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Abstract. We are concerned with the finite-element approximation for the

Keller-Segel system that describes the aggregation of slime molds resulting
from their chemotactic features. The scheme makes use of a semi-implicit time
discretization with a time-increment control and Baba-Tabata’s conservative
upwind finite-element approximation in order to realize the positivity and mass

conservation properties. The main aim is to present error analysis that is an
application of the discrete version of the analytical semigroup theory.

1. Introduction. The purpose of this paper is to study the finite-element method
applied to a nonlinear parabolic system for the functions u = u(x, t) and v = v(x, t)
of (x, t) ∈ Ω × [0, J ]:

ut = ∇ · (Du∇u − λu∇v) in Ω × (0, J), (1a)

kvt = Dv∆v + k1v − k2u in Ω × (0, J), (1b)

∂u/∂ν = 0, ∂v/∂ν = 0 on ∂Ω × (0, J), (1c)

u|t=0 = u0, v|t=0 = v0 on Ω, (1d)

where Ω ⊂ Rd (d = 2, 3) is a bounded domain with the boundary ∂Ω, ν is the outer
unit normal vector to ∂Ω, ∂/∂ν denotes differentiation along ν on ∂Ω, u0 = u0(x),
v0 = v0(x) are initial values, and λ,Du, Dv, k, k1, k2, J are positive constants.

As is well-known, the system (1), which is called the Keller-Segel system, de-
scribes the aggregation of slime molds resulting from their chemotactic features (cf.
[15]). Here, u is defined to be the density of the cellular slime molds, v the concen-
tration of the chemical substance secreted by molds themselves, k the relaxation
time, and k1v − k2u the ratio of generation/extinction. There is a large number
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2 N. SAITO

of works devoted to mathematical analysis of the Keller-Segel system; see [13], [14]
and [22]. A key feature of the solution u is the conservation of the L1 norm:

∥u(t)∥L1(Ω) = ∥u0∥L1(Ω) (t ∈ [0, J ]), (2)

which plays an important role to study the Keller-Segel system. Equality (2) is a
readily consequence of the conservation of positivity

u0(x) ≥ 0, ̸≡ 0 on Ω ⇒ u(x, t) > 0 in Ω × (0, J ]

and the conservation of total mass∫
Ω

u(x, t) dx =
∫

Ω

u0(x) dx (t ∈ [0, J ]).

Therefore, it is desired that numerical solutions enjoy the discrete analogues of
these properties, when we solve the Keller-Segel system by numerical methods.
Those conservation properties are simple to hold in a continuous problem, whereas
some difficulties arise in a discrete problem. (An elementary example to illustrate
this issue is given in [21].)

In a previous paper [20], we considered the case k = 0, which is called a simplified
Keller-Segel system, and proposed a conservative finite-element scheme. Our scheme
made use of Baba and Tabata’s upwind approximation combined with the mass
lumping based on the barycentric domain and a semi-implicit time discretization
with a time-increment control. That is, at every discrete time step tn = τ1 + · · · +
τn, we adjust the time-increment τn to obtain a positive solution. Consequently,
our finite-element approximation has the conservation of positivity and total mass
for an arbitrary h > 0, the granularity parameter of the spatial discretization, if
the triangulation is of acute type. At this stage, we would like to point out that
the conservation of total mass is satisfied by the standard finite-element method
and this can be verified by taking the unity as the test function. The important
point is, however, that we realize the positivity and mass conservation properties
simultaneously.

Furthermore, in [20], we succeeded in establishing error estimates in Lp ×W 1,∞

with a suitable p > d, where d is the dimension of a spatial domain. The main tool of
our error analysis is the analytical semigroup theory in Banach spaces. Actually, if
the triangulation is of acute type, the operator Ah, a finite-element approximation
of −∆ + 1 of the lumped mass type, becomes sectorial on a finite-element space
Xh,p equipped with a modified Lp norm. In particular, −Ah generates the analytic
semigroup on Xh,p. (The precise meaning of these symbols will be given in Section
3.) We then make use of Duhamel’s principle, fractional powers of operators, and
the smoothing property of the semigroup. Although semigroup theory is somewhat
abstract, several Lp estimates can be derived in a quite formal manner. Moreover,
our method of analysis is a discrete analogue of the standard approach for solving
nonlinear evolution problems.

This paper is a continuation of [20], and we are going to extend our method and
results to the Keller-Segel system (1). The main aim here is to prove the error
estimate (Theorem 2.4), since the proof of conservation properties (Theorems 2.1,
2.2 and 2.3) is the same as that of [20]. To this end, we basically follow the method
of [20]; we, however, need new devices described in subsequent sections. Out finite-
element scheme has already presented in a previous paper [21], and the validity
of the scheme is confirmed by several numerical examples; this paper includes no
numerical results.
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Recently, Efendiev et al. [8] has succeeded in obtaining an estimate of the fractal
dimension of the global attractor in terms of Du, Dv, k, k1, k2 and h for a semidis-
crete (in time) version of our finite-element scheme applied to a generalization of
(1). The estimate has exactly the same order as that for the original system. On the
other hand, they described that we can only obtain a poorer estimate for the stan-
dard finite-element scheme. This means that our conservative finite-element scheme
preserves the structure of dynamical systems governed by (1) from the viewpoint
of attractor dimension.

Before concluding this Introduction, we briefly discuss some other results that are
related to numerical methods for the Keller-Segel system. Nakaguchi and Yagi [17]
presented finite-element/Runge-Kutta approximations for a generalization of (1)
without any numerical results. They also established error estimates in the H1+ε

norm, ε ∈ (0, 1/2), for a sufficiently small J , though they devoted little attention
to conservation of the L1 norm of approximate solutions. Marrocco [16] discussed
mixed finite-element approximations for the simplified Keller-Segel system and of-
fered various numerical examples, but a convergence analysis was not undertaken.
The aim of Filbet [9] is similar as ours. He proposed a fully-implicit/finite-volume
method for the simplified system, and derived the L1 conservation under some con-
dition on a (fixed) time-increment. Moreover, a convergence result without any
convergence rate is also proved if the L1 norm of an initial datum is sufficiently
small. It should be kept in mind that, as far as the spatial discretization is con-
cerned, our finite-element scheme is equivalent to Filbet’s finite-volume scheme if we
take the mass lumping based on the circumcentric domain instead of the barycentric
domain.

The organization of this paper is as follows. In Section 2, we state our con-
servative finite-element scheme and formulate theorems about conservation laws
(Theorems 2.1–2.3) and error estimates (Theorem 2.4). The proof of the main re-
sult (Theorem 2.4) is described in Section 4, after having prepared some preliminary
results in Section 3. We conclude this paper by giving a few remarks in Section 5.

Notation. We follow the notation of [1]. We write as Wm,p = Wm,p(Ω),
Hm = Wm,2, Lp = Lp(Ω), ∥ · ∥m,p = ∥ · ∥W m,p , ∥ · ∥p = ∥ · ∥Lp for m ∈ N and
p ∈ [1,∞]. The standard inner product in L2 is denoted by (·, ·). We set, for
p ∈ [1,∞),

Wp =
{

v ∈ W 2,p

∣∣∣∣ ∂v

∂ν
= 0 on ∂Ω

}
.

We set [a]± = max{0,±a} for a ∈ R. The d-dimensional Lebesgue measure of
O ⊂ Rd is denoted by meas (O) = meas d(O). For a Banach space X, its dual
space is denoted as X ′. Generic positive constants depending on Ω are denoted
as C, C ′, and so forth. In particular, C does not depend on the discretization
parameters h and τ described below. If it is necessary to specify the dependence
on other parameters, say α, β, then we write them as Cα,β or C(α, β). However,
if the contribution of those parameters is not necessary for our argument, we omit
indicating them. We shall use the same symbol I to indicate the identity operator
on any space. Finally, D(B) represents the domain of the definition of an operator
B.

