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An implication of Gödel’s incompleteness

theorem

Hitoshi Kitada
Graduate School of Mathematical Sciences

University of Tokyo
Komaba, Meguro, Tokyo 153-8914, Japan

kitada@ms.u-tokyo.ac.jp

March 22, 2009

Abstract

A proof of Gödel’s incompleteness theorem is given. With this new
proof a transfinite extension of Gödel’s theorem is considered. It is shown
that if one assumes the set theory ZFC on the meta level as well as on the
object level, a contradiction arises. The cause is shown to be the implicit
identification of the meta level and the object level hidden behind the
Gödel numbering. An implication of these considerations is stated.
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1 Introduction

Gödel’s incompleteness theorem is well-known. It says “If a formal theory S
including number theory is consistent, there is a proposition G both of whose
affirmation G and negation ¬G are not provable in S.” This is the Gödel’s first
theorem. The second theorem says “If a formal theory S including number
theory is consistent, the consistency of S is not provable by the method which
is formalizable in the theory S itself.”

The incompleteness in this context is the incompleteness in syntactic sense,
i.e. it is regarded to be proved solely by the syntactic treatment of the words
of the formal system S, independently of the meaning of the propositions.
There is on the other hand the completeness in semantic sense. According
to this definition, a completeness in a restricted sense is known to hold for a
subsystem of S.

The present paper is written in response to the invitation for publication
in International Journal of Pure and Applied Mathematics from the Editor-in-
Chief Professor Drumi Bainov and Managing Editor Professor Svetoslav Nenov
of the journal, and will introduce the author’s recent result in foundations of
mathematics which appeared in Mathematics for Scientists vol. 41, No. 4 - vol.
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42, No. 3, Gendai-Suugaku-Sha, April, 2008 - March, 2009 [10] in Japanese
language. English was not sufficient for his purpose so that he preferred the
language in writing the result. However as many people seem not to be familiar
with Japanese language, he thought it would be helpful to those people to write
an introductory explanation to the result in [10].

1.1 Incompleteness theorem

As stated, syntactic incompleteness is the incompleteness consequent solely due
to the formal treatment of the words and is regarded as the one which would
hold independently of the meaning of the words.

Namely a theory S has primitive symbols, and formal expressions which are
sequences of those primitive symbols. We call “words” the expressions that are
constructed from primitive symbols by a set of definite rules. Other expres-
sions are discarded as meaningless expressions. Words are divided into terms
and formulae (well-formed formula, or in abbreviation, wff), where terms ex-
press individual objects and formulae express propositions, theorems, etc. In
formulae there are wff’s which are not correct although they have meanings.
To exclude those incorrect formulae, we choose some obviously correct propo-
sitions and set them as axioms from which all of our reasoning starts. Only
the propositions derived from those axioms by a set of rules of inference are
regarded correct and are called theorems of the theory. The set of all the the-
orems is identified with the theory S. If, for any given meaningful proposition
A in the theory S, either of the affirmation A or the negation ¬A is a theorem
of S, every meaningful proposition of S is determined to be true or not. In
such a case S is called complete. If otherwise there is a proposition A both of
whose affirmation A and negation ¬A are not derivable from the axioms, the
theory S has a proposition whose validness is not decided by logical inferences
from the axioms. In such a case the theory S is called incomplete.

Gödel’s incompleteness theorem means that if we consider a number theory
S and assume that S is consistent, then S is incomplete. This theorem was
proved in Kurt Gödel’s paper [4], Über formal unentsceidebare Sätze der Prin-
cipia mathematica und verwandter Systeme I, Monatshefte für Mathematik
und Physik, 38 (1931), 173-198.

1.2 Outline of the proof of incompleteness theorem

The outline of the proof of the incompleteness theorem is as follows. Our work
is to construct a proposition G whose affirmation and negation is not provable
in the number theory S. Such a proposition is generally the one whose meaning
is interpreted as

G = “G is not provable.”

Suppose that such a G is constructed in S. If we assume that G is provable, then
by the meaning of G, G would not be provable, a contradiction. If otherwise
we assume that the negation ¬G is provable, then by the meaning of negation,
G is provable, contradicting ¬G. In either case S is inconsistent. However as
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we have assumed that S is consistent, the conclusion that S is inconsistent is
wrong. Thus we have to conclude that both of G and ¬G are not provable.

This is the essential part of the proof of Gödel’s incompleteness theorem.
To perform such an argument rigorously, we define primitive logical sym-

bols, primitive predicate symbols, primitive function symbols, primitive object
symbols, variable symbols, parentheses, and comma, and define terms of S as
those sequences constructed by finite repetitions of applications of the definite
rules to primitive function symbols, primitive object symbols, variables, and
parentheses. We then give a set of rules and define formulae of the theory S
as those expressions constructed by finite repetitive applications of the rules
to terms, primitive logical symbols, primitive predicate symbols, variables, and
parentheses. Such a construction by repetitive applications of a finite number
of rules is called a recursive or inductive definition.

In the case of number theory, it suffices to assume the primitive logical
symbols like

⇒, ∧, ∨, ¬, ∀, ∃

It is possible to reduce the number of symbols. However in that case we will
need to introduce derived logical symbols to shorten the expressions. To avoid
such complexity we assume the usual symbols as above. The meaning of those
symbols is from the left to right as follows: “imply,” “and,” “or,” “not,” “for
all,” “there exists.”

The primitive predicate symbol of number theory is just the equality

=

and primitive function symbols are as follows:

+, ·, ′

where + means summation, · is multiplication and the last prime ′ means the
successor. Namely a successor s′ of a term s is s + 1.

The primitive object symbol is just

0

which means zero. Every natural number is thought as some successor 0′′...′ of
0.

The variables are
a, b, c, . . . , x, y, z, . . .

and parentheses are
( ), { }, [ ], . . .

Other auxiliary but important symbol is comma:

,

Terms s, t, r, . . . express natural numbers in the number theory S. The
actual forms of the terms are the ones like 0′′...′ constructed from object symbol
0 and function symbol ′, or the successors of variables as a′, b′′, or the ones
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as s + t, s · t constructed from those by summation or multiplication, and so
on. Formulae are constructed from terms s, t, r, . . . with using predicate and
logical symbols like s = t + r, s = t · r, ∀x(x = x), ∀x∃y(¬(x = 0) ⇒ (x = y′)),
. . . .

We choose some correct formulae from the set of formulae and assume them
as the axioms of the theory S:

A1, A2, . . . , Ak.

Formulae derived from those axioms by applying rules of inference are called
theorems of the theory S. As an example of rules of inference, the following is
the famous modus ponens:

If formulae A and A ⇒ B are true, then the formula B is true.

This rule is also called syllogism. Formally this is written:

A, (A) ⇒ (B)
B

.

Another rule is the rule of inference of predicate calculus

(C) ⇒ (F )
(C) ⇒ (∀x (F ))

,

where it is assumed that the formula C does not include the variable x.
Applying recursively those rules to the axioms of the theory S, the set of

all theorems is constructed.

1.3 Self-referential proposition

The proposition G in the previous subsection whose affirmation and negation
are not provable is a proposition which refers to itself. It has been known
since the Greek age that some of such self-referential propositions produce
contradictions. For instance the well known Cretan paradox is stated in a
sharper form as follows

“This sentence is false.”

The phrase “this sentence” in the sentence refers to the sentence above itself.
So if this sentence is true, then this sentence must be false by the meaning of
the sentence, while if this sentence is false, then the negation “this sentence is
true” is true, contradicting the sentence itself, and we have infinite cycles. Or
in other way around, either of the assumption “this sentence is true” or “this
sentence is false” produces the contradiction. Therefore if we assume that our
language is consistent, we have to conclude that the truth value of this sentence
is not determined.

There are known many such self-referential propositions which produce con-
tradiction. For example, does the sentence
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“n is the least natural number which cannot be defined by less than
30 words”

define a natural number n? This sentence consists of 15 words. So if this sen-
tence defines a natural number n, then n is defined by less than 30 words, and
contradicts the sentence itself. This sentence is also a self-referential sentence.

The following is well-known again:

“The barber of this village shaves all and only those people who do
not shave themselves.”

Does this barber shave himself?
As seen from those, self-reference appears to be the cause of the paradox.

Can we then avoid contradictions if we do not make self-reference? In such
a case, however, we might not be able to say anything meaningful. In fact
recalling our daily conversations, we notice that there are few cases in which
we do not make self-reference. If we avoid self-reference, we will have almost
nothing to speak.

The Gödel sentence referred to in the previous subsection

G = “G is not provable”

is also self-referential sentence. However if we look at it more closely, we notice
that this sentence refers to the theory S from the level higher than the theory S.
Those sentences which refer to the object theory S are called the sentences on
the meta level. The word “meta” is a Greek word, meaning “after” originally.
Later it is used also to mean “higher.” The “meta” in the word “metamath-
ematics” (which is in some cases used as another name of the research area
‘foundations of mathematics’) is also used in the latter sense.

The Gödel sentence which speaks about the theory S from a higher level
cannot refer to the sentence itself. Because the Gödel sentence speaks about
the object theory S and hence it is on the meta level, so that unless mapping
itself into the lower leveled object theory, it cannot speak about itself. In this
sense, the actual cause of the contradiction of Gödel sentence is that we regard
the sentences on the meta level as the sentences on the lower object level.

If we think in this way, it would be expected that the Gödel’s incomplete-
ness theorem is not a contradiction that arises merely by the syntactic formal
calculus. There is semantic machinery hidden behind the total scenery which
we see.

1.4 Recursiveness

In subsection 1.2 we stated that the expressions for terms and wff are defined
recursively. “Recursive” if mentioned in the context of constructing expressions
means generating expressions by applying a finite number of rules repeatedly
to definite primitive symbols. Or in the context of constructing theorems, it
means generating theorems by repeatedly applying definite rules of inferences to
axioms and earlier obtained theorems. An arbitrary introduction of new rules of
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construction is prohibited in such systems. This sort of restriction is naturally
assumed in dealing with daily things by computers or computation machines.
It is of course the case that we cannot expect to those automatic machines
to deal with newly encountered things by introducing new appropriate rules.
This is the same for the rules of organizations or societies. For some term until
the rules are corrected, the work to deal with new things is left to the people
who encounter those new things and problems. The recursive constructions
of terms and wff and the recursive definitions of provability or correctness are
mechanical ones and the provability is the concept based only on mechanical
operations.

In this sense the Gödel’s incompleteness theorem can be interpreted as
meaning that recursive definitions and constructions based on a finite number of
groups of axioms and rules of inferences are insufficient. From this standpoint,
it can be said that the incompleteness theorem can be taken as giving the
possibility of finding new axioms and new rules of inferences.

Actually the axiom of choice and the continuum hypothesis are known to be
independent of other axioms of set theory, and hence the theory is consistent
even if the negation of those axiom and/or hypothesis is added instead of them.
In this way, what is true is dependent on our sense which we see right or correct.
Gödel himself seems to have thought that there is some correct axiom about
infinity.

Turning to natural phenomena around us, we notice that there are many
phenomena which can be described by recursive methods. For example, if
we try to define the fractal figures like ria coastlines, we arrive at recursive
definitions. The differential equations which describe weather or waves are often
non-linear partial differential equations. Those non-linear partial differential
equations have terms in which the solutions appear and hence the solutions
influence the solutions themselves recursively and self-referentially.

The fact that the self-referential and recursive description is useful and
effective in describing mathematical systems as well as in describing natural
phenomena seems to tell that the recursiveness is the fundamental feature of
nature not only in humans’ introspective considerations like metamathematics.

The description of nature becomes to be useful in making plans for the
future only when it is described by mathematics and gives quantitative predic-
tions. Considering those things, we seem to be able to say that it is natural that
the foundation of mathematics itself has its basis in recursive definitions, and
that the discovery of the recursive method of description has made it possible
for humans to describe nature and build plans for the future.

1.5 Metamathematics

As reviewed, metamathematics or the investigation of foundations of math-
ematics is a self-referential deed to see mathematics itself in mathematical
method. Metamathematics is in this way self-referential and seems to be never
related with the outside of mathematics. If we see other mathematics or other
areas of science or other human activities, are there any non-self-referential
activities? The answer would be left to the reader. However if we recall that
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the description of nature itself requires the self-referential method, we will see
a natural answer.

In either case, we assume, for a moment, as is usually thought that the
mathematicians are stubborn or eccentric and naive people who always refer to
themselves. The computers invented and worked out by those people, however,
come now to be useful and the necessities of daily life. This fact that the in-
trospective mathematics and the metamathematics (or computation sciences),
which is the uppermost area among the mathematical sciences, produced the
computers useful for daily life would tell that the introspective and inner most
activities have become recognized to have their own social values. It is now
the age when mathematical predictions and statistical values are used in the
political and economic decisions. It is thought that the importance and the
value of mathematical thought is recognized by many people now in the age
when the introspective ability is understood as an important ability of humans
and plays an important role in deciding the future plans of humans.

Metamathematics or foundations of mathematics seemed to have been given
almost no attention when the author was young not only in Japan but also in
the west and other areas. Recently however it is encouraging and the amenity
to see that many young people are making research activities in this field. He
thinks that the age will come when people will be able to be engaged more
freely and easily in such introspective activities. He hopes this paper would be
helpful to those young people.

