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D. Hömberg was partially supported by the DFG Research Center Matheon “Mathematics for
key technologies”. N. Togobytska was supported by the DFG SPP 1204 “Algorithms for fast,
material specific process-chain design and -analysis in metal forming”. M. Yamamoto was partly
supported by Grant 15340027 from the Japan Society for the Promotion of Science and Grant
17654019 from the Ministry of Education, Cultures, Sports and Technology.

1



2

1. Introduction

The dilatometer is an instrument for magnifying and measuring expansion and
contraction of a solid during heating and subsequent cooling. It is often used in
the determination of phase transitions occurring with the change of temperature
in the heat-treatment of steels. Figure 1 depicts a typical measurement setup
of dilatometers. The steel specimen is contained in a heating device, usually in-
duction heating.Through a rod on its right-hand side, length changes λ(t) due to
compression or expansion are measured as a function of time t. In addition the
temperature τ(t) is measured. In Section 2, we describe the governing equations
(2.5) - (2.9) for displacement u and temperature θ and then we have λ(t) = u(1, t)
and τ(t) = θ(x0, t), where x0 is an observation point in a domain under consider-
ation.

Figure 1. Sketch of the dilatometer experiment.

Usually, the results are documented in a dilatometer curve, where length change
is plotted versus temperature, parameterized by the time t. A typical dilatometer
curve for the cooling of a specimen made of eutectoid carbon steel is shown in
Figure 2.

The part of the curve to the right of point A shows the normal contraction of
the specimen during slow cooling for a steel in the austenitic phase. At point
A a phase transition (from austenite to pearlite) starts and it ends at point B.
Then again a period with linear contraction prevails followed by another phase
transition (austenite to martensite) between C and D, and finally another linear
contraction period. Therefore the main information drawn from such a dilatometer
experiment usually are the start (TA, TC) and end (TB, TD) temperatures of the
occurring phase transitions. Moreover, one knows that above TA the state is
purely austenitic. Between TB and TC there is a constant mixture of austenite
and pearlite and below TD we have a mixture of the product phases pearlite and
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Figure 2. Dilatometer curve for steel C 1080 exhibiting 2 phase transitions.

martensite. Usually, these data are used to derive so-called Continuous-Cooling-
Transformation (CCT) diagrams, which illustrate the beginning and end of a phase
transition during continuous cooling.

This approach has two drawbacks. First of all, depending on the curvature of
the respective dilatometer curve, it might become rather difficult and erroneous to
fix transformation points A, . . . , D. Secondly, in the case of two phase transitions
as in Figure 2, the actual phase fractions of the different product phases cannot
be drawn directly from the dilatometer curve. Therefore, usually costly polished
micrograph sections have to be made and investigated under the microscope. The
precision of the predicted phase fractions then highly depends on the experience
of the respective experimenter.

From a mathematical point of view, deriving just the four critical temperatures
is like a waste of information. Indeed it is the goal of this paper to prove that
one can uniquely identify the evolution of two product phases y(t) and z(t) from
the measurements τ(t) and λ(t). We refer for example, to [5] as a source book
concerning similar inverse problems, and see also [3] concerning a similar treatment
of inverse problems.

The outline of the paper is as follows. In the next section we will give a precise
problem formulation. In Section 3 we prove the identifiabilty result. The last
section is devoted to numerical examples for the solution of the identification
problem.
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2. Problem formulation

The standard shape for dilatometer specimen is a cylinder. Since the diameter
is small compared to its length, we will neglect radial variations of the physical
quantities and just consider variations along the symmetry axis. For convenience,
we define

Ω = (0, 1),

and assume small deformations which will allow us to write down the equations in
the undeformed domain.

We assume that at most two phase transitions may occur during cooling, with
phase fractions y(t) and z(t), respectively, depending only on time t but not on
space. In addition, they satisfy
(2.1)
y(0) = z(0) = 0, 0 ≤ y(t), 0 ≤ z(t), y(t)+z(t) ≤ 1, for all t ∈ [0, T ],

The simplest model to describe a thermal expansion as indicated in Figure 2 is
assuming a mixture ansatz for the thermal strain

(2.2) εth = yεth
1 + zεth

2 + (1− y − z)εth
0 ,

where the thermal strain in each phase is given by the linear model

(2.3) εth
i = δi(θ − θi

ref ).

