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Abstract

We give a framework of localization for the index of a Dirac-type
operator on an open manifold. Suppose the open manifold has a com-
pact subset whose complement is covered by a finitely many open
subset, each of which has a structure of the total space of a torus bun-
dle. Under a certain compatibility condition and acyclicity we show
that the index of the Dirac-type operator is localized on the compact
set.
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1 Introduction

This paper is the second of the series concerning a localization of index of
elliptic operator.

For a linear elliptic operator on a closed manifold, its Fredholm index
is sometimes determined by the information on a specific subset under ap-
propriate geometric condition. Such a phenomenon is called localization of
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index. A typical example is Hopf’s theorem identifying the index of de Rham
operator with the number of zeros of a vector field counted with sign and
multiplicity. In this case the geometric condition is given by the vector field,
and the index is localized around the zeros of the vector field. Another typ-
ical example is Atiyah-Segal’s Lefschetz formula for the equivariant index
under torus action, when the geometric condition is given by the torus ac-
tion. The index is localized around its fixed point set, and the localization
is understood in terms of an algebraic localization of equivariant K-group.
In particular when the manifold is symplectic and the elliptic operator is
a Dirac type operator, the localization is extensively investigated using the
relation between the algebraic localizations of the equivariant K-group and
that of the equivariant ordinary cohomology group.

In the previous paper [4], we dealt with closed symplectic manifold equipped
with a prequantizing line bundle and a structure of Lagrangian fibration, and
described a localization of the index of Dirac-type operators, twisted by the
prequantizing line bundle, on the subset consisting of Bohr-Sommerfeld fibers
and singular fibers. A novel feature of our method is that we do not use a
global group action but use only a structure of torus bundle on an open
subset of the manifold.

In the present paper we generalize our method to deal with the case
when we do not have a global torus bundle on the open subset, but we just
have a structure of torus bundle on a neighborhood of each points, which
gives a family of torus bundles satisfying some compatibility condition. The
various torus bundles may have tori of various dimensions as their fibers.
This generalization enables us to describe the localization phenomenon more
precisely. Even for the case in the previous paper, we could replace the subset
on which the index is localized with a smaller subset. A typical example of
our generalization is the localization of index for prequantized toric manifold,
for which we would need an orbifold version of our formulation. Moreover we
can deal with some prequantized singular Lagrangian fibration without global
toric action (Section 6). In our subsequent paper we will use the localization
to give an approach to V. Guillemin and S. Sternberg’s conjecture concerning
“quantization commutes with reduction” in the case of torus actions. Though
our motivating example is the index of a prequantized symplectic manifold,
the localization of index is formulated for more general cases. In fact we first
establish a general framework to formulate the index of elliptic operator on
a complete manifold (Section 3). This section is independent of the other
sections and the framework may be interesting of its own.

The mechanism of our localization is explained as a version of Witten
deformation, where the potential term itself is a first order differential op-
erator. Our geometric input data is a family of torus bundles. Roughly
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speaking we deform the operator like an adiabatic limit shrinking the various
fiber directions at the same time in a compatible manner. The potential term
corresponds to some average of the de Rham operators along the various fiber
directions.

Formally our localization is formulated as a property for the index of the
elliptic operator on an open manifold: let D be an elliptic operator on a
(possibly non-compact) manifold X, and V is an open subset of X whose
complement X rV is compact. Suppose V has a certain geometric structure
s, by which we can modify D to construct a Fredholm operator. The index of
the Fredholm operator depends on the data (X,V, s,D). Suppose the index
satisfies the following properties. Firstly the index is deformation invariant.
Secondly if X ′ is an open subset of X containing X rV , and hence X ′ rV is
compact. Let D′ be the restriction of D on X ′. We assume that the structure
s has its restriction s′ on V ′ = X ′ ∩ V . Then we have the index of the
Fredholm operator constructed from the data (X ′, V ′, s′, D′). The required
excision property is the equality between the two indices. We will construct
Fredholm operators which satisfies the above type of excision property. The
structure s on V is not extended on the whole X. In this sense X r V is
regarded as singular locus of the structure. The index is localized on the
singular locus X r V , and we call it the local index of the data (X,V, s,D).
When X r V is of the form of the disjoint union of finitely many compact
subsets, the localized index is equal to the sum of the contributions from the
compact subsets.

Our first main result is the construction of the local index when the
structure s is the strongly acyclic compatible system defined in Section 2. Our
second main result is a few basic properties of the local index, in particular
a product formula of the local index.

The organization of this paper is as follows. In Section 2 we define the
notion of strongly acyclic compatible system, which we use as the geometric
structure s in the above explanation. In Section 3 we give a formulation of
index for elliptic operators on complete Riemannian manifolds. This formu-
lation is a generalization of the one given in Section 5 of [5]. This section
is independent of the other sections. In Section 4 we define the index of
elliptic operator using the framework of Section 3 under the assumption that
a strongly acyclic compatible system is given on an end of the base manifold.
In Section 5 we show a product formula for the index defined in Section 4.
In Section 6 we give an example of our formulation using some 4-dimensional
Lagrangian fibration with singular fibers. In Appendix we give proofs of the
technical lemmas used in the main part.



2009/10/1 5

1.1 Conventions/Notations

• Tangent bundle along fibers
When π is a projection of a fiber bundle over a smooth manifold M we

denote by T [π] the vector bundle over M consisting of tangent vectors along
fibers of π.

• Tensor products of Z/2-graded algebras and modules.
Let A = A0 ⊕ A1 and B = B0 ⊕ B1 be two Z/2-graded algebras. Then

we define a structure of a Z/2-graded algebra on the tensor product A ⊗ B
as follows. The Z/2-grading is defined as the one for vector spaces,

A ⊗ B = ((A0 ⊗ B0) ⊕ (A1 ⊗ B1)) ⊕ ((A0 ⊗ B1) ⊕ (A1 ⊗ B0)).

The multiplicative structure is defined by

(a ⊗ b) · (a′ ⊗ b′) = (−1)deg b deg a′
(aa′) ⊗ (bb′),

where a, a′ ∈ A0 ∪ A1 and b, b′ ∈ B0 ∪ B1.
Now let RA and RB be Z/2-graded A and B modules respectively. Then

we define a structure of a Z/2-graded A ⊗ B-module on the tensor product
RA ⊗ RB by the following formula.

(a ⊗ b) · (rA ⊗ rB) = (−1)deg b deg rA(arA ⊗ brB),

where a ∈ A0 ∪ A1, b ∈ B0 ∪ B1, rA ∈ R0
A ∪ R1

A and rB ∈ R0
B ∪ R1

B.
Note that under this convention there is a natural isomorphism between

Z/2-graded Clifford algebras

Cl(T1 ⊕ T2) ∼= Cl(T1) ⊗ Cl(T2)

for any Hermitian vector spaces T1 and T2.

• Complex structure on vector bundles
If we denote (R2n)C, then we consider R2n as the complex vector space

with the standard complex structure. Let E be a real vector bundle over a
topological space. We denote by EC the complex vector space E ⊗R C. If E
is equipped with a complex structure J , then we denote EC by the complex
vector space with

√
−1 := J : E → E. In addition for such E and J , we

denote the anti-holomorphic part by E0,1 = E0,1
C , i.e., E0,1 is the complex

vector bundle consisting of eigenvectors of J : EC → EC with eigenvalue
−
√
−1.
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2 Compatible fibrations and acyclic compat-

ible system

2.1 Compatible fibrations

Let M be a manifold.

Definition 2.1 A compatible fibration on M is a collection of data {πα : Vα →
Uα | α ∈ A} satisfying the following properties.

1. M = ∪α∈AVα is an open covering.

2. Each πα : Vα → Uα is a fiber bundle whose fiber is a closed manifold.

3. For each α and β, we have

Vα ∩ Vβ = π−1
α (πα(Vα ∩ Vβ)) = π−1

β (πβ(Vα ∩ Vβ)).

4. If Vα ∩ Vβ ̸= ∅ and α ̸= β, then there exist a smooth manifold Uαβ,
fiber bundles παβ : Vα ∩ Vβ → Uαβ and pα

αβ : Uαβ → πα(Vα ∩ Vβ) such
that fibers are closed manifolds and the following diagram commutes;

Vα ∩ Vβ

πα|Vα∩Vβ

}}{{
{{

{{
{{

{{
{{

{{
{{

{{
{{

παβ

²² πβ |Vα∩Vβ

!!CC
CC

CC
CC

CC
CC

CC
CC

CC
CC

Uαβ

pα
αβvvmmmmmmmmmmmmmm

pβ
αβ ((QQQQQQQQQQQQQQ

Uα ⊃ πα(Vα ∩ Vβ) πβ(Vα ∩ Vβ) ⊂ Uβ

Let {πα : Vα → Uα | α ∈ A} be a compatible fibration on M . We often
denote it by {πα} for simplicity.

Definition 2.2 For α ∈ A and x ∈ Vα, we define A⊂α and A(α; x) as follows.

1. A⊂α := {β ∈ A |Vα∩Vβ ̸= ∅, pβ
αβ : Uαβ → πβ(Vα∩Vβ) is a diffeomorphism.}.

2. A(α; x) := {β ∈ A | x ∈ Vα ∩ Vβ, β ∈ A⊂α}.

Remark 2.3 Note that if β ∈ A(α, x), then we have π−1
β πβ(x) ⊂ π−1

α πα(x).

Definition 2.4 A subset C of M is admissible if for each α, we have

C ∩ Vα = π−1
α (πα(C ∩ Vα)).
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Example 2.5 Each Vα is admissible.

Proposition 2.6 Let C be an admissible open subset of M . Then {πα|C∩Vα : C∩
Vα → πα(C ∩ Vα)} is a compatible fibration on C.

Proof. It is sufficient to show the following three equalities

1. π−1
α πα(C ∩ Vα ∩ Vβ) = C ∩ Vα ∩ Vβ,

2. π−1
αβπαβ(C ∩ Vα ∩ Vβ) = C ∩ Vα ∩ Vβ, and

3. pα
αβ

−1pα
αβ(παβ(C ∩ Vα ∩ Vβ)) = παβ(C ∩ Vα ∩ Vβ).

First let us show the right facing inclusion ⊂ for 1. For each z ∈ π−1
α πα(C∩

Vα ∩ Vβ) there exists x ∈ C ∩ Vα ∩ Vβ such that πα(z) = πα(x). Then
z ∈ π−1

α πα(x) ⊂ π−1
α πα(C ∩ Vα) ∩ π−1

α πα(Vα ∩ Vβ) = C ∩ Vα ∩ Vβ.
Next we show the right facing inclusion ⊂ for 2. For each z ∈ π−1

αβπαβ(C∩
Vα ∩ Vβ) there exists x ∈ C ∩ Vα ∩ Vβ such that παβ(z) = παβ(x). Then
πα(x) = pα

αβ ◦ παβ(x) = pα
αβ ◦ πα(z) = πα(z). In particular z ∈ π−1

α πα(x) ⊂
π−1

α πα(C ∩ Vα ∩ Vβ) = C ∩ Vα ∩ Vβ.
Finally we show the right facing inclusion ⊂ for 3. For each z ∈ pα

αβ
−1pα

αβ(παβ(C∩
Vα∩Vβ)) there exists x ∈ C∩Vα∩Vβ such that pα

αβ(z) = πα(x). We show that

π−1
αβ (z) ⊂ C. For w ∈ π−1

αβ (z) we have πα(w) = pα
αβ◦παβ(w) = pα

αβ(z) = πα(x).

Then w ∈ π−1
α πα(x) ⊂ C. This shows π−1

αβ (z) ⊂ C. Hence z ∈ παβ(π−1
αβ (z)) ⊂

παβ(C ∩ Vα ∩ Vβ).

Definition 2.7 Let f : M → R be a function. If there exists an admissible
open covering {V ′

α}α∈A of M such that f is constant along fibers of πα|V ′
α

for
all α ∈ A, then we call f an admissible function.

In this article we impose the following technical assumptions for a com-
patible fibration {πα : Vα → Uα}α∈A.

Assumption 2.8 1. The index set A is a finite set.

2. Each πα has a continuous extension as a fiber bundle to the closure of
Vα with the condition

Vα ∩ Vβ = π−1
β πβ(Vα ∩ Vβ)

for all β ∈ A.

3. There is an averaging operation I : C∞(M) → C∞(M) whose definition
is given below in Definition 2.9.
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Definition 2.9 If a linear map I : C∞(M) → C∞(M) satisfies the following
properties, then we call I an averaging operation.

1. I(f) is an admissible function for all f ∈ C∞(M).

2. If f is a constant function, then I(f) is also a constant function with
the same value of f .

3. If f is a non-negative function, then I(f) is so.

4. For all f ∈ C∞(M) and x ∈ M we have

min
y∈π−1

α πα(x)
f(y) ≤ I(f)(x) ≤ max

y∈π−1
β πβ(x)

f(y),

for some α, β ∈ {α′ ∈ A | x ∈ Vα′}.

5. Let f : M → R be a function and C an admissible subset of M . If
suppf is contained in C then suppI(f) is also contained in C.

Using the averaging operation we can construct an admissible partition
of unity as in the following.

Lemma 2.10 (Existence of admissible partition of unity) Let V be an
open subset of M with a compatible fibration {πα}. There is a smooth par-
tition of unity {ρ2

α} of the open covering V = ∪αVα which is constant along
each fiber of πα′ for every α′ ∈ A.