2. Finite element scheme and theorems. Throughout this paper, Ω is assumed
to be a bounded polyhedral domain in Rd, d = 2, 3. We first convert the system (1)
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into a weak form as follows:

(ut, χ) + (Du∇u,∇χ) + λb(v, u, χ) = 0 (∀χ ∈ H1), (3a)

(kvt, χ) + (Dv∇v,∇χ) + (k1u − k2v, χ) = 0 (∀χ ∈ H1), (3b)

u|t=0 = u0, v|t=0 = v0, (3c)

where
b(v, u, χ) = −

∫
Ω

u ∇v · ∇χ dx.

Let {Th} = {Th}h↓0 be a family of triangulations Th of Ω:

1. Th is a set of closed d-simplices (elements), and Ω =
∪

{T | T ∈ Th};
2. any two elements of Th meet only in entire common faces or sides or in vertices.

We set

hT = the diameter of the circumscribed ball of T,

ρT = the diameter of the inscribed ball of T,

κT = the minimal perpendicular length of T,

h = max{hT | T ∈ Th},
κh = min{κT | T ∈ Th}.

We assume that {Th}h is regular in the sense that there is a positive constant γ1

satisfying
hT ≤ γ1ρT (∀T ∈ Th ∈ {Th}h).

Let {Pi}N
i=1 be the set of all vertices of Th, N = Nh being a positive integer.

With Pi, we associate ϕ̂i ∈ C(Ω) such that ϕ̂i is an affine function on each T ∈ Th

and ϕ̂i(Pj) = δij , where δij denotes Kronecker’s delta. We define as

Xh = the vector space spanned by {ϕ̂i}N
i=1

and regard it as a closed subspace of H1. We also consider the space Xh, which is
equipped with the topology induced from L2, and express it using the same symbol
Xh. With Pi, we associate the barycentric domain Di; see [20] for the definition.
Let ϕi ∈ L∞ be the characteristic function of Di. We introduce a Hilbert space
Xh ⊂ L2 spanned by {ϕi}N

i=1. The operator Mh : Xh → Xh is defined by

Mhvh =
N∑

i=1

vh(Pi)ϕi (vh ∈ Xh),

and it is called the lumping operator. We define

(vh, χh)h = (Mhvh,Mhχh) (vh, χh ∈ Xh).

Thereby, (·, ·)1/2
h is equivalent to ∥ · ∥2 on Xh (see (27) below).

Our results are formulated under the following conditions on {Th}:
(H1) Acuteness. It is assumed that

max{cos(∇ϕT
i ,∇ϕT

j )| 1 ≤ i, j ≤ d + 1} ≤ 0 (∀T ∈ Th ∈ {Th}),

where {ϕT
i }

d+1
i=1 represent the barycentric coordinates of T with respect to the

vertices of T .
(H2) Inverse assumption. There exists a positive constant γ2 such that

γ2h ≤ hT (∀T ∈ Th ∈ {Th}).



FINITE-ELEMENT APPROXIMATION FOR THE KELLER-SEGEL SYSTEM 5

Remark 2.1. As is well-known, the condition (H1) guarantees the non-positivity
of (∇ϕ̂i,∇ϕ̂j) for i ̸= j. For d = 2, (H1) is equivalent to a statement that each
triangle of Th is a right-angle or an acute triangle. For d = 3, (H1) is satisfied if,
and only if, all angles spanned by two faces of each tetrahedron of Th are less than
or equal to π/2.

The time variable is discretized as

tn = τ1 + τ2 + · · · + τn, τn > 0.

Then, we consider the finite-element scheme to obtain an approximation (un
h, vn

h) of
the solution (u(tn), v(tn)) to (3): find {un

h}n≥0 ⊂ Xh and {vn
h}n≥0 ⊂ Xh such that(

un
h − un−1

h

τn
, χh

)
h

+ (Du∇un
h,∇χh) + λbh(vn−1

h , un
h, χh) = 0

(χh ∈ Xh, n ≥ 1), (4a)(
k

vn
h − vn−1

h

τn
, χh

)
h

+ (Dv∇vn
h ,∇χh) + (k1v

n
h − k2u

n
h, χh)h = 0

(χh ∈ Xh, n ≥ 1), (4b)

u0
h = u0h, v0

h = v0h. (4c)

Here u0h and v0h denote suitable approximations of u0 and v0. Moreover, bh(vh, uh, χh)
is Baba and Tabata’s approximation of b(v, u, χ) defined by

bh(vh, uh, χh) =
N∑

i=1

χh(Pi)
∑
j∈Λi

{
uh(Pi)β+

ij(vh) − uh(Pj)β−
ij(vh)

}
for vh, uh, χh ∈ Xh, where

Λi = {Pj | Pi and Pj share an edge};

β±
ij(vh) =

∫
Γij

[∇vh · νij ]± dS;

Γij = ∂Di ∩ ∂Dj ;
νij = the outer unit normal vector to Γij with respect to Di.

The solution (un
h, vn

h) of the finite-element scheme (4) enjoys fine conservative
properties. The first one is related to the discrete version of the conservation of
total mass.

Theorem 2.1 (Conservation of total mass). Let {(un
h, vn

h)}n≥0 ⊂ Xh be the solution
of (4). Then, we have (un

h, 1)h = (u0h, 1)h for n ≥ 0.

The second one is concerned with the unique solvability of (4) and conservation
of positivity.

Theorem 2.2 (Unique solvability and conservation of positivity). Suppose that
(H1) is satisfied. Assume that u0h, v0h ∈ Xh are non-negative and are not identically
zero. Take τ > 0 and ε ∈ (0, 1]. Then, the finite-element scheme (4) with a time
increment control

τn = min
{

τ,
εκh

2dλ∥∇vn−1
h ∥∞

}
(5)

admits a unique solution {(un
h, vn

h)}n≥0 ⊂ Xh such that un
h > 0 and vn

h > 0 for
n ≥ 1.
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Remark 2.2. When v0h is a constant function, the value of ∥∇v0h∥−1
∞ is formally

understood as ∞.

As a readily obtainable consequence of these theorems, we obtain the following.

Theorem 2.3 (Conservation of the L1 norm). Let {(un
h, vn

h)}n≥0 ⊂ Xh be the
solution of (4) as in Theorem 2.2. Then, we have ∥un

h∥1 = ∥u0h∥1 for n ≥ 0.

The proof of Theorems 2.1 and 2.2 is the exactly same as that of [20, Theorems
2.1 and 2.2]; so we omit describing it.

Remark 2.3. We consider the solution (un
h, vn

h) stated in Theorem 2.2. Substitut-
ing χh = 1 into (4b) and using the conservation of the L1 norm, we have

∥vn
h∥1 − ∥vn−1

h ∥1 ≤ τnk2

k
∥un

h∥1 =
τnk2

k
∥u0h∥1,

and, hence,

∥vn
h∥1 ≤ ∥v0h∥1 +

k2J

k
∥u0h∥1.

On the other hand, since all norms are equivalent on Xh, there exists a positive
constant ch depending on h such that ∥∇vn

h∥∞ ≤ ch∥vn
h∥1. Combining these in-

equalities, we obtain

τn ≥ min
{

τ,
εκhk

2dch(k∥v0h∥1 + k2J∥u0h∥1)

}
.

Thus, τn is bounded from below by a positive constant independent of n. This
implies that τn never converges to zero as n increases, and therefore the time in-
crement control (5) is always valid. Consequently, (un

h, vn
h) actually exists for all

n ≥ 1.

We suppose that Ap : Lp → Lp is the Lp realization of −∆+I with the Neumann
boundary condition,

D(Ap) = Wp, Apv = −∆v + v (v ∈ D(Ap)). (6)

Then, we make the following conditions (see Remarks 2.6 and 2.7 below).
(A1) There exists µ ∈ (d,∞) such that Ap is an isomorphism from Wp onto Lp for

every p ∈ (d, µ).
(A2) D(A1/2

p ) = W 1,p.
The closed linear operator Ap is sectorial in Lp under (A1). Therefore, its fractional
powers Aα

p , α ∈ (0, 1), are defined in a natural way. See [18] for these facts. Below,
we simply write A to express Ap, if there is no possibility of confusion.