Here the constants δi > 0 is the thermal expansion coefficient and θi
ref the reference

temperature. For convenience we define

α1 = δ1 − δ0, α2 = δ2 − δ0, β1 = δ1θ
1
ref − δ0θ

0
ref , β2 = δ2θ

2
ref − δ0θ

0
ref .

Setting w = (y, z) and

(2.4) δ(w) = α1y + α2z + δ0, η(w) = β1y + β2z + δ0θ
0
ref ,

we obtain for the overall thermal strain

εth = δ(w)θ − η(w).

Moreover by (2.1), we see that

δ(w(t)) ≥ min{δ0, δ1, δ2} > 0.

Assuming furthermore an additive partitioning of the overall strain into a thermal
and an elastic one, i.e. ε = εel + εth we obtain the following quasi- static linearized
thermo-elasticity system:(

ux − δ(w)θ + η(w)
)

x
= 0, in Ω× (0, T )(2.5)

ρcθt − kθxx + Λδ(w)uxt − ρL1y
′ − ρL2z

′ = γ(θe − θ), in Ω× (0, T )(2.6)

u(0, t) = 0, ux(1, t)− δ(w)θ(1, t) + η(w) = 0, in (0, T )(2.7)

θx(0, t) = θx(1, t) = 0, in (0, T )(2.8)

θ(·, 0) = θ0, in Ω.(2.9)
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Here, we set y′ = dy
dt

, ρ is the density, c the heat capacity, and k is the thermal
conductivity, L1 and L2 are the latent heats of the phase transitions. The constant
Λ = 2Λ1 + Λ2 is the bulk modulus with the Lamé coefficients Λ1,Λ2. Since the
cooling happens all around the specimen, we have chosen a distributed Newton
type of cooling law, with the heat exchange coefficient γ, and θe is the temperature
of the coolant. In view of Hooke’s law, the stress σ is given by

σ = ux − δ(w)θ + η(w),

hence, the second boundary condition for u just states that the specimen is stress-
free at x = 1. L1 and L2 are the latent heats of the phase transitions. All other
constants have been normalized to one without loss of generality. We make the
following assumptions

(A1): L1, L2, δ0, δ1, δ2, γ > 0
(A2): θ0, θ

e ∈ C[0, T ] satisfying θ0(x) > θe(x) > 0 for all x ∈ [0, 1],
(A3): y, z ∈ C1[0, T ] such that y′, z′ ≥ 0 for all t ∈ [0, T ] and there exists a

constant M > 0 such that ‖y‖C1[0,T ], ‖z‖C1[0,T ] ≤M , and (2.1) is satisfied.
(A4): y′(t) = z′(t) = 0 for θ ≤ θe.

(A2) reflects the fact that we consider a cooling experiment, i.e., we start with
a hot specimen, while (A4) rephrases that there are no phase transitions below
temperature θe. For the direct problem, we have the following

Lemma 2.1. Assume (A1)–(A3), then (2.5)–(2.9) admits a unique classical solu-
tion (u, θ). Moreover, it satisfies θ(x, t) ≥ θe in Ω× (0, T ), if also (A4) holds.

Remark 2.1. As seen in Figure 2 the phase transitions are finished when temper-
ature TD is reached. Hence it is natural to assume that y′(t) = z′(t) = 0 for θ ≤ θe

if the latter is less than TD.

Proof:
Showing the existence of a unique solution to the state system is a standard

task which we omit here. Instead, we refer to [4]. To show the non-negativity of
θ, we first note that (2.5) implies the existence of a function µ depending only on
time, such that

ux − δ(w)θ + η(w) = µ(t), for all (x, t) ∈ Ω̄× (0, T ).

Regarding (2.7), we see that µ ≡ 0, hence we have

(2.10) ux = δ(w)θ − η(w), for all (x, t) ∈ Ω̄× (0, T ).

Differentiating (2.10) formally with respect to t, we can infer

(2.11) uxt = (α1y
′ + α2z

′)θ + δ(w)θt − β1y
′ − β2z

′.

