (2π)−n/2

∫
Rn

eixξκ−1|ξ|κf̂(ξ)dξ

= (2π)−n

∫∫
R2n

ei(x−y)ξκ−1|ξ|κf(y)dydξ

with f̂ = Ff denoting the Fourier transform of f . We will use a convention dξ̂ = (2π)−ndξ.
Then this expression is written as follows.

H0f(x) =

∫∫
R2n

ei(x−y)ξκ−1|ξ|κf(y)dydξ̂.

2



The problem of simple scattering theory is whether the both of the limits

W±
1 g = lim

t→±∞
eitHJe−itH0g (g ∈ H) (1.4)

W±
2 f = lim

t→±∞
eitH0J−1e−itHf (f ∈ Hc) (1.5)

exist, if one constructs the identification operator J suitably. This problem is called the
problem of the existence and asymptotic completeness of wave operators. Here we used
the notation Hc to denote the spectrally continuous subspace of H. The asymptotic
completeness means the existence of the limits W±

2 g (g ∈ Hc), and this is equivalent to
the equality

R(W±
1 ) = Hc. (1.6)

From the definition above of W±
1 , we see that if the wave operators W±

1 exist, the
following holds.

e−isHW±
1 = W±

1 e−isH0 (∀s ∈ R).

Taking Laplace transform of both sides, we easily see that for any Borel set B

EH(B)W±
1 = W±

1 E0(B),

where EH(B) and E0(B) are the spectral measures for H and H0 respectively. From this
follows that

R(W±
1 ) ⊂ Hc.

Therefore to prove the asymptotic completeness it suffices to prove the converse inclusion

Hc ⊂ R(W±
1 ). (1.7)

The case − is treated similarly to the case +, so that we consider the + case only in the
following.

Assume for a moment that the existence of the wave operator W+
1 has been proved,

and suppose that for a given f ∈ Hc, there is a sequence tk → ∞ (as k → ∞) such that
the limit

W+
2 f = lim

k→∞
eitkH0J−1e−itkHf (1.8)

exists. Then we have

f = lim
k→∞

eitHkJe−itkH0eitkH0J−1e−itkHf

= W+
1 W+

2 f

∈R(W+
1 ),

and the proof of (1.7) is complete.
The existence of wave operator

W±
1 g = lim

t→±∞
eitHJe−itH0g (g ∈ H)
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is shown similarly to that of the existence of the limit (1.8). Thus the concern of scattering
theory is to see how the existence of the limit (1.8) is shown, and several proofs are known
for both short-range and long-range perturbations with respect to H0 = −∆. In the
present paper we will give another simpler proof including the case H0 = κ−1(−∆)κ/2

(κ ≥ 1).
For illustrating the purpose of giving a new proof in spite of the well-established state

of the present scattering theory, we will review some history of scattering theory. The
proof of the asymptotic completeness had been treated by stationary method in the early
age of the scattering theory. (E.g., [1], [5], [6], [11], [12], [15] for the short-range case.
For other earlier results on trace class perturbations, etc., see e.g., [4] and references
therein.) Around almost the same time Lax-Phillips [13] developed an abstract time-
dependent scattering theory as well as gave concrete applications of the abstract theory
to the acoustic wave equations. A little bit later Enss [2] gave a time-dependent method
for treating the Schrödinger scattering theory. The similarity between the Lax-Phillips
theory and Enss method was later noticed in [9]. In both approaches what is essential is
the micro-local decomposition of the identity as defined in section 2 of [10]. Then it is
shown that the incoming part vanishes as time goes to +∞ by Ruelle [14] argument. The
remaining outgoing part is treated by analyzing the propagation properties of the free
unperturbed evolution. The proof has been simplified considerably in the Lax-Phillips-
Enss method compared to the former proof by the stationary approach. There had been
known however another time-dependent method developed by T. Kato [3] (1966) called
smooth operator technique. A sufficient condition for the existence and the asymptotic
completeness to hold is given in Theorem 3.9 of [3] in a time-dependent form. This
condition was later extended and utilized by Sigal-Soffer [16] in proving the asymptotic
completeness of channel wave operators for N -body scattering problem with short-range
pair potentials. Their improvement is found in Lemma 3.4 of [16]. The point of their
argument is as follows with some simplification for the sake of illustration restricting the
case to the short-range simple two-body perturbations. Suppose that a bounded operator
F defined on H satisfies as a sesquibilinear form

