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Abstract. We consider a one-dimensional fractional diffusion equation: ∂αt u(x, t) =
∂
∂x

(
p(x) ∂u

∂x
(x, t)

)
, 0 < x < `, where 0 < α < 1 and ∂αt denotes the Caputo derivative

in time of order α. We attach the homogeneous Neumann boundary condition at
x = 0, ` and the initial value given by the Dirac delta function. We prove that
α and p(x), 0 < x < `, are uniquely determined by data u(0, t), 0 < t < T . The
uniqueness result is a theoretical background in experimentally determining the order
α of many anomalous diffusion phenomena which are important for example in the
environmental engineering. The proof is based on the eigenfunction expansion of the
weak solution to the initial value/boundary value problem and the Gel’fand-Levitan
theory.

§1. Introduction.

Recently there are many anomalous diffusion phenomena observed which show dif-

ferent aspects from the classical diffusion. For example, Adams and Gelhar [1]

pointed that field data in the saturated zone of a highly heterogeneous aquifer are

not well simulated by the classical advection-diffusion equation which is based on
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the random walk, and the data indicate ”slower” diffusion than the classical one.

The slow diffusion is characterized by the long-tailed profile in spatial distribution

of densities as the time passes. Also see Zhou and Selim [42]. Such slow diffusion is

called the anomalous diffusion. Since [1], there have been many studies for better

models, because from the practical viewpoint, the anomalous diffusion is seriously

concerned e.g., with the quantitative environmental problems such as evaluation

of underground contaminants. In particular, Berkowitz, Scher and Silliman [4], Y.

Hatano and N. Hatano [11] have applied the continuous-time random walk to the

underground environmental problem.

For applying the continuous-time random walk, we have to determine some pa-

rameters in the continuous-time random walk, and there appears an important

parameter characterizing in the large-time behaviour of a waiting-time distribution

function. We can refer to Y. Hatano and N. Hatano [11] where the authors fit the

parameter by data of columun experiments at laboratory. See also Xiong, G. Huang

and Q. Huang [40], and Berkowitz, Cortis, Dentz and Scher [3] as a survey. Al-

though there have been many works which are concerned more experimentally with

the continuous-time random walk, there are very few mathematical analyses for the

parameter identification. The continuous-time random walk is a microscopic model

for the anomalous diffusion, while from it, we can derive a macroscopic model equa-

tion, e.g., Metzler and Klafter [26] (pp.14-18), Roman and Alemany [34], Sokolov,

Klafter and Blumen [36]. The derivation corresponds to the way with which the

classical diffusion equation is derived from the random walk, and as a macroscopic

model from the continuous-time random walk, we have a fractional diffusion equa-
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tion:

(1.1) ∂αt u(x, t) =
∂

∂x

(
p(x)

∂u

∂x
(x, t)

)
, 0 < x < `, t > 0,

where the diffusion coefficient p(x) describes the heterogeneity of the medium, α >

0, and ∂αt u(x, t) means the Caputo derivative :

(1.2) ∂αt u(x, t) =
1

Γ(1− α)

∫ t

0

(t− s)−α ∂u
∂s

(x, s)ds.

See e.g., Kilbas, Srivastava and Trujillo [15], Podlubny [31] for the definition and

properties of the Caputo derivative.

In the slow diffusion, we can take 0 < α < 1. The fractional order α is related

with the parameter specifying the large-time behaviour of the waiting-time distri-

bution function. As related papers, see Giona, Gerbelli and Roman [8], Giona and

Roman [9], Mainardi [21] - [23], Metzler, Glöckle and Nonnenmacher [25], Metzler

and Klafter [27], Nigmatullin [29], Roman [33] and see section 10.10 in Podlubny

[31].

The main purpose of this paper is to establish the uniqueness in determining α

and p(x) by means of observation data u(0, t), 0 < t < T at one end point. By

our uniqueness result, we expect that by experiments, we can identify an important

parameter α and p(x) characterizing the anomalous diffusion.

There are many works on the forward problem for fractional diffusion equations

such as an initial value/ boundary value problem and we refer to Bazhlekova [2],

Eidelman and Kochubei [6], Metzler and Klafter [27], Gorenflo, Luchko and Zabre-

jko [10], Hanyga [12], Luchko [19], [20] and the references therein. Also see Prüss

[32] (e.g., Section 2 of Chapter I) as a monograph. However, to the authors’ best

knowledge, there are very few works on inverse problems for fractional diffusion
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equations in spite of the physical and practical importance, and our uniqueness

is the first mathematical result for the coefficient inverse problem for a fractional

differential equation.

The paper is composed of 3 sections and an appendix. In section 2, we formulate

our inverse problem and state the uniqueness in the inverse problem as main result.

In section 3, we complete the proof of the main result. Appendix is devoted to the

proof of the unique existence of the weak solution.

§2. Formulation and the main result.

We consider the following fractional partial differential equation.

(2.1) ∂αt u(x, t) =
∂

∂x

(
p(x)

∂u

∂x
(x, t)

)
, 0 < x < `, 0 < t < T,

(2.2) u(x, 0) = δ(x),

(2.3)
∂u

∂x
(0, t) =

∂u

∂x
(`, t) = 0, 0 < t ≤ T.