Now we are in a position to state the main result of this paper.

Theorem 2.4 (Error estimate). Let (A1) and (A2) be satisfied with some µ ∈
(d,∞) and for some p ∈ (d, µ), respectively. Assume that the system (3) admits
a unique solution (u, v) satisfying the following regularity condition with some J ∈
(0,∞) and σ ∈ (0, 1] :

u ∈ C1([0, J ] : W 2,p) ∩ C1+σ([0, J ] : Lp), (7a)

v ∈ C1([0, J ] : W 2,p) ∩ C1+σ([0, J ] : W 1,p). (7b)

Suppose that (H1) and (H2) hold. Further, assume that u0h, v0h ∈ Xh are taken as

h∥u0 − u0h∥1,p + ∥v0 − v0h∥p + h1+d/p∥∇(v0 − v0h)∥∞ ≤ α0h
2 (8)
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with a constant α0 > 0. Let τ be chosen as

τ =
εκh

2d ∥∇v0h∥∞
(9)

with some ε ∈ (0, 1]. Then, there exist positive constants h1 and C1 independent of
h such that we have the error estimate

sup
0≤tn≤J

(∥u(tn) − un
h∥p + ∥∇v(tn) −∇vn

h∥∞) ≤ C1(h1−d/p + τσ) (10)

for h ∈ (0, h1), where (un
h, vn

h) is the solution of (4) as in Theorem 2.2.

Some remarks are in order.

Remark 2.4. Let u0 ∈ W 2,p and v0 ∈ W 2,p. Then the linear interpolations u0h

and v0h of u0 and v0 satisfy

∥u0 − u0h∥1,p ≤ Ch∥u0∥2,p,

∥v0 − v0h∥p ≤ Ch2∥v0∥2,p, ∥∇(v0 − v0h)∥∞ ≤ Ch1−d/p∥v0∥2,p.

Thus, Assumption (8) is fulfilled with α0 = C(∥u0∥2,p + ∥v0∥2,p).

Remark 2.5. Because the upwind approximation employed in this paper corre-
sponds to a one-sided difference approximation, the rate of convergence with respect
to spatial discretization is expected to be O(h) at best. However, such a rate of
convergence is not achieved in (10). That shortfall stems from the lack of regularity
of solutions of a linear elliptic problem in a polygonal domain. Therefore, on con-
sidering (3) in a smooth domain, we can deduce a refined estimate. See Subsection
5.1 or [20, Section 7] for further discussions.

Remark 2.6. When Ω ⊂ R2 is a convex polygon, (A1) is always satisfied. On the
other hand, when Ω ⊂ R3 is a convex polyhedron, it is satisfied, if all edges and all
vertices of Ω are sufficiently small that they do not produce singularities. See, for
more complete descriptions, Theorems 8.2.1.2 and 8.2.2.8 of [12].

Remark 2.7. When Ω is a bounded smooth domain, (A2) holds true for every
p ∈ [1,∞). More precisely, we have (cf. [11])

D(Aθ
p) = [Lp,W 2,p]θ for 0 < 2θ < 1 +

1
p
, (11)

where [Lp,W 2,p]θ denotes the complex interpolation space between Lp and W 2,p

with the exponent θ. Because of [Lp,W 2,p]1/2 = W 1,p, we have (A2). When Ω is a
convex polygonal domain in R2, we can obtain (11) by the method of [11]. However,
the case of a polyhedral domain in R3 seems to be open at present.

The proof of Theorem 2.4 will be described in Section 4, after having prepared
some preliminary results in Section 3.
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3. Preliminaries.

3.1. Some auxiliary operators. The Lagrange interpolation operator πh : C(Ω) →
Xh is defined by πhv(Pi) = v(Pi) for all Pi ∈ Ph. For T ∈ Th, we have

∥πhv − v∥Lp(T ) ≤ Ch2
T ∥v∥W 2,p(T ) (p ∈ (d/2,∞], v ∈ W 2,p), (12)

∥∇(πhv − v)∥Lp(T ) ≤ ChT ∥v∥W 2,p(T ) (p ∈ (d/2,∞], v ∈ W 2,p), (13)

∥πhv − v∥L∞(T ) ≤ Ch
2−d/p
T ∥v∥W 2,p(T ) (p ∈ (d,∞], v ∈ W 2,p), (14)

∥∇(πhv − v)∥L∞(T ) ≤ Ch
1−d/p
T ∥v∥W 2,p(T ) (p ∈ (d,∞], v ∈ W 2,p). (15)

We frequently use the L2 and H1 projection operators Ph : L2 → Xh and
Rh : H1 → Xh, which are defined as

(Phv − v, χh) = 0 (∀χh ∈ Xh), (16)

(∇Rhv −∇v,∇χh) + (Rhv − v, χh) = 0 (∀χh ∈ Xh). (17)

Under Assumption (H2), we have

∥Phv∥p ≤ C∥v∥p (p ∈ [1,∞], v ∈ Lp), (18)

∥Phv∥1,p ≤ C∥v∥1,p (p ∈ [1,∞], v ∈ W 1,p), (19)

∥Phv − v∥p ≤ Ch2∥v∥2,p (p ∈ (d/2,∞], v ∈ W 2,p), (20)

∥Phv − v∥1,∞ ≤ Ch1−d/p∥v∥2,p (p ∈ (d,∞], v ∈ W 2,p). (21)

Inequalities (18) and (19) are attributed to [7], [6] and [4]. To show (20), we note
that ∥Phv − v∥p ≤ ∥Phv − πhv∥p + ∥πhv − v∥p ≤ C∥πhv − v∥p by (18). Hence, (20)
follows from (12). Similarly, (21) follows from (19), (14) and (15).

On the other hand, under Assumptions (H2) and (A1), we have

∥Rhv∥1,p ≤ C∥v∥1,p (p ∈ (1,∞], v ∈ W 1,p), (22)

∥Rhv − v∥1,p ≤ Ch∥v∥2,p (p ∈ (1,∞], v ∈ W 2,p), (23)

∥Rhv − v∥p ≤ Ch2∥v∥2,p (p ∈ (µ/(µ − 1),∞), v ∈ W 2,p), (24)

∥∇(Rhv − v)∥∞ ≤ Ch1−d/p∥v∥2,p (p ∈ (d,∞], v ∈ W 2,p). (25)

In fact, the derivation of (22)–(24) is the same as that shown in Chapter 8 of [2].
Therein, the case of the Dirichlet boundary condition was considered explicitly. The
proof of (25) is the same as that of (21).

Let M∗
h be the adjoint operator of Mh in L2, and set

Kh = M∗
hMh.

Thereby, we have

C∥vh∥p ≤ ∥Mhvh∥p ≤ C ′∥vh∥p (p ∈ [1,∞], vh ∈ Xh). (26)

Moreover,

C∥vh∥p ≤ ∥Khvh∥p ≤ C ′∥vh∥p (p ∈ [1,∞], vh ∈ Xh), (27)

and
∥Mhvh − vh∥p ≤ Ch∥∇vh∥p (p ∈ [1,∞], vh ∈ Xh). (28)

See [10] and [5] for these inequalities. Furthermore, in the same way as the proof
of [19, Lemma 4], if Assumption (H2) is satisfied, we have

∥(Kh − I)vh∥p ≤ Ch∥∇vh∥p (p ∈ [1,∞), vh ∈ Xh). (29)
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3.2. Discrete Laplace operator. We introduce operators Lh and Ah of Xh → Xh

defined as

Lhuh = fh ⇔ (∇uh,∇χh) + (uh, χh) = (fh, χh) (∀χh ∈ Xh), (30)

Ahuh = fh ⇔ (∇uh,∇χh) + (uh, χh)h = (fh, χh)h (∀χh ∈ Xh). (31)

Obviously, we have
KhAh − Lh = Kh − I (32)

and, for p ∈ [1,∞),
LhRhv = PhAv (v ∈ D(A)), (33)

where A = Ap is the operator defined as (6).