Inserting this into (2.6), we obtain

(2.12) (1+νδ(w)2)θt−κθxx+νδ(w)(α1y
′+α2z

′)θ = L̂1(w)y′+L̂2(w)z′+ γ̂(θe−θ),
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with

(2.13) L̂1(w) =
L1

c
+ νδ(w)β1, L̂2(w) =

L2

c
+ νδ(w)β2

and

κ =
k

ρc
, ν =

Λ

ρc
, γ̂ =

γ

ρc
.

To prove the lower bound for θ, we test (2.12) with θ− := min{θ−θe, 0}, integrate
by parts, and use the identity θ = θe + θ− + θ+ to obtain

t∫
0

∫
Ω

(1 + νδ(w)2)
1

2

∂

∂s
θ2
−dxdt+ κ

t∫
0

∫
Ω

θxθ−,xdxdt+

t∫
0

∫
Ω

νδ(w)(α1y
′ + α2z

′)θθ−dxdt

=
1

2

∫
Ω

(1 + νδ(w)2)θ2
−(t)dxdt+ κ

t∫
0

∫
Ω

θ2
−,xdxdt

=

t∫
0

∫
Ω

(L̂1(w)y′ + L̂2(w)z′)θ−dxdt+ γ̂

t∫
0

∫
Ω

(θe − θ)θ−dxdt

≤ 0.

The latter inequality holds in view of (A1)–(A4). From this we can infer θ−(x, t) =
0.

3. A stability result for the inverse problem

In this section we study the inverse problem of reconstructing the phase fractions
of at most two product phases from measured data u(1, t) and θ(x0, t) for t ∈ [0, T ]
at some point x0 ∈ (0, 1). For given w(t) = (y(t), z(t)) and λ(t), we set

L1(λ(t), w(t)) =
L1

c
+
λ(t) + η(w(t))

δ2(w(t))
α1 −

β1

δ(w(t))
,

L2(λ(t), w(t)) =
L2

c
+
λ(t) + η(w(t))

δ2(w(t))
α2 −

β2

δ(w(t))
,

and we recall that L̂1(w) and L̂2(w) are defined by (2.13).
For our inverse problem, we have to enforce the additional assumption:

(A5): For w(t), θ, u satisfying (2.5) - (2.9), there holds,

L1(u(1, t), w(t))(L̂2(w(t))− νδ(w(t))α2θ(x0, t))

−L2(u(1, t), w(t))(L̂1(w(t))− νδ(w(t))α1θ(x0, t)) 6= 0, 0 ≤ t ≤ T.

Remark 3.1. In the next section we will show that assumption (A5) indeed is
satisfied for realistic physical data.

Our main result is the following global stability estimate:



7

Theorem 3.1. Let (yi, zi), i = 1, 2 be two sets of phase fractions such that (A1)–
(A4) are satisfied and let (ui, θi), i = 1, 2, be the corresponding solutions to (2.5)–
(2.9).

Then there exists a constant C > 0 such that

‖y1 − y2‖C1[0,T ] + ‖z1 − z2‖C1[0,T ]

≤ C(‖(u1 − u2)(1, ·)‖C1[0,T ] + ‖(θ1 − θ2)(x0, ·)‖C1[0,T ]).

Proof:
By (2.10) we have∫ x

0

∂xuj(ξ, t)dξ =

∫ x

0

δ(wj(t))θj(ξ, t)dξ −
∫ x

0

η(wj(t))dξ,

and by (2.7), we obtain

uj(x, t) = δ(wj(t))

∫ x

0

θj(ξ, t)dξ − xη(wj(t)), t > 0.

Defining
λj(t) ≡ uj(1, t),

we obtain

(3.1) λj(t) = δ(wj(t))

∫ 1

0

θj(ξ, t)dξ − η(wj(t)), t > 0.

Now, we integrate (2.12) over x ∈ (0, 1), use (2.8) and (3.1):

(1 + νδ(wj(t))
2)

(
λj(t) + η(wj(t))

δ(wj(t))

)′
+ ν(λj(t) + η(wj(t)))(α1y

′
j + α2z

′
j)

= L̂1(wj)y
′
j + L̂2(wj)z

′
j − γ̂

λj(t) + η(wj(t))

δ(wj(t))
+ γ̂θe, t > 0.