Proof. Take any partition of unity {φα}α of V = ∪αVα. Applying the av-
eraging operation we have a family of admissible functions {I(φα)}α. Note
that it is an another partition of unity of {Vα} because of the Property 2,3

and 5 of the averaging operation. We put ρα := I(φα)/
√∑

β I(φβ)2. Then

{ρ2
α}α is a required admissible partition of unity.

We give a sufficient condition for Assumption 2.8.

Definition 2.11 (Good compatible fibration) If a compatible fibration
{πα : Vα → Uα} over V satisfies 1 and 2 in Assumption 2.8 together with the
following 5’, then we call {πα : Vα → Uα} a good compatible fibration.

5’. If Vα ∩ Vβ ̸= ∅, then we have α ∈ A(β; x) or β ∈ A(α; x) for all
x ∈ Vα ∩ Vβ.

For a good compatible fibration we denote by pα
αβ = pαβ for α, β ∈ A with

β ∈ A⊂α.
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We show the following proposition in Appendix A.

Proposition 2.12 If {πα} is a good compatible fibration, then there exists
an averaging operation I : C∞(M) → C∞(M) such that for all f ∈ C∞(M)
and x ∈ M we have

min
y∈π−1

αx
παx (x)

f(y) ≤ I(f)(x) ≤ max
y∈π−1

αx
παx (x)

f(y),

where π−1
αx

παx(x) ⊂ V αx is the maximal fiber which contains x.

Now we define an appropriate notion of Riemannian metric and connec-
tion for a compatible fibration. We first note that there exist following four
types of short exact sequences for i = α, β

0 → T [πi] → TVi → π∗
i TUi → 0, (1)

0 → T [παβ] → T (Vα ∩ Vβ) → π∗
αβTUαβ → 0, (2)

0 → T [παβ] → T [πi]|Vα∩Vβ
→ π∗

αβT [pi
αβ] → 0, (3)

0 → T [pi
αβ] → TUαβ → pi

αβ

∗
Tπi(Vα ∩ Vβ) → 0.. (4)

Definition 2.13 Let E0, E1 and E2 be smooth vector bundles with metrics.
A short exact sequence 0 → E0 → E1 → E2 → 0 is orthogonally split if the
isomorphism E1 ∼= E0 ⊕ E2 defined by the orthogonal splitting with respect
to the metric on E1 is isometric with respect to the metrics on E0, E1 and
E2.

Definition 2.14 A compatible Riemannian metric of a compatible fibration
is a collection of metrics on the vector bundles T [πi], TUi, T [παβ], TUαβ, and
T [pi

αβ] such that the exact sequences (3) and (4) are orthogonally split with
respect to these metrics.

From the definition, we have a canonical isometric isomorphism

(T [πα]⊕ π∗
αTUα)|Vα∩Vβ

∼= (T [παβ]⊕ π∗
αβTUαβ) ∼= (T [πβ]⊕ π∗

βTUβ)|Vα∩Vβ
(5)

over Vα ∩ Vβ.

Definition 2.15 Suppose we have a compatible fibration with a compatible
Riemannian metric. A compatible connection is a collection of the splittings
of of the short exact sequences (1) and (2) such that the isomorphism (5) is
equal to the composition of the isomorphisms

(T [πi] ⊕ π∗
i TUi)|Vα∩Vβ

∼= T (Vα ∩ Vβ) ∼= (T [παβ] ⊕ π∗
αβTUαβ)

induced from the splittings.
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2.2 Acyclic compatible system

Definition 2.16 Suppose we have a compatible fibration {πα} on M with a
compatible Riemannian metric. A bundle W over M is a compatible Clifford
module bundle if we have the following structures.

1. W has a structure of a Z/2-graded Cl(T [πα]⊕ π∗
αTUα)-module bundle

over Vα.

2. Over Vα∩Vβ, the above module structures on Vα and Vβ are compatible
with the isomorphism (5).

The next lemma follows immediately from the definitions of compatible
metric, compatible connection and compatible Clifford module bundle.

Lemma 2.17 Suppose we have a compatible metric and compatible connec-
tion. Then we have a well-defined Riemannian metric on M . Moreover if we
have a compatible Clifford module bundle, then it has a structure of Clifford
module with respect to the well-defined Riemannian metric on M .

Let {πα} be a compatible fibration on M with compatible Riemannian metric
and W → M a compatible Clifford module bundle.

Definition 2.18 (Compatible system of Dirac-type operators) A com-
patible system on ({πα}, W ) is a data {Dα} satisfying the following properties.

1. Dα : Γ(W |Vα) → Γ(W |Vα) is an order-one formally self-adjoint differen-
tial operator of degree-one.

2. Dα contains only the derivatives along fibers of πα : Vα → Uα, i.e. Dα

commutes with multiplication of the pullback of smooth functions on
Uα.

3. The principal symbol σ(Dα) of Dα is given by σ(Dα) = c ◦ pα ◦
ι∗α : T ∗Vα → End(W |Vα), where ια : T [πα] → TVα is the natural inclu-
sion, pα : T ∗[πα] → T [πα] is the isomorphism induced by the Rieman-
nian metric and c : T [πα] → End(W |Vα) is the Clifford multiplication.

4. For b ∈ Uα and u ∈ TbUα, let ũ ∈ Γ(π∗
αTUα|π−1

α (b)) be the section
naturally induced by u. ũ acts on W |π−1

α (b) by the Clifford multiplication
c(ũ). Then Dα and c(ũ) anti-commute each other, i.e.

0 = {Dα, c(ũ)} := Dα ◦ c(ũ) + c(ũ) ◦ Dα

for all b ∈ Uα and u ∈ TbUα.
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5. If Vα∩Vβ ̸= ∅, then the anti-commutator {Dα, Dβ} := Dα◦Dβ+Dβ◦Dα

is a differential operator along fibers of παβ of order at most 2.

The properties 1, 2, and 3 in Definition 2.18 imply that Dα is of Dirac-type
when restricted to each fiber of πα.

We call a compatible system of Dirac-type operators {Dα} a compatible
system for short.

Definition 2.19 (Acyclic compatible system) A compatible system {Dα}α∈A

is acyclic if for all α ∈ A, x ∈ Vα and a family of non-negative numbers
{tβ}β∈A(α;x) satisfying tβ > 0 for some β, the operator

∑
β∈A(α;x) tβDβ : Γ(W |π−1

α (πα(x))) →
Γ(W |π−1

α (πα(x))) has zero kernel. Note that the above operator is well-defined
because of Remark 2.3.

Definition 2.20 (strongly acyclic compatible system) A compatible sys-
tem {Dα} is strongly acyclic if it satisfies the following conditions.

1. For each α and b ∈ Uα Dα|π−1
α (b) has zero kernel.

2. If Vα ∩ Vβ ̸= ∅, then the anti-commutator {Dα, Dβ} is a non-negative
operator over Vα ∩ Vβ.

We first note that the following lemma.

Lemma 2.21 A strongly acyclic compatible system is acyclic.

Proof. If {Dα} is strongly acyclic compatible system, then we haveDα +
∑

β∈A(α;x)

τβDβ

2

= D2
α +

∑
τβ{Dα, Dβ} +

(∑
β

τβDβ

)2

≥ D2
α

for any family of non-negative numbers {τβ}. Suppose
(∑

β∈A(α;x) tβDβ

)
s =

0 for s ∈ Γ(W |π−1
α (πα(x))). Take α0 ∈ A(α; x) so that tα0 is not 0. Then we

have Dα0 +
∑

β∈A(α;x)r{α0}

(tβ/tα0)Dβ

 s = 0

and s = 0 by the above inequality and the first condition in Definition 2.20.

Remark 2.22 It is obvious that we have an orbifold version of the definitions
of compatible fibration and compatible system, for which Lemma 2.21 also
holds.
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Example 2.23 Let M be R×S1 with the standard Riemannian metric and
(t, θ) its standard coordinate. We introduce a compatible fibration on M by

πα : Vα := (−∞, 1) × S1 → Uα := (−∞, 1)

πβ : Vβ := (−1,∞) × S1 → Uβ := (−1,∞).

Let W be the trivial rank 2 Hermitian vector bundle M ×C2 on M with
Z/2-grading

W 0 := M × (C × 0), W 1 := M × (0 × C).

We define the Clifford multiplication of Cl(TM) on W by

c(∂θ) =

(
0 1
−1 0

)
, c(∂t) =

(
0

√
−1√

−1 0

)
.

For smooth functions fα : Vα → R, fβ : Vβ → R, let Dα, Dβ be differential
operators on Γ(W |Vα), Γ(W |Vβ

) which are defined by

Dα :=

(
0 1
−1 0

)
∂θ + fα(t, θ)

(
0

√
−1

−
√
−1 0

)
Dβ :=

(
0 1
−1 0

)
∂θ + fβ(t, θ)

(
0

√
−1

−
√
−1 0

)
.

They are order-one formally self-adjoint differential operators of degree-one.
Then, it is easy to see that the data {Dα, Dβ} is an acyclic compatible system
if and only if fα and fβ satisfy the following properties.

1. fα(t, θ)/∈ Z for any (t, θ) ∈ Vα. The same property also holds for fβ.

2.
tαfα(t,θ)+tβfβ(t,θ)

tα+tβ
/∈ Z for any (t, θ) ∈ Vα ∩ Vβ and any non-negative real

numbers tα, tβ which satisfy tα + tβ ̸= 0.

Example 2.24 For non-negative integers m and n satisfying n ≤ m let M
be R2m−n ×T n, where we regard T n as Rn/(2πZ)n. Let A be an ordered set,
{V ′

α}α∈A a finite open covering of R2m−n, and {Rα}α∈A a family of subspaces
of Rn spanned by rational vectors. We assume that if α < β, then Rα ⊂ Rβ.
We put Vα := V ′

α×T n and Tα := Rα/Rα∩(2πZ)n. Define Uα to be V ′
α×T n/Tα

and πα : Vα → Uα to be the natural projection. Then these data define a
good compatible fibration on M .

Let (g, J) be the pair of the Riemannian metric and the almost complex
structure on M which is defined by

gx

(
2m−n∑
i=1

a1
i ∂yi

+
n∑

i=1

b1
i ∂θi

,
2m−n∑
j=1

a2
j∂yj

+
n∑

j=1

b2
j∂θj

)
=

2m−n∑
i=1

a1
i a

2
i +

n∑
i=1

b1
i b

2
i ,
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J(∂yi
) =


∂θi

1 ≤ i ≤ n

∂ym−n+i
n + 1 ≤ i ≤ m

−∂yi−m+n
m + 1 ≤ i ≤ 2m − n

for x = (y, θ) ∈ M . Note that since g is invariant under J , (g, J) defines the
Hermitian metric on M by

hx(u, v) = gx(u, v) +
√
−1gx(u, Jv)

for u, v ∈ TxM . By using the horizontal lift π∗
αTUα → TVα with respect to

g, it is obvious that {πα} is equipped with a compatible Riemannian metric
and a compatible connection.

Next we define a compatible Clifford module bundle W and a strongly
acyclic compatible system {Dα}α∈A in the following way. Take a Hermitian
line bundle (L,∇L) with Hermitian connection on M whose restriction to
π−1

α (b) is a flat connection for each α ∈ A and b ∈ Uα. We assume the
following condition.

(∗) For all α and b ∈ Uα the restriction ∇L|π−1
α (b) is not trivially flat con-

nection, i.e., its holonomy representation is non-trivial.

We define a Hermitian vector bundle W on M by

W := ∧•
CTMC ⊗ L.

A Clifford module structure c : Cl(TM) → End(W ) is defined by

c(u)(ϕ) = u ∧ ϕ − uxϕ (6)

for u ∈ TM , ϕ ∈ W , where x is the interior product with respect to h,
namely,

vx(v1 ∧ v2 ∧ · · · ∧ vk) :=
k∑

i=1

(−1)i−1h(vi, v)v1 ∧ v̂i ∧ · · · ∧ vk,

v1, . . . vk ∈ TM .
Let ∇∧•

CTMC be the Hermitian connection on ∧•
CTMC which is induced

from the Levi-Civita connection on TM with respect to g. Two connections
∇∧•

CTMC and ∇L define the Hermitian connection on W by

∇ := ∇∧•
CTMC ⊗ id + id⊗∇L.
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Then we define Dα by

Dα := c ◦ ι∗α ◦ ∇|Vα : Γ (W |Vα)
∇|Vα−−−→ Γ (T ∗Vα ⊗ W |Vα)

ι∗α−→ Γ (T ∗[πα]) ⊗ W |Vα)
c−→ Γ (W |Vα) ,

where ια : T [πα] → TVα is the natural inclusion.
By the construction it is obvious that {Dα} satisfies the condition 1, 2,

and 3 in Definition 2.18. The condition 4 in Definition 2.18 follows from the
fact that g restricted to each fiber of πα is flat. We can show that for each
α and b ∈ Uα the kernel of Dα|π−1

α (b) vanishes. It follows from Property (∗)
and the following lemma.

Lemma 2.25 Let (E,∇E) → T be a flat Hermitian line bundle on a flat
n-torus. If the degree zero cohomology H0(T ; E) with local system (E,∇E)
vanishes, then all cohomologies H•(T ; E) vanish.