i[H,F ] = i(HF − FH) = F 2
1 + M1(t) on Hc ×Hc (1.9)

for some selfadjoint operator F1 and bounded operator M1(t) continuous in t with respect
to operator norm such that ∥M1(t)∥ ∈ L1(R). Then one has for τ > σ and f ∈ Hc

|(eiτHFe−iτHf − eiσHFe−iσHf, f)|=
∣∣∣∣∫ τ

σ

d

dt
(eitHFe−itHf, f)dt

∣∣∣∣
=

∣∣∣∣∫ τ

σ

(eitHi[H,F ]e−itHf, f)dt

∣∣∣∣
≥

∣∣∣∣∫ τ

σ

(eitHF 2
1 e−itHf, f)dt

∣∣∣∣ − ∫ τ

σ

∥M1(t)∥dt∥f∥2.

As the left hand side is bounded by a constant times ∥f∥2 uniformly with respect to t,
one has the convergence of the following integral for f ∈ Hc∫ τ

σ

∥F1e
−itHf∥2dt ≤ M2

1∥f∥2 (1.10)
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for some constant M1 > 0 independent of τ > σ. If one can make a similar assumption
with respect to the unperturbed operator H0 and has

i[H0, F ] = F 2
0 + M0(t) on H×H (1.11)

for a selfadjoint operator F0 and some bounded norm continuous operator M0(t) such
that ∥M0(t)∥ ∈ L1(R), one then obtains an estimate similar to the above for g ∈ H∫ τ

σ

∥F0e
−itH0g∥2dt ≤ M2

0∥g∥2 (1.12)

for some constant M0 > 0 independent of τ > σ. Assume now that one has a factorization

i(HF − FH0) = F ∗
1 F0 + M(t)∗ (1.13)

with ∥M(t)∥ ∈ L1(R). Then one gets for f ∈ Hc and g ∈ H

(eiτH0F ∗e−iτHf − eiσH0F ∗e−iσHf, g)

=

∫ τ

σ

(F1e
−itHf, F0e

−itH0g)dt +

∫ τ

σ

(M(t)f, g)dt. (1.14)

Applying (1.10) and (1.12) to the right hand side one obtains

|(eiτH0F ∗e−iτHf − eiσH0F ∗e−iσHf, g)|

≤ M0

(∫ τ

σ

∥F1e
−itHf∥2dt

) 1
2

∥g∥ +

∫ τ

σ

∥M(t)∥dt∥f∥∥g∥, (1.15)

which proves the existence of the limit

lim
t→∞

eitH0F ∗e−itHf (1.16)

for f ∈ Hc. If one can show the existence of a sequence tk → ∞ (k → ∞) for each f ∈ Hc

such that
∥e−itkHf − F ∗e−itkHf∥ → 0 (as k → ∞),

one has the existence of the limit

lim
k→∞

eitkH0e−itkHf (1.17)

for f ∈ Hc and the proof of asymptotic completeness is complete.
We will do this in a more refined manner to include the long-rang potentials so that

one needs to modify the definition of wave operators and introduce time-independent
modifier J following [10]. In the next section 2 we will prepare the known fact about
scattering state, i.e. about the vector in H which belongs to the continuous spectral
subspace Hc of H. In section 3 we will state the definition of time-independent modifier
or identification operator J following [10]. In the final section 4 we will give a refinement
of the above argument adapted to the long-range case with introducing a time-dependent
factor J∗P δ(t) instead of the factor F ∗ above and will conclude the description of a new
proof.
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2 Scattering state

We denote by EH(B) the spectral measure for H, and use the notation Hc(a, b) =
EH([a, b])H ⊂ Hc. Under Assumptions 1.1 and 1.2, it is known that the closed linear
hull of the set

⋃
0<a<b<∞Hc(a, b) equals Hc. Also it is known that the following holds.

Lemma 2.1 For any f ∈ Hc(a, b) = EH([a, b])H (0 < a < b < ∞) with ⟨x⟩2f ∈ H =
L2(Rn), there exists a sequence tk → ±∞ as k → ±∞ such that for any ϕ ∈ C∞

0 (R) and
R > 0

∥χ{x∈Rn||x|<R}e
−itkHf∥ → 0, (2.1)

∥(ϕ(H) − ϕ(H0))e
−itkHf∥ → 0, (2.2)∥∥∥∥(

x

tk
− |Dx|κ−2Dx

)
e−itkHf

∥∥∥∥ → 0 (2.3)

as k → ±∞, where D = Dx = −i∂x and χB denotes the characteristic function of a set
B.