Remark 3.1. In [20], we used the identity KhAh = Lh that is incorrect. However,
this can be replaced by (32) and then we can conclude the proof with some slight
modifications.

To state operator theoretical properties of Ah, we regard any function space as
a complex valued one, and propose a re-definition:

(u, v) =
∫

Ω

u(x)v(x) dx
(
u ∈ Lp, v ∈ Lq, 1

p + 1
q = 1

)
.

For p ∈ [1,∞), we introduce the discrete Lp norm:

∥vh∥h,p =
(∫

Ω

Mhπh|vh(x)|p dx

)1/p

(vh ∈ Xh).

It is readily verifiable that

C∥vh∥h,p ≤ ∥vh∥p ≤ C ′∥vh∥h,p (vh ∈ Xh), (34)

|(vh, χh)h| ≤ ∥vh∥h,p∥χh∥h,q

(
vh, χh ∈ Xh, 1

p + 1
q = 1

)
, (35)

∥vh∥h,p ≤ C sup
χh∈Xh

(vh, χh)h

∥χh∥h,q

(
vh ∈ Xh, 1

p + 1
q = 1

)
. (36)

We regard Xh as a Banach space equipped with the norm ∥ · ∥h,p and indicate it by
Xh,p. In particular, Xh,2 forms a Hilbert space with respect to the inner product
(·, ·)h. Furthermore, the operator norm in Xh,p is denoted by the same symbol
∥ · ∥h,p. For instance,

∥Ah∥h,p = sup
vh∈Xh

∥Ahvh∥h,p

∥vh∥h,p
.

Lemma 3.1 ([20, Lemma 4.3]). Let p ∈ (1,∞), and suppose that (H1) is satisfied.
Then,

(i) Ah is sectorial in Xh,p, and its fractional powers Aα
h , α ∈ (0, 1), are defined.

(ii) Ah and Aα
h , α ∈ (0, 1), are positive and self-adjoint in Xh,2.

(iii) if (H2) is also satisfied, for any θ ∈ [0, 1] and {τj}n
j=1, τj > 0, we have

∥r(τnAh) · · · r(τ1Ah)Aθ
h∥h,p ≤ Cθ(τn + · · · + τ1)−θ, (37)

where r(τjAh) = (I + τjAh)−1.

Remark 3.2. Since Aθ
h and r(τnAh) are commutative, Inequality (37) implies

∥Aθ
hr(τnAh) · · · r(τ1Ah)∥h,p ≤ Cθ(τn + · · · + τ1)−θ. (38)
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Lemma 3.2. Under Assumption (H1), we have

∥vh∥h,p ≤ C∥Aθ
hvh∥h,p (p ∈ (1,∞), θ ∈ [0, 1], vh ∈ Xh). (39)

Proof. The sectorialness of Ah implies

∥vh∥h,p ≤ C∥Ahvh∥h,p (p ∈ (1,∞), vh ∈ Xh).

Hence, by Heinz’s inequality, we deduce (39).

Lemma 3.3. Let (H1) and (H2) be satisfied. Further we suppose that (A1) and
(A2) hold, respectively, with some µ ∈ (d,∞) and for some p ∈ (d, µ). Then we
have

∥Aθ
hvh∥h,p ≤ C∥vh∥1,p (θ ∈ [0, 1/2), vh ∈ Xh), (40)

and
∥vh∥1,p ≤ C∥Aθ

hvh∥h,p (θ ∈ (1/2, 1], vh ∈ Xh). (41)

(When p = 2, we can take θ = 1/2 without (A1) and (A2).)

Proof. It is described in Appendix A of [20].

Remark 3.3. If, in addition to the assumptions of Lemma 3.3, we suppose that
(11) holds, we can prove

C∥vh∥1,p ≤ ∥A1/2
h vh∥h,p ≤ C2∥vh∥1,p (vh ∈ Xh).

Lemma 3.4. Under the same assumption of Lemma 3.3, we have

∥∇A−θ
h vh∥p ≤ ∥A−θ

h vh∥1,p ≤ C∥vh∥h,p (θ ∈ (1/2, 1], vh ∈ Xh). (42)

Proof. The replacement vh by A−θ
h vh in (41) implies (42).

Lemma 3.5 ([20, Lemma 4.6]). Under the same assumption of Lemma 3.3,

∥A−θ
h (K−1

h − I)vh∥h,p ≤ Ch2∥∇vh∥p (θ ∈ (1/2, 1], vh ∈ Xh). (43)

Lemma 3.6. Under the same assumption of Lemma 3.3, we have

∥vh∥1,∞ ≤ C∥Ahvh∥h,p (vh ∈ Xh). (44)

Proof. Let vh ∈ Xh. According to (32), (29), (34), and (41), we deduce

∥Lhvh∥p ≤ ∥KhAhvh∥p + ∥(Kh − I)vh∥p

≤ C∥Ahvh∥p + Ch∥∇vh∥p

≤ C∥Ahvh∥h,p + Ch∥Ahvh∥h,p.

On the other hand, we know (cf. [20, Lemma 4.5])

∥vh∥1,∞ ≤ C∥Lhvh∥p.

Combining these inequalities, we obtain (44).
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Lemma 3.7 ([20, Lemma 4.7]). Taking positive constants τ1, . . ., τl (l ∈ N), putting
tn = τ1 + · · · + τn for 1 ≤ n ≤ l and t0 = 0, suppose that a sequence {zn}l

n=0 ⊂ R
satisfies

0 < zn ≤ c1 + c2

n∑
j=1

τj

(tn − tj−1)r
(zj−1 + zj) (1 ≤ n ≤ l),

where c1, c2 and r ∈ (0, 1) are positive constants. Then we have

zn ≤ c1c3 exp
(

c4c
1

1−r

2 tn

)
(0 ≤ n ≤ l),

where c3 and c4 are positive constants depending only on r.

3.3. Lemmas concerning b and bh.

Lemma 3.8. Let p, q ∈ (1,∞) and 1
p + 1

q = 1. Then,

|b(v, u, χ)| ≤ ∥u∥∞∥∇v∥p∥∇χ∥q (v ∈ W 1,p, u ∈ L∞, χ ∈ W 1,q). (45)

Furthermore, if p > d,

|b(v, u, χ)| ≤ C∥u∥1,p∥∇v∥1,p∥χ∥q (v ∈ Wp, u ∈ W 1,p, χ ∈ Lq). (46)

Proof. Inequality (45) is obvious in view of Schwarz’s inequality. On the other hand,
by integration by parts,

b(v, u, χ) =
∫

Ω

∇ (u∇v) χ dx

for v ∈ Wp, u ∈ W 1,p and χ ∈ Lq. Since p > d, we can perform an estimation:

∥∇ · (u∇v)∥p ≤ C∥u∥1,p∥∇v∥1,p. (47)

Combining these, we obtain (46).

Lemma 3.9. Suppose that (H2) is satisfied. Let p ∈ (1,∞) and 1
p + 1

q = 1. Then,

|bh(vh, uh, χh) − bh(wh, uh, χh)|
≤ Ch (∥∇vh∥∞ + ∥∇wh∥∞) ∥uh∥1,p∥∇χh∥q (vh, wh, uh, χh ∈ Xh). (48)

Proof. Let vh, wh, uh, χh ∈ Xh. In general, for vh ∈ Xh, we write as v = vh and
vi = v(Pi) = vh(Pi) for the sake of simplicity. Defining

Γh = {Γij = ∂Di ∩ ∂Dj | 1 ≤ i, j ≤ N}, (49)

we observe that

bh(wh, uh, χh) =
∑

Γij∈Γh

(χi − χj)
[
β+

ij(w)ui − β−
ij(w)uj

]
=

∑
Γij∈Γh

(χi − χj)
[
σ+

ij(w)ui − σ−
ij(w)uj

]
βij(w), (50)

where
σ+

ij(w) = sgn β+
ij(w), σ−

ij(w) = 1 − σ+
ij(w).
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Using this expression, we can decompose as

bh(vh, uh, χh) − bh(wh, uh, χh) =
∑

Γij∈Γh

(χi − χj)σ+
ij(v) (ui − uj)βij(v)

−
∑

Γij∈Γh

(χi − χj)σ+
ij(w) (ui − uj) βij(w)

+
∑

Γij∈Γh

(χi − χj)uj [βij(v) − βij(w)]

≡ I1 + I2 + I3.