Proof. Take and fix harmonic 1-forms {ω1, · · · , ωn} which represent a basis
of H1(T ; R). Note that harmonic forms on a flat torus are parallel forms and
they induce a trivialization of T ∗T . Let ω be a dE-closed form in Ωk(T ; E) =
Γ(E ⊗ ∧kT ∗T ), where dE is the covariant derivative induced by ∇E. Using
the parallel basis and the trivialization of T ∗T we can describe ω as

ω =
∑

i1,··· ,ik

si1···ikωi1 ∧ · · · ∧ ωik ,

where si1···ik is a section of E. Since each ωi is harmonic and ω is dE-closed
we have

0 = d∗
EdEω =

∑
i1,··· ,ik

(
(∇E)∗∇Esi1···ik

)
ωi1 ∧ · · · ∧ ωik ,

and hence (∇E)∗∇Esi1···ik = 0. It implies si1···ik is a parallel section. Since
H0(M ; E) = 0 we have si1···ik = 0.

These facts and Proposition 2.29, which will be shown in the next sub-
section, imply that {Dα} is a strongly acyclic compatible system.

2.3 Example from torus action

Suppose an n-dimensional torus G acts on a manifold M smoothly. Let A
be the set of all the subgroups of G which appear as stabilizers

Gx := {g ∈ G | gx = x}
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at some points x ∈ M . Note that A has a partial order with respect to the
inclusion. In this subsection we assume that A is a finite set.

The following lemma is useful to construct a good compatible fibration
satisfying a convenient property for some cases with torus actions. We give
a proof in Appendix B.

Lemma 2.26 (Existence of a good open covering) There exists an open
covering {VH}H∈A of M parameterized by A satisfying the following proper-
ties.

1. Each VH is G-invariant.

2. For each x ∈ VH we have Gx ⊂ H.

3. If VH ∩ VH′ ̸= ∅, then we have H ⊂ H ′ or H ⊃ H ′.

Remark 2.27 Using a good covering over M we can construct a good com-
patible fibration as follows. We endow G with a rational flat Riemannian
metric. Precisely speaking we take an Euclidian metric on the Lie algebra of
G such that the intersection of the integral lattice and the lattice generated
by some orthonormal basis has rank n. We extend it on the whole G.

For a subgroup H of G let H⊥ be the orthogonal complement of H defined
as the image of the orthogonal complement of the Lie algebra of H by the
exponential map. Since the metric is rational H⊥ is well-defined as a compact
subgroup of G and it has finitely many intersection points H ∩ H⊥.

Let {VH}H∈A be the open covering of M in Lemma 2.26. For each H ∈ A
we define UH to be VH/H⊥ and πH : VH → UH to be the natural projection.
Then the data {πH : VH → UH | H ∈ A} define the good compatible fibration
because of the property of the good covering.

Remark 2.28 We will show in Section 6 that there is an example that has
a good compatible fibration, but does not have a global torus action.

2.3.1 Family of flat torus bundles

Let {πα}α∈A be a compatible fibration on V with a compatible Riemannian
metric and W a compatible Clifford module bundle on V . We show the
following.

Proposition 2.29 Suppose that an acyclic compatible system {πα,W,Dα}
satisfies the following three conditions.

• {πα}α∈A is a good compatible fibration.
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• πα : Vα → Uα is a flat torus bundle for all α.

• There is a Clifford connection ∇ on W such that the restriction of ∇
on each fiber of πα is a flat connection for all α.

• Dα is the Dirac operator along fibers of πα defined by ∇|Vα for all α ∈ A.

Then for all α, β ∈ A such that β ∈ A⊂α the anti-commutator Dα ◦Dβ +Dβ ◦
Dα is a non-negative operator along fibers of πβ. In particular if ker Dα = 0
for all α ∈ A, then {πα,W,Dα} is strongly acyclic.

Since to show this proposition it is enough to show the non-negativity of
the anti-commutator along fibers, we consider the following setting.

• E : Euclidian space

• Γ : maximal lattice of E

• F := E/Γ : flat torus

• W → F : Cl(TF )-module bundle

• ∇ : Γ(W ) → Γ(TF ⊗ W ) : flat Clifford connection of W

• c : TF ⊗ W → W : Clifford action of TF

• A : finite set

• {Eα}α∈A : family of subspaces of E

• {pα} : family of orthogonal projections to {Eα}

• We assume pαpβ = pβpα for all α, β ∈ A.

Note that the last condition implies that the Proposition 2.29 holds for a
compatible fibration which is not necessarily good. See Remark 2.32. Using
the metric we have the identification TF = T ∗F = F × E. For a symmetric
endmorphism S : E → E let Ŝ : F × E → F × E be the induced bundle
map on the (co)tangent bundle. We define a differential operator DS by the
composition

DS := c ◦ Ŝ ◦ ∇ : Γ(W ) → Γ(W ).

Since S is symmetric DS is a self-adjoint operator.
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Proposition 2.30 Let S1 and S2 be symmetric endmorphisms which com-
mute each other. Then we have

DS1 ◦ DS2 + DS2 ◦ DS1 = 2∇∗ ◦ Ŝ1 ◦ Ŝ2 ◦ ∇,

where ∇∗ : Γ(TF ⊗ W ) → Γ(W ) is the adjoint operator of ∇.

Proof. The equality can be checked by the direct computation using the
orthonormal basis of E consisting of simultaneously eigenvectors of S1 and
S2.

When we put S1 := pα and S2 := pβ in Proposition 2.30, we have the
following.

Corollary 2.31 DαDβ + DβDα = 2D2
αβ, where Dαβ is the self-adjoint op-

erator c ◦ p̂αβ ◦ ∇ defined by the projection pαβ to the intersection Eα ∩ Eβ.

Proof of Proposition 2.29. Since {πα} is a good compatible fibration we have
a family of tori at each point on V which comes from a family of subspaces
whose projections commute each other. Then the claim follows from Corol-
lary 2.31.

Remark 2.32 Note that a product of good compatible fibrations is not a
good compatible fibration. But Proposition 2.29 still holds for products of
good compatible fibrations. Since such compatible fibrations satisfy the last
condition in the setting of Proposition 2.30.

2.3.2 Symplectic manifold with a torus action

Let (M,ω) be a 2m-dimensional symplectic manifold equipped with a Hamil-
tonian action of an n-dimensional torus G. In this case each orbit is an affine
isotropic torus in M . Suppose that there is a G-equivariant prequantizing
line bundle (L,∇) on (M,ω), i.e., L is a Hermitian line bundle over M with
a Hermitian connection ∇ whose curvature form is equal to −2π

√
−1ω, and

all these data are G-equivariant. Since an orbit is isotropic the restriction
of (L,∇) on each orbit is a flat line bundle. According to Lemma 2.26, and
Remark 2.27, we have a good compatible fibration on M using a good open
covering {VH} parameterized by the set of isotropy subgroups A = {H}. We
show the following.

Proposition 2.33 If the restriction of L on each G-orbit has no nontrivial
parallel sections, then M is equipped with a strongly acyclic compatible system
{DH}H∈A.
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Proof. Fix a G-invariant ω-compatible almost complex structure J on M .
Then using the associated G-invariant metric gJ we can construct a compat-
ible Riemannian metric on M as follows. It is sufficient to construct metrics
of T [πH ] for each H ∈ A and T [pHK ] for a sequence H ⊂ K, and check
the compatibility coming from (2) and (3). The metric on T [πH ] is defined
as the restriction of gJ , and the metric on TUH = T (VH/H⊥) is defined as
the quotient metric of gJ . Note that the fiber of pHK is the quotient of the
H⊥-orbit by the K⊥-orbit. Then the metric on T [pHK ] is defined as the quo-
tient of the restriction of the metric gJ on H⊥-orbit by the K⊥-action. It is
straightforward to check the compatibilities. We remark that the metric gJ

restricted to each orbit is a flat affine metric because it is G-invariant.
Let W be the Z/2-graded compatible Clifford module bundle

W = ∧•TMC ⊗ L

with Clifford module structure c : Cl(TM) → End(W ) defined by (6). We
show that W is a compatible Clifford module bundle with some more addi-
tional structures. For H ∈ A, let (T [πH ]⊕ JT [πH ])⊥ be the orthogonal com-
plement of T [πH ] ⊕ JT [πH ] with respect to gJ . Since (gJ , J) is G-invariant
H⊥-action preserves (T [πH ] ⊕ JT [πH ])⊥ and JT [πH ]. Then we define

EH := (T [πH ] ⊕ JT [πH ])⊥/H⊥,

FH := JT [πH ]/H⊥.

It is obvious that TUH has the natural isometry TUH
∼= EH ⊕ FH .

Since gJ is invariant under J , J preserves (T [πH ]⊕JT [πH ])⊥. In particular
T [πH ] ⊕ JT [πH ] and (T [πH ] ⊕ JT [πH ])⊥ have the structures of Hermitian
vector bundles with respect to the restriction of (gJ , J) to them. Moreover
(gJ , J) is G-invariant it descends to the Hermitian structure on EH . Then,
we define W1,H and W2,H by

W1,H := ∧•
C(T [πH ] ⊕ JT [πH ])C ⊗ L,

W2,H := ∧•
C(EH)C ⊗ L,

and define the Clifford module structures

c1,H : Cl(T [πH ] ⊕ π∗
HFH) → End (W1,H) ,

c2,H : Cl (EH) → End (W2,H)

by the same formula as in (6). By definition, TVH has a decomposition

TVH = (T [πH ] ⊕ π∗
HFH) ⊕ π∗

HEH
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as Hermitian vector bundles. With respect to this decomposition there are
the following isomorphisms

Cl(TM)|VH
∼= Cl(T [πH ] ⊕ π∗

HFH) ⊗ Cl(π∗
HEH),

∼= Cl(T [πH ] ⊕ π∗
HTUH)

W |VH
∼= W1,H ⊗ π∗

HW2,H .

Then by the direct calculation one can check c = c1,H ⊗ c2,H under the above
identifications.

Now we define a strongly acyclic compatible system {DH} on W . Let
∇T [πH ] : Γ(TVH) → Γ(T ∗[πH ] ⊗ TVH) be the the family of Levi-Civita con-
nections along fibers of πH , namely,

∇T [πH ] = ι∗H ⊗ qH ◦ ∇TM ◦ qH ,

where ιH : T [πH ] → TVH is the natural inclusion, ∇TM is the Levi-Civita
connection on TM with respect to gJ , and qH : TVH → TVH is the orthog-
onal projection to T [πH ] with respect to gJ . ∇T [πH ] induces the family of
Hermitian connections on ∧•TMC|VH

along fibers of πH , which is denoted
by ∇∧•TMC|VH . We define the family of Hermitian connections ∇H on W |VH

along fibers of πH by

∇H := ∇∧•TMC|VH ⊗ id + id⊗
(
ι∗H ⊗ id ◦∇L

)
: Γ(W |VH

) → Γ(T ∗[πH ]⊗W |VH
).

Then we define DH : Γ(W |VH
) → Γ(W |VH

) to be the family of de Rham
operators along fibers of πH which is defined by

DH := c1,H ◦ pH ◦ ∇H ,

where pH : T ∗[πH ] → T [πH ] is the isomorphism via gJ .
Since the restriction of L on each G-orbit has no non-trivial parallel sec-

tions, Lemma 2.25 implies ker DH = 0. Moreover since the collection of data
{πH : VH → UH ,W,DH} satisfies the assumptions in Proposition 2.29, {DH}
is strongly acyclic.

3 An index theory for complete Riemannian

manifolds

3.1 Formulation of index on complete manifolds

Suppose M is a complete Riemannian manifold, W is a Z/2-graded Hermitian
vector bundle, and σ : TM → End(W ) is a homomorphism such that σ(v) is
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a skew-Hermitian isomorphism of degree-one for each v ∈ TM r {0}. Let D
be a degree-one formally self-adjoint first-order elliptic differential operator
on W with principal symbol σ. We assume that σ and the coefficients of
D are smooth. We formulate an index theory on M under the following
assumption.

Assumption 3.1 • D has finite propagation speed: there exists a posi-
tive real number C0 satisfying |σ| ≤ C0 uniformly on M ,

• There exist a positive real number λ0 > 0 and an open subset V of M
with its complement M r V compact such that

λ0||s||2V ≤ ||Ds||2V

for any smooth compactly-supported section s of W with support con-
tained in V .

It is known that the finite propagation speed implies that D is essentially
self-adjoint [2]. We will give a direct proof of the following theorem.

Theorem 3.2 D is essentially self-adjoint as an operator on L2-sections of
W and its spectrum is discrete in (−

√
λ0,

√
λ0).

The proof of the first part is given as Lemma 3.11 in Section 3.2. The rest
of the statement follows from Proposition 3.14 in Section 3.3.

Definition 3.3 Eλ is the vector space of smooth sections s of W such that
s is L2-bounded and satisfies D2s = λs.

Theorem 3.2 implies that Eλ is zero for λ < 0, and Eλ is finite dimensional
for λ < λ0. Moreover there are only discrete values λ < λ0 for which Eλ is
non-zero. Note that the super dimension of Eλ is zero for 0 < λ < λ0, and
hence the super dimension of ⊕λ<λ1Eλ is constant for 0 < λ1 < λ0.

Definition 3.4 ind D is the super dimension of E0, or the super dimension
of ⊕λ<λ1Eλ for 0 < λ1 < λ0.

The index has the following deformation invariance. Let {Dt} (|t| < ϵ) be
a one-parameter family of degree-one formally self-adjoint first-order elliptic
differential operators on W with principal symbols {σt}.

Assumption 3.5 • Each Dt and σt satisfy Assumption 3.1 for common
λ0 and V .
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• On each compact subset of M the coefficients of Dt are C∞ convergent
to those of D0 as t → 0.