Proof of the lemma is found in section 5 of [10], and we omit it here. We remark that
when H = H0 Lemma 2.1 holds with the sequence tk → ∞ replaced by t → ∞ for any
f ∈ H = L2(Rn) with ⟨x⟩2f ∈ H.

Let a function ρ(λ) ∈ C∞(R) satisfy the following.

0 ≤ ρ(λ) ≤ 1,

ρ(λ) =

{
1 (λ ≤ −1)
0 (λ ≥ 0)

ρ′(λ) ≤ 0,

ρ(λ)
1
2 , |ρ′(λ)|

1
2 ∈ C∞(R).

Define for λ ∈ R, R, δ > 0, θ > 0

ϕδ(λ < R) = ρ((λ − R)/δ),

ϕδ(λ > R) = 1 − ϕδ(λ < R),

ϕ(λ < θ) = ϕθ(λ < 2θ)

and choose χ(λ) ∈ C∞(R) with 0 ≤ χ(λ) ≤ 1 such that

χ(λ) =

{
1 (λ ∈ [a, b]),
0 (λ ≤ a/2 or ≥ 2b).

We now set

pδ(x/t, ξ) = ϕ(|x/t −∇ξH0(ξ)|2 < δ)χ(H0(ξ))
2. (2.4)

We let P δ(t) be the pseudodifferential operator with symbol pδ(x/t, ξ).
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For f ∈ Hc(a, b) satisfying ⟨x⟩2f ∈ H, there is a sequence tk → ∞ (k → ∞)
which satisfies the conditions of Lemma 2.1. In particular from the relation ϕ(0 <
δ) = 1, ∇ξH0(ξ) = |ξ|κ−2ξ, (2.2), and (2.3) of Lemma 2.1, we have limk→∞(e−itkHf −
χ(H0)e

−itkHf) = 0 and

∥e−itkHf − P δ(tk)e
−itkHf∥ → 0 (k → ∞) (2.5)

for f = EH([a, b])f ∈ Hc(a, b) with ⟨x⟩2f ∈ H. As J has a bounded inverse J−1 as we
will remark at the end of section 3, the operators eitH0J−1P δ(t)e−itH form a uniformly
bounded family with respect to t ∈ R. Therefore to prove the existence of the limit (1.8)
for f ∈ Hc, it suffices to show the existence of the following limit

lim
k→∞

eitkH0J−1P δ(tk)e
−itkHf (2.6)

for f ∈ Hc(a, b) with ⟨x⟩2f ∈ H.

3 Identification operator J

The identification operator J in (1.4) and (1.5) is a bounded operator from H = L2(Rn)
into itself and is defined as follows as in section 4 of [10].

Jf(x) = (2π)−n

∫∫
ei(φ(x,ξ)−yξ)f(y)dydξ

= (2π)−n/2

∫
eiφ(x,ξ)f̂(ξ)dξ. (3.1)

Here the phase function φ(x, ξ) is constructed as a solution of an eikonal equation for the
Hamiltonian (1.1) and satisfies the following theorem (Theorem 4.4 of [10]).

Theorem 3.1 Let d2 > d1 > 0 and −1 < σ− < σ+ < 1 be fixed. Then there is R =
Rd1,d2,σ± > 1 and a real-valued C∞ function φ(x, ξ) of (x, ξ) ∈ R2n such that the following
holds:

i) For d2 ≥ |ξ| ≥ d1, |x| ≥ R and cos(x, ξ) ≥ σ+ or cos(x, ξ) ≤ σ−

κ−1|∇xφ(x, ξ)|κ + VL(x) = κ−1|ξ|κ. (3.2)

ii) For any multi-indices α, β there is a constant Cαβ > 0 such that for d2 ≥ |ξ| ≥ d1

and x ∈ Rn

|∂α
x ∂β

ξ (φ(x, ξ) − x · ξ)| ≤ Cαβ⟨x⟩1−δ−|α|⟨ξ⟩1−κ. (3.3)