Here T > 0, ` > 0 are fixed and δ(x) is the Dirac delta function,

∂αt u(x, t) =
1

Γ(1− α)

∫ t

0

(t− s)−α ∂u
∂s

(x, s)ds

(e.g., [15], [31]). We assume that p ∈ C2[0, `] and 0 < α < 1. The initial condition

(2.2) means that we start experiments by setting up a density profile concentrating

at x = 0, and the boundary condition (2.3) requires no fluxes at the both end

points.

We discuss

Inverse problem. Determine the order α ∈ (0, 1) of the time derivative and the

diffusion coefficient p(x) from boundary data u(0, t), 0 < t ≤ T .
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Due to the irregular initial value in (2.2), we have to consider a weak solution

to (2.1) - (2.3) which is defined below. In terms of the weak solution, we can state

our main result.

Theorem 2.1. Let us assume p, q ∈ C2[0, `], p, q > 0 on [0, `], α, β ∈ (0, 1). Let

u be the weak solution to (2.1) - (2.3), and let v be the weak solution to (2.4) with

the same initial and boundary conditions as (2.2) and (2.3):

(2.4) ∂βt v(x, t) =
∂

∂x

(
q(x)

∂v

∂x
(x, t)

)
, 0 < x < `, 0 < t < T.

Then u(0, t) = v(0, t), 0 < t ≤ T with some T > 0, implies α = β and p(x) = q(x),

0 ≤ x ≤ `.

In the case of α = β = 1, our inverse problem is concerned with the one-

dimensional diffusion equation and we can refer to Isakov and Kindermann [14],

Murayama [28], Pierce [30], Suzuki [37], [38], Suzuki and Murayama [39]. As source

books for inverse problems for partial differential equations without fractional order

derivatives, see for example, Isakov [13], Klibanov and Timonov [16] and Lavrent’ev,

Romanov and Shishat·skĭı[17], Romanov [35].

In Luchko [20] and Podlubny [31] for example, solutions to initial value-boundary

value problems for fractional diffusion equations are constructed by the eigenfunc-

tion expansions or the Laplace transform, etc., and in [20] such a formally con-

structed solution is proved to be a unique weak solution in a suitable sense, but

in [20] initial values must be smoother and the Dirac delta function can not be

discussed. Even in our case (2.2), one can easily construct formal solutions by the

same method (see (2.11)). However, to the authors’ best knowledge, there are no

works on any relevant definitions and the unique existence of weak solution in the

case of singular initial values such as in (2.2), although the initial condition (2.2)
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describes a pointwise density profile and so is quite physical. Thus it is necessary

that first we have to introduce a relevant definition for the weak solution to (2.1)

- (2.3) and second verify that the formally constructed solution is really the weak

solution in that sense, which requires an independent and non-trivial work. For it,

we need function spaces.

Now we define the weak solution to (2.1) - (2.3). First we define an operator Ap

in L2(0, `) by

(2.5)





(Apψ)(x) = − d

dx

(
p(x)

d

dx
ψ(x)

)
, 0 < x < `,

D(Ap) =
{
ψ ∈ H2(0, `);

dψ

dx
(0) =

dψ

dx
(`) = 0

}
.

It is known that the operator Ap has only real and simple eigenvalues {λn}n∈N,

and with suitable numbering, we have

0 = λ1 < λ2 < · · · , lim
n→∞

λn =∞.

Moreover by means of the Liouville transform (e.g., Yosida [41], Levitan and Sargs-

jan [18]), we see the following asymptotic:

(2.6) λn =

(∫ `

0

1√
p(x)

dx

)−2

n2π2 +O (1) , n→∞.

By ϕn we denote the eigenfunction corresponding to λn which satisfies ϕn(0) = 1.

Henceforth (·, ·) denotes the scalar product in L2(0, `) and we set ‖ϕ‖L2(0,`) =

‖ϕ‖ = (ϕ,ϕ)
1
2 . We define

ρn = ‖ϕn‖−2.

Then, for each v ∈ L2(0, `), we have the eigenfunction expansion :

ψ =
∞∑
n=1

ρn(ψ,ϕn)ϕn.
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Moreover {ρn}n∈N satisfies the asymptotic behaviour: there exists a constant c0 > 0

such that

(2.7) ρn = c0 + o(1), n→∞,

which is derived by the Liouville transform (e.g., [41], [18]).

Now we arbitrarily choose a constant M > 0 and define the operator Ap,M in

L2(0, `) as follows :




(Ap,Mψ)(x) = − d

dx

(
p(x)

d

dx
ψ(x)

)
+Mψ, 0 < x < `,

D(Ap,M ) =
{
ψ ∈ H2(0, `);

dψ

dx
(0) =

dψ

dx
(`) = 0

}
.

Then the set of all the eigenvalues of Ap,M is {λn + M}n∈N, and we set λ(M)
n =

λn +M . Then we have λ(M)
n > 0, n ∈ N.

We define the function space D(Aκp,M ) for κ > 0 by

D(Aκp,M ) =

{
ψ ∈ L2(0, `);

∞∑
n=1

ρn|λ(M)
n |2κ|(ψ,ϕn)|2 <∞

}
.