We do not assume that the propagation speed is uniform with respect to t.
We will show the following theorem in Section 3.4.

Theorem 3.6 Under Assumption 3.5 ind Dt is constant with respect to t.

Remark 3.7 So far we are fixing M and W . In Section 3.5 we will formulate
a deformation for which M and W can vary. We give a proof of Theorem 3.6
so that it can be directly generalized to this case. The generalization im-
mediately implies an excision property of index for complete Riemannian
manifolds.

3.2 Partial integration

We need two partial integration formulas. In general let W be a Hermitian
vector bundle over a complete Riemannian manifold M , and Dτ : Γ(W ) →
Γ(W ) be a first order partial differential operator on W with smooth coeffi-
cients whose principal symbol is τ . We assume that Dτ has finite propagation
speed, i.e., τ is a smooth L∞-bounded section of TM ⊗ End(W ).

Lemma 3.8 Let s ∈ Γ(W ) is an L2-bounded section such that D∗
τDτs is also

L2-bounded. Then Dτs is also L2-bounded and we have∫
M

(D∗
τDτs, s) =

∫
M

|Dτs|2.

Lemma 3.9 Suppose s0 and s1 are L2-bounded sections of W such that Dτs0

and D∗
τs1 are also L2-bounded. Then we have∫

M

(Dτs0, s1) =

∫
M

(s0, D
∗
τs1).

We follow the argument in [7] using a family of cut-off functions:

Lemma 3.10 Let M be a complete Riemmanian manifold.

1. There is a smooth proper function f : M → R such that |df | is bounded
and f−1((−∞, c]) is compact for any c.

2. There is a constant C > 0 such that for each ϵ > 0 and a ∈ R, we have
a compact supported function ρa,ϵ : M → [0, 1] which is equal to 1 on
f−1((−∞, a]), and satisfies |dρa,ϵ| < Cϵ.
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A proof of the above lemma is given in [6]. For completeness we give a
detailed construction in Appendix C. The existence of such a function in 1
of Lemma 3.10 is equivalent to the completeness of M . For mored details see
[6].

If we choose a Hermitian connection ∇ on W , we can describe Dτs =
τ ·∇s+Bs, where B is a smooth section of End(W ) and · is the combination
of the product End(W ) ⊗ W → W and the contraction T ∗M ⊗ TM → R.
We do not assume that B is bounded.

Proof of Lemma 3.8. We first assume that s is smooth. We follow Gromov’s
proof of [7, Lemma 1.1 B]. From the equality∫

M

(D∗
τDτs, ρ2

a,ϵs) =

∫
M

(Dτs, Dτ (ρ
2
a,ϵs))

=

∫
M

(Dτs, ρ2
a,ϵDτs) +

∫
M

(Dτs, 2ρa,ϵτ(dρa,ϵ)s), (7)

there is a constant C independent of s, a, ϵ such that

||D∗
τDτs||2||s||2 ≥ ||ρa,ϵDτs||22 − Cϵ||ρa,ϵDτs||2.

It implies that, as a increases, ||ρa,ϵDτs||2 is bounded, i.e., Dτs is L2-bounded.
Using (7) again we have∫

M

(D∗
τDτs, s) = ||Dτs||22 + I, |I| ≤ Cϵ||Dτs||2||s||2.

Taking ϵ → 0, we obtain the required equality.
When s is not smooth, take a smooth compactly supported section which

approximate s in L2
2-norm on the support of ρa,ϵ. Then we can reduce the

argument to the smooth case.

Proof of Lemma 3.9. We first assume that s is smooth. We have

0 =

∫
M

(Dτ (ρa,ϵs0), s1)−
∫

M

(s0, D
∗
τ (ρa,ϵs1)) =

∫
M

(Dτs0, s1)−
∫

M

(s0, D
∗
τs1)+I ′

with an error term I ′ satisfying |I ′| ≤ Cϵ||s0||2||s1||2, which implies the re-
quired equality. When s is not smooth, we can reduce the argument to the
smooth case as in the proof of Lemma 3.8.

Using the cut off function and a standard argument we can also show:

Lemma 3.11 Under Assumption 3.1 D is essentially self-adjoint.
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Proof of Lemma 3.11. Suppose L2-sections u and v satisfies Du = v weakly.
We show that for any ϵ > 0 there is a compactly supported smooth section
uϵ satisfying ||uϵ − u||M ≤ 2ϵ and ||Duϵ − v||M ≤ 4ϵ. Take a compact subset
K such that ||u||MrK , ||v||MrK < ϵ. Using Lemma 3.10 choose a smooth
compactly-supported function ρ : M → [0, 1] satisfying ρ = 1 on K and
|dρ| < 1. Let K ′ be the compact support of ρ. Since D is elliptic, the
weak equality Du = v and the regularity theorem imply that u is locally
L2

1-bounded and there is a smooth sections u′ satisfying ||u′ − u||K′ < ϵ and
||Du′ − v||K′ < ϵ. Then we have

||ρu′ − u||M ≤ ||ρ(u′ − u)||K′ + ||(1 − ρ)u||MrK ≤ 2ϵ

and

||D(ρu′) − v||M = ||dρ · (u′ − u) + dρ · u + ρ(Du − v) − (1 − ρ)v||M
≤ ||u′ − u||K′rK + ||u||K′rK + ||Du′ − v||K′ + ||v||MrK

≤ 4ϵ.

It implies that D is essentially self-adjoint.

3.3 Min-max principle

In this section we use Assumption 3.1 for a single operator D, and Assump-
tion 3.5 for a one-parameter family {Dt}.

Lemma 3.12 For any compact subset K containing M r V there is a com-
pact set K ′ containing K such that if s and Ds are L2-bounded, then we have
the estimate

λ
1/2
0 ||s||MrK − 2λ

1/2
0 ||s||K′rK ≤ ||Ds||MrK .

Moreover if the coefficients of Dt are C∞-convergent to those of D0 = D on
any compact set as t → 0, then we can choose K ′ so that the above estimate
is valid for any t sufficiently close to 0.

Proof. Lemma 3.11 implies that we can assume that s is smooth and com-
pactly supported without loss of generality. From Lemma 3.10, for any ϵ > 0,
there is a compact set K ′ containing K and a smooth non-negative function
ρ : M → R such that ρ = 1 on M r K ′, ρ = 0 on K and |dρ| ≤ ϵ. Then the
above estimate follows from the next two inequalities

||D(ρs)||M ≥ λ
1/2
0 ||ρs||V ≥ λ

1/2
0 ||s||MrK′ ≥ λ

1/2
0 ||s||MrK − λ

1/2
0 ||s||K′rK ,

||D(ρs)||M ≤ ||ρDs||M + ||σ · ((dρ) ⊗ s)||M ≤ ||Ds||MrK + C(D,K ′)ϵ||s||K′rK ,
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where C(D,K ′) := maxK′|σ|. The last statement of the lemma follows from
the fact that C(Dt, K

′) is continuous with respect to t.

Proposition 3.13 Suppose 0 ≤ λ1 < λ0. Let {si} be a sequence of L2-
sections of W satisfying ||si||M = 1, and {ti} is a sequence convergent to 0.
Suppose each Dtisi is L2-bounded and satisfies ||Dtisi||2M ≤ λ1. Then there
is a subsequence {si′} which is weakly convergent to some non-zero s∞ ̸= 0
such that D0s∞ is L2-bounded and satisfies

||D0s∞||2M ≤ λ1||s∞||2M (8)

Proof. Take a subsequence {si′} so that {si′} and {Dti′
si′} are weakly con-

vergent to some s∞ and u∞ in L2(M,W ) respectively. Since Dt is a smooth
family, for each smooth compactly-supported section φ the sequence Dti′

φ
is strongly convergent to D0φ. The equality

∫
M

(Dti′φ, si′) =
∫

M
(φ,Dti′si′)

implies
∫

M
(D0φ, s∞) =

∫
M

(φ, u∞), i.e., D0s∞ = u∞ weakly.
Since {Dti′si′} is L2-bounded, Assumption 3.5 and a priori estimate imply

that on any compact set si′ is strongly L2-convergent to s∞.
On the other hand for any compact set K containing M r V there exists

a compact set K ′ such that

λ
1/2
0 ||si′||MrK − 2λ

1/2
0 ||si′||K′rK ≤ ||Dti′

si′ ||MrK ≤ λ
1/2
1

by Lemma 3.12. If s∞ is 0, then we have ||si′ ||K′rK converges to 0, which
contradicts to ||si′||M = 1 and λ1 < λ0.

Suppose the estimate (8) does not hold. Then for any ϵ > 0 and any
sufficiently small ϵ′ > 0 there exists a compact set K containing M r V
satisfying ||s∞||MrK < ϵ and λ1||s∞||2K+ϵ′ < ||D0s∞||2K . We choose ϵ and ϵ′ so
that they satisfy 8ϵλ0(1+2ϵ) < ϵ′/2. Note that the weak convergence implies
||D0s∞||2K ≤ lim infi′→∞ ||Dti′

si′ ||2K . Since si′ is strongly L2-convergent to s∞
on the compact set K, we have

λ1||si′||2K +
ϵ′

2
< ||Di′si′||2K (9)

for sufficiently large i′. Let K ′ be the compact set containing K which gives
the estimate in Lemma 3.12 for sufficiently small t. Since , si′ is strongly
L2-convergent to s∞ on the pre-compact set K ′ rK, we have ||si′||K′rK < 2ϵ
for sufficiently large i′. The estimate in Lemma 3.12 implies that we have
λ

1/2
0 ||si′||MrK ≤ ||Dsi′||MrK + 4ϵλ

1/2
0 for sufficiently large i′. Taking square,

and using λ1 < λ0 and ||Di′si′||MrK ≤ λ
1/2
1 , we obtain

λ1||si′||2MrK ≤ ||Di′si′||2MrK + 8ϵλ0(1 + 2ϵ)

Adding with (9) we have λ1||si′||2M < ||Di′si′||2M for sufficiently large i′, which
contradicts our assumption.
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For a single operator D we have

Proposition 3.14 1. Suppose λ < λ′ < λ0.

(a) If s ∈ Eλ, then Ds is L2-bounded and ||Ds||2M = λ||s||2M .

(b) Eλ and Eλ′ are L2-orthogonal to each other.

2. Suppose 0 ≤ λ1 < λ0.

(a) dim ⊕λ≤λ1Eλ(D) < ∞.

(b) Let Rλ1 be the set of L2-bounded sections s satisfying ||s||M = 1
and ||Ds||2M < λ0 such that s is L2-orthogonal to ⊕λ≤λ1Eλ(D). If
Rλ1 is not empty, then the functional Iλ1 : Rλ1 → [0, λ0) , Iλ1(s) =
||Ds||2M attains its minimum value.

(c) Let λ2 = ||Ds0||2M be the minimum value of Iλ1 at a minimum s0.
Then we have λ1 < λ2 < λ0 and s0 ∈ Eλ2

Proof. The first statement for λ < λ′ < λ0 follows from the partial integration
formulas Lemma 3.8 and Lemma 3.9.

Suppose λ1 < λ0. If ⊕λ≤λ1Eλ(D) is not finite dimensional, then we have a
sequence ei in the infinite space with ||ei||M = 1 and mutually L2-orthogonal
each other. Proposition 3.13 implies that we have a weakly convergent limit
for a subsequence with non zero limit, which is a contradiction.

Suppose si is a sequence in Rλ1 such that Iλ1(si) convergent to the infi-
mum of Iλ1 . Proposition 3.13 implies that we have a weakly convergent limit
s∞ ̸= 0 for a subsequence such that s0 := s∞/||s∞|| is an element of Rλ which
attains the infimum. For any compactly-supported smooth section s′, let s′′

be the L2-orthogonal projection of s′ to ⊕λ≤λ1Eλ(D) and put s′′′ = s′ − s′′.
Since s0 attains the minimum of Iλ1 , the derivative of (s0 + ts′′′)/||s0 + ts′′′||M
at 0 vanishes, and we obtain∫

M

(Ds0, Ds′′′) = λ2

∫
M

(s0, s
′′′).

Since Ds′′′ = Ds′−Ds′′ and D2s′′′ = D2s′−D2s′′ is L2-bounded, Lemma 3.9
implies ∫

M

(s0, D
2s′′′) = λ2

∫
M

(s0, s
′′′).

On the other hand we have∫
M

(s0, D
2s′′) =

∫
M

(s0, s
′′) = 0.
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These relations imply ∫
M

(s0, D
2s′) = λ2

∫
M

(s0, s
′),

i.e., D2s0 = λ2s0 weakly. Lemma 3.8 implies that Ds0 is L2-bounded and
||Ds0||2M = λ2||s0||M = λ2. Since s0 is L2-orthogonal to ⊕λ≤λ1Eλ, we have
λ1 < λ2. The regularity theorem implies s0 is smooth and hence s0 ∈ Eλ2 .

Corollary 3.15 Suppose λ1 < λ0. Let E be a Z/2 graded subspace of
L2(M,W ) such that such that Ds is in L2(M,W ) and ||Ds||2M ≤ λ1||s||2M
for any s ∈ E. Then E is finite dimensional and

dim⊕λ≤λ1Eλ(D) ≥ dim E.

Moreover the above inequality holds for each degree of Z/2.