2 Formal number theory

As stated at the beginning of the previous section, Gödel’s first incompleteness
theorem says “If a theory S including number theory is consistent, then there
is a proposition G which is not provable and refutable1.” A theory S is called
complete if for any given proposition A of S, one can decide either of A or the
negation ¬A is derived by logical inferences from the axioms of the theory S.
Therefore the incompleteness theorem means that if a theory S is consistent,
then it is incomplete. That S is consistent means that for any given proposition
B, it is not the case that both of B and the negation ¬B are provable. In an
inconsistent theory S, thus, there is a proposition B such that B and ¬B are
both provable, and hence in S every proposition C is provable. The incom-
pleteness theorem above is rephrased as follows: “A theory S which includes
number theory is either inconsistent or incomplete.” Further the second incom-
pleteness theorem says “If a theory S including number theory is consistent,
then the consistency of S is not provable by the method formalizable in the
theory S.” The second incompleteness theorem by Gödel in 1931 is at least on
its surface the one which denies the Hilbert formalism’s program: “A mathe-
matical theory is shown to be sound by proving its consistency based on the
finitary standpoint.” This program was proposed by D. Hilbert to cope with
the intuitionism proposed by L. E. J. Brouwer as a criticism to the situation of
mathematics which had met several serious difficulties in its foundation around

1G is refutable if and only if the negation ¬G is provable.
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the year 1900. The procedure formalizable in the number theory is thought to
be equivalent to the procedure of formal treatment of the words based on the
finitary method. Therefore if it is not possible to show the consistency by the
method formalizable in the number theory, it would mean that the consistency
of number theory is not provable insofar as based on finitary standpoint. This
would mean that Hilbert’s program is not performable. In this sense, what is
essential and important is the problem of consistency and it is not essential
whether or not a theory is complete. However the second incompleteness the-
orem is a corollary of the first incompleteness theorem, so in order to discuss
the problem of consistency, it is necessary first to discuss the completeness of
the number theory.

2.1 Formalism

It is useful in relation to the later discussion of ours to review here the situation
of mathematics around the beginning of the 20th century till the formalism was
proposed. As is well-known, at the end of the 19th century, exactly speaking
from around the year 1870 to 1900, when the mathematically accurate treat-
ment of real numbers by the use of the concept of set was successfully done
by those people like K. Weierstraß, R. Dedekind, G. Cantor, there were found
several difficulties in the treatment of sets like the paradox about the total-
ity of ordinal numbers found by C. Burali-Forti in 1897, the paradox about
the totality of sets found by G. Cantor in 1899, the paradox produced by the
totality of the sets each of which does not have itself as an element of itself
found by B. Russell in 1902-3, . . . . The Russell’s paradox was found when he
was writing an attempt [18] to deduce mathematics from only the axioms of
logic. To overcome this difficulty, he introduced the concept of type and order
and the axiom of reducibility. In Russell’s thought, the primary objects belong
to type 0, the properties about the objects of type 0 is regarded to belong to
type 1. In the same way the types of 2, 3, . . . are defined. Further to con-
sider about the objects like relations or classes, it is necessary to introduce the
notion of order2 inside each class of objects with the same type above type
0. The introduction of the notion of order makes it impossible to develop the
usual analysis3. To avoid this difficulty Russell introduced the axiom of re-
ducibility4 that asserts that to every property of the higher order there always
corresponds a property of order 0, which complements the estrangement caused
by the classification into different orders. This axiom of reducibility was, as
Russell himself later admitted, purely of pragmatic nature5 and it is difficult to
call it a purely logical axiom. The effort like this to deduce mathematics based
only on logic was called logicism, and was given attempts to improve or revise
by Carnap, Quine, etc., but there seem to be no followers after then. However
the logical analysis of mathematics developed in the monumental work “Prin-
cipia Mathematica” by Whitehead and Russell [22] gave influence on a theory

2Actually it was necessary to exclude impredicative definitions. See the later subsection
8.3.

3cf. footnote 2 above and subsection 8.3.
4Chapter II of Vol. I of [22].
5See the introduction of the second edition of [22], page xiv.
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of continuum and a set theory based on the standpoint of intuitionism ([5]) and
the construction of formal systems in Hilbert’s formalism in the deeper level.
Without the effort and contribution by Russell, the modern mathematics might
have traced a more winding road. In fact, the title of Gödel’s paper on the in-
completeness “Über formal unentsceidebare Sätze der Principia mathematica
und verwandter Systeme I” tells that the influence of Russell was large. Later
H. Weyl [21] criticized that in “Principia mathematica,” “mathematics is no
longer founded on logic, but on a sort of logician’s paradise . . . .” In the present
age, logicism is the one forgotten as an attempt to give a basis to mathematics.
However its substantial contributions to the modern mathematics should fairly
be evaluated.

In the 1880’s just when the theory of real numbers based on set theory was
successfully done, L. Kronecker gave a criticism that the definitions treated
in the theory of real numbers are just “words,” which do not let it possible
to determine whether an actual object satisfies them. Later in 1908, L. E.
J. Brouwer wrote a paper entitled “The untrustworthiness of the principles of
logic” [1] and developed a criticism that the classical logic which goes back to
Aristotle (384-322 B.C.) is derived from the logic applicable to finite sets and
hence it is not justified that this logic is applicable to the mathematics of infinite
sets. For example, in Euclid’s Elements which is thought to be influenced
by Aristotle, it is assumed that “the whole is greater than any proper part.”
However this does not hold for infinite sets6. Brouwer argued that the problems
occur from the unlimited application of “the law of the excluded middle” to
infinite sets. Namely the law states that for any proposition A either of A or its
negation ¬A holds. Let for instance the proposition A mean that there exists
an element of the set M which satisfies the property P . Then the negation
¬A means that every element of M does not satisfy the property P . If the
set M is a finite set, it is possible to determine whether A or ¬A holds, by
checking every element of M one by one. However, if M is an infinite set, it
is in principle impossible to perform the check to every element of the infinite
set M . According to Brouwer, therefore, the law of the excluded middle is
the law that should not be applied to general sets including infinite sets. Like
this Brouwer’s thought is the one based on the finitary standpoint, and is
called intuitionism. In his thought, the actual (or existential or completed or
extended) infinity is regarded as a fictitious thing. This type of thought goes
back to C. F. Gauß, 1831 in the modern age, and has something common with
the thought of computability in the present age. In fact, Brouwer seems to have
thought that “mathematics is identical with the exact part of our thinking. . . .
no science, in particular not philosophy or logic, can be a presupposition for
mathematics” (cf. [5]). This coincides with the thought of computation which
does not assume any philosophy or logic.

The difficulties found at the end of the 19th century required in this way
the reinquiry and reexamination into the existing mathematics. These difficul-
ties and the criticism by Brouwer were taken seriously by D. Hilbert and his

6Aristotle asserted that the paradox of Zeno of Elea arises from assuming as if the infinity
exists. In this sense, the standpoint that the actual infinity does not exist seems to date back
to Aristotle.
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collaborators P. Bernays, W. Ackerman, J. von Neumann and others. Hilbert
proposed the following program. Namely “classical mathematics which deals
with the infinity is formulated as a formal axiomatic theory, and the treatment
of the theory is made based on the finitary standpoint. If the theory is proved
to be consistent by this finitary method, it is said that the formal axiomatic
theory is sound.” In this program, the treatment of the formal theory which
deals with the infinity is based on the finitary standpoint which is equivalent to
the Brouwer’s intuitionism. Therefore if one can perform the program, it would
mean that the difficulties and the criticism pointed by Brouwer are avoided.
This standpoint is called formalism. In this way, the proof of consistency of a
theory is itself considered again in mathematical method. Hilbert called such
a mathematical consideration “metamathematics” or “proof theory.”

As stated in the preface of the present section, the incompleteness theorem
that made it impossible to perform the program of formalism is the second
incompleteness theorem. However as mentioned, the second incompleteness
theorem is a corollary of the first incompleteness theorem except for technical
details. Therefore to see the problem in the foundation of mathematics or meta-
mathematics, the primary thing is to show the first incompleteness theorem.
In this section, as the first step toward this purpose, we introduce the reader
to the notion of formal system and describe how to write down the number
theory in the form of a formal system. We state that our description depends
somewhat on the descriptions of the books S. C. Kleene, Introduction to Meta-
mathematics, North-Holland Publishing Co. Amsterdam, P. Noordhoff N. V.,
Groningen, 1964 [12] and H. Kitada and T. Ono, Introduction to Mathematics
for Scientists, Gendai-Suugaku-Sha, 2006 [11].

2.2 Primitive symbols, terms, and formulae

Gödel’s theorem holds for a formal mathematical theory which includes number
theory as a subsystem. It is therefore sufficient to prove the theorem for the
number theory itself. In this case the theorem reads “If the number theory S
is consistent, there is a proposition G whose affirmation and negation are both
unprovable.” The point is in the word “unprovable.”

Number theory consists of the ordinal axioms of logic, the rules of inferences
and the axioms of number theory. Theorem in the number theory is the propo-
sition which is derivable from the axioms by applying the rules of inferences
to them. The incompleteness theorem means that G and the negation ¬G are
not obtained by this method.

To prove the incompleteness theorem, it is therefore necessary to write down
the axioms of logic and mathematics and the rules of inferences, and need to
show that it is not possible to prove the proposition G and the negation ¬G
by using those axioms and rules. To grasp the usage of axioms and rules
of inferences, it is necessary to determine the primitive symbols and to give
the rules to construct propositions by using the symbols. Then it needs to
explicitly list the rules of inferences with using those symbols. To do so, we
introduce, as in subsection 1.2, the primitive symbols which are necessary to
write down the number theory. Primitive symbols consist of primitive logical
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symbols, primitive predicate symbols, primitive function symbols, primitive
object symbols, variable symbols, parentheses, and comma, as follows:

1. primitive logical symbols:

⇒ (imply), ∧ (and), ∨ (or), ¬ (not),
∀ (for all), ∃ (there exists)

2. primitive predicate symbols:

= (equals)

3. primitive function symbols:

+ (plus), · (times), ′ (successor (prime))

4. primitive object symbols:
0 (zero)

5. variable symbols:
a, b, c, . . . , x, y, z, . . .

6. parentheses:
( ), { }, [ ], . . .

7. comma:
,

When x is a variable, the logical expression ∀x is called a universal quantifier
and ∃x is called an existential quantifier.

From those symbols, we first define terms which will denote the objects
in number theory as follows. This type of definition is called a recursive or
inductive definition.

1. 0 is a term.

2. A variable is a term.

3. If s is a term, (s)′ is also a term.

4. If s, t are terms, (s) + (t) is a term.

5. If s, t are terms, (s) · (t) is a term.

6. The only expressions defined by 1-5 are the terms of the number theory.

In particular, the terms in whose construction there does not appear any
variable are called numerals or numeral terms.

We next define formula, or well-formed formula (wff) as follows:
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1. If s and t are terms, then (s) = (t) is a formula or wff. The formula of
this form is called an atomic formula.

2. If A,B are formulae, then
(A) ⇒ (B)

is also a formula.

3. If A,B are formulae,
(A) ∧ (B)

is also a formula.

4. If A,B are formulae,
(A) ∨ (B)

is also a formula.

5. If A is a formula,
¬(A)

is also a formula.

6. If x is a variable and A is a formula, then ∀x(A) is a formula.

7. If x is a variable and A is a formula, ∃x(A) is also a formula.

8. The only expressions defined by 1-7 are the formulae of the number theory.

2.3 Axioms and rules of inference

As stated in the previous section we adopt some of the formulae as the axioms
of the number theory, and define theorems or provable formulae as the formulae
obtained by applying the rules of inferences to the axioms.

It suffices to assume as the rules of inferences the two rules as mentioned
in the previous section. However to simplify the descriptions we assume the
following three rules7. In the following we assume that the formula C does not
contain the variable x.

I1: Modus ponens. (Syllogism): If the formula A is true and A ⇒ B is true,
then the formula B is also true.

A, (A) ⇒ (B)
B

I2: Generalization: For any variable x, from F follows ∀x(F ).

(C) ⇒ (F )
(C) ⇒ (∀x (F ))

7Here we follow [12].
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I3: Specialization: For any variable x, from F follows ∃x(F ).

(F ) ⇒ (C)
(∃x (F )) ⇒ (C)

The axioms of number theory are as follows. In the followings, we omit the
unnecessary and obvious parentheses.

The first group consists of the axioms of propositional calculus.
A1. Axioms of propositional calculus. (A,B,C are arbitrary formulae.)

1. A ⇒ (B ⇒ A)

2. (A ⇒ B) ⇒ ((A ⇒ (B ⇒ C)) ⇒ (A ⇒ C))

3. A ⇒ ((A ⇒ B) ⇒ B)

(a rule of inference)

4. A ⇒ (B ⇒ A ∧ B)

5. A ∧ B ⇒ A

6. A ∧ B ⇒ B

7. A ⇒ A ∨ B

8. B ⇒ A ∨ B

9. (A ⇒ C) ⇒ ((B ⇒ C) ⇒ (A ∨ B ⇒ C))

10. (A ⇒ B) ⇒ ((A ⇒ ¬B) ⇒ ¬A)

11. ¬¬A ⇒ A

The second group consists of the axioms of predicate calculus.
We introduce the following terminologies. If an occurrence of a variable x

is in the scope of influence of a quantifier ∀x or ∃x, the occurrence is called a
bound variable. Otherwise, it is called a free variable.

We call a term t free for x in a formula A(x) which has x as a free variable,
if no free occurrence of x in A(x) is in the scope of a quantifier ∀y or ∃y for
any variable y of t.

A2. Axioms of predicate calculus. (A is an arbitrary formula, B is a formula
which does not contain the variable x free, F (x) is a formula which contains a
free variable x, and the term t is free for x in the formula F (x).)

1. (B ⇒ A) ⇒ (B ⇒ (∀xA))

(a rule of inference)

2. ∀xF (x) ⇒ F (t)

3. F (t) ⇒ ∃xF (x)

4. (A ⇒ B) ⇒ ((∃xA) ⇒ B)

(a rule of inference)
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The same rules of inferences appear in the list of axioms to make the same
rules of inferences effective inside the formal system of number theory.

The reason that we made an assumption that the term t is free for x is as
follows. For instance, let us consider

F (x) = ∃y(x = y)

and let the term t be
t = a + y.

In this case, the term t is not free for x in the formula F (x). If we substitute
this term t to the place of the free variable x, we obtain

F (t) = ∃y(a + y = y).

The variable y in the term t is bound by the quantifier ∃y and the axiom 2 of
the predicate calculus does not hold. Our assumption that the term t is free
for x was made to exclude such cases.

The third and fourth groups consist of the axioms of number theory.
A3. Axioms of number theory. (a, b, c are arbitrary variables.)