Below, we use Sobolev’s inequality

∥v∥∞ ≤ C∥v∥1,p (p ∈ (d,∞], v ∈ W 1,p), (51)

and

max
x,y∈T

|χh(x) − χh(y)| ≤ Ch
1−d/p
T ∥∇χh∥Lp(T ) (p ∈ [1,∞], T ∈ Th). (52)

First, setting

hij = hTij = max{hT | T ∈ Th, Pi, Pj ∈ T}, (53)

we have by (52)

|I1| ≤ C∥∇v∥∞
∑

Γij∈Γh

h
1−d/q
ij ∥∇χ∥Lq(Tij)h

1−d/p
ij ∥∇u∥Lp(Tij)meas d−1(Γij)

≤ C∥∇v∥∞
∑

Γij∈Γh

h
2−d/q−d/p+(d−1)
ij ∥∇χ∥Lq(Tij)∥∇u∥Lp(Tij)

≤ Ch∥∇v∥∞∥∇χ∥q∥∇u∥p,

and
|I2| ≤ Ch∥∇w∥∞∥∇χ∥q∥∇u∥p.

Moreover, in view of (H2), we have by (51)

|I3| ≤ C
∑

Γij∈Γh

h
1−d/q
ij ∥∇χ∥Lq(Tij)∥u∥∞ · hd−1

ij ∥∇(v − w)∥∞

≤ C∥∇(v − w)∥∞∥u∥∞
∑

Γij∈Γh

h
d/p
ij ∥∇χ∥Lq(Tij)

≤ C (∥∇v∥∞ + ∥∇w∥∞) ∥u∥1,p∥∇χ∥q

Summing these estimates, we obtain (48).

Lemma 3.10 ([20, Lemma 5.2]). Let p, q ∈ (1,∞) with 1
p + 1

q = 1. Then,

|bh(wh, uh, χh)| ≤

{
C∥∇vh∥p∥uh∥∞∥∇χh∥q,

C∥∇vh∥∞∥uh∥p∥∇χh∥q

(wh, uh, χh ∈ Xh). (54)

Lemma 3.11. Suppose that (H2) is satisfied. Let p ∈ (d,∞) and 1
p + 1

q = 1. Then,

|b(v, u, χh) − bh(Phv, πhu, χh)| ≤ C(h1−d/p + h)∥v∥2,p∥u∥1,p∥∇χh∥q

(v ∈ Wp, u ∈ W 1,p, χh ∈ Xh). (55)
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Proof. We simply write as uh = πhu, vh = Phv, χ = Mhχh, ui = u(Pi) = uh(Pi),
χi = χh(Pi), σ±

ij = σ±
ij(vh), and βij = βij(vh). Further, we set

β̂ij =
∫

Γij

u (∇v · νij) dS, β̂′
ij =

∫
Γij

∇v · νij dS.

In order to prove (55), we divide it as

b(v, u, χh) − bh(vh, uh, χh)

= −
∫

Ω

u∇v · ∇χ dx −
∫

Ω

χ ∇(u∇v) dx

+
∫

Ω

χ ∇(u∇v) dx −
∑

Γij∈Γh

(χi − χj)
(
σ+

ijui + σ−
ijuj

)
β̂′

ij

+
∑

Γij∈Γh

(χi − χj)
(
σ+

ijui + σ−
ijuj

)
β̂′

ij − bh(vh, uh, χh)

≡ I1 + I2 + I3.

First, by the integration by parts, we have

I1 =
∫

Ω

χh ∇(u∇v) dx −
∫

Ω

χ ∇(u∇v) dx,

where Γh is defined as (49). Hence, by (47) and (28),

|I1| ≤ C∥u∥1,p∥∇v∥1,p∥χh − Mhχh∥q

≤ Ch∥u∥1,p∥v∥2,p∥∇χh∥q.

Next, because of ∫
Ω

χ ∇(u∇v) dx =
∑

Γij∈Γh

(χi − χj)β̂ij ,

we can express I2 as

I2 =
∑

Γij∈Γh

(χi − χj)
[
β̂ij − (σ+

ijui + σ−
ijuj)β̂′

ij

]
=

∑
Γij∈Γh

(χi − χj)
∫

Γij

[
σ+

ij(u(x) − ui) + σ−
ij(u(x) − uj)

]
(∇v · νij) dS.

Therefore, in view of (51) and (52), we deduce

|I2| ≤ C
∑

Γij∈Γh

h
1−d/q
ij ∥∇χh∥Lq(Tij)∥∇v∥∞ ·

·
∫

Γij

(|u(x) − ui| + |u(x) − uj |) dS

≤ C∥∇v∥∞
∑

Γij∈Γh

h
1−d/q
ij ∥∇χh∥Lq(Tij)h

d−d/p
ij ∥u∥W 1,p(Tij)

≤ Ch∥u∥1,p∥∇v∥∞∥∇χh∥q,
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where hij and Tij are defined as (53). Finally, by virtue of (50) and (21), we have

|I3| ≤
∑

Γij∈Γh

|χi − χj | ·
∣∣σ+

ijui + σ−
ijuj

∣∣ · ∣∣∣β̂′
ij − βij

∣∣∣
≤ C

∑
Γij∈Γh

h
1−d/q
ij ∥∇χh∥Lq(Tij)∥u∥∞

∫
Γij

∥∇(v − Phv)∥∞|νij | dS

≤ Ch1−d/p∥v∥2,p∥u∥∞
∑

Γij∈Γh

h
1−d/q+(d−1)
ij ∥∇χh∥Lq(Tij)

≤ Ch1−d/p∥v∥2,p∥u∥1,p∥∇χh∥q.

4. Proof of Theorem 2.4.

4.1. Expression of the error. We shall give the proof of Theorem 2.4. Through-
out this section, we suppose that (H1) and (H2) are satisfied. We set δ = 1/8 and
θ = 7/8; then θ + δ = 1 and θ − δ = 3/4 > 1/2. Moreover, we suppose that (A1)
and (A2) are satisfied, respectively, with some µ ∈ (d,∞) and for some p ∈ (d, µ).
Further, we take k = k1 = k2 = Du = Dv = λ = 1 without loss of generality,
since the contributions of those values are not essential in the following discussion.
Recall that the solution (u, v) of (3) satisfies the regularity condition (7) for some
J ∈ (0,∞) and σ ∈ (0, 1]. Then we note that the system (3) can be expressed as

du(t)
dt

+ Au(t) + B(v(t))u(t) = u(t), 0 < t < J, (56a)

dv(t)
dt

+ Av(t) − u(t) = v(t), 0 < t < J, (56b)

u(0) = u0, v(0) = v0, (56c)

where A = Ap : D(A) ⊂ Lp → Lp is the operator defined as (6), and, for every
v ∈ W 2,p, B(v) : W 1,p → Lp is defined by B(v)u = ∇(u∇v). Moreover, we set

α1 = sup
t∈[0,J]

∥u(t)∥2,p, α̂1 = sup
t∈[0,J]

∥v(t)∥2,p,

α2 = sup
t∈[0,J]

∥u′(t)∥2,p , α̂2 = sup
t∈[0,J]

∥v′(t)∥2,p ,

α3 = sup
t,s∈[0,J]

∥ut(t) − ut(s)∥p

|t − s|σ
, α̂3 = sup

t,s∈[0,J]

∥vt(t) − vt(s)∥1,p

|t − s|σ
,

where u′ = ut and v′ = vt.
Let (un

h, vn
h) be the solution of (4). The errors are decomposed as

u(tn) − un
h = ηn

h + wn
h ,

v(tn) − vn
h = η̂n

h + ŵn
h ,

where ηn
h = u(t)−Uh(tn), η̂n

h = v(t)−Vh(tn), wn
h = Uh(tn)−un

h, ŵn
h = Vh(tn)− vn

h ,
Uh(t) = Rhu(t) and Vh(t) = Rhv(t). We have by (24) and (25)

∥ηn
h∥p ≤ Chα1, ∥η̂n

h∥1,∞ ≤ Ch1−d/pα̂1.