In particular for |α| ̸= 0, we have for δ0, δ1 ≥ 0 with δ0 + δ1 = δ

|∂α
x ∂β

ξ (φ(x, ξ) − x · ξ)| ≤ CαβR−δ0⟨x⟩1−δ1−|α|⟨ξ⟩1−κ. (3.4)
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iii) Set for f ∈ S

Tf(x) = (HJ − JH0)f(x). (3.5)

Then we have

Tf(x) =

∫∫
ei(φ(x,ξ)−yξ){a(x, ξ) + VS(x)}f(y)dydξ̂. (3.6)

Here

a(x, ξ) = κ−1|∇xφ(x, ξ)|κ + VL(x) − κ−1|ξ|κ + r(x, ξ), (3.7)

where

r(x, ξ) = −i

∫∫
ei(x−y)η∇y ·

(∫ 1

0

|∇̃xφ(x, ξ, y) + θη|κ−2(∇̃xφ(x, ξ, y) + θη)dθ

)
dydη̂,

(3.8)

and

∇̃xφ(x, ξ, y) =

∫ 1

0

∇xφ(y + θ(x − y), ξ)dθ.

The symbol a(x, ξ) satisfies for d2 ≥ |ξ| ≥ d1, |x| ≥ R and any α, β

|∂α
x ∂β

ξ a(x, ξ)| ≤
{

Cαβ⟨x⟩−1−δ−|α|⟨ξ⟩1−κ, cos(x, ξ) ∈ [−1, σ−] ∪ [σ+, 1],
Cαβ⟨x⟩−δ−|α|, cos(x, ξ) ∈ [σ−, σ+].

(3.9)

We remark that the factor ⟨ξ⟩1−κ in the bounds above is effective just in each region
d1 ≤ |ξ| ≤ d2 and the constant Cαβ depends on d1 and d2.

As stated above, J is defined for f ∈ S

Jf(x) =

∫∫
ei(φ(x,ξ)−yξ)f(y)dydξ̂.

Since the regions d2 ≥ |ξ| ≥ d1 of definition for the phase function φ(x, ξ) are enlarged if
we wait enough until late or early time t near +∞ or −∞, they in total cover the whole
region Rn × (Rn \ {0}). Thus J is regarded to have been defined on the whole Hilbert
space H = L2(Rn). When it is thought to be constructed in such a way, this J is known
(Theorem 3.3 in [7]) to have a bounded inverse J−1. Thus we can define W1(t) and W2(t)
as follows:

W1(t) = eitHJe−itH0 , W2(t) = eitH0J−1e−itH .

From ii) of Theorem 3.1 and the factor χ(H0)
2 in P δ(t), we have that the operator

(J−1 − J∗)P δ(t) is compact. From (2.1) of Lemma 2.1, we have w-limk→±∞ e−itkHf = 0.
Thus to prove the existence of the limit (2.6) it suffices to prove the existence of the limit.

lim
k→∞

eitkH0J∗P δ(tk)e
−itkHf (f ∈ Hc(a, b) with ⟨x⟩2f ∈ H). (3.10)
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4 A proof of the asymptotic completeness

To prove the asymptotic completeness we have seen that it is sufficient to prove the
existence of the limit (3.10) for f ∈ Hc(a, b) with ⟨x⟩2f ∈ H where 0 < a < b < ∞ are
fixed. We will prove a little bit strongly that the limit

lim
t→∞

eitH0J∗P δ(t)e−itHf (4.1)

exists, owing to the introduction of the factor P δ(t) in (2.6).
As we will fix δ > 0 sufficiently small below, we will write P δ(t) just as P (t). The

necessary and sufficient condition for the limit (4.1) to exist is that when τ > σ → ∞

∥eiτH0J∗P (τ)e−iτHf − eiσH0J∗P (σ)e−iσHf∥ → 0. (4.2)

The norm is equal to the following by the fundamental theorem of calculus.∥∥∥∥∫ τ

σ

d

dt
(eitH0J∗P (t)e−itHf)dt

∥∥∥∥ . (4.3)

The integrand is equal to

d

dt
(eitH0J∗P (t)e−itHf) = eitH0

{
−iT ∗P (t) + iJ∗(VSP (t) − P (t)VS)

+iJ∗[VL, P (t)] + J∗(i[H0, P (t)] + ∂tP (t))
}
e−itHf. (4.4)

The term −iT ∗P (t) + iJ∗(VSP (t) − P (t)VS) + iJ∗[VL, P (t)] on the right hand side is
a compact operator and decays in the order O(t−1−δ) with respect to t as t → ∞ by
Theorem 3.1, iii) and the assumptions on VS and VL, and hence is integrable with respect
to t ≥ 1.