3.4 Deformation invariance of index

For a family {Dt} we have:

Proposition 3.16 Suppose λ1 < λ0. Let {ti} be a sequence convergent to 0
and E(i) be a Z/2 graded subspace of L2(M,W ) such that Dtis is in L2(M,W )
and ||Dtis||2M ≤ λ1||s||2M for any i and s ∈ Ei. Then each E(i) is finite
dimensional and

dim⊕λ≤λ1Eλ(D0) ≥ lim sup
i→∞

dim E(i).

Moreover the above inequality holds for each degree of Z/2.

Proof. Suppose dim⊕λ≤λ1Eλ(D0) < dim E(i′) for a subsequence {i′}. Let si′

be an element of E(i′) with ||si′ ||M = 1 which is L2-orthogonal to ⊕λ≤λ1Eλ(D0).
Let s∞ be the L2-bounded section given by Proposition 3.13. Then the weak
limit s∞ is also L2 orthogonal to ⊕λ≤λ1Eλ(D0), which contradicts Proposi-
tion 3.14.

Remark 3.17 In the above proof the choice of si′ can be generalized as
follows: Fix an L2-orthonormal basis e1, e2, . . . , eN of the finite dimensional

space ⊕λ≤λ1Eλ(D0). Fix any sequence {e(i′)
k }i′ for each 1 ≤ k ≤ N which is

strongly L2-convergent to ek as i′ → ∞. Let si′ be an element of E(i′) with

||si′ ||M = 1 which is L2-orthogonal to all e
(i′)
k (1 ≤ k ≤ N). Then the rest of

the proof remains valid.
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Corollary 3.18 For each degree of Z/2 we have the inequality

dim⊕λ≤λ1Eλ(D0) ≥ lim sup
t→0

dim⊕λ≤λ1Eλ(Dt)

Proposition 3.19 Suppose λ1 < λ0. For each degree of Z/2 we have the
inequality

dim⊕λ<λ1Eλ(D0) ≤ lim inf
t→0

dim⊕λ<λ1Eλ(Dt)

Proof. Let ϵ0 > 0 be a sufficiently small number, which we fix later. Let
e1, e2, . . . , eN be an L2-orthonormal basis of the finite dimensional space E :=
⊕λ<λ1Eλ(D0) consisting of eigenvectors of D0 with eigenvalues µ1, µ2, . . . , µN

respectively. For a sufficiently large a and sufficiently small ϵ > 0, the trun-
cated sections e′i = ρa,ϵei satisfy∣∣∣∣δij −

∫
M

(e′i, e
′
j)−

∣∣∣∣ < ϵ0,

∣∣∣∣µiµjδij −
∫

M

(D0e
′
i, D0e

′
j)

∣∣∣∣ < ϵ0

for every 1 ≤ i, j ≤ N as in the proof of Lemma 3.8 or Lemma 3.9. Here δij is
Kronecker’s delta. Let E ′ be the vector space spanned by e′i. Since the sup-
port of all the e′i are contained in the compact support of ρa,ϵ, Assumption 3.5
implies that ∣∣∣∣µiµjδij −

∫
M

(Dte
′
i, Dte

′
j)

∣∣∣∣ < ϵ0.

for every t sufficiently closed to 0. Let E ′ be the vector space spanned by
e′i. Then if ϵ0 is sufficiently small, each element s′ of E ′ satisfies ||Dts

′||2M ≤
λ1||s′||2M . Corollary 3.15 implies dim E ′ ≤ dim⊕λ<λ1Eλ(Dt). It is easy to
check that the above inequality holds for each degree of Z/2.

Proof of Theorem 3.6. From Proposition 3.14 there is 0 < λ1 < λ0 such that
Eλ1 = 0. Then Corollary 3.18 and Proposition 3.19 imply

dim⊕λ≤λ1Eλ(D0) = lim
t→0

dim⊕λ≤λ1Eλ(Dt)

and the equality holds for each degree, from which the claim follows.

3.5 Gluing formula

In this subsection we generalize Theorem 3.6. We first need to generalize
Assumption 3.5.

Let (M,W, σ,D, V ) be as in Section 3.1. For i = 1, 2, . . . we further
suppose that the data (Mi,Wi, σi, Di, Vi) satisfies the setting in Section 3.1.
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Suppose M has a sequence of compact open subsets {Ki} (i = 1, 2, . . .)
satisfying K1 ∪ V = M , Ki ⊂ int(Ki+1) and M = ∪iKi. Suppose there
exists an isometric open embedding ιi : int(Ki) → Mi and an isomorphism
ι̃i : W |int(Ki)

∼= ι∗i Wi as Z/2-graded Hermitian vector bundle over int(Ki) for
each i.

If s is a compactly supported section of W , then ι̃is|int(Ki) makes sense
as a compactly supported section of Wi for large i with supp s ⊂ int(Ki) by
extending as 0 outside ιi(supp s). We simply write ι̃is for this section on Wi

for large i.
If K is a compact subset of M and si is a section of Wi for large i with

K ⊂ int(Ki), then ι̃−1
i (si|ι(Ki))|K is a section of W |K . We simply write

ι̃−1
i si|K for this section.

Then s 7→ {ι̃−1
i (Diι̃is)|K} is a differential operator on K for large i. We

write ι∗i Di for this operator on K.

Assumption 3.20 1. ιi(M r V ) = Mi r Vi.

2. The data (Mi,Wi, σi, Di, Vi) satisfy Assumption 3.1 with the same con-
stant λ0 for (M,W, σ,D, V ).

3. On each compact subset K of M the coefficients of the differential
operator ι∗i Di is C∞-convergent to those of D on K as i → ∞.

We do not assume that the propagation speed of {Di} is uniformly bounded
with respect to i.

Theorem 3.21 Under Assumption 3.20, ind Di is equal to ind D for large
i.

Proof. The most of the arguments in Sections 3.3 and 3.4 go through.
The statement and proof of Proposition 3.13 is straightforwardly gener-

alized with replacement of Dti by Di.
The statement and proof of Proposition 3.19 is also straightforwardly

generalized.
To generalize Proposition 3.16 we need the construction in Remark 3.17.

As for the statement we replace Dti with Di, and let E(i) be a Z/2 graded

subspace of L2(Mi,Wi). As for the proof take e
(i′)
k with support contained

in int(Ki). Let si′ be an element of E(i′) with ||si′||Mi
= 1 which is L2-

orthogonal to all ι̃ie
(i′)
k (1 ≤ k ≤ N). Then the rest of the proof remain

valid.
Then the argument of Section 3.4 can be straightforwardly generalized to

show Theorem 3.21.
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When M has two (or more) connected components while each Mi’ is
connected, Theorem 3.21 is regarded as a gluing formula of index as explained
below.

Proposition 3.22 Let (M,W, σ,D, V ) be a data satisfying Assumption 3.1.
Suppose M is the disjoint union of M ′ and M ′′. Let (W ′, σ′, D′, V ′) and
(W ′′, σ′′, D′′, V ′′) be the restrictions of (W,σ,D, V ) to M ′ and M ′′ respec-
tively. Then we have

ind Di = ind D′ + ind D′′,

for sufficiently large i.

Proof. Since ind D = ind D′ + ind D′′, Theorem 3.21 implies the required
gluing formula.

The following vanishing lemma follows from the partial integration for-
mula Lemma 3.8 and the second inequality in Assumption 3.1.

Lemma 3.23 Let (M,W, σ,D, V ) be a data satisfying Assumption 3.1. If
M = V , then we have ker D ∩ L2(W ) = 0.

Using the gluing formula Proposition 3.22 and the above Lemma 3.23, we
have the following excision formula of index.

Proposition 3.24 Let (M,W, σ,D, V ) be a data satisfying Assumption 3.1.
Suppose M is the disjoint union of M ′ and M ′′, and M ′′ is contained in V .
Let (W ′, σ′, D′, V ′) be the restriction of (W,σ,D, V ) to M ′. Then we have

ind Di = ind D′

for sufficiently large i.

3.6 Product formula

Following Atiyah and Singer [1], we formulate a product formula for ellip-
tic operators. Except that we need Lemma 3.8 for partial integration on
complete Riemannian manifolds, the argument is exactly the same as in [1].
The main purpose of this subsection is to formulate Assumption 3.26 below,
which is crucial for the case of complete manifolds. To apply the product
formula it is necessary to check the assumption for specific operators, which
is our another task and is carried out in Section 5.



2009/10/1 30

For k = 0, 1 let Mk be a complete Riemannian manifold, Wk a Z/2-graded
Hermitian vector bundle over Mk, and Dk : Γ(Wk) → Γ(Wk) a degree-one
formally self-adjoint order-one elliptic operator with principal symbol σk.

Let G be a compact Lie group and P → M0 a principal G-bundle. Sup-
pose G acts on M1 isometrically, W1 is G-equivariant Z/2-graded Hermitian
vector bundle, and Dk is a G-invariant operator.

Then M = P ×G M1 is a fiber bundle over M0 with fiber M1. We write
π : M → M0 for the projection map. Let W̃0 and W̃1 be the vector bundles
over M defined by W̃0 = π∗W0 and W̃1 = P×GW1, and we put W = W̃0×W̃1.

We would like to lift D0 and D1 as operators on W . The lift of D1 is
given straightforward: Defining the operator D̃1 on Γ(W̃0 ⊗ W̃1) by ϵ ⊗ D1

on each fiber of π : M → M0, where ϵ : W0 → W0 is equal to +id on the
degree 0 part of W0, and to − id on the degree 1 part of W1.

We next construct D̃0 : Γ(W ) → Γ(W ). Let {Vα} be an open covering
of M0 and {ρ2

α} a partition of unity. Suppose we have local trivializations
P |Vα

∼= Vα×G with transition functions gαβ. Using the local trivialization on
Vα we have the identifications π−1(Vα) ∼= Vα × M1 and W |π−1(Vα)

∼= W0|Vα ×
W1. Let D̃0,α be the operator on W |π−1(Vα) defined by D0 using the product

structure. We put D̃0 :=
∑

α ραD̃0,αρα.

Lemma 3.25 D̃0D̃1 + D̃1D̃0 = 0.

Proof. It follows from D̃1D̃0,α + D̃0,αD̃1 = 0 and D̃1ρα − ραD̃1 = 0.

Let R be a G-invariant Z/2-graded finite dimensional subspace of Γ(M1,W1),

and R̃ the fiber bundle P ×G R over M0. Then we have an embedding

Γ(M0,W0 ⊗ R̃) → Γ(M, W̃ ) (10)

which is preserved by the action of D̃0. Let D̃R be the restriction of D̃0 on
Γ(M0,W0 ⊗ R̃). Then D̃R is a differential operator on W0 ⊗ R̃ with principal
symbol σ0 ⊗ id

eR.

Assumption 3.26 1. D0 has finite propagation speed, i.e., σ0 is L∞-
bounded.

2. The data (M1, W1, D1) satisfies Assumption 3.1.

3. R = E0(D1).

4. The data (M,W, D̃0 + D̃1) satisfies Assumption 3.1.
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We do not assume the second condition of Assumption 3.1 for the data
(M0,W0, D0).

Recall that D̃R is given by D̃0 via the embedding (10). Since D̃1 =
0 on the image of the embedding, Assumption 3.26 implies that the data
(M0,W0 ⊗ R̃, D̃R satisfies Assumption 3.1 as well.

Theorem 3.27 (product formula) ind(D̃0 + D̃1) = ind D̃R

Proof. We show that the embedding (10) gives the isomorphism E0(D̃R) ∼=
E0(D̃0 + D̃1). If s is in the image of E0(DR), then the construction of DR

implies that s is obviously in E0(D̃0 +D̃1). From Lemma 3.8and Lemma 3.25

if s is an element of E0(D̃0 + D̃1) we have

0 =

∫
M

((D̃0 + D̃1)
2s, s) =

∫
M

(D̃2
0s + D̃2

1s, s) = ||D̃0s||2 + ||D̃1s||2,

i.e., D̃0s = D̃1s = 0. In particular D̃1s = 0 implies that s is in the image
of the embedding (10). Moreover D̃0s = 0 implies s is in the image of
E0(DR).

4 Local index

In this section we first define a class of Riemannian manifolds and compatible
fibrations (resp. compatible systems) on them. Using such a class we will
define the local index of a strongly acyclic compatible system in this section
and prove the product formula in the next section.

Definition 4.1 Let M be a Riemannian manifold. If there exists an open
subset V of M which satisfies the following properties, then we call M a
manifold with the Euclidian end V .

1. The complement M r V is compact.

2. V contains an open subset V ′ with the pre-compact complement V rV ′.

3. There exist a closed Riemannian manifold N and positive integers
{mi}k

i=1 such that V ′ is isometric to the product Riemannian mani-
fold N ×

∏
i Rmi

0 , where Rmi
0 denotes the complement of a compact

subset of Rmi for mi > 1 and R+ for mi = 1.

A typical example of a manifold with Euclidian end is a manifold with
cylindrical end V ′ = N × R+. Products of such manifolds twisted by princi-
pal bundles are another examples, which we need to formulate the product
formula in the next section.
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Definition 4.2 Let M be a manifold with the Euclidian end V and {πα :
Vα → Uα}α∈A (resp. {W,Dα}) a compatible fibration (resp. compatible
system) on V . If there exists a subset Â of A which satisfies the following
conditions, then we call {πα : Vα → Uα}α∈A (resp. {W,Dα}) a translationally
invariant compatible fibration (resp. compatible system) on V .

1. V ′(∼= N ×
∏

i Rmi
0 ) is an admissible open subset of V .

2. There exists an open covering N = ∪α∈ÂNα such that Vα ∩ V ′ is iso-

metric to Nα ×
∏

i Rmi
0 for all α ∈ Â.