Hence, it suffices to consider the estimates for wn
h and ŵn

h . To this end, we first
characterize wn

h and ŵn
h as solutions of discrete parabolic equations and then apply
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the discrete Duhamel’s principle to obtain estimations for them. Now, we introduce,
for any vh ∈ Xh, the operator Bh(vh) : Xh → Xh defined by

(Bh(vh)uh, χh) = bh(vh, uh, χh) (uh, χh ∈ Xh),

and recall that Ah : Xh → Xh is defined by (31). Then, using (4a), we observe that

(∂τnwn
h , χh)h + (∇wn

h ,∇χh) + (wn
h , χh)h

= (∂τnUn
h , χh)h + (∇Un

h ,∇χh) + (Un
h , χh)h + bh(vn−1

h , un
h, χh) − (un

h, χh)h

for any χh ∈ Xh; equivalently,

∂τnwn
h + Ahwn

h = ∂τnUn
h + AhUn

h + K−1
h Bh(vn−1

h )un
h − un

h

≡ Fn
h .

Thus, by the discrete Duhamel’s principle, we obtain the following identity:

wn
h = En,1w

0
h +

n∑
j=1

τjEn,jF
j
h , (57)

where

r(τjAh) = (I + τjAh)−1,
(
r(s) = (1 + s)−1

)
,

En,j = r(τnAh)r(τn−1Ah) · · · r(τjAh)

for 1 ≤ j ≤ n. By virtue of (33) and (32), we have

K−1
h Phu′(tj) + AhU j

h

= K−1
h Phu′(tj) + K−1

h Lh · L−1
h PhAu(tj) − K−1

h LhU j
h + AhU j

h

= K−1
h Ph [u(tj) − B(u(tj))u(tj)] + (I − K−1

h )U j
h.

So F j is written as

F j = Ph∂τj (U
j
h − u(tj)) + Ph(∂τj u(tj) − u′(tj)) + (I − K−1

h )Phu′(tj)

+ K−1
h Ph

[
Bh(vj−1

h )uj
h − B(v(tj))u(tj)

]
+ K−1

h Phu(tj) − uj
h + (I − K−1

h )U j
h.

Therefore, we have
wn

h = I0 + I1 + I2 + I3 + I4,

where

I0 = En,1w
0
h −

n∑
j=1

τjEn,jPh∂τj η
j
h,

I1 =
n∑

j=1

τjEn,j(K−1
h Phu(tj) − uj

h),

I2 =
n∑

j=1

τjEn,jPh(∂τj u(tj) − u′(tj)),

I3 =
n∑

j=1

τjEn,j(I − K−1
h )

[
Phu′(tj) + U j

h

]
,

I4 =
n∑

j=1

τjEn,jK
−1
h

[
Bh(vj−1

h )uj
h − PhB(u(tj))u(tj)

]
.
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In the similar way, we obtain

ŵn
h = Î0 + Î2 + Î3 + Î4,

where

Î0 = En,1ŵ
0
h −

n∑
j=1

τjEn,jPh∂τj η̂
j
h,

Î2 =
n∑

j=1

τjEn,jPh(∂τj v(tj) − v′(tj)),

Î3 =
n∑

j=1

τjEn,j(I − K−1
h )

[
Phv′(tj) + V j

h

]
,

Î4 =
n∑

j=1

τjEn,j

[
K−1

h Phu(tj) − uj
h

]
.

4.2. Some estimates. In the following lemmas, we always assume all assumptions
described in the begining of the previous subsection.

Lemma 4.1.

∥Aδ
hI0∥h,p ≤ Ch(α1 + α0) + ChJα2, (58)

∥AhÎ0∥h,p ≤ Ct−1
n h2 (α̂1 + α0) + ChJδα̂2. (59)

Proof. Since

ηj
h − ηj−1

h =
∫ tj

tj−1

[u′(s) − Rhu′(s)] ds,

we have by (40) and (23)

∥Aδ
hPh(ηj

h − ηj−1
h )∥h,p ≤ C∥Ph(ηj

h − ηj−1
h )∥1,p

≤ C∥ηj
h − ηj−1

h ∥1,p

≤ C

∫ tj

tj−1

∥u′(s) − Rhu′(s)∥1,p ds

≤ Cτj · Chα2.

On the other hand, by (37) and (38), we obtain

∥Aδ
hEn,1w

0
h∥h,p ≤ ∥En,1∥h,p∥Aδ

h(U0
h − Phu0 + Phu0 − u0h)∥h,p

≤ C (∥Ph(Rh − I)u0∥1,p + ∥Ph(u0 − u0h)∥1,p)
≤ C (∥u0 − Rhu0∥1,p + ∥u0 − u0h∥1,p)
≤ Ch(α1 + α0).

Hence, we can estimate as

∥Aδ
hI0∥h,p ≤ ∥Aδ

hEn,1w
0
h∥h,p +

n∑
j=1

τj∥En,1∥h,p∥Aδ
hPh∂τj η

j
h∥h,p

≤ Ch(α1 + α0) + Chα2tn

Similarly, we have
∥Aδ

hPh(η̂j
h − η̂j−1

h )∥h,p ≤ Cτjhα̂2,
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and

∥AhEn,1ŵ
0
h∥h,p ≤ ∥AhEn,1∥h,p · C (∥(Rh − I)v0∥p + ∥Ph(v0 − v0h)∥p)

≤ Ct−1
n h2 (α̂1 + α0) .

Therefore,

∥AhÎ0∥h,p ≤ ∥AhEn,1ŵ
0
h∥h,p +

n∑
j=1

τj∥A1−δ
h En,1∥h,p∥Aδ

hPh∂τj η̂
j
h∥h,p

≤ Ct−1
n h2 (α̂1 + α0) + Chα̂2

n∑
j=1

τj

(tn − tj−1)1−δ
.

This, together with an elementary inequality
n∑

j=1

τj

(tn − tj−1)ξ
≤

∫ tn

0

ds

(tn − s)ξ
= t1−ξ

n ≤ J1−ξ (0 ≤ ξ ≤ 1),

implies (59).

Lemma 4.2.

∥Aδ
hI1∥h,p ≤ Ch2J1−θα1 + C

n∑
j=1

τj

(tn − tj−1)θ
∥Aδ

hwj
h∥h,p. (60)

Proof. First we have by (43) and (39)

∥A−θ+δ
h (K−1

h Phu(tj) − uj
h)∥h,p

≤ ∥A−θ+δ
h (K−1

h − I)Phu(tj)∥h,p + ∥A−θ+δ
h (Phu(tj) − uj

h)∥h,p

≤ Ch2∥∇Phu(tj)∥h,p + C∥Phu(tj) − uj
h∥h,p

≤ Ch2α1 + C(∥Phu(tj) − Uh(tj)∥h,p + ∥Uh(tj) − uj
h∥h,p)

≤ Ch2α1 + C∥wj
h∥h,p

≤ Ch2α1 + C∥Aδ
hwj

h∥h,p.

Hence,

∥Aδ
hI1∥h,p ≤

n∑
j=1

τj∥En,jA
θ
h∥h,p∥A−θ+δ

h (K−1
h Phu(tj) − uj

h)∥h,p

≤ C
n∑

j=1

τj

(tn − tj−1)θ

(
h2α1 + ∥Aδ

hwj
h∥h,p

)
,

which implies (60).