The remaining term i[H0, P (t)] + ∂tP (t) is treated by the following lemma1.

Lemma 4.1 Let P δ(t) (t ≥ 1) be the pseudodifferential operator with symbol pδ(x/t, ξ)
defined by (2.4). Then there are operator valued functions S(t) and R(t) (t ≥ 1) contin-
uous in uniform operator topology such that the following holds.

i[H0, P
δ(t)] + ∂tP

δ(t) =
1

t
S(t) + R(t). (4.5)

Here S(t) is a nonnegative selfadjoint operator and R(t) satisfies the following estimate
for some constant C > 0 independent of t ≥ 1.

S(t) ≥ 0, ∥R(t)∥ ≤ Ct−2. (4.6)

Proof It suffices to show the lemma for δ = 1. I.e. we assume that the symbol p(x/t, ξ)
of P δ(t) is of the following form.

p(x/t, ξ) = ϕ(|x/t −∇ξH0(ξ)|2 < 1)χ(H0(ξ))
2 =: pt(x, ξ). (4.7)

1The following lemma is an extension of Lemma 4.2 in [8].
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We note that the symbol pt(x, ξ) satisfies for any multi-index α, β

sup
x,ξ∈Rn

|∂α
x ∂β

ξ pt(x, ξ)| ≤ Cαβt−|α|, (4.8)

where constant Cαβ > 0 is independent of t ≥ 1. By a direct computation we have the
following.

(i[H0, pt(X,D)] + ∂tpt(X,D))f(x)

= (2π)−n/2

∫
eix·ξ {∇ξH0(ξ) · ∇xpt(x, ξ) + ∂tpt(x, ξ) + rt(x, ξ)} f̂(ξ)dξ, (4.9)

where rt(x, ξ) satisfies

|∂α
x ∂β

ξ rt(x, ξ)| ≤ Cαβt−2−|α|. (4.10)

In fact we compute for f ∈ S as follows.

i[H0, pt(X,D)]f(x) = i

∫∫
ei(x−y)ξH0(ξ)

∫∫
ei(y−z)ηpt(y, η)f(z)dzdη̂dydξ̂

−i

∫∫
ei(x−y)ξpt(x, ξ)H0(ξ)f(y)dydξ̂

= i

∫∫
ei(x−z)ξH0(ξ)

[∫∫
ei(y−z)(η−ξ)pt(y, η)dydη̂ − pt(x, ξ)

]
f(z)dzdξ̂.

Noting that∫∫
ei(y−z)(η−ξ)pt(y, η)dydη̂ =

∫∫
eiyηpt(z + y, ξ + η)dydη̂

=

∫∫
eiyηpt(z + y, ξ)dydη̂ +

∫∫
eiyηη ·

∫ 1

0

∇ξpγ(z + y, ξ + θη)dθdydη̂

= pt(z, ξ) +
n∑

j=1

∫∫
eiyηηj

∫ 1

0

∂ξj
pt(z + y, ξ + θη)dθdydη̂,

we have

i[H0, pt(X,D)]f(x) = i

∫∫
ei(x−z)ξH0(ξ)[pt(z, ξ) − pt(x, ξ)]f(z)dzdξ̂

+i

∫∫
ei(x−z)ξH0(ξ)

n∑
j=1

∫∫
eiyηηj

∫ 1

0

∇ξj
pt(z + y, ξ + θη)dθdydη̂f(z)dzdξ̂.
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By integration by parts we have the following.

i[H0, pt(X,D)]f(x)

= i

∫∫
ei(x−z)ξH0(ξ)(z − x) ·

∫ 1

0

∇xpt(x + θ(z − x), ξ)dθf(z)dzdξ̂

−
∫∫

ei(x−z)ξH0(ξ)

∫∫
eiyη

∫ 1

0

n∑
j=1

∇yj
∇ξj

pt(z + y, ξ + θη)dθdydη̂f(z)dzdξ̂

= i

∫
(−Dξ)(e

i(x−z)ξ) ·
[
H0(ξ)

∫ 1

0

∇xpt(x + θ(z − x), ξ)dθ

]
f(z)dzdξ̂

−
∫∫

ei(x−z)ξH0(ξ)

∫∫
eiyη

∫ 1

0

n∑
j=1

∇yj
∇ξj

pt(z + y, ξ + θη)dθdydη̂f(z)dzdξ̂.