Then we see that D(Aκp,M ) is a Banach space with the norm :

||ψ||D(Aκp,M ) =

{ ∞∑
n=1

ρn|λ(M)
n |2κ|(ψ,ϕn)|2

} 1
2

.

We have D(Aκp,M ) = H2κ(0, `) if 0 ≤ κ < 3
4 . Since D(Aκp,M ) ⊂ L2(0, `), identifying

the dual L2(0, `)′ with itself, we have D(Aκp,M ) ⊂ L2(0, `) ⊂ (D(Aκp,M ))′. Here

(D(Aκp,M ))′ denotes the dual space, which consists of bounded linear functionals

on the Banach space D(Aκp,M ). Henceforth we set D(A−κp,M ) = (D(Aκp,M ))′. For

f ∈ D(A−κp,M ) and ψ ∈ D(Aκp,M ), by −κ < f,ψ >κ we denote the value which is

obtained by operating f to ψ. We note that D(A−κp,M ) is a Banach space with the

norm :

||f ||D(A−κp,M ) =

{ ∞∑
n=1

ρn|λ(M)
n |−2κ|−κ < f, ϕn >κ |2

} 1
2

.
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Now we fix 0 < ε < 1
2 . By the Sobolev embedding theorem, we have δ ∈

D(A−
1
4−ε

p,M ) and δ =
∑∞
n=1 ρnϕn in D(A−

1
4−ε

p,M ). We set < ·, · >=− 1
4−ε< ·, · > 1

4 +ε.

We note

< f,ψ >= (f, ψ) if f ∈ L2(0, `) and ψ ∈ D(A
1
4 +ε

p,M )

(e.g., Chapter V in Brezis [5]).

Let us define the weak solution to system (2.1) - (2.3) as follows.

Definition. We call that u is a weak solution to (2.1) - (2.3) if the following

conditions hold :

(2.8)





u(·, t) ∈ L2(0, `) for 0 < t ≤ T ,

u ∈ C([0, T ];D(A−
1
4−ε

p,M )),

∂

∂t
u, ∂αt u, Ap,Mu ∈ C((0, T ];D(A−

1
4−ε

p,M )),

(2.9) lim
t→0
||u(·, t)− δ||

D(A
− 1

4−ε
p,M )

= 0,

(2.10) < ∂αt u(·, t), ψ > +(u(·, t), Apψ) = 0 for t ∈ (0, T ], ψ ∈ D(Ap).

Remark. Let u be a sufficiently smooth weak solution. Then, integrating (2.10)

by parts, we have

0 =< ∂αt u(·, t), ψ > +(u(·, t), Apψ)

=
(
∂αt u−

∂

∂x

(
p(x)

∂u

∂x

)
, ψ

)
+
[
ψ(x)p(x)

∂u

∂x
(x, t)

]x=`

x=0

for ψ ∈ D(Ap). Taking ψ ∈ C∞0 (0, `), we see that ∂αt u(x, t) = ∂
∂x

(
p(x)∂u∂x

)
for x ∈

(0, `) and t ∈ (0, T ]. Since we arbitrarily choose ψ(0) and ψ(`) within ψ ∈ D(Ap),

we obtain ∂u
∂x (0, t) = ∂u

∂x (`, t) = 0 for t ∈ (0, T ]. Therefore the smooth weak solution

satisfies (2.1) and (2.3) in a usual sense.
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Proposition 2.1. There exists a unique weak solution to (2.1) - (2.3) and

(2.11) u(x, t) =
∞∑
n=1

ρnEα,1(−λntα)ϕn(x) in C([0, T ];D(A−
1
4−ε

p,M )).

Here for α > 0 and β ∈ R, the Mittag-Leffler function Eα,β(z) is defined as

(2.12) Eα,β(z) =
∞∑

k=0

zk

Γ(αk + β)

(e.g., [15], [31]) and Γ is the gamma function. We note that Eα,β(z) is an entire

function in z ∈ C (e.g., [15]). Moreover we notice that the regularity of our weak

solution is sufficient in proving Theorem 2.1. The proof of Proposition 2.1 is done

in a setting similar to the formulation of weak solutions for partial differential

equations (e.g., Brezis [5]) and given in Appendix.

§3. Proof of Theorem 2.1.

We will use the following result on the Mittag-Leffler function.

Lemma 3.1. If α < 2, β is an arbitrary real number and µ satisfies πα/2 < µ <

min{π, πα}, then there exists a constant C1 > 0 such that

|Eα,β(z)| ≤ C1

1 + |z| , z ∈ C, µ ≤ | arg(z)| ≤ π.

For the proof, we refer to Theorem 1.6 (p.35) in Podlubny [31] for example.

By Proposition 2.1, the weak solutions u and v are given by

(3.1) u(x, t) =
∞∑
n=1

ρnEα,1(−λntα)ϕn(x)

and

(3.2) v(x, t) =
∞∑
n=1

σnEβ,1(−µntβ)ψn(x).
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Here 0 = λ1 < λ2 < · · · , n ∈ N are all the eigenvalues of the operator Ap defined by

(2.5) and ϕn is the eigenfunction corresponding to λn with ϕn(0) = 1 and we set

ρn = ||ϕn||−2
L2(0,`), while 0 = µ1 < µ2 < · · · are all the eigenvalues of Aq, ψn is the

eigenfunction corresponding to µn with ψn(0) = 1, and we set σn = ||ψn||−2
L2(0,`).