3. If α ∈ A r Â, then Vα is pre-compact.

4.
∪

α∈ArÂ Vα is an open covering of V r V ′.

5. There exists a family of compatible fibrations (resp. compatible sys-
tems) {π̂α : Nα → Ûα}α∈Â (resp. {Ŵ , D̂α}) on N such that {πα|Vα∩V ′ :
Vα ∩ V ′ → πα(Vα ∩ V ′)}α∈Â (resp. {W |Vα∩V ′ , Dα|Vα∩V ′}) is the prod-

uct of {π̂α : Nα → Ûα}α∈Â (resp. {Ŵ , D̂α}) and the trivial one over∏
i Rmi

0 .

Let M be a manifold with Euclidian end V . Suppose that there is a
translationally invariant compatible fibration {πα : Vα → Uα}α∈A on V . Take

and fix a pre-compact open neighborhood V∞ of M rV . Put Ã := A∪{∞}.
For later convenience we think M = ∪α∈ eAVα is equipped with a compatible
fibration such that π∞ = id : V∞ → V∞. Let {ρ2

α}α∈ eA be an admissible
partition of unity of M = ∪α∈ eAVα constructed in Lemma 2.10. By retaking
V ′ we may assume that V∞∩V ′ = ∅ and {ρ2

α}α∈Â is translationally invariant
on V ′(= N ×

∏
i Rmi

0 ). Namely there exists an admissible partition of unity
{ρ̂2

α}α∈Â of N = ∪α∈ÂNα such that ρα|Nα×
Q

i Rmi
0

is equal to the pull back of

ρ̂α via the projection Nα ×
∏

i ×Rmi
0 →

∏
i Rmi

0 . We first show the following
technical lemma which is used to show Theorem 4.7.

Lemma 4.3 There exists an admissible partition of unity {χ2
α}α∈ eA of M =

∪α∈ eAVα which is translationally invariant on the end and satisfies supp χα $
supp ρα for each α ∈ A.

Proof. Since A is a finite set it is enough to show that if we fix α ∈ A, then
there exists an admissible partition of unity {χ2

β}β∈ eA of M = ∪β∈ eAVβ which

is translationally invariant on the end and satisfies supp χα $ supp ρα and

supp χβ = supp ρβ for all β ∈ Ã r {α}. To construct χα we first put

Kα := Vα r
∪

β∈ eAr{α}

ρ−1
β (R+).
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and show that the minimum mα := min(ρα|Kα) exists. If α ∈ Ã r Â then it
is true because Kα is compact. If α ∈ Â, then we consider a decomposition
of Kα into K1

α and K2
α;

K1
α := (Vα r V ′) r

∪
β∈ eAr{α}

ρ−1
β (R+), K2

α := (Vα ∩ V ′) r
∪

β∈ eAr{α}

ρ−1
β (R+)

Since Kα is a closed subset in M we have M ⊃ Kα = Kα = K1
α ∪ K2

α =
K1

α ∪ K2
α. Note that K1

α(⊂ V r V ′) is compact. On the other hand since
V∞ ∩ V ′ = ∅, we have

K2
α = Nα ×

∏
i

Rmi
0 r

∪
β∈Âr{α}

ρ−1
β (R+)

= K̂2
α ×

∏
i

Rmi
0 ,

where K̂2
α is the compact set define by K̂2

α := Nα r
∪

β∈Âr{α} ρ̂−1
β (R>0). Then

there exist minimums;

• m1
α := min(ρα|K1

α
)

• m2
α := min(ρα|K2

α
) = min(ρ̂α|K̂2

α
),

and hence mα = min{m1
α,m2

α} does exists.
Take and fix a non-decreasing function ϕα : R≥0 → R such that

ϕα(r) =

{
0 (0 ≤ r < mα/2)
r (mα ≤ r),

and define ρ′
α : M → R by the composition ρ′

α := ϕα ◦ ρα. Then this ρ′
α is

an admissible and translationally invariant on the end, and we have

ρ′
α(x) +

∑
β∈ eAr{α}

ρβ(x) > 0

for all x ∈ M . By normalizing the family of functions {ρ′
α}∪{ρβ}β∈ eAr{α} we

obtained the required family of functions {χ2
β}β∈ eA.

4.1 Vanishing theorem

Let M be a Riemannian manifold and V an open subset of M . Suppose
that there exist a compatible fibration {πα : Vα → Uα}α∈A and a compatible
system {W,Dα}α∈A on V . Using an admissible partition of unity {ρ2

α}α∈ eA

of M = ∪α∈ eAVα we put D′
α := ραDαρα for α ∈ A. Take any Dirac-type

operator D on Γ(W ) and a positive real number t. We define the operator
acting on Γ(W ) by Dt := D + t

∑
α∈A D′

α.
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Remark 4.4 Note that Dα and ρβ commute each other because ρβ is a
pull-back of a function on Uβ and Dα contains only the derivatives along
fibers.

We show the following fundamental lemma in our argument.

Lemma 4.5 For each α the anti-commutator DD′
α + D′

αD is a differential
operator along fibers of πα of order at most 2.

Proof. Recall that, for each α the principal symbol of horizontal direction
DHα of D with respect to πα anti-commutes not only with the symbol of
D′

α, but also with the whole operator D′
α. The statement follows from this

property. It is straightforward to check it using local description. Instead of
giving the detail of the local calculation, however, we here give an alternative
formal explanation for the above lemma. For b ∈ Uα let Wb be the sections
of the restriction of W on the fiber π−1

α (b). Then W =
∐

Wb is formally
an infinite dimensional vector bundle over Uα. We can regard D′

α as an
endmorphism on W . Then D′

α is a order-zero differential operator on W
whose principal symbol is equal to D′

α itself. Then, as a differential operator
on W , the anti-commutator D′

αDHα + DHαD′
α is an (at most) order-one

operator whose principal symbol is given by the anti-commutator between
the Clifford action by TUα and D′

α. This principal symbol vanishes, which
implies that the anti-commutator is order-zero as a differential operator on
W , i.e., it does not contain derivatives of Uα-direction.

For an operator appearing in the above lemma we have the following a
priori estimate.

Lemma 4.6 For each fiber F of πα and arbitrary differential operator Q of
order at most 2 along F , there exists a constant CQ such that the inequality∣∣∣∣∫

F

(sF , QsF )

∣∣∣∣ ≤ CQ

∫
F

|DαsF |2

holds for all sections sF .

The following vanishing theorem is a main theorem in this subsection.

Theorem 4.7 Let M be a closed manifold or a manifold with Euclidian
end V . Suppose that M is equipped with a translationally invariant strongly
acyclic compatible system {{πα},W, {Dα}}α∈A. Let D be a Dirac-type op-
erator acting on Γ(W ) which is translationally invariant on the end. Put
D′

α := ραDαρα and Dt := D + t
∑

α D′
α for a positive number t > 0. Then

the space of L2-solutions of the equation Dts = 0 is trivial for all t ≫ 1.
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To show this theorem we make several preparations. Let {χ2
α}α∈ eA be an ad-

missible partition of unity constructed in Lemma 4.3 and put Kα := supp χα.

Lemma 4.8 1. D′
α is an elliptic operator on each fiber of πα which is

contained in Kα.

2. If Q is an differential operator along fibers of order at most 2, then
there exists an constant CQ such that for each section sα satisfying
supp sα ⊂ Kα we have an estimate∣∣∣∣∫

M

(sα, Qsα)

∣∣∣∣ ≤ CQ

∫
M

|D′
αsα|2.

Proof. The first statement follows from the fact that ρα takes positive values
on Kα. Note that Kα is compact or has Euclidian end and each Dα is
translationally invariant, and hence by the similar argument in the proof of
Lemma 4.3 we can choose the constants CQ in Lemma 4.6 uniformly for all
fibers of πα contained in Kα. The second statement follows from this fact.

Lemma 4.9 There exists an operator Z which does not contain any differ-
ential terms and satisfying

D2
t =

∑
α

χαD2
t χα + Z.

Moreover Z does not depend on t.

Proof. If χ is an admissible function then it commutes with Dα and hence
we have [Dt, χ] = [D,χ]. Using this equality and the fact [D,χ] does not
contain any differential operators we have

[[D2
t , χ], χ] = [(Dt[Dt, χ] + [Dt, χ]Dt), χ]

= [(Dt[D,χ] + [D,χ]Dt), χ]

= [Dt, χ][D,χ] + [D,χ][Dt, χ]

= 2[D,χ]2.

Put χ := χα and take summation for all α we have

2D2
t − 2

∑
α

χαD2
t χα =

∑
α

[[D2
t , χ], χ] = 2

∑
α

[D,χα]2.

Then Z :=
∑

α[D,χα]2 is the required operator of order 0.
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Proposition 4.10 If sα is an L2-bounded section of W such that Dsα and
D′

αsα are also L2-bounded section for all α ∈ A and supp sα ⊂ Kα, then we
have the inequality∫

M

|Dtsα|2 ≥
∣∣∣∣∫

M

(Zsα, sα)

∣∣∣∣ +

∫
M

|sα|2

for all t ≫ 1.

We use the above proposition and lemmas to show Theorem 4.7 as follows.

Proof of Theorem 4.7 assuming Proposition 4.10. We take t ≫ 1 so that the
inequality in Proposition 4.10 holds. We first note that since M is a closed
manifold or a manifold with Euclidian end, an L2-bounded section s which
satisfies Dts = 0 is an element in the Sobolev space L2

k(W ) for arbitrary
k ∈ N by the elliptic estimate, and hence sα = χαs is. Moreover since Dt is
translationally invariant it has the bounded extension Dt : L2

1(W ) → L2(W ).
Then we can use the partial integration formula in Lemma 3.8 for Dtsα, and
we have s = 0 as in the following;

0 =

∫
M

(D2
t s, s)

=
∑

α

∫
M

(χαD2
t χαs, s) +

∫
M

(Zs, s) (Lemma 4.9.1)

=
∑

α

(∫
M

|Dtsα|2 +

∫
M

(Zsα, sα)

)
(sα := χαs)

≥
∑

α

(∫
M

|(Zsα, sα)| +
∫

M

|s2
α| +

∫
M

(Zsα, sα)

)
(Proposition 4.10)

≥
∑

α

∫
M

|s2
α| =

∫
M

|s|2.

4.1.1 Proof of Proposition 4.10.

For each fixed α ∈ A, we can write Dt as

Dt = D ̸=α + tD′
α

on Vα, where we put

D ̸=α := D + t
∑
β ̸=α

D′
β.
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Using these notations together with Qα := DD′
α + D′

αD and Qβα :=
D′

βD′
α + D′

αD′
β, we have

D2
t = D2

̸=α + tQα + t2
∑
β ̸=α

Qβα + t2D′2
α ,

and since
∫

M
(D2

̸=αsα, sα) and
∫

M
(Qβαsα, sα) are non-negative for an L2-

section sα satisfying the assumptions we also have∫
M

|Dtsα|2 ≥ t2
∫

M

|D′
αsα|2 − t

∣∣∣∣∫
M

(Qαsα, sα)

∣∣∣∣ .

From Lemma 4.5 Qα is a differential operator along fibers of πα of order
at most 2. Then from Lemma 4.8.2 there exist a constant C ′ such that∣∣∣∣∫

M

(Qαsα, sα)

∣∣∣∣ ≤ C ′
∫

M

|D′
αsα|2.

Combining these inequalities we have∫
M

|Dtsα|2 ≥ (t2 − C ′t)

∫
M

|D′
αsα|2.

On the other hand using Lemma 4.8.2 again there exists a constant C ′′ such
that ∣∣∣∣∫

M

(Zsα, sα)

∣∣∣∣ +

∫
M

|sα|2 ≤ C ′′
∫

M

|D′
αsα|2,

and hence if we take t ≫ 1 so that t2 − C ′t ≥ C ′′, then we have∫
M

|Dtsα|2 ≥
∣∣∣∣∫

M

(Zsα, sα)

∣∣∣∣ +

∫
M

|sα|2.

Note that since A is a finite set we may assume that C ′ and C ′′ do not depend
on α, and we complete the proof.

4.2 Definition of the local index - Euclidian end case

In this subsection we give the definition of the local index of a strongly
acyclic compatible system on a manifold with Euclidian end. Let M be
a manifold with Euclidian end V . Let W be a Cl(TM)-module bundle.
Assume that there is a translationally invariant strongly acyclic compatible
system {{πα}, {Vα}, {Dα}}α∈A on V . Take any Dirac-type operator D acting
on Γ(W ) which is translationally invariant on the end. For an admissible
partition of unity {ρ2

α}α∈ eA and a positive number t > 0 we put Dt := D +
t
∑

α ραDαρα.
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Lemma 4.11 If t is large enough so that the inequality in Proposition 4.10
holds, then Dt satisfies the Assumption 3.1.

Proof. Since the principal symbol of Dt is given by a linear combination of
the Clifford multiplication of TM and that of fiber directions of {πα}α∈A, (i)
of Assumption 3.1 is satisfied. We show the condition (ii) of Assumption 3.1.
Let s be a smooth compactly-supported section of W with supp s ⊂ V .
Let {χ2

α}α∈ eA be the admissible partition of unity constructed in Lemma 4.3.
For each sα := χαs we can apply Proposition 4.10, and hence, we have
||Dts||2V ≥ ||s||2V as in the same way in the proof of Theorem 4.7.

Results in Section. 3 imply the following.