Lemma 4.3.

∥Aδ
hI2∥h,p ≤ CτσJ1−δα3, (61)

∥AhÎ2∥h,p ≤ CτσJ1−δα̂3. (62)
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Proof. Since

I2 =
n∑

j=1

En,jPh

∫ tj

tj−1

[u′(s) − u′(tj)] ds,

we have

∥Aδ
hI2∥h,p ≤ C

n∑
j=1

∥Aδ
hEn,j∥h,p

∫ tj

tj−1

∥u′(s) − u′(tj−1)∥h,p ds

≤ C
n∑

j=1

1
(tn − tj−1)δ

· α3

∫ tj

tj−1

(s − tj−1)σ ds

≤ CτσJ1−δα3.

Inequality (62) is obtained similarly.

Lemma 4.4.

∥Aδ
hI3∥h,p ≤ Ch2J1−θ(α1 + α2), (63)

∥AhÎ3∥h,p ≤ ChJσα̂3 + Ch(α̂1 + α̂2). (64)

Proof. Using (43), (18) and (22), we deduce

∥Aδ
hI3∥h,p ≤

n∑
j=1

∥Aθ
hEn,j∥h,p∥A−θ+δ

h (I − K−1
h )Phu′(tj)∥h,p

+
n∑

j=1

∥Aθ
hEn,j∥h,p∥A−θ+δ

h (I − K−1
h )U j

h∥h,p

≤
n∑

j=1

Cτj

(tn − tj−1)θ
· Ch2∥∇Phu′(tj)∥p

+
n∑

j=1

Cτj

(tn − tj−1)θ
· Ch2∥∇Rhu(tj)∥p

≤ Ch2J1−θ(α1 + α2).

In order to derive (64), we observe

n∑
j=1

τjAhEn,jχh =
n−1∑
j=1

(En,j+1 − En,j)χh + τnAhEn,nχh

= (En,n − En,1)χh + τnAhr(τnAh)χh

for any χh ∈ Xh. This leads to∥∥∥∥∥∥
n∑

j=1

τjAhEn,jχh

∥∥∥∥∥∥
h,p

≤ (1 + 1)∥χh∥h,p + τn · Cτ−1
n ∥χh∥h,p

≤ C∥χh∥h,p. (65)
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Now setting χj
h = (I − K−1

h )
(
Phv′(tj) + V j

h

)
, we have by (43) and (19),

∥χn
h∥h,p ≤ Ch (∥∇Phv′(tn)∥p + ∥∇Rhv(tn)∥p)

≤ Ch (∥v′(tn)∥1,p + ∥v(tn)∥1,p)
≤ Ch (α̂1 + α̂2) ,

and

∥χj
h − χn

h∥h,p ≤ ∥(I − K−1
h )Ph [v′(tj) − v′(tn)] ∥h,p

+∥(I − K−1
h )Rh [v′(tj) − v′(tn)] ∥h,p

≤ Ch∥v′(tj) − v′(tn)∥1,p

≤ Chα̂3(tn − tj)σ

≤ Chα̂3(tn − tj−1)σ.

We combine these inequalities in the following way. Thus, we write as

AhÎ3 =
n∑

j=1

τjAhEn,1(χ
j
h − χn

h) −
n∑

j=1

τjAhEn,1χ
n
h,

and estimate as

∥AhÎ3∥h,p ≤
n∑

j=1

τj∥AhEn,1(χ
j
h − χn

h)∥h,p + ∥
n∑

j=1

τjAhEn,1χ
n
h∥h,p

≤ C

n∑
j=1

τj

tn − tj−1
∥χj

h − χn
h∥h,p + C∥χn

h∥h,p

≤ Chα̂3

n∑
j=1

τj

(tn − tj−1)1−σ
+ Ch (α̂1 + α̂2)

≤ ChJσα̂3 + Ch (α̂1 + α̂2) .

Hence, (64) is proved.

Lemma 4.5.

∥Aδ
hI4∥h,p ≤ CJ1−θ(τα1α̂2 + hα1α̂1 + h1−d/pα1α̂1)

+ Cα1(h + h2)
n∑

j=1

τj

(tn − tj−1)θ
∥∇ŵj−1

h ∥∞

+ C
n∑

j=1

τj

(tn − tj−1)θ

(
α̂1 + ∥∇ŵj−1

h ∥∞
)
∥Aδ

hwj
h∥h,p, (66)

∥AhÎ4∥h,p ≤ Ch(α1 + α1J
δ + α2J)

+ C
n∑

j=1

τj

(tn − tj−1)1−δ
∥Aδ

hwj
h∥h,p. (67)

Proof. To prove (67), we first note

K−1
h Phu(tj) − uj

h = (K−1
h − I)Phu(tj) + Ph(I − Rh)u(tj) + wj

h.
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In the same manner as the proof of (64), we have∥∥∥∥∥∥Ah

n∑
j=1

τjEn,j(K−1
h − I)Phu(tj)

∥∥∥∥∥∥
h,p

≤ ChJα2 + Chα1.

Moreover, by virtue of (18), (40) and (23),

∥Aδ
hPh(I − Rh)u(tj)∥h,p ≤ C∥(I − Rh)u(tj)∥1,p

≤ Ch∥u(tj)∥2,p.

Hence,

∥AhÎ4∥h,p ≤ ChJα2 + Chα1

+
n∑

j=1

τj∥En,jA
1−δ
h ∥h,p∥Aδ

hPh(I − Rh)u(tj)∥h,p

+
n∑

j=1

τj∥En,jA
1−δ
h ∥h,p∥Aδ

hwj
h∥h,p

≤ ChJα2 + Chα1 +
n∑

j=1

Cτj

(tn − tj−1)1−δ
· Chα1

+
n∑

j=1

Cτj

(tn − tj−1)1−δ
∥Aδ

hwj
h∥h,p,

which implies (67).
We proceed to the proof of (66). If it can be shown that∥∥∥A−θ

h K−1
h

[
Bh(vj−1

h )uj
h − PhB(vj)uj

]∥∥∥
h,p

≤ C
(
τα1α̂2 + hα1α̂1 + h1−d/pα1α̂1h + α̂1∥Aδ

hwj
h∥h,p

+α1(h + h2)∥∇ŵj−1
h ∥∞ + ∥Aδ

hwj
h∥h,p

)
∥∇wj−1

h ∥∞, (68)

we have (66) in the same manner as for the estimation of I1. In order to get (68),
it suffices to verify that

|(Bh(vj−1
h )uj

h−B(vj)uj , χh)| ≤ C
[
τα1α̂2 + hα1α̂1 + h1−d/pα1α̂1 + α̂1∥Aδ

hwj
h∥h,p

+α1(h + h2)∥∇ŵj−1
h ∥∞ + ∥Aδ

hwj
h∥h,p∥∇wj−1

h ∥∞
]
∥∇χh∥q (69)

for χh ∈ Xh. Indeed, by virtue of (36),∥∥∥A−θ
h K−1

h

[
Bh(vj−1

h )uj
h − PhB(vj)uj

]∥∥∥
h,p

≤ C sup
χh∈Xh

(
A−θ

h K−1
h

[
Bh(vj−1

h )uj
h − PhB(vj)uj

]
, χh

)
h

∥χh∥h,q

≤ C sup
χh∈Xh

(
Bh(vj−1

h )uj
h − B(vj)uj , A−θ

h χh

)
∥χh∥q

,
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which, together with (43) and (69), implies (68). Consequently, (68) is reduced to
(69). To prove that, letting χh ∈ Xh, we write it as

b(vj , uj , χ) − bh(vj−1
h , uj

h, χh)

= b(vj , uj , χh) − b(vj−1, uj , χh)

+ b(vj−1, uj , χh) − bh(Phvj−1, πhuj , χh)

+ bh(Phvj−1, πhuj , χh) − bh(Phuj , Phuj , χh)

+ bh(Phvj−1, Phuj , χh) − bh(vj−1
h , Phuj , χh)

+ bh(vj−1
h , Phuj , χh) − bh(vj−1

h , uj
h, χh)

≡ I41 + I42 + I43 + I44 + I45.