Let t0 > 0 be arbitrarily fixed. By the Sobolev embedding theorem, we have

‖ϕn‖C[0,`] ≤ C ′0‖ϕn‖H 1
2 +2ε(0,`)

with sufficiently small ε > 0. Moreover we see that

‖ϕn‖
H

1
2 +2ε(0,`)

≤ C ′0‖A
1
4 +ε

p,M ϕn‖L2(0,`) = C ′0|λ(M)
n | 14 +ε 1√

ρn
.

Hence by Lemma 3.1, (2.6) and (2.7), we have

∞∑
n=1

max
0≤x≤`

|ρnEα,1(−λntα)ϕn(x)| ≤ C0

∞∑
n=1

√
ρn|λ(M)

n | 14 +ε 1
1 + |λntα| <∞

for t0 ≤ t ≤ T . Therefore we see that the series on the right-hand sides of (3.1)

and (3.2) are convergent uniformly in x ∈ [0, `] and t ∈ [t0, T ].

Consequently, assuming that u(0, t) = v(0, t) for 0 < t ≤ T , we have

(3.3)
∞∑
n=1

ρnEα,1(−λntα) =
∞∑
n=1

σnEβ,1(−µntβ), 0 < t ≤ T.

Since we see that from Lemma 3.1, (2.6) and (2.7) that the both sides of this

equation are analytic in Re t > 0, we have

∞∑
n=1

ρnEα,1(−λntα) =
∞∑
n=1

σnEβ,1(−µntβ), t > 0.

For Eα,1(z), we have the following asymptotic behaviour

(3.4) Eα,1(−t) =
1

tΓ(1− α)
+O(|t|−2) as t > 0, →∞.

(e.g., Theorem 1.4 (pp.33-34) in [31]).
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First Step. First we will deduce α = β and
∫ `

0

1√
p(x)

dx =
∫ `

0

1√
q(x)

dx.

Since λ1 = µ1 = 0 and λn > 0, µn > 0 for n = 2, 3, 4, ..., we have
∞∑
n=1

ρnEα,1(−λntα) = ρ1+
∞∑
n=2

ρn

[
1

Γ(1− α)
· 1
λntα

+
{
Eα,1(−λntα)− 1

Γ(1− α)
· 1
λntα

}]
.

By (3.4) and λn > 0 for n ≥ 2, there exists a constant C1 > 0 such that
∣∣∣∣Eα,1(−λntα)− 1

Γ(1− α)
1

λntα

∣∣∣∣ ≤
C1

λ2
nt

2α
, n ≥ 2

for sufficiently large t. Taking the summation for n = 1, 2, · · · , by (2.6) and (2.7)

we have
∞∑
n=1

ρn

∣∣∣∣Eα,1(−λntα)− 1
Γ(1− α)

· 1
λntα

∣∣∣∣ ≤
C2

t2α

with some C2 > 0. Then we have

(3.5)
∞∑
n=1

ρnEα,1(−λntα) = ρ1 +
∞∑
n=2

ρn
1

Γ(1− α)
1

λntα
+O

(
1
t2α

)
.

Similarly arguing for
∑∞
n=1 σnEβ,1(−µntβ), we have

ρ1 +
1
tα

∞∑
n=2

ρn
1

Γ(1− α)
1
λn

+O

(
1
t2α

)
= σ1 +

1
tβ

∞∑
n=2

σn
1

Γ(1− β)
1
µn

+O

(
1
t2β

)

as t→∞. This means that α = β and ρ1 = σ1. In fact, letting t→∞, we see that

ρ1 = σ1. Let α > β. Then the multiplication by tβ yields

− t
β

tα

( ∞∑
n=2

ρn
1

Γ(1− α)
1
λn

)
+O

(
tβ

t2α

)
+
∞∑
n=2

σn
1

Γ(1− β)
1
µn

+O

(
1
tβ

)
= 0.

Then, letting t→∞, by α > β, we have
∞∑
n=2

σn
1

Γ(1− β)
1
µn

= 0.

By σn > 0 and µn > 0 for n ≥ 2, this is impossible. Hence we see that α > β is

impossible. Similarly β > α is impossible. Therefore α = β follows.

Hence we have

(3.6)
∞∑
n=2

ρnEα,1(−λntα) =
∞∑
n=2

σnEα,1(−µntα), t > 0.
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Second Step. We will prove λn = µn, n ∈ N. For it, we take the Laplace

transform and we can

(3.7)
∫ ∞

0

e−ztEα,1(−λntα)dt =
zα−1

zα + λn
, Re z > 0.

In fact, we can take the Laplace transforms termwise in (2.12) to obtain

∫ ∞
0

e−ztEα,1(−λntα)dt =
zα−1

zα + λn
, Re z > λ

1
α
n

(cf. formula (1.80) on p.21 in [31]). Since supt≥0 |Eα,1(−λntα)| < ∞ by Lemma

3.1, we see that
∫∞

0
e−ztEα,1(−λntα)dt is analytic with respect to z in Re z > 0.

Therefore the analytic continuation yields (3.7) for Re z > 0.