Proposition 4.12 If t is large enough so that the inequality in Proposi-
tion 4.10 holds, then the space of L2-solutions of Dts = 0 is finite dimensional
and its super-dimension is independent for t ≫ 1 and any other continuous
deformations of data.

Definition 4.13 We define the local index ind(M,V,W ) as the index of Dt

in the sense of Section 3.

In the case of cylindrical end we have the following sum formula of local
indices.

Lemma 4.14 For i = 1, 2 let Mi be manifolds with cylindrical ends Vi =
Ni × R>0 and N0

i be connected components of N0
i . Suppose that there is an

isometry φ : N0
1 → N0

2 , and for some R > 0 the map φ : N0
1 × (0, R) →

N0
2 × (0, R) given by (x, r) 7→ (φ(x), R− r) induces the isomorphism between

the strongly acyclic compatible systems on them. Then we can glue M1 r
(N0

1 × [R,∞)) and M2 r (N0
2 × [R,∞)) to obtain a new manifold M̂ with

cylindrical end V̂ = N̂ × (0,∞) for N̂ = (N1 r N0
1 ) ∪ (N2 r N0

2 ), and
we also have a Clifford module bundle Ŵ obtained by gluing W and W ′ on
N0

1 × (0, R) ∼= N0
2 × (0, R). Then we have

ind(M̂, V̂ , Ŵ ) = ind(M1, V1,W1) + ind(M2, V2, W2).

4.3 Definition of the local index - general case

Let V be an open subset of M such that M r V is compact. Assume that V
has a strongly acyclic compatible system. We would like to define the local
index for such a general case. The way to define it is almost same in [4]. To
verify the construction we have to check the following.
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Proposition 4.15 For given (M,V,W ) and the strongly acyclic compatible
system (Vα

πα→ Uα, Dα) on V we can deform them to (M ′, V ′,W ′) so that it has
a cylindrical end with a translationally invariant strongly acyclic compatible
system.

To prove the proposition, it is enough to show the following lemma.

Lemma 4.16 There exists a smooth admissible function f : M → R and
a regular value c of f such that f−1(−∞, c] is a compact subset containing
M r V .

Proof. For any subset D of M , let K(D) be

K(D) = ∪απ−1
α πα(D ∩ Vα).

Since πα is a proper map, if D is compact, then K(D) is again a compact
subset.

Let f0 : M → R be the distance function from the compact subset K(Mr
V ). Take a real number r > 0 so that f−1

0 [0, r] is a compact neighborhood
of K(M r V ). Let ϵ > 0 be a positive real number satisfying 2ϵ < r.
Let h : M → R be a smooth function such that |f0(x) − h(x)| < ϵ for all
x ∈ M . Put f := I(h), where I : C∞(M) → C∞(M) is the averaging
operation in Definition 2.9. Note that using the property 4 in Definition 2.9
one can check that for all subset D of M and a connected interval J ⊂ R, if
K(D) ⊂ h−1(J), then we have K(D) ⊂ f−1(J). Let c be a regular value of
f satisfying ϵ < c < r − ϵ. Then we have

K(M r V ) = f−1
0 (0) ⊂ h−1(−ϵ, ϵ).

It implies
K(M r V ) ⊂ f−1(−ϵ, ϵ).

In particular we have
M r V ⊂ f−1(−∞, c].

On the other hand if x /∈ K(h−1(−∞, c]), then we have K({x}) ⊂ h−1(c,∞),
and hence, f(x) > c. Then

f−1(−∞, c] ⊂ K(h−1(−∞, c]) ⊂ K(f−1
0 (−∞, c + ϵ]) ⊂ K(f−1

0 [0, r]).

In particular f−1(−∞, c] is compact.

Definition 4.17 We define the local index ind(M,V,W ) to be the local
index for the deformed data (M ′, V ′,W ′).
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Note that the local index ind(M,V,W ) is well-defined, i.e, it does not
depend on various choice of the construction. It follows from the sum for-
mula (Lemma 4.14) and Theorem 4.7 as in the same way in [4]. The well-
definedness means the excision property of local index.

Theorem 4.18 Let M be a Riemannian manifold and V an open subset
such that M r V is compact. Let W be a Cl(TM)-module bundle on M and
suppose that the metric on V is a compatible metric and V has a strongly
acyclic compatible system. Let V ′ be an admissible open subset of M such
that M r V ′ is a compact neighborhood of M r V . Put M ′ := M r V ′. Then
we have

ind(M,V,W ) = ind(M ′, V r V ′,W |M ′).

Note that if M is closed, then ind(M,V,W ) is equal to the index of the
Dirac-type operator D because of the homotopy invariance of indices. Using
the excision property, additivity for disjoint unions and vanishing theorems
we have the localization theorem.

Theorem 4.19 Let M be a closed Riemannian manifold and V an open sub-
set. Let W be a Cl(TM)-module bundle on M and D a Dirac-type operator
acting on Γ(W ). Suppose that V has a strongly acyclic compatible system.
Let ∪N

i=1Vi be an open neighborhood of M r V such that Vi ∩ Vj = ∅ if i ̸= j.
Then we have the following equality.

ind D =
N∑

i=1

ind(Vi, Vi ∩ V,W |Vi∩V ).

Remark 4.20 The arguments in this section are valid in orbifold category.

5 Product formula of local indices

In this section we formulate the product of acyclic compatible systems. Once
we have an appropriate formulation of the product, then we obtain the prod-
uct formula of local indices of the strongly acyclic compatible systems by
results in Section 3.

5.1 Product of compatible fibrations

In this subsection we formulate a product of compatible fibrations. The
product is defined for the following collection of data for i = 0, 1 which
satisfy the Assumption 5.1.
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1. Mi : a manifold.

2. Vi : an open set of Mi.

3. {πi,α : Vi,α → Ui,α, Ui,αβ | α, β ∈ Ai} : a compatible fibration on Vi.

4. G : a compact Lie group which acts smoothly on M1.

5. πP : P → M0 : a principal G-bundle over M0.

Assumption 5.1 (1) V1 is G-invariant and the fibrations V1,α → U1,α,
V1,α∩V1,β → U1,αβ and U1,αβ → π1,α(V1,α∩V1,β) are G-equivariant fiber
bundles for all α, β ∈ A1.

(2) there exist principal G-bundles Pα → U0,α, Pαβ → U0,αβ and bun-
dle maps P |V0,α∩V0,β

→ Pα|π0,α(V0,α∩V0,β), P |V0,α∩V0,β
→ Pαβ, Pαβ →

Pα|π0,α(V0,α∩V0,β) for all α, β ∈ A0 such that the following diagrams com-
mute;

P |V0,α∩V0,β

vvmmmmmmmmmmmm

%%KKKKKKKKKK

²²
Pα|π0,α(V0,α∩V0,β)

²²

V0,α ∩ V0,β

π0,α

vvmmmmmmmmmmmmm
παβ

%%KKKKKKKKKK
Pαβ

²²
π0,α(V0,α ∩ V0,β) U0,αβ

pα
αβoo

P |V0,α∩V0,β

}}||
||

||
||

||
||

||
||

||
||

²²

!!B
BB

BB
BB

BB
BB

BB
BB

BB
BB

B

Pαβ

vvmmmmmmmmmmmmmm

((QQQQQQQQQQQQQQ

Pα|π0,α(V0,α∩V0,β) Pβ|π0,β(V0,α∩V0,β)

For later convenience we take an open neighborhood Vi,∞ of Mi r Vi and
consider the trivial fiber bundle structure πi,∞ : Vi,∞ → Vi,∞. In other words
we consider a compatible fibration {πi,α : Vi,α → Ui,α | α ∈ Ai ∪ {∞}} on
Mi = Vi,∞∪ (∪αVi,α). Let M be the quotient manifold by the diagonal action
of G on P ×M1. Then the natural map π : M → M0 is a fiber bundle whose
fiber is equal to M1. To define a structure of compatible fibration on M we
first prepare several notations for i = 0, 1.

• Ãi := Ai ∪ {∞}.
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• Ã := Ã0 × Ã1.

• A := Ã r (∞,∞).

• Vα0,α1 := P |V0,α0
×G V1,α1 for α ∈ Ãi.

• Uα0,α1 := Pα0 ×G U1,α1 for α ∈ Ãi.

• U(α0,α1)(β0,β1) := Pα0β0 ×G U1,α1β1 .

• V :=
∪

(α0,α1)∈A Vα0,α1 .

Then we have the following.

Proposition 5.2 A collection of data

{πα0,α1 : Vα0,α1 → Uα0,α1 , U(α0,α1)(β0,β1) | (α0, α1), (β0, β1) ∈ A}

is a compatible fibration on V =
∪

(α0,α1)∈A Vα0,α1.

5.2 Product of acyclic compatible systems

In this subsection we define a product of acyclic compatible systems. To
define the product we consider the following data together with the data 1,
2, 3, 4 and 5 in Subsection 5.1.

6. a compatible Riemannian metric on Mi.

7. Wi : a compatible Cl(TMi)-module bundle over Mi.

8. {Di,α | α ∈ Ai} : strongly acyclic compatible system over Vi = ∪α∈Ai
Vi,α.

Together with Assumption 5.1 we assume the following.

Assumption 5.3 The metric on M1 is G-invariant, and W1 → M1 and
{D1,α} are G-equivariant.

From the Assumption 5.1 (2). the restrictions of P at each fibers of π0,α

are trivial. Moreover we have the following.

Lemma 5.4 There exists a connection on P which is trivial flat over each
fibers of π0,α for all α ∈ A0.

Proof. Take connections ∇̄α for each Pα → U0,α. Let ∇α be the pull-back
connections of them to P |V0,α → V0,α by π0,α. Define a connection ∇ on P
by patching {∇α}α by an admissible partition of unity {ρ2

α}α, which satisfies
the required property.
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Using this connection on P and the compatible metric on M0 we have the
metric on P , and hence the metric on M . Moreover since the connection is
trivial along fibers of {π0,α} it induces a family of connections of {Pα} and
{Pαβ}, and hence a family of metrics on them. Combining them with the G-
invariant compatible metric on M1 we have a family of metrics of {T [πα0α1 ]},
{TUα0α1} and so on. It defines a compatible metric of a compatible fibration

M = ∪(α0,α1)Vα0,α1 . We put W̃0 := π∗W0 = π∗
P W0 ×G M1, W̃1 := P ×G W1

and W := W̃0⊗W̃1. Then W → M is a compatible Clifford module bundle of
M = ∪(α0,α1)Vα0,α1 with respect to the above induced compatible metric. Now

we define differential operators D̃0,α0 and D̃1,α1 for each α0 ∈ A0 and α1 ∈ A1

which act on Γ(W̃0|Vα0,α1
) and Γ(W̃1|Vα0,α1

) respectively. The operator D̃1,α1

is the one induced from the G-equivariant operator D1,α1 on Γ(W1|V1,α1
).

On the other hand D̃0,α0 is the operator defined as follows: Since D0,α0 is a
differential operator along fibers of π0,α0 and P is trivial at each fiber of π0,α0 ,
we can define the operator acting on the restriction Γ(π∗

P W0|fiber×GM1) using
D0,α0 |fiber and a trivialization of P |fiber. Since such operators along fibers do

not depend on trivialization we have a differential operator D̃0,α0 acting on

Γ(W̃0|Vα0,α1
). Using these operators we define an operator acting on Γ(W |V )

by Dα0,α1 := D̃0,α0 ⊗ id
fW1

+ϵ
fW0

⊗ D̃1,α1 , where ϵ
fW0

is a map on W̃0 defined

by ϵ
fW0

(v) := (−1)deg vv. For later convenience we put D̃α0,∞ = D̃∞,α1 = 0.

Proposition 5.5 A collection of differential operators {Dα0,α1 | (α0, α1) ∈
A} is a strongly acyclic compatible system on (V,W |V ).

Proof. Since D̃0,α0 ⊗ id
fW1

and ϵ
fW0

⊗ D̃1,α1 anti-commute each other we have

(∑
tα0,α1Dα0,α1

)2

=

(∑
α0

(∑
α1

tα0,α1

)
D̃0,α0

)2

⊗ id
fW1

+ id
fW0

⊗

(∑
α1

(∑
α0

tα0,α1

)
D̃1,α1

)2

for any family of non-negative numbers (tα0,α1), and the equality among anti-
commutators

{Dα0,α1 , Dα′
0,α′

1
} = {D̃0,α0 , D̃0,α′

0
} ⊗ id

fW1
+ id

fW0
⊗{D̃1,α1 , D̃1,α′

1
}.

These equalities imply that if {Di,αi
}αi

are strongly acyclic compatible sys-
tems, then {Dα0,α1}(α0,α1) is so.
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5.3 Product formula

To apply results in Subsection 4.1 and 4.2, we have to deform the end of
Mi and M as in the following way; As we showed in Subsection 4.3, we can
deform Mi into M̂i together with their strongly acyclic compatible systems so
that M̂i has the cylindrical end structure. In addition we can deform P into
P̂ so that it has the cylindrical end and may assume that the deformation M̂1

for M1 is G-equivariant. Then one can check that the product M̂ = P̂ ×G M̂1

has the Euclidian end structure. Because of the excision property of the
local index, we have that Mi (resp. M) and M̂i (resp. M̂) have the same
local index. So hereafter we assume that Mi and M has the Euclidian end
structure.