1. a′ = b′ ⇒ a = b

2. ¬(a′ = 0)

3. a = b ⇒ (a = c ⇒ b = c)

4. a = b ⇒ a′ = b′

5. a + 0 = a

6. a + b′ = (a + b)′

7. a · 0 = 0

8. a · b′ = a · b + a

A4. Axiom of mathematical induction. (F is an arbitrary formula.)

(F (0) ∧ ∀x(F (x) ⇒ F (x′))) ⇒ ∀xF (x)

2.4 Proof, theorems, and deducibility

We make the following definition to define the theorems and the proofs of the
formal number theory.

Definition 2.1. A formula C is called an immediate consequence of a
formula A or two formulae A,B if C is below the line and the other(s) are
above the line, in the rules I1, I2 or I3.

We then define proof, provability and theorem as follows.
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Definition 2.2. A finite sequence of formulae, each consecutive pair of
which is divided by a comma, is called a formal proof, if each formula F of the
sequence is an axiom of number theory or is an immediate consequence of the
formula(e) which appear(s) before F . A formal proof is said to be the proof
of the formula E which appears at the end of the proof, and the formula E is
said to be provable in number theory or is called a theorem of number theory.

If a formula E is deducible in the system in which some formulae are added,
E is called deducible from the added assumption formulae.

Definition 2.3. Given a finite number of formulae D1, · · · , Dℓ (ℓ ≥ 0),
a finite sequence of formulae is called a formal deduction from the assumption
formulae D1, · · · , Dℓ, if each formula F of the sequence is an axiom or one of
the formulae D1, · · · , Dℓ, or an immediate consequence of the formula(e) which
appear(s) before F . A deduction is said to be a deduction of its last formula
E, and the formula E is said to be deducible from the assumption formulae or
is called the conclusion of the deduction. We write this as follows.

D1, · · · , Dℓ ⊢ E.

In the case when ℓ = 0, this is written

⊢ E.

This is equivalent with that E is a theorem of number theory.
As we have seen, all definitions of terms, formulae, proofs, theorems, de-

ductions are recursive or inductive definitions. This means that what can be
done in a formal system is fundamentally just the mechanical operation. This
is related with the concept of computability, which we will not have a chance
to touch in this article.

3 Gödel numbering

As we have seen in section 2, the terms, formulae, and theorems are defined
by applying a finite number of rules repeatedly to some number of symbols
in mechanical way. This procedure of construction is called a recursive or
inductive construction as it constructs things by applying the rules of the same
form repeatedly.

On the other hand, the procedure which can be described in the formal num-
ber theory S is the operation of finite natural numbers, and the mathematical
inductions is assumed as an axiom in S. Therefore, the recursive procedure of
construction of terms, formulae, theorems will be able to be mapped into the
operation of natural numbers inside the formal number theory S. Namely it
will be possible to assign a fixed natural number to each symbol, and from it
one can form a rule to assign a unique natural number to each of terms, formu-
lae, proof sequences, etc. If such a rule is made, it will be possible to map the
fact that a given sequence of formulae is a proof to a proposition about natural
numbers. That a formula A is provable means that there is a proof whose last
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formula is A. Thus it will be possible to express the fact that a given formula A
is provable as a proposition in the number theory S. As well, it will be possible
to express the fact that a given formula A is refutable, i.e. that the negation
¬A of A is provable as a proposition in S. A rule that assigns a natural number
to each primitive symbol and from this assigns a natural number to a general
expression constructed from the primitive symbols in a recursive way is called
Gödel numbering. We denote the natural number which is assigned by this rule
to an expression E by g(E), and call it the Gödel number of the expression
E. An expression E which has Gödel number n is expressed as En. When E
is a formula A, it is written as An. Thus n = g(En), n = g(An), etc. This
map g from the totality of expressions to the set N = {0, 1, 2, . . . } of natural
numbers is defined as one to one mapping, but is not onto mapping. Namely
g is defined as an injection but is not a surjection in general. Hence for some
natural number m, there can be the case that there is no expression E such
that g(E) = m.

There is no problem in assigning natural numbers to symbols and expres-
sions of a formal theory, and thence assigning natural numbers to deductions
or proofs. A point that is noted here is that although the assignment which
we mentioned looks as if it maps the expressions on the meta level to natural
numbers inside the formal system on the object level, the mapping g is actually
a map from the set of expressions on the meta level to the set N of natural
numbers on the meta level.

When proving Gödel’s incompleteness theorem, we denote the formula which
is obtained by substituting the natural number or numeral ⌈n⌉ in the formal
system:

⌈n⌉ = 0

n factors︷ ︸︸ ︷
′′ . . . ′ (1)

that corresponds to the natural number n on the meta level to the variable x
of a formula F (x) by

F (⌈n⌉).

This operation of substitution itself is the one on the meta level. The formula
F (⌈n⌉) that is obtained by this substitution is defined by

F (⌈n⌉) def
= ∀x (x = n ⇒ F ) . (2)

Here the reason we do not use the expression F (x) which has x as a variable is
that we define F (⌈n⌉) by this formula even when the formula F does not have
x as a variable.

We note that in the definition of the formula F (⌈n⌉) which must be a
formula in the formal system S, there appears the natural number n on the
meta level. This fact corresponds to the fact that there appears the natural
number n on the meta level to specify the number of primes in the definition
of a numeral ⌈n⌉ of the formal system S in equation (1) above (the number
n above the ′′ . . . ′ on the upper right side of 0 in the definition (1) of ⌈n⌉).
“Substitution” whatever it looks natural is inevitably a subjective and artificial
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deed performed by some subject on the meta level. Namely the construction of
the numeral ⌈n⌉ corresponding to n and the substitution of it to x are possible
only when some subject recognizes a number n on the meta level.

In fact the formal system S of number theory is regarded as a subsystem of
a formal set theory T . In this case the number 0 on the meta level corresponds
to the empty set ∅ in T , and ⌈0⌉ is defined as follows.

∀x(x = ⌈0⌉ ⇔ ∀u(u ̸∈ x)),

where A ⇔ B is the abbreviation of (A ⇒ B) ∧ (B ⇒ A). We define the
successor function ′ for a set m by

m′ = m ∪ {m}.

Then the theory of natural numbers is regarded to be a subsystem of the set
theory. In the formal number theory S the number 0 on the meta level is
regarded naturally to correspond to the numeral ⌈0⌉ of the system S. However
in the case of set theory, there is no such ‘natural’ correspondence, and we have
to give an appropriate ‘correspondence’ with considering the original meaning
of set theory.

3.1 Gödel numbering

We are now in a position to give a concrete Gödel numbering g. There are
infinitely many ways of giving mappings g, and we can take whatever g if it
satisfies the properties stated above. We adopt here a variant of the method
given in [11] of assigning binary numbers to expressions. Namely we first assign
natural numbers to primitive symbols as follows.

′ 0 ( ) { } [ ] + ·
20 21 22 23 24 25 26 27 28 29

= ⇒ ∧ ∨ ¬ ∀ ∃ ,
210 211 212 213 214 215 216 217

To the expressions constructed from those primitive symbols, we assign Gödel
numbers inductively as follows. First we assign 0 to the empty expression. I.e.
when the Gödel number is x = 0, the expression Ex corresponding to x = 0 is
empty, and we regard that there is no expression which corresponds to 0. Next
for two natural numbers n, m, letting ℓ(m) denote the number of figures of the
binary expression of m, we define the product operation ⋆ by

n ⋆ m = 2ℓ(m) · n + m.

Here we define ℓ(m) = 0 for m = 0. Now for two expressions A1, A2 with Gödel
numbers g(A1), g(A2), we define the Gödel number g(A1A2) for the connected
expression A1A2 of A1 and A2 in this order by

g(A1A2) = g(A1) ⋆ g(A2).

This mapping g is obviously one to one.
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For example, the Gödel number of (0)′ is calculated as follows. First as
the Gödel number of ( is 22 and that of 0 is 21, we have n = 22 = (100)2,
m = 21 = (10)2 and ℓ(m) = 2. Thus the Gödel number of (0 is

n ⋆ m = 22 · 22 + 21 = 24 + 21 = (10010)2.

Namely in binary number the Gödel number of ( is 100, and that of 0 is
10. Connecting these consecutively we obtain the Gödel number 10010 of (0.
Similarly the Gödel number of (0) is 100101000, and that of (0)′ is 1001010001.

In the definition of Gödel number above, there is no definition of the Gödel
number of the variables a, b, c, . . . , x, y, z, . . . . This is because we can express
variables by connecting the primitive symbols without overlapping with other
expressions like terms or formulae as follows.

a is (0′),
b is (0′′),
c is (0′′′),

. . . (3)

In the following we follow this convention.
The following lemma will be crucial in the later section 6.

Lemma 3.1. Let a ≥ 0 be a natural number and let w be the natural
number such that w′ = 2a, where w′ is a successor of the natural number w
(i.e. w′ = w + 1). Then we have

g(a) = 21 ⋆ w. (4)

Proof. The numeral corresponding to a natural number a ≥ 0 is

0

a factors︷ ︸︸ ︷
′′ . . . ′ .

By definition

g(0) = 21, g(′) = 20 = (1)2.

Thus

g(a) = g(0

a factors︷ ︸︸ ︷
′′ . . . ′ ) = 21 ⋆ (

a factors︷ ︸︸ ︷
11 . . . 1)2.

The natural number w such that w′ = 2a is in binary expression a sequence
of length a of the Gödel number 20 = (1)2 of prime symbol ′. For instance, if
a = 2, then w′ = w + 1 = 2a = 22 = (100)2 and w = (11)2. Therefore for w

such that w′ = 2a, we have w = (

a factors︷ ︸︸ ︷
11 . . . 1)2, which proves (4).
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3.2 Incompleteness theorem

First we define the following two predicates.

Definition 3.2. 1) The predicate G(a, b) means the following.

“A formula Aa with Gödel number a has just one free variable x, and an
expression Eb with Gödel number b is a proof of the formula Aa = Aa(⌈a⌉)
obtained from Aa = Aa(x) by substituting ⌈a⌉ into x.”

2) The predicate H(a, b) means the following.

“A formula Aa with Gödel number a has just one free variable x, and
an expression Eb with Gödel number b is a proof of the formula ¬Aa =
¬Aa(⌈a⌉) obtained from ¬Aa = ¬Aa(x) by substituting ⌈a⌉ into x.”

We introduce the following notion.

Definition 3.3. Let R(x1, . . . , xn) be a predicate (or relation) about
n(≥ 0) objects. This predicate is said to be numeralwise expressible in the
formal system S if there is a formula r(u1, . . . , un) in S with exactly n free
variables u1, . . . , un such that for an arbitrarily given n-tuple of natural num-
bers x1, . . . , xn, the followings hold.

i) If R(x1, . . . , xn) is true, then ⊢ r(⌈x1⌉, . . . , ⌈xn⌉).

ii) If R(x1, . . . , xn) is false, then ⊢ ¬r(⌈x1⌉, . . . , ⌈xn⌉).

In this case, R(x1, . . . , xn) is said to be numeralwise expressed by the formula
r(u1, . . . , un).

It will be shown that the following holds.

Theorem 3.4. The predicates G(a, b) and H(a, b) in definition 3.2 are
both numeralwise expressed in S by some formulae g(a, b) and h(a, b) respec-
tively.

We now define Rosser formula.

Definition 3.5. Let q be the Gödel number of the following formula.

∀b (g(a, b) ⇒ ∃c(c ≤ b ∧ h(a, c))) .

Namely

Aq(a) = ∀b (g(a, b) ⇒ ∃c(c ≤ b ∧ h(a, c))) .

Then

Aq(⌈q⌉) = ∀b (g(⌈q⌉, b) ⇒ ∃c(c ≤ b ∧ h(⌈q⌉, c))) .

Here

g(⌈q⌉, b) = ∀a (a = q ⇒ g(a, b)) ,

h(⌈q⌉, c) = ∀a (a = q ⇒ h(a, c)) .
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Aq(⌈q⌉) is called Rosser formula.

Theorem 3.6. (Gödel’s incompleteness theorem of Rosser type [17]) Let
S be consistent. Then neither Aq(⌈q⌉) nor the negation ¬Aq(⌈q⌉) is provable
in S.

Proof. Assume that S is consistent.
Suppose that

⊢ Aq(⌈q⌉) in S (5)

and let e be the Gödel number of a proof of Aq(⌈q⌉). Then by the numeralwise
expressibility of G(a, b), we have

⊢ g(⌈q⌉, ⌈e⌉). (6)

As we have assumed that S is consistent,

⊢ Aq(⌈q⌉) in S

yields
not ⊢ ¬Aq(⌈q⌉) in S.

Therefore for any non-negative integer d, H(q, d) is false. In particular H(q, 0),
· · · , H(q, e) are all false. Thus by the numeralwise expressibility of the predi-
cate H(a, c), we have

⊢ ¬h(⌈q⌉, ⌈0⌉), ⊢ ¬h(⌈q⌉, ⌈1⌉), · · · , ⊢ ¬h(⌈q⌉, ⌈e⌉).

Hence
⊢ ∀c(c ≤ ⌈e⌉ ⇒ ¬h(⌈q⌉, c)).

This with ⊢ g(⌈q⌉, ⌈e⌉) in (6) gives

⊢ ∃b (g(⌈q⌉, b) ∧ ∀c(c ≤ b ⇒ ¬h(⌈q⌉, c))) .

This is equivalent to
⊢ ¬Aq(⌈q⌉) in S.

This and (5) imply that S is inconsistent, which contradicts our premise that
S is consistent. Therefore we have

not ⊢ Aq(⌈q⌉) in S.