By Lemma 3.1, (2.6), (2.7) and the Lebesgue convergence theorem, noting that

∣∣∣∣∣e
−tRe z

∞∑
n=2

ρnEα,1(−λntα)

∣∣∣∣∣ ≤ C
′
1e
−tRe z

( ∞∑
n=2

1
|λn|

)
1
tα
≤ C ′′1

tα
e−tRe z, t > 0,

and e−tRe zt−α is integrable in t ∈ (0,∞) for fixed z satisfying Re z > 0, we have

∫ ∞
0

e−zt
∞∑
n=2

ρnEα,1(−λntα)dt =
∞∑
n=2

ρn
zα−1

zα + λn
, Re z > 0.

Similarly

∫ ∞
0

e−zt
∞∑
n=2

σnEα,1(−µntα)dt =
∞∑
n=2

σn
zα−1

zα + µn
, Re z > 0.

Hence (3.6) yields

∞∑
n=2

ρn
zα + λn

=
∞∑
n=2

σn
zα + µn

, Re z > 0.

That is,

(3.8)
∞∑
n=2

ρn
η + λn

=
∞∑
n=2

σn
η + µn

, Re η > 0.
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By (2.6) and (2.7), we can analytically continue the both sides of (3.8) in η, so that

(3.8) holds for η ∈ C \ ({−λn}n≥2 ∪ {−µn}n≥2).

Now we deduce λ2 = µ2 from (3.8). Let us assume λ2 6= µ2. Without loss of

generality, we can assume that λ2 < µ2. Then we can take a suitable disk which

includes −λ2 and does not include {−λn}n≥3 ∪ {−µn}n≥2. Integrating (3.8) in a

disk, we have

2πiρ2 = 0.

This is contradiction because of ρ2 6= 0. Then we obtain λ2 = µ2. Repeating this

argument, we can obtain

λn = µn, n = 2, 3, 4, .....

Moreover by (2.6) we see that

(3.9)
∫ `

0

1√
p(x)

dx =
∫ `

0

1√
q(x)

dx.

Third Step. In order to prove that p = q on [0, `], we apply the Gel’fand-Levitan

theory. For it, we have to transform (2.1) to the canonical form by means of the

Liouville transform (e.g., Yosida [41]). The argument in this step is a modification

of Murayama [28]. We note that a modification is necessary because the argument

in [28] is based for the eigenfunction expansion in the case of α = 1 which is different

from the case 0 < α < 1.

By (3.9), we set

`0 =
∫ `

0

1√
p(x)

dx =
∫ `

0

1√
q(x)

dx.

By the Liouville transform, we have

z = z(x) =
∫ x

0

1√
p(ξ)

dξ
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and

ũ(z, t) = u(x, t)p(x)1/4,

system (2.1) - (2.3) is transformed to




∂αt ũ+
(
a− ∂2

∂z2

)
ũ = 0, 0 < z < `0, 0 < t < T,

∂ũ

∂z
(0, t)− hũ(0, t) = 0, 0 < t < T,

∂ũ

∂z
(`0, t) +Hũ(`0, t) = 0, 0 < t < T,

ũ(z, 0) = δ(z)f(z), 0 < z < `0,

where

(3.10) a(z) =
1

f(z)
d2

dz2
f(z), f(z) = p(x)1/4

and

(3.11) h =
1

f(0)
df

dx
(0), H = − 1

f(`0)
df

dx
(`0).

Similarly, by

w = w(y) =
∫ y

0

1√
q(ξ)

dξ

and

ṽ(z, t) = v(y, t)q(y)1/4,

system (2.2) - (2.4) is transformed to




∂αt ṽ +
(
b− ∂2

∂w2

)
ṽ = 0, 0 < w < `0, 0 < t < T,

∂ṽ

∂w
(0, t)− jṽ(0, t) = 0, 0 < t < T,

∂ṽ

∂w
(`0, t) + Jṽ(`0, t) = 0, 0 < t < T,

ṽ(w, 0) = δ(w)g(w), 0 < w < `0,

where

(3.12) b(w) =
1

g(w)
d2

dw2
g(w), g(w) = q(y)1/4
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and

(3.13) j =
1
g(0)

dg

dw
(0), J = − 1

g(`0)
dg

dw
(`0).

Then u(0, t) = v(0, t), 0 < t < T is equivalent to

(3.14) p(0)−1/4ũ(0, t) = q(0)−1/4ṽ(0, t), 0 < t < T.

We will define an operator Aa,h,H in L2(0, `0) by





(Aa,h,Hψ)(z) = − ∂2

∂z2
ψ + a(z)ψ(z), 0 < z < `0,

D(Aa,h,H) =
{
ψ ∈ H2(0, `0);

dψ

dz
(0)− hψ(0) =

dψ

dz
(`0) +Hψ(`0) = 0

}

and we define an operator Ab,j,J similarly. By σ(Aa,h,H), we denote the set of

all the eigenvalues of Aa,h,H . Since the Liouville transform does not change the

eigenvalues, by σ(Ap) = σ(Aq) we obtain

(3.15) σ(Aa,h,H) = σ(Ab,j,J) = {λn}n∈N.

Let ϕ̃n and ψ̃n, n ∈ N be the corresponding eigenfunctions of Aa,h,H and Ab,j,J for

λn respectively such that ϕ̃n(0) = ψ̃n(0) = 1. We set

ρ̃n =
1

‖ϕ̃n‖2L2(0,`0)

, σ̃n =
1

‖ψ̃n‖2L2(0,`0)

.