First, in view of Lemma 3.8,

|I41| ≤ ∥uj∥∞∥∇vj −∇vj−1∥p∥∇χh∥q

≤ ∥uj∥∞∥∇χh∥q

∫ tj

tj−1

∥∇v′(s)∥p ds

≤ τα1α̂2∥∇χh∥q.

We apply Lemma 3.11 to obtain

|I42| ≤ Ch1−d/p∥vj−1∥2,p∥uj∥1,p∥∇χh∥q ≤ Ch1−d/pα1α̂1∥∇χh∥q.

Since bh is linear with respect to the second argument, we calculate as

|I43| ≤ ∥∇Phvj−1∥∞∥πhuj − Phuj∥p∥∇χh∥q

≤ C∥∇vj−1∥∞
(
∥πhuj − uj∥p + ∥uj − Phuj∥p

)
∥∇χh∥q

≤ Cα̂1 · Ch2∥uj∥2,p∥∇χh∥q

≤ Ch2α̂1α1∥∇χh∥q

by (46) and (19). By virtue of Lemma 3.9, we deduce

|I44| ≤ Ch
(
∥∇Phvj−1∥∞ + ∥∇vj−1

h ∥∞
)
∥Phuj∥1,p∥∇χh∥q

≤ Ch
(
α̂1 + ∥∇ŵj−1

h ∥∞
)

α1∥∇χh∥q

≤ Chα1α̂1∥∇χh∥q + Chα1∥∇ŵj−1
h ∥∞∥∇χh∥q.

Here we have used

∥∇vj−1
h ∥∞ ≤ ∥Rhvj−1∥∞ + ∥∇ŵj−1

h ∥∞ ≤ Cα̂1 + ∥∇ŵj−1
h ∥∞.

Finally, by Lemma 3.10,

|I45| ≤ C∥∇vj−1
h ∥∞∥Phuj − uj

h∥p∥∇χh∥q

≤ C
(
∥∇Rhvj−1∥∞ + ∥∇ŵj−1

h ∥∞
)

·
(
∥Phuj − Rhuj∥p + ∥wj

h∥p

)
∥∇χh∥q

≤ C
(
α̂1 + ∥∇ŵj−1

h ∥∞
)(

Ch2α1 + ∥Aδ
hwj

h∥p

)
∥∇χh∥q.

These imply (69); thus we finish the proof of (66).
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4.3. Completion of the proof. We can complete the proof of Theorem 2.4 in the
following way. First, we recall that τ is defined as (9). Then, we have

h2

tn
≤ Ch

2d

ε
(α̂1 + α0h) .

Summing the estimates for I0, . . . , Î5 and using (44), we obtain, for h ∈ (0, h0)
with some 0 < h0 < 1,

∥Aδ
hwn

h∥h,p + ∥ŵn
h∥1,∞

≤ C1

(
τσ + h1−d/p

)
+ Cα1

n∑
j=1

τj

(tn − tj−1)7/8
∥ŵj−1

h ∥1,∞

+ C
n∑

j=1

τj

(tn − tj−1)7/8

(
1 + α̂1 + α1J + ∥ŵj−1

h ∥1,∞

)
∥Aδ

hwj
h∥h,p, (70)

where C2 = C(1 + J + ε−1)

[
α0 +

3∑
i=1

(αi + α̂i) + α1α̂1 + α1α̂2

]
.

We define zj = ∥Aδ
hwj

h∥h,p + ∥ŵj
h∥1,∞ and Zn = sup

0≤j≤n
zj . First we assume that

Zn−1 ≤ 1.

Thereby, (70) implies that

zn ≤ C2

(
τσ + h1−d/p

)
+ C3

n∑
j=1

τj

(tn − tj−1)7/8
(zj−1 + zj),

with C3 = C(1 + J)(1 + α1 + α̂1). Hence, according to Lemma 3.7,

zn ≤ C4

(
τσ + h1−d/p

)
exp (C5J) ≡ ẑ,

where C4 = C̃C2, C5 = C̃C8
3 and C̃ is the absolute positive constant. Since C4 and

C5 are independent of h and n, we can choose sufficiently small h2 > 0 such that
ẑ ≤ 1 for h ∈ (0, h2). On the other hand, since u0h and v0h are chosen so that (8)
holds, we have

z0 ≤ C (∥Rhu0 − u0∥1,p + ∥u0 − u0h∥1,p)
+ ∥∇(Rhv0 − v0)∥∞ + ∥∇(v0 − v0h)∥∞

≤ Ch1−d/p (∥u0∥2,p + ∥v0∥2,p + α0) .

Hence, we can take h3 > 0 such that z0 ≤ 1 for h ∈ (0, h3).
At this stage, we set h1 = min(h0, h2, h3). Then, since h ∈ (0, h1), we have

Zn ≤ 1 for all n ≥ 0 such that tn < J by induction. In conclusion, we have by (39)

∥wn
h∥p + ∥ŵn

h∥1,∞ ≤ C
(
∥Aδ

hwn
h∥h,p + ∥ŵn

h∥1,∞
)

≤ C [C4 exp (C5J)]
(
τσ + h1−d/p

)
.

This, together with (4.1), implies the desired error estimate (10). Thus we complete
the proof of Theorem 2.4.
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5. Concluding remarks.

5.1. The case of smooth domains. Now we suppose that Ω ⊂ Rd is a bounded
domain with the sufficiently smooth boundary ∂Ω. Consequently, if in addition u0

and v0 are smooth and satisfy the compatibly condition for (1c), the system (1)
admits a unique classical solution satisfying

u,
∂u

∂xi
,

∂2u

∂xixj
, ut, v,

∂v

∂xi
,

∂2v

∂xixj
, vt ∈ C(Ω × [0, J ])

for a sufficiently small J . See, for the proof of this fact, [22] and [23].
In this case, we take a regular family of (curved) triangulations {Th}, which

exactly fit the boundary:

Ω =
∪

T∈Th

T.

The definitions of Xh, ϕ̂i, Di, etc. are similar to those before with obvious modifi-
cations (see, for example, [3]).

Then, under Assumptions (H1) and (H2), we can derive the following error esti-
mates:

sup
0≤tn≤J

(∥u(tn) − un
h∥p + ∥∇(v(tn) − vn

h)∥∞) ≤ C ′
1(h + τ)

for h ∈ (0, h′
1); this can be achieved similarly to the proof of Theorem 2.4. See [20,

§7] for further detail.

5.2. General sensitive function. We have considered the linear sensitive func-
tion λv; we now deal with a general sensitive function ϕ(v) instead of λv. Thus, we
are concerned with

ut −∇ · (Du∇u − u∇ϕ(v)) = 0 in Ω × (0, J), (71a)

kvt − Dv∆v + k1v − k2u = 0 in Ω × (0, J), (71b)

∂u/∂ν = 0, ∂v/∂ν = 0 on ∂Ω × (0, J), (71c)

u|t=0 = u0, v|t=0 = v0 on Ω. (71d)

Here, ϕ : [0,∞) → R denotes a smooth non-decreasing function. For example, we
may take ϕ(v) = λ log v, ϕ(v) = λv2/(1 + v2), and so on. For the system (71), we
consider the finite-element scheme (4) where β±

ij(vh) should be replaced by

β±
ij(vh) =

∫
Γij

[∇πhϕ(vh) · νij ]± dS.

Then, Theorem 2.1 remains true. On the other hand, Theorems 2.2 and 2.3 also
remain true, if the time increment control (5) is replaced by

τn = min
{

τ,
εκh

2d∥∇πhϕ(vn−1
h )∥∞

}
.

Error estimate, however, is open at present. Several numerical examples which
validate this scheme are presented in [21].
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