On the other hand let us suppose that

⊢ ¬Aq(⌈q⌉) in S. (7)

Then there is a Gödel number k of a proof of ¬Aq(⌈q⌉) in S, and H(q, k) is
true. Therefore by the numeralwise expressibility of H(a, c) we have

⊢ h(⌈q⌉, ⌈k⌉).
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From this follows

⊢ ∀b (b ≥ ⌈k⌉ ⇒ ∃c(c ≤ b ∧ h(⌈q⌉, c))) . (8)

As we have assumed that ¬Aq(⌈q⌉) is provable in S, from our premise that S
is consistent, there is no proof of Aq(⌈q⌉) in S. Thus

⊢ ¬g(⌈q⌉, ⌈0⌉), ⊢ ¬g(⌈q⌉, ⌈1⌉), · · · , ⊢ ¬g(⌈q⌉, ⌈k⌉ − ⌈1⌉).

Therefore

⊢ ∀b (b < ⌈k⌉ ⇒ ¬g(⌈q⌉, b)) .

Combining this with (8) yields

⊢ ∀b (¬g(⌈q⌉, b) ∨ ∃c(c ≤ b ∧ h(⌈q⌉, c))) .

This is equivalent to
⊢ Aq(⌈q⌉).

This and (7) imply that S is inconsistent, which contradicts our premise that
S is consistent. Therefore we obtain

not ⊢ ¬Aq(⌈q⌉) in S.

It thus suffices to prove Theorem 3.4 in order to prove Theorem 3.6.

4 Recursiveness

4.1 Recursive functions

Until now we have assumed that ‘recursive’ means ‘inductive’ in somewhat
vague manner. In this section we define recursiveness rigorously. In this paper
the functions whose domain and range are subsets of N are called the number-
theoretic functions.

Definition 4.1. A function ϕ = ϕ(x1, . . . , xn) is called a primitive recur-
sive function if it is defined by repetitive applications of the following equations
I) – V). Here it is assumed that n,m ≥ 1 are integers, i is the integer such that
1 ≤ i ≤ n, and q is a natural number. Further ψ, χ, χ1, . . . , χm are number-
theoretic functions which have the indicated number of variables.

I) ϕ(x) = x′.

II) ϕ(x1, . . . , xn) = q.

III) ϕ(x1, . . . , xn) = xi.

IV) ϕ(x1, . . . , xn) = ψ(χ1(x1, . . . , xn), . . . , χm(x1, . . . , xn)).
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V) 1) When n = 1
ϕ(0) = q, ϕ(k + 1) = χ(k, ϕ(k)).

2) When n ≥ 2

i) ϕ(0, x2, . . . , xn) = ψ(x2, . . . , xn).
ii) ϕ(k + 1, x2, . . . , xn) = χ(k, ϕ(k, x2, . . . , xn), x2, . . . , xn).

In set-theoretic number theory, natural number n(≥ 0) is defined as follows
as stated before. First 0 is defined as the empty set ∅, 1 is defined as the
successor 0∪{0} of 0, namely as the set {0}, 2 is defined as the successor {0, 1}
of 1, and so on. A general natural number n is thus defined similarly as n =
{0, 1, . . . , n− 1}. Therefore if, for a natural number n ≥ 0, a number-theoretic
function F is defined for the natural numbers 0, 1, . . . , n − 1 less than n, the
function F |n which is a restriction of F to the domain n = {0, 1, . . . , n−1} ∈ N
is defined. In this case if some number-theoretic function G is given, we can
construct recursively a number-theoretic function F whose domain is N by

F (n) = G(n, F |n).

In general the function constructed in this way is called a recursive function.
It is easy to see that the functions defined in definition 4.1 can be written in
this form.

Definition 4.2. A function f : A −→ B whose domain is a subset of A
and range is a subset of B is called a total function, if its domain D(f) is equal
to A. If otherwise the value f(x) is not defined for an element x of A, f is
called a partial function.

Definition 4.3. For a number-theoretic function ψ(x1, . . . , xn, y), we de-
fine the µ-operator by

µy[ψ(x1, . . . , xn, y) = 0] = y0

def⇔ ψ(x1, . . . , xn, y0) = 0 ∧ (∀y < y0)[ψ(x1, . . . , xn, y) ̸= 0].

From an intuitionistic viewpoint, µ-operator is defined as follows. With
calculating ψ(x1, . . . , xn, 0), ψ(x1, . . . , xn, 1), ψ(x1, . . . , xn, 2), . . . , one
searches for a natural number y which satisfies ψ(x1, . . . , xn, y) = 0. If he
finds one such y, the first y is y0 = µy[ψ(x1, . . . , xn, y) = 0]. If otherwise
there is no such y, this search will continue forever, and for (x1, . . . , xn), the
value µy[ψ(x1, . . . , xn, y) = 0] is not defined. Therefore a function defined by
µ-operator can be a partial function. The case we are interested in is that the
function is a total function. In this case

VI) ϕ(x1, . . . , xn) = µy[ψ(x1, . . . , xn, y) = 0]

defines a new number-theoretic total function ϕ(x1, . . . , xn).

Definition 4.4. A number-theoretic total function ϕ is called a recursive
function if there is a sequence of number-theoretic total functions ϕ1, ϕ2, . . . , ϕn
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such that the last function ϕn is ϕ and each function ϕk in the sequence is a
function defined by I) – III) or obtained by applying IV) – VI) to the for-
mer functions ϕ1, ϕ2, . . . , ϕk−1. The minimum length n of such a sequence
ϕ1, ϕ2, . . . , ϕn for a function ϕ = ϕn is called the degree of the function ϕ.

4.2 Recursive relations

Using the recursive function defined in the previous subsection, we define re-
cursive predicates or recursive relations.

Definition 4.5. A relation among natural numbers or a predicate about
natural numbers R(x1, . . . , xn) is called recursive if there exists a recursive
function ϕ(x1, . . . , xn) such that for any natural numbers x1, . . . , xn

R(x1, . . . , xn) ⇔ [ϕ(x1, . . . , xn) = 0] (9)

holds.

Functions x + y, x · y, xy are recursive, and the relation x = y is also
recursive.

Definition 4.6. For an expression E, terms t, t1, t2 and a variable x, we
define

1) t1 ̸= t2
def
= ¬(t1 = t2).

2) t1 ≤ t2
def
= ∃x(t1 + x = t2).

3) (∀x ≤ t)E
def
= ∀x(x ≤ t ⇒ E),

(∃x ≤ t)E
def
= ¬(∀x ≤ t)¬E.

4) t1 < t2
def
= (t1 ≤ t2) ∧ (t1 ̸= t2).

5) (∀x < t)E
def
= ∀x(x < t ⇒ E),

(∃x < t)E
def
= ¬(∀x < t)¬E.

If an expression E defines a recursive predicate, the relations in the defini-
tion 4.6 define recursive relations. In fact, the following is known (Sätze II -
IV in Gödel [4]).

Theorem 4.7. (1) If the predicates R and S are recursive, the predi-
cates ¬R, R ∧ S, R ∨ S, R ⇒ S are also recursive.

(2) If functions ϕ(x1, . . . , xn) and ψ(x1, . . . , xn) are recursive, then the rela-
tion or predicate ϕ(x1, . . . , xn) = ψ(x1, . . . , xn) is also recursive.

(3) If a function ϕ(x1, . . . , xn) and a predicate R(u, y1, . . . , ym) are recursive,
the predicates S, T and the function ψ defined below are also recursive.
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i) S(x1, . . . , xn, y1, . . . , ym)
def
= (∃u) [(u ≤ ϕ(x1, . . . , xn)) ∧ R(u, y1, . . . , ym)],

ii) T(x1, . . . , xn, y1, . . . , ym)
def
= (∀u) [(u ≤ ϕ(x1, . . . , xn)) ⇒ R(u, y1, . . . , ym)],

iii) ψ(x1, . . . , xn, y1, . . . , ym)
def
= µu [(u ≤ ϕ(x1, . . . , xn)) ∧ R(u, y1, . . . , ym)].
Here if there is no least natural number u which satisfies the con-
dition in the parentheses [ ], we define the right hand side to be
08.

5 Numeralwise expression of proof

In the next section we will show that the predicates G(a, b), H(a, b) defined in
section 3 are numeralwise expressible in number theory S. To show this Gödel
[4] proved the following theorem, and used the fact that the predicates G(a, b),
H(a, b) are recursive.

Theorem 5.1. For any recursive relation R(x1, . . . , xn) there exists a
number-theoretic formula r(u1, . . . , un) with n free variables u1, . . . , un such
that for any n-tuple of natural numbers x1, . . . , xn the following i) and ii) hold.

i) If R(x1, . . . , xn) is true, then ⊢ r(⌈x1⌉, . . . , ⌈xn⌉)holds.

ii) If R(x1, . . . , xn) is false, then ⊢ ¬r(⌈x1⌉, . . . , ⌈xn⌉) holds.

In this paper we do not prove this theorem. Instead we will prove directly
that the predicates G(a, b), H(a, b) are numeralwise expressed by some formu-
lae g(a, b), h(a, b), respectively.

5.1 Numeralwise expression of being terms and formulae

In this section we will give a numeralwise expression of the predicate “A given
expression Ex is a proof.” We recall the correspondence of Gödel numbers to
primitive symbols.

′ 0 ( ) { } [ ] + ·
20 21 22 23 24 25 26 27 28 29

= ⇒ ∧ ∨ ¬ ∀ ∃ ,
210 211 212 213 214 215 216 217

The following procedure is a variant of the procedure stated in [11].
First of all we will show that it is possible to express the procedure of

constructing Gödel number in a recursive way. For this purpose it suffices to
prove that, for any given natural numbers x, y, z, it is possible to express the

8The condition in [ ] on the right hand side is determined by searching for a finite number
of natural numbers u. Thus this function ψ is a total function.
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fact that z is equal to the product x ⋆ y by a proposition in the number theory
S in a recursive way. Let us recall, as stated in section 4, that the functions
x + y, x · y, xy are recursive functions and the relation x = y is a recursive
relation. By definition 4.6 and theorem 4.7, the following definitions 1 – 28 are
all recursive.

1. Div(x, y) : x is a factor of y.

(∃z ≤ y) (x · z = y)

2. 2×(x) : x is a power of 2.

(∀z ≤ x)
(
(Div(z, x) ∧ (z ̸= 1)) ⇒ Div(2, z)

)
3. y = 2ℓ(x) : y is the least power of 2 which is greater than x.(

2×(y) ∧ (y > x) ∧ (y > 1)
)
∧ (∀z < y)¬

(
2×(z) ∧ (z > x) ∧ (z > 1)

)
4. z = x ⋆ y : z is the numeral resulting from the ⋆-product of x and y.

(∃w ≤ z)(z = (w · x) + y ∧ w = 2ℓ(y))

We next decompose numerals expressed in binary numbers, and express
the procedure to extract a subsequence from a sequence of primitive symbols
in number-theoretic way.

5. Begin(x, y) : x is the numeral which expresses a left-most part of the se-
quence of symbols which has Gödel number y.

x = y ∨ (x ̸= 0 ∧ (∃z ≤ y) (x ⋆ z = y))

6. End(x, y) : x is the numeral which expresses a right-most part of the se-
quence of symbols which has Gödel number y.

x = y ∨
(
x ̸= 0 ∧ (∃z ≤ y) (z ⋆ x = y)

)
7. Part(x, y) : x is the numeral which expresses a part of the sequence of

symbols which has Gödel number y.

x = y ∨
(
x ̸= 0 ∧ (∃z ≤ y) (End(z, y) ∧ Begin(x, z))

)
Using these, we can construct a predicate which classifies the nature of terms.

8. Succ(x) : Ex is a sequence of ′.

(x ̸= 0) ∧ (∀y ≤ x) (Part(y, x) ⇒ Part(1, y))
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9. Var(x) : Ex is a variable.

(∃y ≤ x)
(
Succ(y) ∧ x = 22 ⋆ 21 ⋆ y ⋆ 23

)
Her we recall that we follow the convention stated in subsection 3.1 such
that the variables a, b, c, . . . are supposed to be expressed as (0′), (0′′),
(0′′′), . . . .

10. Num(x) : Ex is a numeral.

(x = 21) ∨ (∃y ≤ x)
(
Succ(y) ∧ x = 21 ⋆ y

)
Gödel number of a sequence of (formal) expressions Ex1 , Ex2 , . . . , Exn is

written as follows.

x1 ⋆ 217 ⋆ x2 ⋆ 217 ⋆ ... ⋆ 217 ⋆ xn

The facts that an expression is a sequence of formal expressions and that an ex-
pression is included in a sequence of expressions are expressed by the following
propositions.

11. Seq(x) : Ex is a sequence of formal expressions.

Part(217, x)

12. x ∈ y : Ey is a sequence of expressions, and Ex is an element of it.

Seq(y) ∧ ¬Part(217, x) ∧(
Begin(x ⋆ 217, y) ∨ End(217 ⋆ x, y) ∨ Part(217 ⋆ x ⋆ 217, y)

)
13. x ≺z y : For two sequences Ex, Ey of expressions which are elements of a

sequence Ez of expressions, Ex appears before Ey.

(x ∈ z) ∧ (y ∈ z) ∧ (∃w ≤ z)Part(x ⋆ w ⋆ y, z)

Using those, the fact that an expression which has Gödel number x is a formula
is expressed in the formal system S.

14. Term(x) : Ex is a term.

∃y

(
(x ∈ y) ∧ (∀z ∈ y)

{
Var(z) ∨ Num(z) ∨

(∃v ≺y z)(∃w ≺y z)
[
(22 ⋆ v ⋆ 23 ⋆ 28 ⋆ 22 ⋆ w ⋆ 23 = z) ∨

(22 ⋆ v ⋆ 23 ⋆ 29 ⋆ 22 ⋆ w ⋆ 23 = z) ∨ (22 ⋆ v ⋆ 23 ⋆ 20 = z)
]})

15. Atom(x) : Ex is an atomic formula.

(∃y ≤ x)(∃z ≤ x)
(

Term(y) ∧ Term(z) ∧
(
(x = y ⋆ 210 ⋆ z) ∨ (x = leq(y, z))

))
Here the function leq is defined as follows recursively.
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1. neq(x, y) is the following Gödel number of the expression Ex ̸= Ey.