Similarly to Proposition 2.1, noting that ũ(z, 0) = δ(z)p(x)
1
4 and ṽ(w, 0) = δ(w)q(y)

1
4 ,

we obtain

(3.16)





ũ(z, t) = p(0)1/4
∞∑
n=1

ρ̃nEα,1(−λntα)ϕ̃n(z),

ṽ(z, t) = q(0)1/4
∞∑
n=1

σ̃nEα,1(−λntα)ψ̃n(z),

where the convergences are understood in a corresponding space to (2.8). Moreover

it is known (e.g., [18]) that supn∈N ρ̃n, supn∈N σ̃n < ∞. Therefore by (2.6), (2.7)



16 J. CHENG, J. NAKAGAWA, M. YAMAMOTO AND T. YAMAZAKI

and Lemma 3.1, we can prove that the series on the right-hand sides of (3.16) are

convergent in C((0, T ];C[0, `0]).

Hence (3.14) yields

∞∑
n=1

ρ̃nEα,1(−λntα) =
∞∑
n=1

σ̃nEα,1(−λntα), 0 < t ≤ T.

Similarly to (3.8), we can argue to obtain

∞∑
n=1

ρ̃n
η + λn

=
∞∑
n=1

σ̃n
η + λn

, η ∈ C \ {−λn}n∈N.

Integrating the both sides in a sufficiently small disk centred at −λn, we see that

(3.17) ρ̃n = σ̃n, n ∈ N.

By (3.15) and (3.17), we apply the Gel’fand-Levitan theory (e.g., Theorem 1.4.2

(p.21) in Freiling and Yurko [7], Marchenko [24]) to have

(3.18) a(z) = b(z), 0 ≤ z ≤ `0, h = j, H = J.

Finally we have to derive p(x) = q(x), 0 ≤ x ≤ ` from (3.18). The argument is

same as in Murayama [28] and we repeat it for the completeness. We first have

` =
∫ `0

0

dx

dz
dz =

∫ `0

0

√
p(x)dz =

∫ `0

0

f(z)2dz

and similarly

` =
∫ `0

0

g(z)2dz.

On the other hand, we can prove that a positive solution e = e(z) to





d2e

dz2
(z) = a(z)e(z), 0 < z < `0,

1
e(0)

de

dz
(0) = h,

∫ `0

0

e(z)2dz = `,
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is unique. Consequently we have

g(z) = f(z), 0 ≤ z ≤ `0

by (3.10) - (3.13) and (3.18). Therefore, since

dz

dx
=

1
f(z)2

, 0 ≤ x ≤ `, z(0) = 0

and

dw

dx
=

1
g(w)2

, 0 ≤ x ≤ `, w(0) = 0,

we obtain w(x) = z(x), 0 ≤ x ≤ `. Therefore

q(x) =
(
dw

dx
(x)
)−2

=
(
dz

dx
(x)
)−2

= p(x), 0 ≤ x ≤ `.

Thus the proof of Theorem 2.1 is completed.

Appendix. Proof of Proposition 2.1.

First Step. We will prove the uniqueness of the weak solutions to system (2.1)

-(2.3).

Let u be a weak solution with u(·, 0) = 0. We set

vn(t) =< u(·, t), ϕn >, 0 < t ≤ T.

By u ∈ C([0, T ];D(A−
1
4−ε

p,M )), we see that vn ∈ C[0, T ] and vn(0) = 0. By u(·, t) ∈

L2(0, `), t ∈ (0, T ], we have vn(t) = (u(·, t), ϕn) for t ∈ (0, T ]. Therefore (2.10)

implies

< ∂αt u(·, t), ϕn > +(u(·, t), Apϕn) = 0, 0 < t ≤ T,

that is,

(1) < ∂αt u(·, t), ϕn > +λnvn(t) = 0, 0 < t ≤ T.

Now we prove the following.
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Lemma 1. We have

< ∂αt u(·, t), ϕn >= ∂αt (u(·, t), ϕn), 0 < t ≤ T.

Proof. Since the third condition in (2.8) yields

∂αt u(·, t) =
1

Γ(1− α)

∫ t

0

(t− s)−α ∂u
∂s

(·, s)ds ∈ D(A−
1
4−ε

p,M ), 0 < t ≤ T,

setting

Jε1,ε2(·, t) =
1

Γ(1− α)

∫ t−ε2

ε1

(t− s)−α ∂u
∂s

(·, s)ds,

we have limε1,ε2→0,ε1,ε2>0 Jε1,ε2(·, t) = ∂αt u(·, t) in D(A−
1
4−ε

p,M ) for 0 < t ≤ T . Appox-

imating Jε1,ε2(·, t) by the Riemann sum, in terms of ∂u∂s ∈ C([ε1, T−ε2];D(A−
1
4−ε

p,M )),

we can see

< Jε1,ε2(·, t), ϕn >=
1

Γ(1− α)

∫ t−ε2

ε1

(t− s)−α
〈
∂u

∂s
(·, s), ϕn

〉
ds, 0 < t ≤ T.