Further integration by parts gives

i[H0, pt(X,D)]f(x)

=

∫∫
ei(x−z)ξ

n∑
j=1

∇ξj

(
H0(ξ)

∫ 1

0

∇xj
pt(x + θ(z − x), ξ)dθ

)
f(z)dzdξ̂

−
∫∫

ei(x−z)ξH0(ξ)

∫∫
eiyη

∫ 1

0

n∑
j=1

∇yj
∇ξj

pt(z + y, ξ + θη)dθdydη̂f(z)dzdξ̂

=

∫∫
ei(x−z)ξ∇ξH0(ξ) ·

∫ 1

0

∇xpt(x + θ(z − x), ξ)dθf(z)dzdξ̂

+

∫∫
ei(x−z)ξH0(ξ)

∫ 1

0

n∑
j=1

∇ξj
∇xj

pt(x + θ(z − x), ξ)dθf(z)dzdξ̂

−
∫∫

ei(x−z)ξH0(ξ)

∫∫
eiyη

∫ 1

0

n∑
j=1

∇ξj
∇yj

pt(z + y, ξ + θη)dθdydη̂f(z)dzdξ̂.

Noting that∫ 1

0

∇xpt(x + θ(z − x), ξ)dθ = ∇xpt(x, ξ) +

∫ 1

0

∫ 1

0

d

dρ
(∇xpt(x + ρθ(z − x), ξ)) dρdθ,∫ 1

0

n∑
j=1

∇ξj
∇xj

pt(x + θ(z − x), ξ)dθ

=
n∑

j=1

∇ξj
∇xj

pt(x, ξ) +

∫ 1

0

∫ 1

0

d

dρ

(
n∑

j=1

∇ξj
∇xj

pt(x + ρθ(z − x), ξ)

)
dρdθ

11



and∫∫
eiyη

∫ 1

0

n∑
j=1

∇ξj
∇yj

pt(z + y, ξ + θη)dθdydη̂

=
n∑

j=1

∇ξj
∇xj

pt(z, ξ) +

∫∫
eiyη

∫ 1

0

∫ 1

0

d

dρ

(
n∑

j=1

∇ξj
∇xj

pt(z + ρy, ξ + θη)

)
dρdθdydη̂,

we have

i[H0, pt(X,D)]f(x) =

∫∫
ei(x−z)ξ∇ξH0(ξ) · ∇xpt(x, ξ)f(z)dzdξ̂

+

∫∫
ei(x−z)ξH0(ξ)

n∑
j=1

(
∇ξj

∇xj
pt(x, ξ) −∇ξj

∇xj
pt(z, ξ)

)
f(z)dzdξ̂

+r1
t (X,D)f(x),

where r1
t (x, ξ) satisfies (4.10). Hence we have

(i[H0, pt(X,D)] + ∂tpt(X,D))f(x)

=

∫∫
ei(x−z)ξ(∇ξH0(ξ) · ∇xpt(x, ξ) + ∂tpt(x, ξ))f(z)dzdξ̂ + rt(X,D)f(x)

for some function rt(x, ξ) which satisfies (4.10), which proves (4.9). The symbol of the
first term is equal to

∇ξH0(ξ) · ∇xpt(x, ξ) + ∂tpt(x, ξ) = −2

t
ϕ′(|x/t −∇ξH0(ξ)|2 < 1)|x/t −∇ξH0(ξ)|2χ(H0(ξ))

2

=:
1

t
ut(x, ξ) ≥ 0.

Thus we have proved the following.

(i[H0, P (t)] + ∂tP (t))f(x) = (i[H0, pt(X,D)] + ∂tpt(X,D))f(x)

=
1

t
ut(X,D)f(x) + L(t)f(x),

where L(t) satisfies
∥L(t)∥ ≤ Ct−2 (t ≥ 1).