214 ⋆ 22 ⋆ x ⋆ 210 ⋆ y ⋆ 23

2. leq(x, y) is the following Gödel number of the expression Ex ≤ Ey.

214 ⋆ 22 ⋆ 215 ⋆ 22 ⋆ 21 ⋆ 20 ⋆ 23 ⋆ 22 ⋆

neq(x ⋆ 28 ⋆ 22 ⋆ 21 ⋆ 20 ⋆ 23, y) ⋆ 23 ⋆ 23

16. Gen(x, y) : For a variable Eu, Ey is equal to ∀Eu(Ex).

(∃u ≤ y)
(
Var(u) ∧ y = 215 ⋆ u ⋆ 22 ⋆ x ⋆ 23

)
17. Form(x) : Ex is a (well-formed) formula.

∃y

(
(x ∈ y) ∧ (∀z ∈ y)

{
Atom(z) ∨

(∃v ≺y z)(∃w ≺y z)
[
(z = v ⋆ 211 ⋆ w) ∨

(
z = 214 ⋆ 22 ⋆ v ⋆ 23

)
∨ Gen(w, z)

]})
Here we regard the logical symbols of propositional calculus consisting of
only ¬ and ⇒ with noting that logical symbols ∧ and ∨ are expressed by
using ¬ and ⇒ as follows:

A ∧ B is ¬(A ⇒ ¬B),
A ∨ B is ¬A ⇒ B

As well we regard that the existential quantifier is expressed as follows
with using the universal quantifier:

∃xF (x) is ¬∀x¬F (x)

5.2 Numeralwise expression of being axioms of proposi-
tional calculus

We next show that the fact that an expression with Gödel number x is an
axiom of number theory is expressed by a formula in S. First we consider the
axioms of propositional calculus.

18. Pro(x): Ex is an axiom of propositional calculus.

Prop1(x) ∨ Prop2(x) ∨ Prop3(x) ∨ Prop4(x) ∨ Prop5(x) ∨ Prop6(x) ∨
Prop7(x) ∨ Prop8(x) ∨ Prop9(x) ∨ Prop10(x) ∨ Prop11(x)

Here Prop1(x), Prop2(x), Prop3(x), Prop4(x), Prop5(x), Prop6(x),
Prop7(x), Prop8(x), Prop9(x), Prop10(x), Prop11(x) are defined as fol-
lows.

1. Prop1(x) : Ex is axiom 1 of propositional calculus.

(∃a < x)(∃b < x)(Form(a) ∧ Form(b) ∧ x = a ⋆ 211 ⋆ 22 ⋆ b ⋆ 211 ⋆ a ⋆ 23)
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2. Prop2(x) : Ex is axiom 2 of propositional calculus.

(∃a < x)(∃b < x)(∃c < x)(Form(a) ∧ Form(b) ∧
Form(c) ∧ x = 22 ⋆ a ⋆ 211 ⋆ b ⋆ 23 ⋆ 211 ⋆ 22 ⋆ 22 ⋆ a ⋆ 211

⋆22 ⋆ b ⋆ 211 ⋆ c ⋆ 23 ⋆ 23 ⋆ 211 ⋆ 22 ⋆ a ⋆ 211 ⋆ c ⋆ 23 ⋆ 23)

3. Prop3(x) : Ex is axiom 3 of propositional calculus.

(∃a < x)(∃b < x)(Form(a) ∧ Form(b) ∧
x = a ⋆ 211 ⋆ 22 ⋆ 22 ⋆ a ⋆ 211 ⋆ b ⋆ 23 ⋆ 211 ⋆ b ⋆ 23)

4. Prop4(x) : Ex is axiom 4 of propositional calculus.

(∃a < x)(∃b < x)(Form(a) ∧ Form(b) ∧
x = a ⋆ 211 ⋆ 22 ⋆ b ⋆ 211 ⋆ a ⋆ 212 ⋆ b ⋆ 23)

5. Prop5(x) : Ex is axiom 5 of propositional calculus.

(∃a < x)(∃b < x)(∃c < x)(Form(a) ∧ Form(b) ∧ x = a ⋆ 212 ⋆ b ⋆ 211 ⋆ a)

6. Prop6(x) : Ex is axiom 6 of propositional calculus.

(∃a < x)(∃b < x)(∃c < x)(Form(a) ∧ Form(b) ∧ x = a ⋆ 212 ⋆ b ⋆ 211 ⋆ b)

7. Prop7(x) : Ex is axiom 7 of propositional calculus.

(∃a < x)(∃b < x)(Form(a) ∧ Form(b) ∧ x = a ⋆ 211 ⋆ a ⋆ 213 ⋆ b)

8. Prop8(x) : Ex is axiom 8 of propositional calculus.

(∃a < x)(∃b < x)(Form(a) ∧ Form(b) ∧ x = b ⋆ 211 ⋆ a ⋆ 213 ⋆ b)

9. Prop9(x) : Ex is axiom 9 of propositional calculus.

(∃a < x)(∃b < x)(∃c < x)(Form(a) ∧ Form(b) ∧ Form(c) ∧
x = 22 ⋆ a ⋆ 211 ⋆ c ⋆ 23 ⋆ 211 ⋆ 22 ⋆ 22 ⋆ b ⋆ 211 ⋆ c ⋆ 23 ⋆ 211 ⋆ 22

⋆ a ⋆ 213 ⋆ b ⋆ 211 ⋆ c ⋆ 23 ⋆ 23)

10. Prop10(x) : Ex is axiom 10 of propositional calculus.

(∃a < x)(∃b < x)(Form(a) ∧ Form(b) ∧
x = 22 ⋆ a ⋆ 211 ⋆ b ⋆ 23 ⋆ 211 ⋆ 22 ⋆ 22 ⋆ a ⋆ 211 ⋆ 214 ⋆

b ⋆ 23 ⋆ 211 ⋆ 214 ⋆ a ⋆ 23)

11. Prop11(x) : Ex is axiom 11 of propositional calculus.

(∃a < x)(Form(a) ∧ x = 214 ⋆ 214 ⋆ a ⋆ 211 ⋆ a)
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5.3 Numeralwise expression of being axioms of predicate
calculus

We now express in S that an expression Ex is an axiom of predicate calculus.
As is easily seen, axiom 1 and axiom 4 are equivalent, and axiom 2 and axiom
3 are equivalent. Thus we have only to give expressions to axioms 1 and 2.
In axiom 2, we need to consider the replacement of all occurrences of a free
variable in a formula by a term.

19. Free(x, y) : Every variable in a term Ex is not bounded in an expression
Ey.

Term(x) ∧ (∀z < x)
(

[Var(z) ∧ Part(z, x)] ⇒
[
¬Part(215 ⋆ z, y)

])
20. Pred1(x) : Ex is axiom 1 of predicate calculus.

(∃a < x)(∃b < x)(∃c < x)
(
Form(a) ∧ Form(b) ∧ Var(c) ∧

(¬Part(c, b)) ∧ x = 22 ⋆ b ⋆ 211 ⋆ a ⋆ 23 ⋆ 211 ⋆ 22 ⋆ b ⋆ 211 ⋆ 22 ⋆ 215 ⋆ c ⋆ a ⋆ 23 ⋆ 23
)

21. Seq(x, y, u) : An expression u includes a pair {Ex, Ey} as a consecutive
pair of Ex and Ey in this order.

¬Seq(x) ∧ ¬Seq(y) ∧ (x ̸= 0) ∧ (y ̸= 0) ∧ Part(x ⋆ 217 ⋆ y, u)

22. x = alty(u, t) : A formula Ex is obtained from a formula Ey by substituting
a free term Et at every occurrence of a free variable Eu.

Form(x) ∧ Form(y) ∧ Var(u) ∧ Free(u, y) ∧ Term(t) ∧ Free(t, y) ∧ Part(u, y) ∧

¬Part(u, x) ∧ ∃w

{
Seq(y, x, w) ∧ (∀a < w)(∀b < w)

(
Seq(a, b, w)

⇒
{
(¬Part(u, a) ∧ a = b) ∨ (∃c1 < a)(∃c2 < b)(∃d1 < a)(∃d2 < b)[

Seq(c1, c2, w) ∧ Seq(d1, d2, w) ∧ a = c1 ⋆ u ⋆ d1 ∧ b = c2 ⋆ t ⋆ d2

]})}
23. Pred2(x) : Ex is axiom 2 of predicate calculus.

(∃a < x)(∃b < x)(∃c < x)(∃t < x)(Form(a) ∧
Var(b) ∧ Term(t) ∧ c = alta(b, t) ∧ x = 215 ⋆ b ⋆ a ⋆ 211 ⋆ c)

5.4 Numeralwise expression of being axioms of number
theory

Finally we express that Ex is an axiom of number theory.
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24. Nat(x): Ex is an axiom of number theory.

Nat1(x)∨Nat2(x)∨Nat3(x)∨Nat4(x)∨Nat5(x)∨Nat6(x)∨Nat7(x)∨Nat8(x)

Here Nat1(x), Nat2(x), Nat3(x), Nat4(x), Nat5(x), Nat6(x), Nat7(x),
Nat8(x) are defined as follows.

1. Nat1(x) : Ex is axiom 1 of number theory.

(∃a < x)(∃b < x)(Term(a) ∧ Term(b) ∧
x = 22 ⋆ a ⋆ 20 ⋆ 210 ⋆ b ⋆ 20 ⋆ 23 ⋆ 211 ⋆ 22 ⋆ a ⋆ 210 ⋆ b ⋆ 23)

2. Nat2(x) : Ex is axiom 2 of number theory.

(∃a < x)(Term(a) ∧ x = 214 ⋆ 22 ⋆ a ⋆ 20 ⋆ 210 ⋆ 21 ⋆ 23)

3. Nat3(x) : Ex is axiom 3 of number theory.

(∃a < x)(∃b < x)(∃c < x)(Term(a) ∧ Term(b) ∧ Term(c) ∧
x = a ⋆ 210 ⋆ b ⋆ 211 ⋆ 22 ⋆ a ⋆ 210 ⋆ c ⋆ 211 ⋆ b ⋆ 210 ⋆ c ⋆ 23)

4. Nat4(x) : Ex is axiom 4 of number theory.

(∃a < x)(∃b < x)(Term(a) ∧ Term(b) ∧
x = a ⋆ 210 ⋆ b ⋆ 211 ⋆ a ⋆ 20 ⋆ 210 ⋆ b ⋆ 20)

5. Nat5(x) : Ex is axiom 5 of number theory.

(∃a < x)(Term(a) ∧ x = a ⋆ 28 ⋆ 21 ⋆ 210 ⋆ a)

6. Nat6(x) : Ex is axiom 6 of number theory.

(∃a < x)(∃b < x)(Term(a) ∧ Term(b) ∧
x = a ⋆ 28 ⋆ b ⋆ 20 ⋆ 210 ⋆ 22 ⋆ a ⋆ 28 ⋆ b ⋆ 23 ⋆ 20)

7. Nat7(x) : Ex is axiom 7 of number theory.

(∃a < x)(Term(a) ∧ x = a ⋆ 29 ⋆ 21 ⋆ 210 ⋆ 21)

8. Nat8(x) : Ex is axiom 8 of number theory.

(∃a < x)(∃b < x)(Term(a) ∧ Term(b) ∧
x = a ⋆ 29 ⋆ b ⋆ 20 ⋆ 210 ⋆ a ⋆ 29 ⋆ b ⋆ 28 ⋆ a)

That Ex is the axiom of mathematical induction is expressed as follows.

25. suba(x, y) is the Gödel number of the formula ∀Ex((Ex = Ey) ⇒ (Ea))
meaning the formal substitution of Ey into the variable Ex of Ea.

215 ⋆ x ⋆ 22 ⋆ 22 ⋆ x ⋆ 210 ⋆ y ⋆ 23 ⋆ 211 ⋆ 22 ⋆ a ⋆ 23 ⋆ 23

26. MI(x) : Ex is the axiom of mathematical induction.

(∃a < x)(∃b < x)(∃c < x)
(
Form(a) ∧ Var(b) ∧ Var(c) ∧

x = 22 ⋆ suba(b, 21) ⋆ 212 ⋆ 215 ⋆ c ⋆ 22 ⋆ suba(b, c) ⋆ 211 ⋆ suba(b, c ⋆ 20)
⋆23 ⋆ 23 ⋆ 211 ⋆ 215 ⋆ c ⋆ suba(b, c)

)
We have expressed all axioms of S in the formal system S.
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5.5 Numeralwise expression of being a proof sequence

From the above, we can express in the formal system S the fact that a sequence
of expressions is a proof sequence consisting of axioms and the results of the
applications of rules of inference as follows.

27. Axiom(x) : Ex is an axiom.

Pro(x) ∨ Pred1(x) ∨ Pred2(x) ∨ Nat(x) ∨ MI(x)

28. Proof(x) : Ex is a proof sequence.

Seq(x) ∧ ∀y

(
y ∈ x ⇒

(
Axiom(y) ∨ (∃v ≺x y)(∃w ≺x y)

{
(w = v ⋆ 211 ⋆ y) ∨

(∃a < v)(∃b < v)(∃c < y)
[
v = b ⋆ 211 ⋆ a ∧ y = b ⋆ 211 ⋆ c ∧ Gen(a, c) ∧

(∀z ≤ a)(Var(z) ⇒ ¬Part(z, b))
]}))

29. Pr(x) : Ex is provable.

∃y (Proof(y) ∧ (x ∈ y))

30. Re(x) : Ex is refutable.

∃y
(
Proof(y) ∧ (214 ⋆ 22 ⋆ x ⋆ 23 ∈ y)

)
The predicates in 29 and 30 are not recursive predicates in the above.

Other predicates from 1 to 28 are recursive because the latter predicates are
all determined to be true or not by making checkings for natural numbers in a
finite set. In 29, 30, there is no restriction to a finite set of natural numbers.
Thus in a finitary method one can not determine whether the predicates Pr(x)
and Re(x) are true or not.

In the next section, using those descriptions we will show that the predicates
G(a, b), H(a, b) are numeralwise expressible.