Hence letting ε1, ε2 → 0, by (2.8) we have

< ∂αt u(·, t), ϕn >=
1

Γ(1− α)

∫ t

0

(t− s)−α
〈
∂u

∂s
(·, s), ϕn

〉
ds, 0 < t ≤ T.

Moreover (2.8) yields
〈
∂u

∂s
u(·, s), ϕn

〉
=

∂

∂s
< u(·, s), ϕn >=

∂

∂s
(u(·, s), ϕn), 0 < s ≤ T.

Then we have

< ∂αt u(·, t), ϕn >=
1

Γ(1− α)

∫ t

0

(t−s)−α ∂
∂s

(u(·, s), ϕn)ds = ∂αt (u(·, s), ϕn), 0 < t ≤ T.

Thus the proof of the lemma is completed.

Applying Lemma 1 in (1), we have

∂αt vn(t) + λnvn(t) = 0, 0 < t ≤ T, vn(0) = 0.

The uniqueness of the initial value problem for the fractional ordinary differential

equation (e.g., Kilbas, Srivastava and Trujillo [15], Chapter 3 in Podlubny [31])

implies vn(t) = 0 for 0 ≤ t ≤ T and n ∈ N. Since {ϕn}n∈N is complete in L2(0, `),

we see that u(·, t) = 0 for 0 ≤ t ≤ T . The proof of the uniqueness is completed.
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Second Step. Next, we will verify that the representation (2.11) gives the weak

solution to system (2.1) - (2.3). In the following, we set

ũ(x, t) =
∞∑
n=1

ρnEα,1(−λntα)ϕn(x).

Next we show

Lemma 2. Let λ > 0.

(i)

d

dt
Eα,1(−λtα) = −λtα−1Eα,α(−λtα), t > 0, α > 0.

(ii)

∂αt Eα,1(−λtα) = −λEα,1(−λtα), t > 0, 0 < α < 1.

By noting that Eα,1(z) is an entire fucntion in z ∈ C, the proof of the lemma

follows directly by the termwise differentiation of (2.12) and

∂αt t
αk =

Γ(αk + 1)
Γ(αk + 1− α)

t−α+αk, 0 < α < 1, k ∈ N.

Now we will prove that ũ satisfies (2.8).

(i) Verification of ũ ∈ C([0, T ];D(A−
1
4−ε

p,M )):

Let us fix t ∈ [0, T ]. It follows from (2.6), (2.7) and Lemma 3.1 that

∞∑
n=1

1

|λ(M)
n | 12 +2ε

ρn|Eα,1(−λntα)|2 <∞.

Thus for fixed t ∈ [0, T ], we have ũ(·, t) ∈ D(A−
1
4−ε

p,M ). For t, t+ h ∈ [0, T ], we have

||ũ(·, t+ h)− ũ(·, t)||2
D(A

− 1
4−ε

p,M )

=
∞∑
n=1

1

|λ(M)
n | 12 +2ε

ρn|Eα,1(−λn(t+ h)α)− Eα,1(−λntα)|2.(2)
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Here it follows from Lemma 3.1 that |Eα,1(−λn(t+h)α)−Eα,1(−λntα)|2 is uniformly

bounded for n ∈ N. Thus using the Lebesgue convergence theorem, in terms of (2.6)

and (2.7), we have

lim
h→0
||ũ(·, t+ h)− ũ(·, t)||

D(A
− 1

4−ε
p,M )

= 0.

Therefore ũ ∈ C([0, T ];D(A−
1
4−ε

p,M )).

(ii) Verification of ũ(·, t) ∈ L2(0, `) for t ∈ (0, T ] :

For fixed t ∈ (0, T ], Lemma 3.1, (2.6) and (2.7) yield

||ũ(·, t)||2L2(0,`) =
∞∑
n=1

ρn|Eα,1(−λntα)|2 ≤
∞∑
n=1

ρn

(
C1

1 + |λntα|
)2

<∞,

which means that ũ(·, t) ∈ L2(0, `) for t ∈ (0, T ].

(iii) Verification of ∂ũ
∂t ∈ C((0, T ];D(A−

1
4−ε

p,M )) :

First, we consider

U(x, t) =
∞∑
n=1

ρn
d

dt
(Eα,1(−λntα))ϕn(x)

for t ∈ (0, T ]. By Lemma 2 (i), we have

U(x, t) =
∞∑
n=1

ρn(−λn)tα−1Eα,α(−λntα)ϕn(x).

By Lemma 3.1, (2.6) and (2.7), we have

∞∑
n=1

1

|λ(M)
n | 12 +2ε

ρn|(−λn)tα−1Eα,α(−λntα))|2 <∞, 0 < t ≤ T.

Thus U(·, t) ∈ D(A−
1
4−ε

p,M ) for t ∈ (0, T ].

Next we have

∣∣∣∣
∣∣∣∣
ũ(·, t+ h)− ũ(·, t)

h
− U(·, t)

∣∣∣∣
∣∣∣∣
2

D(A
− 1

4−ε
p,M )

=
∞∑
n=1

1

|λ(M)
n | 12 +2ε

ρn

∣∣∣∣
Eα,1(−λn(t+ h)α)− Eα,1(−λntα)

h
− d

dt
(Eα,1(−λntα))

∣∣∣∣
2

.