Rearranging terms yields

L1(λj(t), wj(t))y
′
j(t) + L2(λj(t), wj(t))z

′
j(t)

=
(
1 + νδ2(wj(t))

) λ′j(t)
δ(wj)

+ γ̂
λj(t) + η(wj(t))

δ(wj(t))
− γ̂θe, t > 0.(3.2)

Now we define λ̄ = λ1−λ2 and analogously ȳ and z̄, then we take the difference
of (3.2) for j = 1, 2:

L1(λ1, w1)ȳ′(t) + L2(λ1, w1)z̄′(t)

+ (L1(λ1, w1)− L1(λ2, w2))y′2 + (L2(λ1, w1)− L2(λ2, w2))z′2

= (1 + νδ(w1)2)
λ′1

δ(w1)
− (1 + νδ(w2)2)

λ′2
δ(w2)

+γ̂

(
λ1 + η(w1)

δ(w1)
− λ2 + η(w2)

δ(w2)

)
.
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We can rewrite them as

(3.3) L1(λ1, w1)ȳ′(t) + L2(λ1, w1)z̄′(t) = K1(λ̄, λ̄′) +K2(ȳ, z̄), 0 < t < T.

Here and henceforth, Ki, K̃i, K
(1)
i are linear functions in the arguments whose

coefficients are bounded in C[0, T ] by M . We set θ̄ = θ1 − θ2.
Next, we take the difference of (2.12) for j = 1, 2, leading to(

1 + νδ(w1)2
)
θ̄t − κθ̄xx + ν(δ(w1) + δ(w2))∂tθ̄2(α1ȳ + α2z̄)

+ νδ(w2)(α1y
′
2 + α2z

′
2)θ̄ + νδ(w1)θ1(α1ȳ

′ + α2z̄
′)

+ ν(α1y
′
2 + α2z

′
2)θ1(α1ȳ + α2z̄)

= L̂1(w1)ȳ′ + L̂2(w1)z̄′ + ν(β1y
′
2 + β2z

′
2)(α1ȳ + α2z̄)− γ̂θ̄.

The latter we will rewrite it as(
1 + νδ(w1)2

)
θ̄t − κθ̄xx + ν(δ(w2)(α1y

′
2 + α2z

′
2) + γ̂)θ̄

= (L̂1(w1)− νδ(w1)α1θ1)ȳ′ + (L̂2(w1)− νδ(w1)α2θ1)z̄′

+K3(ȳ, z̄), 0 < x < 1, t > 0(3.4)

and

(3.5) θ̄(x, 0) = 0, θ̄x(0, t) = θ̄x(1, t) = 0, 0 < x < 1, t > 0.

Henceforth, by U(t, s) we denote the evolution operator generated by

A(t) =
−1

1 + νδ(w1)2
(κ∂2

x − νδ(w2(t))(α1y
′
2 + α2z

′
2)− γ̂)(·)

and

D(A(t)) = {η ∈ H2(0, 1); ηx(0) = ηx(1) = 0}
(e.g., Chapter 5 in Tanabe [7]).

This allows us to recast (3.4) and (3.5) as

(3.6) θ̄′(t) = A(t)θ̄(t) +
L̂1(w1)− νδ(w1)α1θ1

1 + νδ(w1)2
ȳ′

+
L̂2(w1)− νδ(w1)α2θ1

1 + νδ(w1)2
z̄′ +

K3(ȳ, z̄)(t)

1 + νδ(w1)2
, t > 0

and θ̄(0) = 0. Here, we write θ̄(t) = θ̄(·, t). In particular, ∂sU(t, s) = U(t, s)A(s).
Then we have for 0 < t < T

θ̄(t) =

∫ t

0

U(t, s)
L̂1(w1)− νδ(w1)α1θ1

1 + νδ(w1)2
ȳ′(s)ds

+

∫ t

0

U(t, s)
L̂2(w1)− νδ(w1)α2θ1

1 + νδ(w1)2
z̄′(s)ds+

∫ t

0

U(t, s)
K3(ȳ, z̄)(s)

1 + νδ(w1)2
ds.
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Differentiating the both sides, we have

θ̄′(t) =
L̂1(w1)− νδ(w1(t))α1θ1(t)

1 + νδ(w1(t))2
ȳ′(t) +

L̂2(w1)− νδ(w1(t))α2θ1(t)

1 + νδ(w1(t))2
z̄′(t)

+

∫ t

0

K̃4(ȳ′, z̄′)(s)ds+ K̃5(ȳ, z̄)(t) +

∫ t

0

K̃6(ȳ, z̄)(s)ds.