6 Gödel predicate

In this section, using the predicates constructed in the previous section, we
will see that the predicates G(a, b), H(a, b) are numeralwise expressed by some
formulae g(a, b), h(a, b) in the formal number theory S.

6.1 Numeralwise expression of Gödel predicate

As stated in section 3, the predicates G(a, b), H(a, b) which are used in con-
structing Rosser formula are defined as follows. In this paper we call the
predicate G(a, b) Gödel predicate.
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Definition 6.1. 1) The predicate G(a, b) means the following.

“A formula Aa with Gödel number a has just one free variable x, and an
expression Eb with Gödel number b is a proof of the formula Aa = Aa(⌈a⌉)
obtained from Aa = Aa(x) by substituting ⌈a⌉ into x.”

2) The predicate H(a, b) means the following.

“A formula Aa with Gödel number a has just one free variable x, and
an expression Eb with Gödel number b is a proof of the formula ¬Aa =
¬Aa(⌈a⌉) obtained from ¬Aa = ¬Aa(x) by substituting ⌈a⌉ into x.”

The predicates G(a, b), H(a, b) are numeralwise expressible by formulae
g(a, b), h(a, b) respectively if the following holds.

1) i) If G(a, b) is true, then ⊢ g(⌈a⌉, ⌈b⌉) holds.

ii) If G(a, b) is false, then ⊢ ¬g(⌈a⌉, ⌈b⌉) holds.

2) i) If H(a, b) is true, then ⊢ h(⌈a⌉, ⌈b⌉) holds.

ii) If H(a, b) is false, then ⊢ ¬h(⌈a⌉, ⌈b⌉) holds.

From the procedures 1 – 28 stated in the previous section follows the next
theorem.

Theorem 6.2. By the Gödel numbering we have defined for S, the pred-
icates G(a, b), H(a, b) in definition 6.1 are numeralwise expressed by some
formulae g(a, b), h(a, b) in S.

Proof. By definition 6.1, these predicates G(a, b), H(a, b) contain a diagonal
formula like Aa(⌈a⌉) as in the phrase of G(a, b): “an expression Eb with Gödel
number b is a proof of the formula Aa = Aa(⌈a⌉) obtained from Aa = Aa(x) by
substituting ⌈a⌉ into x,” which results from a substitution of itself into itself
through Gödel numbering. To treat these we need, as we will see, to show that
the formula y = 2x is number-theoretic for an expression Ex and a natural
number y. To do so, we have only to show that the pair (x, y) of natural
numbers x, y in y = 2x is included in a concrete calculation sequence (0, 1),
(1, 2), (2, 4), (3, 8), (4, 16), . . . . However, as Ex can be an expression which
includes a sequence of expressions, we cannot use commas in the construction
of this calculation sequence. Therefore we need to use numbers s, t which are
not Gödel numbers of any terms, formulae, sequences in the formal system S,
and need to express the number corresponding to the calculation sequence like
s ⋆ 0 ⋆ t ⋆ 20 ⋆ s ⋆ 20 ⋆ t ⋆ 21 ⋆ s ⋆ 21 ⋆ t ⋆ 22 ⋆ s ⋆ 21 + 20 ⋆ t ⋆ 23 ⋆ s ⋆ 22

⋆ t ⋆ 24 ⋆ . . . . Here we use the assignments s = 218, t = 219, and will express
y = 2x as follows.

31. SEQ(x, y, w) : w is a sequence of pairs (n,m) of natural numbers, which
includes the pair (x, y).

Part(218 ⋆ x ⋆ 219 ⋆ y ⋆ 218, w) ∧ ¬Part(218, x) ∧
¬Part(218, y) ∧ ¬Part(219, x) ∧ ¬Part(219, y)
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32. y = 2x : For an expression Ex and a natural number y, y = 2x holds.

∃w

(
SEQ(x, y, w) ∧ (∀a ≤ w)(∀b ≤ w)

[
SEQ(a, b, w)⇒

{
(a = 0 ∧ b = 1) ∨ (∃c ≤ a)(∃d ≤ b)[SEQ(c, d, w) ∧ (a = c + 1) ∧ (b = d · 2)]

}])
Here we need lemma 3.1 stated in section 3, and we restate it as follows.

Lemma 6.3. Let a ≥ 0 be a natural number and let w be the natural
number such that w′ = 2a, where w′ is a successor of the natural number w
(i.e. w′ = w + 1). Then we have

g(a) = 21 ⋆ w. (10)

By this lemma, for a natural number w such that w′ = 2a, 21 ⋆ w gives
the Gödel number g(a) of the numeral 0′′...′ (the number of primes being a)
corresponding to the natural number a. Therefore, the predicates G(a, b) and
H(a, b) are numeralwise expressed in the formal system S by the following
formulae g(a, b) and h(a, b) respectively.

33. g(a, b) : Ea has a free variable Ex, and Eb is a proof of the formula Ea

when Ex = a.

∃x
(
Var(x) ∧ Part(x, a) ∧ Free(x, a) ∧ Proof(b) ∧

∃w[w′ = 2a ∧ (suba(x, 21 ⋆ w) ∈ b)]
)

34. h(a, b) : Ea has a free variable Ex, and Eb is a proof of ¬Ea when Ex = a.

∃x
(
Var(x) ∧ Part(x, a) ∧ Free(x, a) ∧ Proof(b) ∧

∃w[w′ = 2a ∧ (214 ⋆ 22 ⋆ suba(x, 21 ⋆ w) ⋆ 23 ∈ b)]
)

6.2 Gödel’s incompleteness theorem

The Rosser formula Aq(⌈q⌉) is defined as follows.

Definition 6.4. Let q be the Gödel number of the following formula.

∀b (g(a, b) ⇒ ∃c(c ≤ b ∧ h(a, c))) .

Namely

Aq(a) = ∀b (g(a, b) ⇒ ∃c(c ≤ b ∧ h(a, c))) .

Then the following formula is called Rosser formula.

Aq(⌈q⌉) = ∀b (g(⌈q⌉, b) ⇒ ∃c(c ≤ b ∧ h(⌈q⌉, c))) .
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Here

g(⌈q⌉, b) = ∀a (a = q ⇒ g(a, b)) ,

h(⌈q⌉, c) = ∀a (a = q ⇒ h(a, c)) .

The results in the previous subsection have shown theorem 3.4 in section 3.
Therefore we have the incompleteness theorem of Rosser type by theorem 3.6
in section 3.

On the other hand, Gödel’s original result is as follows.

Definition 6.5. Let p be the Gödel number of the following formula.

∀b ¬ g(a, b).

Namely

Ap(a) = ∀b ¬ g(a, b).

Then we call the following formula Gödel sentence or formula.

Ap(⌈p⌉) = ∀b ¬ g(⌈p⌉, b). (11)

where

g(⌈p⌉, b) = ∀a (a = p ⇒ g(a, b)) .

Definition 6.6. A formal system S which includes the number theory is
called ω-consistent if for any variable x and any formula A(x), not all of

A(0), A(1), A(2), . . . and ¬∀xA(x)

is provable. In particular, if S is ω-consistent, it is (simply) consistent.

Theorem 6.7. (Gödel’s incompleteness theorem (1931)) If the number
theory S is consistent, then

not ⊢ Ap(⌈p⌉).

If S is ω-consistent,
not ⊢ ¬Ap(⌈p⌉).

In particular if S is ω-consistent, then Ap(⌈p⌉) is neither provable nor refutable
in S.

Proof. We assume that S is consistent. Suppose that

⊢ Ap(⌈p⌉) (12)

holds. Then there is a proof of Ap(⌈p⌉). Thus, if we let b be the Gödel number
of the proof, G(p, b) is true. Therefore the numeralwise expressibility of the
predicate G(a, b) implies

⊢ g(⌈p⌉, ⌈b⌉).
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From this and axiom 3 of predicate calculus we have

⊢ ∃bg(⌈p⌉, b).

Namely
⊢ ¬∀b¬g(⌈p⌉, b).

This means the following by the definition (11) of Gödel formula.

⊢ ¬Ap(⌈p⌉).

This and (12) show that S is inconsistent. As we have made a premise that S
is consistent, (12) is wrong. The former part is proved.

We assume that S is ω-consistent. In particular, S is consistent. Thus
by the result above, Ap(⌈p⌉) is not provable in S. Thus every natural num-
ber 0, 1, 2, . . . is not a Gödel number of a proof of Ap(⌈p⌉). Namely, G(p, 0),
G(p, 1), G(p, 2), . . . are all wrong. Therefore by the numeralwise expressibility
of the predicate G(a, b), all of

⊢ ¬g(⌈p⌉, ⌈0⌉), ⊢ ¬g(⌈p⌉, ⌈1⌉), ⊢ ¬g(⌈p⌉, ⌈2⌉), . . .

hold. As we assume that S is ω-consistent, from this follows

not ⊢ ¬∀b¬g(⌈p⌉, b).

By the definition (11) of Gödel formula, this means

not ⊢ ¬Ap(⌈p⌉).

This proves the latter part of the theorem.

6.3 The second incompleteness theorem

The former part of Gödel’s theorem 6.7 is summarized as follows.

S is consistent ⇒ Ap(⌈p⌉) is not provable. (13)

By (11), the fact that “Ap(⌈p⌉) is not provable” on the right hand side is written
by translating it by Gödel numbering as follows:

Ap(⌈p⌉) = ∀b ¬ g(⌈p⌉, b). (14)

Therefore if we translate and map the metamathematics by Gödel numbering
into S and write the fact that “S is consistent” by a formal formula in S:

Consis(S),

then together with the formula (14) we have from the first part of theorem 6.7
that

⊢ Consis(S) ⇒ Ap(⌈p⌉). (15)
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Now let us assume on the meta level

⊢ Consis(S).

Then together with the formula (15), we have

⊢ Ap(⌈p⌉).

This contradicts the first part of theorem 6.7. Therefore we have the following
theorem.

Theorem 6.8. (Gödel’s second incompleteness theorem (1931)) If the
number theory S is consistent, then

not ⊢ Consis(S)

holds. Namely if S is consistent, the consistency of S is not proved by a method
formalizable in S.

The proof above is an outline. A complete proof is given in Hilbert-Bernays
(1939). We note that this theorem is proved without using Rosser’s stronger
result: theorem 3.6.

6.4 Implications of the second theorem

As stated at the beginning of section 2 and in subsection 2.1, the Gödel’s
second incompleteness theorem is thought to have shown the impossibility of
the Hilbert’s formalism or program “if one could show the consistency of the
formal axiomatic system of classical mathematics from the finitary standpoint,
it shows the soundness of the formal system treating infinities.” This is because
the second theorem is interpreted as meaning “if a system S is consistent, it
is impossible to show the consistency of S by a method having the power
equivalent to that of S,” and because the finitary method is thought equal to
the ability of number theory S.

If the first and hence the second theorem is proved by a completely syntac-
tic method, this interpretation is surely true. However as we have seen above,
already in the proof of the first incompleteness theorem, a semantic interpreta-
tion is assumed as suggested at the end of subsection 1.3. Namely as mentioned
at the beginning of section 3, in the process of replacing the natural number n
by a numeral ⌈n⌉ of the formal system, a substitution is made with assuming an
identification of the meta leveled theory and the object leveled theory. This is a
self-reference stated in section 1. As stated in subsection 1.3, if self-reference is
not made, one would have almost nothing to speak. However, we have also seen
in the same subsection 1.3 that if one pursues the self-reference to an ultimate
point, he will meet a contradiction. The proof of Gödel’s theorem was made by
making a complete self-reference by embedding the discussion on the meta level
(which is the subject who does mathematics) into the formal system (which
is his own object theory). It is at a glance a syntactic argument, however it
assumes the symmetry or reflexivity between the meta level and the object
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level. To assume the symmetry between the meta level and the object level in
the case of number theory means that the discussion is not based merely on the
syntactic treatment of words, but the meaning of the object theory of natural
numbers is applied to the discussion of the meta level. This reflects the fact
that the discussion on the meta level is influenced by the objects of the research
activity. Here seems to appear the ordinary phenomenon that professionals or
researchers are often influenced by the objects of their own job or study.

Thinking like this, it is not odd that the incomleteness theorem was found by
mathematicians and computation scientists who study numbers. For logicians
in the medieval age, their object of study would have been classical documents,
so it is not surprising that they did not try to think by replacing things by
numbers.

Probably behind the incompleteness theorem are hidden the things like
these. It is then natural that the incompleteness theorem demands the validity
of the theorem of the present or modern people who have no or almost no sense
of incongruity with the thought of replacing their own thinking by numbers.

How about Cretan paradox or other self-referential paradoxes or the fol-
lowing Tarski’s theorem9 arising from the interpretation of those paradoxes
then?

The set of true sentences of a language L is not referred to by a
sentence inside the language L. Namely the predicate T showing
the truthness must not be inside the language L.

These are about the ordinary language and are not related with numbers.
Probably this is also the problem in the same category. In either case of

numbers or language one can do reflection and rumination only when sym-
bolization of them has been made, and no problem as above arises without
the “objectification of oneself.” The problem arises only when the subject of
thinking on the meta level objectifies himself and makes himself the object of
thinking. It is the conveniences produced by civilization, the letters, which are
working here. The letters are indispensable tools for humans in forming the
future plans as well as are troublesome tools which allow them self-reflections.
In any case, it is necessary to make symbolization of language for humans’
life, but there inevitably accompanies the self-reflections. Then necessarily
one is always in the inconsistent world which Gödel’s incompleteness theorem
presents. Namely without language or its symbolization, the human as a sub-
ject of thinking would have been free from the influence of the object world
of the thinking. Once a symbolization of language however is made, the self-
reflection occurs inevitably, and humans have come to carry the undecidable
self-referential problems always.