As ut(x, ξ) ≥ 0 the function

qt(x, ξ) =
√

ut(x, ξ).

is a C∞ function of x, ξ ∈ Rn by our assumption |ρ′(λ)| 12 ∈ C∞(R) in section 2, and
satisfies

sup
x,ξ∈Rn

|∂α
x ∂β

ξ qt(x, ξ)| ≤ Cαβt−|α|

12



for some constants Cαβ > 0 for any multi-index α, β. Letting

Q(t)f(x) = qt(X
′, D)f(x) =

∫∫
ei(x−y)ξqt(y, ξ)f(y)dydξ̂, (4.11)

we set
S(t) = Q(t)∗Q(t) ≥ 0.

Then we have

S(t)f(x) = st(X,D)f(x) =

∫∫
ei(x−y)ξst(x, ξ)f(y)dydξ̂,

where

st(x, ξ) =

∫∫
e−iyηqt(x, ξ + η)qt(x + y, ξ + η)dydη̂.

The symbol st(x, ξ) is expanded as follows.

st(x, ξ) = qt(x, ξ)2 + s1
t (x, ξ) = ut(x, ξ) + s1

t (x, ξ),

where s1
t (x, ξ) satisfies

|∂α
x ∂β

ξ s1
t (x, ξ)| ≤ Cαβt−1−|α|,

which yields
∥s1

t (X,D)∥ ≤ Ct−1 (t ≥ 1).

Summing up we have proved that

i[H0, P (t)] + ∂tP (t) =
1

t
S(t) + R(t),

where S(t) and R(t) = −1
t
s1

t (X,D) + L(t) satisfy (4.6). ¤

To see the convergence (4.2) we note that the norm in (4.2) is equal to the following
for τ > σ > 1.

sup
∥g∥=1

|(eiτH0J∗P (τ)e−τHf − eiσH0J∗P (σ)e−iσHf, g)|. (4.12)

Calculating the inner product of this formula with using the fundamental theorem of
calculus as in (4.3) and (4.4) and applying Lemma 4.1, we have

(eiτH0J∗P (τ)e−iτHf − eiσH0J∗P (σ)e−iσHf, g)

=

∫ τ

σ

1

t
(Q(t)e−itHf,Q(t)Je−itH0g)dt +

∫ τ

σ

(M(t)f, g)dt, (4.13)

where Q(t) is defined by (4.11) and M(t) satisfies

∥M(t)∥ ≤ C(1 + |t|)−1−δ

for some constant C > 0.
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By a similar computation we have

(eiτH0J∗P (τ)Je−iτH0g − eiσH0J∗P (σ)Je−iσH0g, g)

=

∫ τ

σ

1

t
∥Q(t)Je−itH0g∥2dt +

∫ τ

σ

(M0(t)g, g)dt

and

(eiτHP (τ)e−iτHf − eiσHP (σ)e−iσHf, f)

=

∫ τ

σ

1

t
∥Q(t)e−itHf∥2dt +

∫ τ

σ

(M1(t)f, f)dt,

where Mj(t) satisfies for some constant Cj > 0 (j = 0, 1)

∥Mj(t)∥ ≤ Cj(1 + |t|)−1−δ.

The left hand sides of these two inequalities are bounded by C ′
0∥g∥2, C ′

1∥f∥2 respectively
for some constants C ′

j > 0 (j = 0, 1). Therefore we can find constants M0,M1 > 0 such
that the following holds for any τ > σ > 1.∫ τ

σ

1

t
∥Q(t)Je−itH0g∥2dt ≤ M2

0∥g∥2, (4.14)∫ τ

σ

1

t
∥Q(t)e−itHf∥2dt ≤ M2

1∥f∥2. (4.15)

From (4.13), (4.14), (4.15) we obtain with using Schwarz inequality

|(eiτH0J∗P (τ)e−iτHf − eiσH0J∗P (σ)e−iσHf, g)|

≤ M0

(∫ τ

σ

1

t
∥Q(t)e−itHf∥2dt

) 1
2

∥g∥ + C(1 + |σ|)−δ∥f∥∥g∥.

Therefore together with (4.12) we have that the norm in (4.2) is estimated as follows.

∥eiτH0J∗P (τ)e−iτHf − eiσH0J∗P (σ)e−iσHf∥

≤ M0

(∫ τ

σ

1

t
∥Q(t)e−itHf∥2dt

) 1
2

+ C(1 + |σ|)−δ∥f∥.

The inequality (4.15) yields that the right hand side converges to 0 as τ > σ → ∞. This
proves (4.2) and the proof of the asymptotic completeness is complete.
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