Defining τ̄ = θ̄(x0, .), we obtain

L̂1(w1)− νδ(w1(t))α1θ1(x0, t)

1 + νδ(w1(t))2
ȳ′(t) +

L̂2(w1)− νδ(w1(t))α2θ1(x0, t)

1 + νδ(w1(t))2
z̄′(t)

= τ̄ ′(t)−
∫ t

0

K4(ȳ′, z̄′)(s)ds−K5(ȳ, z̄)(t)−
∫ t

0

K6(ȳ, z̄)(s)ds.(3.7)

In view of (A5), we can solve (3.3) and (3.7) with respect to ȳ′ and z̄′, and we
obtain

ȳ′(t) = K7(λ̄, λ̄′, τ̄ ′) +K8(ȳ, z̄)

+

∫ t

0

(K9(ȳ, z̄)(s) +K10(ȳ′, z̄′)(s))ds, 0 ≤ t ≤ T.

Noting that ȳ(0) = 0, we have

|K8(ȳ, z̄)(t)|, |K9(ȳ, z̄)(t)| ≤ C

∫ t

0

(|ȳ′(s)|+ |z̄′(s)|)ds.

Mutatis mutandis, the same reasoning holds for z̄(t)′. Altogether, we obtain

|ȳ′(t)|+ |z̄′(t)|

≤ C(|λ̄(t)|+ |λ̄′(t)|+ |τ̄ ′(t)|) + C

∫ t

0

(|ȳ′(s)|+ |z̄′(s)|)ds, 0 ≤ t ≤ T.

The Gronwall inequality yields

|ȳ′(t)|+ |z̄′(t)| ≤ C(‖λ̄‖C1[0,T ] + ‖τ̄‖C1[0,T ]), 0 ≤ t ≤ T.

Thus the proof is completed.

Remark 3.2. We can expect the existence of (y, z) satisfying (2.5) - (2.9) and
realizing given data for u(1, ·) and θ(x0, ·), but we here exploit only the stability,
which is an important theoretical issue for numerical computations.
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symbol value unit symbol value unit

ρ 7.85 [g/cm3] c 0.5096 [J/(gK)]
k 0.5 [J/(s ∗ cm ∗K)] Λ1 1.0724e+ 5 [Pa]
Λ2 6.882e+ 4 [Pa] L1 77.0 [J/g]
L2 84.0 [J/g] δ0 1.55e− 5 [1/K]
δ1 1.7e− 5 [1/K] δ2 1.16e− 5 [1/K]
θ0

ref 1473 K θ1
ref 1234 K

θ2
ref 773 K

Table 1. Metallurgical parameters for the carbon steel C1080.

4. Numerical results

In this section we present some results for the numerical identification of phase
fractions y(t), z(t) from dilatometer curves, or more precisely, from measurements

λ̂ of the overall displacement λ(t) = u(1, t), as well as measurements τ̂(t) of the
temperature in one point, τ(t) = θ(x0, t). To this end, we solve the optimal control
problem

min
{
ω1

T∫
0

(u(1, t)− λ̂(t))2dt+ ω2

T∫
0

(θ(x0, t)− τ̂(t))2dt
}

subject to the state sytem (2.5)–(2.9) and the control constraint y, z ∈ Uad.
The state system is discretized using finite differences. The phase fraction func-

tions to be determined are represented as cubic splines. Enforcing the additional
conditions

y(0) = z(0) = y′(0) = z′(0) = y′(T ) = z′(T ) = 0

the remaining spline coefficients can be uniquely represented in terms of the values
of y, z in the temporal grid points t1, . . . , tn. Defining the parameter vector

p = (y(t1), . . . y(tn), z(t1), . . . z(tn))

we consider the nonlinear optimization problem

(4.1) min
{
ω1

n∑
i=1

(u(1, ti, p)− λ̂(ti))
2dt+ ω2

n∑
i=1

(θ(x0, ti, p)− τ̂(ti))
2dt
}

subject to a discretized version of the state sytem (2.5)–(2.9)

and the control constraint p ∈ Ũad.