Until now we have been reviewing the proof of Gödel’s incompleteness theo-
rem. We now turn to a problem which arises accompanying the incompleteness
theorem: What is consequent if one continues to add the undecidable proposi-
tion whose existence is proved by the incompleteness theorem, to the axioms
of S? For example if one adds the proposition Aq(⌈q⌉) = Aq(0)(⌈q(0)⌉) which

9cf. section 6.1 of [11].
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is undecidable in S by theorem 3.6 to the axioms of S, one can repeat the
argument of the incompleteness theorem and gets a new undecidable proposi-
tion Aq(1)(⌈q(1)⌉). In the same way one can produce infinite similar undecidable
propositions Aq(n)(⌈q(n)⌉) (n = 0, 1, 2, . . . ). If then one adds all of these infinite
propositions to the axioms of S, can he repeat the argument of Gödel’s incom-
pleteness theorem? If he can, how about repeating the argument transfinitely
infinite times? Right from the very beginning, the formal system we have been
thinking in this article is able to express propositions of at most countable
infinity. To such a system if we are able to add the uncountably infinite propo-
sitions as axioms, the system S must have propositions of more than countable
infinity. In metamathematics it seems to be generally assumed10 that such a
transfinite procedure is possible only up to the extent that the added axioms
are countable. However insofar as we have seen, there seems to be no reason
for it. If one can then make transfinite operations on the meta level, this is
certainly inconsistent with the countability of the number of propositions of
the system S.

In the following sections we will consider those problems.

7 Mathematics is inconsistent?

In this section we will consider the problem whether the set theory ZFC which is
thought to be a basis of modern mathematics is consistent. As stated in section
2, the discovery of Russell’s set in 1903 gave an impact to the foundation of
mathematics and became a source of contention. To deal with the situation,
there were proposed Hilbert’s formalism, and other standpoints. As stated the
Hilbert’s standpoint that “if one can show the consistency of mathematics based
on finitary standpoint, mathematics is sound” seems to have been answered
negatively by the Gödel’s incompleteness theorem. In this section we will see
that the Gödel’s theorem seems to imply that mathematics is contradictory.

7.1 Incompleteness theorem of Rosser type, revisited

We now consider a formal set theory S equivalent to ZFC, and assume that
we can use the same set theory ZFC also on the meta level. We can develop a
number theory in this formal system S. We denote this subsystem of number
theory by S(0). Then the Gödel predicate G(0)(a, b) and the related predicate
H(0)(a, b) are defined as follows.

Definition 7.1. 1) The predicate G(0)(a, b) means the following.

“A formula Aa with Gödel number a has just one free variable x, and an
expression Eb with Gödel number b is a proof of the formula Aa = Aa(⌈a⌉)
obtained from Aa = Aa(x) by substituting ⌈a⌉ into x.”

2) The predicate H(0)(a, b) means the following.

10cf. a later subsection 7.5.
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“A formula Aa with Gödel number a has just one free variable x, and
an expression Eb with Gödel number b is a proof of the formula ¬Aa =
¬Aa(⌈a⌉) obtained from ¬Aa = ¬Aa(x) by substituting ⌈a⌉ into x.”

For these predicates we have shown the following in the former sections.

Theorem 7.2. By the Gödel numbering we have stated before, the pred-
icates G(0)(a, b), H(0)(a, b) in definition 7.1 are numeralwise expressed by cor-
responding formulae g(0)(a, b), h(0)(a, b) in S(0), therefore in the formal set
theory S. Namely the following holds. Let the formulae g(0)(a, b) and h(0)(a, b)
be defined as follows.

1) g(0)(a, b) : Ea has a free variable Ex, and Eb is a proof of the formula Ea

when Ex = a.

∃x
(
Var(x) ∧ Part(x, a) ∧ Proof(b) ∧

∃w[w′ = 2a ∧ (suba(x, 21 ⋆ w) ∈ b)]
)

2) h(0)(a, b) : Ea has a free variable Ex, and Eb is a proof of ¬Ea when
Ex = a.

∃x
(
Var(x) ∧ Part(x, a) ∧ Proof(b) ∧

∃w[w′ = 2a ∧ (214 ⋆ 22 ⋆ suba(x, 21 ⋆ w) ⋆ 23 ∈ b)]
)

Then the following holds.

(1) i) If G(0)(a, b) is true, then ⊢ g(0)(⌈a⌉, ⌈b⌉) holds.

ii) If G(0)(a, b) is false, then ⊢ ¬g(0)(⌈a⌉, ⌈b⌉) holds.

(2) i) If H(0)(a, b) is true, then ⊢ h(0)(⌈a⌉, ⌈b⌉) holds.

ii) If H(0)(a, b) is false, then ⊢ ¬h(0)(⌈a⌉, ⌈b⌉) holds.

Definition 7.3. Let q(0) be the Gödel number of the formula

∀b[¬g(0)(a, b) ∨ ∃c(c ≤ b ∧ h(0)(a, c))].

Namely

Aq(0)(a) = ∀b[¬g(0)(a, b) ∨ ∃c(c ≤ b ∧ h(0)(a, c))].

We then define Rosser formula in S(0) as follows.

Aq(0)(⌈q(0)⌉) = ∀b[¬g(0)(⌈q(0)⌉, b) ∨ ∃c(c ≤ b ∧ h(0)(⌈q(0)⌉, c))].

Then the incompleteness theorem of Rosser type for S(0) is as follows.

Lemma 7.4. If S(0) is consistent, both of Aq(0)(⌈q(0)⌉) and ¬Aq(0)(⌈q(0)⌉)
are unprovable in S(0).

The proof is given in theorem 3.6.
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7.2 Extension of S(0)

By lemma 7.4, if we let either of Aq(0)(⌈q(0)⌉) or ¬Aq(0)(⌈q(0)⌉) be A(0), and
add A(0) to the axioms of S(0) as a new axiom to obtain a new system S(1), we
have

S(1) is consistent. (16)

We extend the Gödel numbering for S(0) in theorem 7.2 to the system S(1),
and extend definitions 7.1 and 7.3 to the system S(1) as follows.

1) The predicate G(1)(a, b) means the following.

“A formula Aa with Gödel number a has just one free variable x, and an
expression Eb with Gödel number b is a proof of the formula Aa = Aa(⌈a⌉)
obtained from Aa = Aa(x) by substituting ⌈a⌉ into x.”

2) The predicate H(1)(a, b) means the following.

“A formula Aa with Gödel number a has just one free variable x, and
an expression Eb with Gödel number b is a proof of the formula ¬Aa =
¬Aa(⌈a⌉) obtained from ¬Aa = ¬Aa(x) by substituting ⌈a⌉ into x.”

In the same way as before we can show that the predicates G(1)(a, b) and
H(1)(a, c) are numeralwise expressed by the corresponding formulae g(1)(a, b)
and h(1)(a, c) in S respectively.

3) Let q(1) be the Gödel number of the formula

∀b[¬g(1)(a, b) ∨ ∃c(c ≤ b ∧ h(1)(a, c))].

Namely

Aq(1)(a) = ∀b[¬g(1)(a, b) ∨ ∃c(c ≤ b ∧ h(1)(a, c))].

Then

Aq(1)(⌈q(1)⌉) = ∀b[¬g(1)(⌈q(1)⌉, b) ∨ ∃c(c ≤ b ∧ h(1)(⌈q(1)⌉, c))].

Using the numeralwise expressibility of the predicates G(1)(a, b) and H(1)(a, c)
and the consistency of S(1) in (16), we can show in the same way as in the proof
of lemma 7.4

not ⊢ Aq(1)(⌈q(1)⌉) and not ⊢ ¬Aq(1)(⌈q(1)⌉) in S(1).

Then we let either of Aq(1)(⌈q(1)⌉) or ¬Aq(1)(⌈q(1)⌉) be A(1), and can add
A(1) as a new axiom of S(1) to obtain a new system S(2). Then S(2) is consistent.

Proceeding in the same way, we have for any natural number n(≥ 0)

S(n) is consistent (17)

and

not ⊢ Aq(n)(⌈q(n)⌉) and not ⊢ ¬Aq(n)(⌈q(n)⌉) in S(n).
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7.3 Infinite extension of S(0)

We denote by S(ω) the system obtained by adding all of the following as new
axioms to the system S(0).

A(n) = Aq(n)(⌈q(n)⌉) or ¬Aq(n)(⌈q(n)⌉) (n ≥ 0)

Then by (17), the system S(ω) is consistent. Let q̂(n) be the Gödel number of
the formula A(n). The formula A(j) is not provable in S(i+1) for i < j. Thus if
i < j, the system S(i) is a proper subsystem of S(j), and q̂(i) < q̂(j). Therefore
for a given formula Ar with Gödel number r, we can decide11 whether Ar is an
axiom of the form A(n) by comparing the given formula Ar with a finite number
of axioms A(n) with q̂(n) ≤ r. From this fact we can define the following two
predicates on the meta level of S(ω), if we assume the same Gödel numbering
for the system S(ω) as the one for the system S(0) in theorem 7.2.

1) The predicate G(ω)(a, b) means the following.

“A formula Aa with Gödel number a has just one free variable x, and an
expression Eb with Gödel number b is a proof of the formula Aa = Aa(⌈a⌉)
obtained from Aa = Aa(x) by substituting ⌈a⌉ into x.”

2) The predicate H(ω)(a, b) means the following.

“A formula Aa with Gödel number a has just one free variable x, and
an expression Eb with Gödel number b is a proof of the formula ¬Aa =
¬Aa(⌈a⌉) obtained from ¬Aa = ¬Aa(x) by substituting ⌈a⌉ into x.”

The predicates G(ω)(a, b) and H(ω)(a, b) are numeralwise expressed12 by
corresponding formulae g(ω)(a, b) and h(ω)(a, c) in S.

3) Let q(ω) be the Gödel number of the formula

∀b[¬g(ω)(a, b) ∨ ∃c(c ≤ b ∧ h(ω)(a, c))].

Namely

Aq(ω)(a) = ∀b[¬g(ω)(a, b) ∨ ∃c(c ≤ b ∧ h(ω)(a, c))].

Then

Aq(ω)(⌈q(ω)⌉) = ∀b[¬g(ω)(⌈q(ω)⌉, b) ∨ ∃c(c ≤ b ∧ h(ω)(⌈q(ω)⌉, c))].

From these and the consistency of S(ω), similarly to lemma 7.4, we obtain

not ⊢ Aq(ω)(⌈q(ω)⌉) and not ⊢ ¬Aq(ω)(⌈q(ω)⌉) in S(ω).

11In fact by the monotonicity of the sequence bq(n) and its recursive definition, it is possible
to decide whether Ar is the axiom of the form A(n) in a recursive way. cf. e.g. [2], Chapter
5. However as we assume ZFC on the meta level, we can make this decision by the axioms
of ZFC even if we cannot make this decision recursively.

12Note that in the proof of theorem 6.2 we do not use the recursiveness of the predi-
cates G(a, b), H(a, b). Theorem 6.2 thus yields that the set-theoretic predicates G(ω)(a, b),
H(ω)(a, b) on the meta level are directly expressed by the formal formulae g(ω)(a, b), h(ω)(a, c)
of system S which is a formalization of set theory ZFC.
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7.4 Transfinite extension of S(0)

Now we let
A(ω) = Aq(ω)(⌈q(ω)⌉) or ¬Aq(ω)(⌈q(ω)⌉)

and we add this as an axiom to the system S(ω) to obtain a new system S(ω+1).
Then in a similar way as above we obtain

If S(0) is consistent, then S(ω+1) is consistent.

Repeating this procedure in a similar way transfinitely, we can construct13 a
consistent formal system S(α) for any ordinal number α, which is an extension
of S(0). Namely we have

If S(0) is consistent, then S(α) is consistent.

However if we can construct a formal system S(α) for any ordinal α, the
number of the totality of axioms A(α) added at each step will be greater than
countable infinity14. The number of the formulae of the system S is at most
countable as each formula consists of a finite number of primitive symbols.
This is a contradiction. Thus the extension like this must stop at a countable15

ordinal β0. Namely we have shown the following.

Theorem 7.5. There is a countable limit ordinal β0 such that when
α = β0, the system S(α) has no undecidable proposition, and S(β0) is complete.
In other words, any extension of S(β0) is inconsistent.

Proof. We have only to show that β0 is a limit ordinal. In fact if β0 = δ+1,
S(β0) is obtained by adding the axiom A(δ) to S(δ). In this case, by the same
method mentioned above, the system S(β0) = S(δ+1) can be extended with
retaining consistency, contradicting the fact that the extension ends at β0.

7.5 Church-Kleene ordinal

Feferman [3] considers as an axiom A(α) to be added to the system S(α) a
proposition Consis(α) meaning that “S(α) is consistent.” This proposition is
undecidable by Gödel’s second incompleteness theorem. He showed that the
extension ends at a countable ordinal ω1 = ωCK

1 called Church-Kleene ordinal.
According to him

ω1 < ωωω2

.

13cf. former footnotes 11, 12.
14This is because we assume the axiom of choice. cf. section 8.3, lines 6-9 of page 199 and

theorem 8.10 in section 8.2 of [11].
15This is invariantly true even if the system S has primitive symbols more than countable

infinity. In this case certainly the number of formulae of S can be greater than countable
infinity. However the axioms A(α) that can be added as axioms are undecidable propositions

of the system S(α), and for A(α) to be such a proposition, α must be countable. Namely for

Gödel predicate G(α)(a, b) to be numeralwise expressible in S, it is necessary that α is at
most countable.
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In our context β0 = ω1, and by theorem 7.5, the extension of our system S(α)

ends at α = ω1. Namely if S(0) is consistent, S(ω1) cannot be extended further
with retaining consistency, i.e. S(ω1) is complete.

The ordinal ω1 is a countable limit ordinal by theorem 7.5. Therefore we
can take a monotone increasing sequence {αn}∞n=0 of countable ordinals such
that αn < ω1 (n = 0, 1, 2, . . . ) and

ω1 =
∞⋃

n=0

αn.