(3)
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Since the mean value theorem implies that

∣∣∣∣
Eα,1(−λn(t+ h)α)− Eα,1(−λntα)

h

∣∣∣∣ =
∣∣∣∣
dEα,1(−λnηα)

dη
|η=t+θh

∣∣∣∣

with some θ ∈ [0, 1], we have

∣∣∣∣
Eα,1(−λn(t+ h)α)− Eα,1(−λntα)

h
− d

dt
(Eα,1(−λntα))

∣∣∣∣
2

is uniformly bounded for n ∈ N from Lemma 3.1 and Lemma 2 (i). Therefore, by

the Lebesgue convergence theorem, the left-hand side of (3) tends to 0 for h → 0.

Hence ∂ũ
∂t (·, t) exists and is equal to U(·, t) ∈ D(A−

1
4−ε

p,M ) for 0 < t ≤ T :

(4)
∂ũ

∂t
(·, t) =

∞∑
n=1

ρn(−λn)tα−1Eα,α(−λntα)ϕn, 0 < t ≤ T.

The continuity of ∂ũ
∂t (·, t) in t ∈ (0, T ] is proved similarly to (2). Therefore ∂ũ

∂t ∈

C((0, T ];D(A−
1
4−ε

p,M )) is proved.

(iv) Verification of ∂αt ũ ∈ C((0, T ];D(A−
1
4−ε

p,M )) :

Let us fix t ∈ (0, T ]. For 0 < s < t, by Lemmata 3.1 and 2 (i), the following

estimation hold :

∣∣∣∣
∣∣∣∣(t− s)−α

∂ũ

∂s
(·, s)

∣∣∣∣
∣∣∣∣
2

D(A
− 1

4−ε
p,M )

= (t− s)−2α
∞∑
n=1

1

|λ(M)
n | 12 +2ε

ρn|λn|2s2α−2|Eα,α(−λnsα)|2

≤C2s
2α−2(t− s)−2α

∞∑
n=1

1

|λ(M)
n | 12 +2ε

|λn|2
(1 + |λn|sα)2

,

where C2 > 0 is some constant. On the other hand,

1

|λ(M)
n | 12 +2ε

|λn|2
(1 + |λn|sα)2

=
1

|λ(M)
n | 12 +ε

|λn|ε
|λ(M)
n |ε

|λn|2−ε
(1 + |λn|sα)2−ε

1
(1 + |λn|sα)ε

≤ 1

|λ(M)
n | 12 +ε

|λn|ε
|λ(M)
n |ε

(|λn|sα)2−ε

(1 + |λn|sα)2−ε
1

s(2−ε)α ≤
1

|λ(M)
n | 12 +ε

|λn|ε
|λ(M)
n |ε

s−(2−ε)α,

so that
∣∣∣∣
∣∣∣∣(t− s)−α

∂ũ

∂s
(·, s)

∣∣∣∣
∣∣∣∣
D(A

− 1
4−ε

p,M )

≤ C3s
−1+ 1

2 εα(t− s)−α
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with some constant C3 > 0. Therefore ||(t − s)−α ∂ũ∂s (·, s)||
D(A

− 1
4−ε

p,M )
is integrable

over the interval s ∈ (0, t). Then ∂αt ũ(·, t) ∈ D(A−
1
4−ε

p,M ) exists. From (4) and

Lemma 2 (i), in terms of the Lebesgue convergence theorem, we can prove

(5) ∂αt ũ(·, t) =
∞∑
n=1

ρn(−λn)Eα,1(−λntα)ϕn, 0 < t ≤ T.

The continuity of ∂αt ũ(·, t) in t ∈ (0, T ] is proved similarly to (2). Therefore,

∂αt ũ ∈ C((0, T ];D(A−
1
4−ε

p,M )) is verified.

(v) Verification of (2.9):

Since

δ =
∞∑
n=1

ρnϕn in D(A−
1
4−ε

p,M ),

we have

||ũ(·, t)− δ||2
D(A

− 1
4−ε

p,M )
=
∞∑
n=1

1

|λ(M)
n | 12 +2ε

ρn|Eα,1(−λntα)− 1|2.

Taking t → 0, by Lemma 3.1 and the Lebesgue convergence theorem, we verify

(2.9).

(vi) Verification of (2.10):

Let us take ψ ∈ D(Ap) arbitrarily. Then we have ψ =
∑∞
n=1 ρn(ψ,ϕn)ϕn in

D(Ap). Then by (5), we have

〈∂αt ũ(·, t), ψ〉 =

〈 ∞∑
n=1

ρn(−λn)Eα,1(−λntα)ϕn,
∞∑
m=1

ρm(ψ,ϕm)ϕm

〉

=
∞∑
n=1

ρn(−λn)Eα,1(−λntα)(ψ,ϕn), 0 < t ≤ T.

On the other hand,

(ũ(·, t), Apψ) =

( ∞∑
n=1

ρnEα,1(−λntα)ϕn,
∞∑
m=1

λmρm(ψ,ϕm)ϕm

)

=
∞∑
n=1

ρnλnEα,1(−λntα)(ψ,ϕn),
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which means (2.10).

From (i)-(vi) and the uniqueness of weak solution, the eigenfunction expansion

(2.11) gives the weak solution.
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