So far our approach has only been tested on model data for the plain carbon steel
C 1080. Table 1 summarizes the metallurgical data used for the simulations. Now,
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we are in a position to check the validity of assumption (A5). In view of the data
in Table 1, we can conclude

δ2 ≤ δ(w) ≤ δ1.

Since we cool below Mf , we have indeed y′(t) = z′(t) = 0 for θ < θe. Hence, we
have

λ(t) + η(w(t)) ≥ |Ω|θe, δ2(w(t))θ(x0, t)) ≥ δ2
2θ

e.

Inserting the data for L1,2, α1,2, β1,2, it is easily seen that the complete expression
stays negative, hence we can conclude that (A5) is satisfied.

To generate the model data, we have solved the system of state equations (2.5)–
(2.9) together with two rate laws for y and z (cf. [1], see also [2] for more general
phase transitions models):

(4.2) y′ = (1− y − z)g(θ)

(4.3) z′ = 5[ẑ − z2, 0]+

with
ẑ = min {m̄, 1− y}

and m̄(θ) = 1, if θ < Mf , m̄(θ) = 0, if θ > Ms. In between it is defined as the
linear interpolation between 0 and 1. Here, Ms,f are the starting and finishing
temperatures for the martensitic growth, which for the steel C1080 take the values

Ms = 500K Mf = 366K.

Figure 3. The data function g(θ) in (4.2).

As before, we denote [x]+ = max{x, 0}. System (4.2)–(4.3) is explained in more
detail in [1]. A rough explanation is that the growth rate of pearlite, y′, is assumed
to be proportinal to the remaining fraction of the high temperature phase and a
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Figure 4. Model dilatometer curves for slow (top left), fast (top
right) and medium (bottom) quenching.

Figure 5. Results of the identification process for slow (left) and
fast (right) quenching.
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Figure 6. Three iterations and final resulting phase fraction curves
in the case of moderate cooling.

function depending only on temperature (cf. Figure 3), while the second phase,
martensite (z) only grows, as long as a certain temperature dependent threshold
value is not exceeded.

Figure 4 shows the resulting model dilatometer curves for the case of slow,
moderate and fast cooling, respectively. Especially the case of moderate cooling
(see also Figure 2 ) is of interest, since it exhibits two phase transitions. Based
on this model data, we have used the MATLAB Levenberg-Marquardt routine
to solve the discretized optimization problem (4.1). To obtain useful results an
equilibrating of both terms in the cost functional is indispensable. To this end we
have defined

ω1 = 104, ω2 =
1

(τ̂(0)− τ̂(T ))2
.

Figure 5 shows the results of the identification in the case of fast and slow
cooling in comparison with the exact result. We can conclude that indeed the
identification was successful. However, the really interesting case is the one with
moderate cooling, which exhibits two phase transitions. Figure 6 shows three
iterations and the final result of the optimization process in this case. Starting
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from initial values y0 = z0 ≡ 0, already after three iterations the correct final phase
fraction has been reached. This is particularly important since as described in the
introduction, the standard way of obtaining the resulting phase fraction values
in the case of several phase transitions requires expensive and time- consuming
optical measurements.

Figure 7. Measured dilatometer curve for the steel 16MnCr5.

Figure 8. Identification of two product phases from measured
dilatometer curve.
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Figure 7 depicts a measured dilatometer curve for the steel 16MnCr5. One
phase transition between 730K and 780K (from austenite to bainite) can easily
be seen, another one between 580K and 620K (from austenite to martensite) is
hardly visible. However, our numerical method indeed is able to detect both phase
transitions. Figure 8 shows four iterations for this case. From physical point of
view one would expect a monotone behaviour of the phase fraction curve, which
holds only true for one of them. However, the final phase fractions for both phases
correspond to the measured ones with a relative error of less than 10%. Further
details can be found in [6]
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