The axioms A(γ) (γ < ω1) of S(ω1) are the sum of the axioms A(γ) (γ < αn) of
S(αn). By the definition of q̂(γ) for γ < αn, it is possible to decide whether a
given formula Ar is an axiom of S(αn) by seeing whether A(γ) = Ar for a finite
number of γ with q̂(γ) ≤ r. Therefore to see if a given formula Ar is an axiom
of S(ω1), it is sufficient to see if A(γ) = Ar for a finite number of γ such that
q̂(γ) ≤ r, γ < ω1. By

ω1 =
∞⋃

n=0

αn,

we have
q̂(γ) ≤ r ∧ γ < ω1 ⇔ ∃n [q̂(γ) ≤ r ∧ γ < αn] .

Thus whether a given formula Ar is an axiom of S(ω1) is decided by an induction
on n.

We define as follows.

1) The predicate G(ω1)(a, b) means the following.

“A formula Aa with Gödel number a has just one free variable x, and an
expression Eb with Gödel number b is a proof of the formula Aa = Aa(⌈a⌉)
obtained from Aa = Aa(x) by substituting ⌈a⌉ into x.”

2) The predicate H(ω1)(a, b) means the following.

“A formula Aa with Gödel number a has just one free variable x, and
an expression Eb with Gödel number b is a proof of the formula ¬Aa =
¬Aa(⌈a⌉) obtained from ¬Aa = ¬Aa(x) by substituting ⌈a⌉ into x.”

Then these predicates are numeralwise expressed by the corresponding formulae
g(ω1)(a, b), h(ω1)(a, c) in S. Thus the Gödel number q(ω1) of the formula

Aq(ω1)(a) = ∀b[¬g(ω1)(a, b) ∨ ∃c(c ≤ b ∧ h(ω1)(a, c))]

in S(ω1) is defined. Therefore the system S(ω1) has an undecidable proposition

Aq(ω1)(⌈q(ω1)⌉)),

and the incomleteness theorem holds for the system S(ω1). Hence S(ω1) is
incomplete. This contradicts the following consequence of theorem 7.5.
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“The extension of the system S(α) ends at α = ω1, and if S(0) is
consistent, it is impossible to extend S(ω1) further with retaining
consistency. Namely if S(0) is consistent, then S(ω1) is complete.”

The argument in this subsection is valid even if we do not introduce Church-
Kleene ordinal. We can make the same argument for the countable ordinal β0

in theorem 7.5. Therefore the contradiction stated in this subsection already
follows from theorem 7.5, and what was stated in this section holds also for
ZF.

In this way we meet a contradiction if we assume that set theory holds on
the meta level and discuss the set theory as an object theory.

In Hilbert’s formalism it is only permitted to do finite procedures on the
meta level, and one tries to treat the object theory which deals with the in-
finities. If we take this standpoint, the contradiction mentioned above does
not seem to appear. However, the consistency of the object world implies its
incompleteness. Further the consistency itself is not decidable.

However if we reflexively assume that the object world takes also finitary
standpoint, then it seems that there may appear no contradiction, and the
object world would be complete. In other words, if we do not assume the axiom
of infinity in the object set theory, the meta leveled world and the object leveled
world are symmetric or reflexive, and on this setting, the object world will be
consistent and complete. The cause that a contradiction appeared in the above
argument is that we assumed the axiom of infinity on the both levels of the
object world and the meta world. Namely the cause is that we assumed that
the actual infinity exists in both of the object and meta worlds. If we take the
standpoint that mathematical existence is only computable things and that the
infinity is not an actual one but is a fictitious existence which is an auxiliary
tool for the inquiry of the computability, Hilbert’s thesis that consistency and
completeness are the certification of the soundness of mathematics will revive.

In the next section we will see the deeper problem hidden behind these.

8 Self-reference and inconsistency

As we have seen in section 7, if we apply to the number theory S(0) as a
subsystem of set theory S the argument of incompleteness theorem repeatedly
and continue to add undecidable propositions to the axioms of S(0), we finally
arrive at a countable ordinal β0 and the corresponding extended system S(β0)

must be a complete system and has no undecidable propositions. However we
have seen that it is possible to construct an undecidable Rosser formula in this
system S(β0) and the argument of incompleteness theorem is also valid. This
is a contradiction.

8.1 Cause of inconsistency

We stated that the cause of the contradiction is that we have assumed that one
can use the set theory on the meta level to the same extent as the set theory
on the object level. If, returning to the original point of formalism, we assume
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that only the finitary method is used on the meta level, the extension of S(0)

is possible merely by the usual mathematical induction. Hence the extension
of S(0) is allowed at most to S(ω) which is incomplete, and further extension is
not allowed by the finite ability of meta level16. Therefore on this standpoint
there will be no contradiction mentioned above.

Further as stated at the end of subsection 7.5, if we restrict the mathematics
on the object level to the finite mathematics that the intuitionism admits, we
can preserve the reflexivity of the meta level and the object level with retaining
the consistency of both levels.

What we have stated above is a solution when we assume that there is no
problem in the argument of the proof of Gödel’s incompleteness theorem. As
mentioned already at several places, the proof of incompleteness theorem is
possible by allowing some self-reference or ‘confusion’ of identifying the num-
bers on the meta level with the numbers on the object level by substitutions.
Namely as stated at the beginning of section 3, we have defined the operation
of substitution of the natural number n on the meta level into a formula F (x)
with letting x = ⌈n⌉ by

F (⌈n⌉) def
= ∀x (x = n ⇒ F ) . (18)

We here make an apparent confusion of identifying the meta level with the
object level. This is an implicit assumption that corresponds to the Russell’s
axiom of reducibility in the sense that we have identified the natural number
n on the meta level with the numeral ⌈n⌉ on the object level. In the number
theory considered in Gödel’s original paper, the axiom of reducibility is assumed
as it uses the system based on Principia Mathematica of Whitehead and Russell.
However the ‘implicit assumption’ that was referred to above as corresponding
to the axiom of reducibility is not this one that is explicitly referred to as
the axiom of reducibility in Gödel’s original paper. We are speaking of the
‘implicit assumption’ that for a given natural number xj on the meta level,
one constructs a numeral Z(xj) on the object level and substitutes it into the
variable uj of the formula r(u1, . . . , un) on the object level. Namely we are
pointing out the confusion made in the operation of forming a numeral Z(xj)
on the object level from a natural number xj on the meta level.

8.2 Self-reference and inconsistency

As stated in subsection 6.4, the second incompleteness theorem is thought
usually as claiming the impossibility of Hilbert’s formalism that mathematics
is sound if one can show the consistency of mathematics by writing the classical
mathematics which treats the infinity as a formal axiomatic system. If the
incompleteness theorem is shown completely in a syntactic manner, it would
be true to assert so. However as we have seen, already in the proof of the
first incompleteness theorem, one has made a ‘semantic interpretation’ when
replacing the natural number n on the meta level by the numeral ⌈n⌉ on the

16In mathematics which stands on the finitary method, we cannot think of an infinite set
like ω = {0, 1, 2, . . . } as a set.
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object level. This is the self-reference that was mentioned in section 1. And
the reflexivity or the symmetricity between the meta level and the object level
means this self-reference or the confusion between the two levels.

Therefore the true cause of the contradiction is said to be in allowing the
self-reference. However as we have considered in section 1, speaking is nothing
but a self-reference itself for humans.

Then without quitting being humans, how can we avoid the contradiction?
As stated at the end of subsection 7.5, if we allow self-reference, the only

way to avoid the contradiction is to speak of finite things only.
Probably for living beings which have no language or its ‘symbolization,’

there would be no problem which we meet. Self-reference is thought to be a
problem proper to humans who have language or its symbolization. In humans
who have acquired the ability to control things actually in concrete manner, the
obtainment of language gave them the power to work on the things and nature.
There always associate byproducts with all things. The language gave humans
ability and power. However at the same time it gave them the possibility to
come in the infinite cycles of self-reference.

8.3 Restriction of self-reference

As seen in section 2, the paradoxes like Russell’s one which looks coming from
the self-reference produced the formalism that proposed that if one writes down
the mathematics in a formal system of symbols in finitary method, the contra-
diction would disappear. The avoidance of Russell’s paradox was done in this
direction by a formal axiomatic set theory. This approach also excluded the
Burali-Forti’s paradox of the set of all ordinals and Cantor’s paradox of the set
of all sets by regarding them as not-sets or proper classes17.

There are many problems which arise by self-reference. For example, there
is the problem of ‘impredicative definition.’ This refers to the situation that a
set M and an object m are defined as follows. Namely on the one hand, m is
an element of the set M , and on the other hand, the definition of m depends
on M . Similarly the terminology is used in the case when for a property P , an
object m whose definition depends on P satisfies the property P . In the latter
words, the set M above is the set of all elements which satisfy the property P .
Apparently these situations are ‘cyclic.’ Poincaré (1905-6) asserted that the
cause of the paradox like this is the vicious circle of discussions, and Russell
made the same opinion as his vicious circle principle (1906) which claims to
prohibit such cyclic definitions. This principle can exclude Russell’s paradox,
the paradox of all sets, etc. However how about the following concrete example
of analysis?

The definition of supremum supM of a subset M of real numbers is as
follows in the Dedekind’s construction of real numbers by his notion ‘cut.’ Let
R be the totality of real numbers and let Q be the totality of rational numbers.
An element α of R is defined as a set of rational numbers which satisfies the
following three properties.

17see for details chapters 7, 8 of [11].
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1. α ̸= ∅, αc := Q − α = {s|s ∈ Q ∧ s /∈ α} ̸= ∅.

2. r ∈ α, s < r, s ∈ Q ⇒ s ∈ α.

3. α has no maximum element.

Given a set M of real numbers, the supremum supM of M is defined as the
sum set of M : ⋃

M =
⋃

α∈M

α.

In general the set M is a set of all elements m of R which satisfies the given
properties. In the above case, in the sense that the definition of sup M = ∪M ∈
R starts from R and then defines an element supM of R, the definition is an
impredicative definition.

One might think he seems to be able to refute the above criticism as follows.
The above procedure just describes a process of choosing an element sup M
from the set R, but does not create the element sup M itself by the definition.
However when writing the class of all sets by C, one can then say that the set
{x | x ∈ C, x ̸∈ x} is just choosing elements x ∈ C such that x ̸∈ x. Thus
if the definition of supM is allowed, then the Russell’s set must be allowed to
exist.

Those considerations would tell that just the exclusion of cyclic arguments
might exclude other necessary and useful things, even if it can exclude para-
doxes.

On the basis of such backgrounds, it has been understood that it is useful for
the purpose of avoiding contradictions to prescribe sets by defining set theory
as a formal axiomatic system. At this point it could be said that the usefulness
of the concept of formal system has become to be understood. This is the fact
that makes us realize again that the axiomatic description that goes back to
Euclid is still effective and useful in the present age.

The Tarski’s theorem stated in subsection 6.4:

The set of true sentences of a language L is not referred to by a
sentence inside the language L. Namely the predicate T showing
the truthness must not be inside the language L.

tells the similar thing. Namely summarizing, we have

The truthness of things is not the one which can be referred to
directly to itself. It is recognized by systematic descriptions through
axiomatic formulations.

8.4 System as a restriction of self-reference

As we have seen, the cause of paradoxes or contradictions is self-reference,
which goes back to the language and its symbolization that humans possess.
We also have seen that it is equivalent to abandon being humans to remove
this cause, however. In this situation we have seen that the way which we can
adopt is the moderate course that, not by trying to remove the problems by
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concentrating on a local point like impredicative definition but by standing on
a global viewpoint to the problems, we try to avoid contradictions by rewriting
whole things as a formal system.

If we write down these with limiting to mathematics, it will be as follows.

Theorem 8.1. 1) If we allow complete self-reference, there will be a
contradiction if we do not restrict the objects of thought to finite numbers.

2) If it is possible to restrict self-reference completely, there will be no con-
tradictions even if infinity exists. However in this case, we could not
speak of ourselves as well as of the allowed infinity. Because speaking
necessarily accompanies self-reference. Nevertheless it would be possible
to avoid the current contradictions by making appropriate restrictions to
the deed of speaking according to the order of necessity.

In fact the axiomatic set theory always is at the risk of meeting contradic-
tions. But at the point when a contradiction is discovered, it would be possible
to retrieve the current consistency by making new restrictions to the system of
set theory.

8.5 Conclusion

We have been stating the important points related to the Gödel’s incomplete-
ness theorem. The lesson we have learned would be that there is no end point
for everything. When we think all the problems have been solved, a new prob-
lem has already arisen. Humans might be destined to meet the ‘next’ always.
This ‘next’ problem is often caused by humans themselves, and this would sug-
gest that the ‘next’ problem is produced by ‘self-reference.’ The problem of
self-reference will continue forever in this way.

Not only science but also whatever humans do is the deeds and statements
that arise from his or her ‘Working Hypotheses.’ All is thought to be the
attempt to verify hypotheses.

Gödel’s result may be taken as a negative answer to the working hypothesis
of Leibniz: “by writing down mathematics in terms of symbols, we can generate
all mathematical theorems by a machine.” However as we have seen there was
made an implicit assumption here. We have stated that this assumption to
identify the meta level and the object level is the characteristic that humans
possess. We have referred to the fact that humans learned in the 20th century
the method to deal with such problems based on a global viewpoint of using
the systemic method of axiomatic formal set theory, not by coping with the
problems by taking a local viewpoint of removing cyclic arguments such as
impredicative definitions.

Probably the method mentioned above will be replaced by others with re-
garding it as a former ‘working hypothesis’ or will be restated in other forms in
the future. All is an infinite series of verifications and rebuilding hypotheses.

If only the machines that humans produced remain in the future and if the
truth is only what those machines tell and there is no human who checks it,
there will be no existence which tells things like Gödel’s theorem. In such a
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world, there will then be no problems and those machines will produce ‘all
mathematical theorems’ at peace.

The learning that humans got in the 20th century to write down mathe-
matics in axiomatic system without referring to the truthness directly might
suggest the direction that humans would entrust themselves to such a ‘system’
in the future.

Things like these are the problems that the younger generations are meeting
actually in the present age, and those people will see the answers in the future.
The author hopes that what has been stated in the present article would be
able to tell those younger generations the course that humans traced and would
be helpful as any suggestions to their future.
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