Let {ρ2
i,α}α∈ eAi

be admissible partition of unities of Mi. We may assume
that {ρ2

1,α} is G-invariant. Using these partition of unities we have an ad-
missible partition of unity {ρ2

α0,α1
}(α0,α1)∈ eA on M = ∪(α0,α1)Vα0,α1 which is

defined by ρα0,α1([u, y]) := ρ0,α0(π(u))ρ1,α1(y) for [u, y] ∈ M .
For any translationally invariant Dirac-type operators Di on Γ(Wi), using

a local trivialization of P we have their lifts D̃0⊗ id
fW1

and ϵ
fW0

⊗D̃1 on Γ(W )

as in Subsection 3.6. Note that D := D̃0⊗ id
fW1

+ϵ
fW0

⊗D̃1 is a translationally
invariant Dirac-type operator on Γ(W ).

Because of Lemma 5.5 if we take a positive number t large enough, then
the inequality in Proposition 4.10 holds for deformed operators Di,t and Dt

on Mi and M . On the other hand we have a decomposition Dt = DB
t + DF

t ,
where

DB
t :=

(
D̃0 + t

∑
α0

(∑
α1

ρ2
α1

)
π∗ρ0,α0D̃0,α0π

∗ρ0,α0

)
⊗ id

fW1

=

(
D̃0 + t

∑
α0

π∗ρ0,α0D̃0,α0π
∗ρ0,α0

)
⊗ id

fW1

DF
t := ϵ

fW0
⊗

(
D̃1 + t

∑
α1

(∑
α0

π∗ρ2
α0

)
ρ1,α1D̃1,α1ρ1,α1

)

= ϵ
fW0

⊗

(
D̃1 + t

∑
α1

ρ1,α1D̃1,α1ρ1,α1

)
.

Note that DF
t is a differential operator along fibers of π : M → M0. They

anti-commutes each other. Namely,

Lemma 5.6 DB
t DF

t + DF
t DB

t = 0.
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Moreover since M1 and M have the Euclidian end structure, we have the
following by Lemma 4.2.

Lemma 5.7 Dt and DF
t satisfy Assumption 3.26.

When we write ker D1,t = E0 ⊕ E1 as the G-equivariant Z/2-graded vector
space, G-equivariant local index of (M1, V1,W1) can be written as indG(M1, V1,W1) =
[E0] − [E1] ∈ R(G). Let Ei be the vector bundle over M0 defined by
Ei = P ×G Ei. Then the strongly acyclic compatible system on (M0, V0,W0)
induces another strongly acyclic compatible systems on (M0, V0,W0⊗Ei) via
{D0,α ⊗ idEi} for i = 0, 1. Lemma 5.6, Lemma 5.7 and the product formula
in Section 3 imply the following product formula of local indices.

Theorem 5.8 We have the following product formula.

ind(M0, V0,W0 ⊗ E0) − ind(M0, V0,W0 ⊗ E1) = ind(M,V,W ) ∈ Z.

6 Four-dimensional case

6.1 Local indices for elliptic singularities

A critical point of a 2n-dimensional singular Lagrangian fibration µ : (M,ω) →
B is called a nondegenerate elliptic singular point of rank k (≤ n) if there
exists a symplectic coordinates x1, . . . , xn, y1, . . . , yn such that in these coor-
dinate, µ is written as µ = (x1, . . . , xk, x

2
k+1+y2

k+1, . . . , x
2
n+y2

n). See [10, 9, 8].
In this subsection we calculate local indices for elliptic singularities in four-
dimensional case.

6.1.1 Definition of RR0(a1, a2)

Let D := {z ∈ C | |z| < 1} be the open unit disc in C. Let X0 be the product
of two copies of D with symplectic structure

ω0 :=

√
−1

2π

2∑
k=1

dzk ∧ dzk,

and (L0,∇L0) a prequantizing line bundle on (X0, ω0).
Let us consider the structure of a singular Lagrangian fibration µ0 : (X0, ω0) →

[0, 1) × [0, 1) on X0 which is defined by

µ0(z) :=
(
|z1|2, |z2|2

)
.

We put the following assumption.
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Assumption 6.1 The cohomology groups H∗
(
µ−1

0 (b); (L0,∇0)|µ−1
0 (b)

)
van-

ish for all points b ∈ [0, 1) × [0, 1) except for b = (0, 0).

Let a1 and a2 ∈ Z be arbitrary integers. We define a good compatible
fibration on X0 r {(0, 0)} consisting of three quotient maps of the torus
actions by

π0
0 : V 0

0 := X0 ∩ (C∗ × C∗) → U0
0 := V 0

0 /T 2,

π0
1 : V 0

1 := {(z1, z2) ∈ X0 | |z1| > |z2|} → U0
1 := V 0

1 /S1,

π0
2 : V 0

2 := {(z1, z2) ∈ X0 | |z1| < |z2|} → U0
2 := V 0

2 /S1,

where the T 2-action on V 0
0 is the standard one, the S1-action on V 0

1 is defined
by

t(z1, z2) := (tz1, t
a1z2),

and the S1-action on V 0
2 is defined by

t(z1, z2) := (ta2z1, tz2).

We take and fix an arbitrary Hermitian structure (g0, J0) invariant under the
standard T 2-action on X0 and compatible with ω0. Since g0 is T 2-invariant
g0 induces a compatible Riemannian metric of this compatible fibration.

Let W0 be the Hermitian vector bundle on X0 which is defined by

W0 :=
∧•

(TX0)C ⊗C L0.

W0 is a Z2-graded Clifford module bundle with respect to the Clifford module
structure (6). We take a compatible system {Di}i=0,1,2 to be the family of de
Rham operators along fibers of π0

i (i = 0, 1, 2) which is defined by the same
way as in Example 2.24. Assumption 6.1 implies that the kernel of all Di

vanish. Hence {Di} is strongly acyclic.

Definition 6.2 Let D be a Dirac-type operator on W0. We define RR0(a1, a2)
to be the local index in the sense of Definition 4.17 with respect to D and
the above data.

Remark 6.3 RR0(a1, a2) does not depend on the choice of a compatible
Hermitian structure (g0, J0) and a connection ∇L0 of the prequantizing line
bundle which satisfies Assumption 6.1 since it is deformation invariant.



2009/10/1 47

6.1.2 Definition of RR1(a+, a−)

Let X1 := (0, 1)×S1×D be the product of (0, 1)×S1 and D with symplectic
structure

ω1 := dr ∧ dθ +

√
−1

2π
dz ∧ dz̄

for (r, e2π
√
−1θ, z) ∈ X1, and (L1,∇L1) a prequantizing line bundle on (X1, ω1).

Let us consider the structure of singular Lagrangian fibration µ1 : (X1, ω1) →
(0, 1) × [0, 1) which is defined by

µ1(r, u, z) :=
(
r, |z|2

)
.

We put the following assumption.

Assumption 6.4 For all points b ∈ [0, 1)× [0, 1) H∗(µ−1
1 (b); (L1,∇1)|µ−1

1 (b))
vanish.

Let a+ and a− ∈ Z be arbitrary integers. We take an element r1 ∈ (0, 1)
and fix it. Then, we define a good compatible fibration on X1 r µ−1

1 (r1, 0)
consisting of three quotient maps of the torus actions by

π1
0 : V 1

0 := (0, 1) × S1 × (D r {0}) → U1
0 := V 1

0 /T 2,

π1
1 : V 1

1 := (r1, 1) × S1 × D → U1
1 := V 1

1 /S1,

π1
2 : V 1

2 := (0, r1) × S1 × D → U1
2 := V 1

2 /S1,

where the T 2-action on V 1
0 is defined by

t(r, u, z) := (r, t1u, t2z),

the S1-action on V 1
1 is defined by

t(r, u, z) := (r, tu, ta+z),

and the S1-action on V 1
2 is defined by

t(r, u, z) := (r, tu, ta−z).

We take an arbitrary Hermitian structure (g1, J1) which is invariant under
the standard T 2-action on X1 and compatible with ω1 and fix it. We define
the Z2-graded Clifford module bundle W1 and the strongly acyclic compatible
system in the same way as in Section 6.1.1.

Definition 6.5 Let D be a Dirac-type operator on W1. Then, we define
RR1(a+, a−) to be the local index in the sense of Definition 4.17 with respect
to D and the above data.

Remark 6.6 RR1(a+, a−) does not depend on the choice of a compatible
Hermitian structure (g1, J1) and a connection ∇L1 of the prequantizing line
bundle which satisfies Assumption 6.4 since it is deformation invariant.
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6.1.3 Computation

First we can show the following lemma.

Lemma 6.7 For integers a, b, c ∈ Z we have

RR0(a, b) = RR0(b, a), RR1(a, b) = RR1(a + c, b + c).

Proof. We prove the latter equation. The proof of the former equation is
similar. Let ϕ : (0, 1) × S1 × D → (0, 1) × S1 × D be the diffeomorphism
which is defined by

ϕ(r, u, z) = (r, u, ucz).

On the target space of ϕ we consider the same compatible fibration as
{π1

i }i=0,1,2 except that a and b are replaced by a + c and b + c, respectively.
Then ϕ induces an isomorphism between compatible fibrations.

As the other data on the target space of ϕ we consider the data which
are induced from those on the source space by ϕ−1. Then the local index for
the induced data on the target space is nothing but RR1(a, b).

On the other hand, the data (ϕ−1)∗ω1 and (ϕ−1)∗∇L1 can be deformed to
ω1 and ∇L1 by linear deformations. Since the local index is invariant under
continuous deformation this implies that the latter equation.

Moreover, we can also show the following lemma by Theorem 4.18.

Lemma 6.8

RR0(a, b) = RR0(a
′, b) + RR1(a

′, a), RR1(a, c) = RR1(a, b) + RR1(b, c).

Then we can calculate RR0(a1, a2) and RR1(a+, a−).

Theorem 6.9

RR0(a1, a2) = 1, RR1(a+, a−) = 0.

Proof. We show RR0(0, 1) = 1 and RR0(0, 0) = 1. Then the theorem follows
from these equalities and Lemma 6.7 and 6.8.

First we show RR0(0, 1) = 1. Let us consider the standard toric action on
CP2 with hyperplane bundle as a prequantizing line bundle. We adopt the
moment map µ of this action as a singular Lagrangian fibration. The image
B of µ is the triangle in R2 with vertices (0, 0), (1, 0), (0, 1), and µ has three
Bohr-Sommerfeld fibers which corresponds one-to-one to three fixed points
[1 : 0 : 0], [0 : 1 : 0], [0 : 0 : 1] of the toric action.



2009/10/1 49

We construct a compatible fibration on CP 2 r {[1 : 0 : 0], [0 : 1 : 0], [0 :
0 : 1]}. For each k ∈ Z/3 let Vk be a pairwise disjoint T 2-invariant open
neighborhood of {[z0 : z1 : z2] ∈ CP 2 | zk = 0} r {[1 : 0 : 0], [0 : 1 : 0], [0 :
0 : 1]}, and Gk the stabilizer of {[z0 : z1 : z2] ∈ CP 2 | zk = 0} r {[1 : 0 :
0], [0 : 1 : 0], [0 : 0 : 1]}. Each Gk is a circle subgroup in T 2 and Gk−1 acts
on Vk freely. Then we put Uk := Vk/Gk−1 and define πk : Vk → Uk to be the
quotient map. We also put V4 := U4 := B r ∂B and define π4 : V4 → U4

to be the identity map. These data define a good compatible fibration on
CP 2 r {[1 : 0 : 0], [0 : 1 : 0], [0 : 0 : 1]}.

The Z2-graded Clifford module bundle and the strongly acyclic compati-
ble system are defined by the same way as in Section 6.1.1.

Then by Theorem 4.19 the Riemann-Roch number is localized at [1 : 0 :
0], [0 : 1 : 0], [0 : 0 : 1], and the contribution of each fixed point is equal to
RR0(0, 1).

On the other hand it is well-known that the Riemann-Roch number of
CP 2 is 3. Thus we obtain RR0(0, 1) = 1.

Next we show RR0(0, 0) = 1. It is a direct consequence of the product
formula 5.8 and the fact [D+] = 1(see [4, Theorem 6.7]).

We can also show RR0(0, 0) = 1 in the following way. We consider CP 1×
CP 1 with standard toric action. The image of the moment map is a square.
By the similar construction as above the Riemann-Roch number is localized
at four vertices and the contribution of any vertex is RR0(0, 0). On the
other hand the Riemann-Roch number of CP 1 × CP 1 is four. This implies
RR0(0, 0) = 1.

6.2 Application to locally toric Lagrangian fibrations

In this subsection we apply the localization formula (Theorem 4.19), the
product formula (Theorem 5.8), and Theorem 6.9 to show that for a four-
dimensional closed locally toric Lagrangian fibration the Riemann-Roch num-
ber is equal to the number of Bohr-Sommerfeld fibers (Theorem 6.23).

6.2.1 Locally toric Lagrangian fibrations

Let ωCn be the standard symplectic structure on Cn

ωCn :=

√
−1

2π

n∑
k=1

dzk ∧ dzk.

The standard action of T n on Cn preserves ωCn and the map µCn : Cn → Rn

which is defined by
µCn(z) :=

(
|z1|2, . . . , |zn|2

)
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for z = (z1, . . . , zn) ∈ Cn is a moment map of the standard T n-action. Note
that the image of µCn is the n-dimensional standard positive cone

Rn
+ := {r = (r1, . . . , rn) ∈ Rn : ri ≥ 0 i = 1, . . . , n}.

Let (M,ω) be a 2n-dimensional symplectic manifold and B an n-dimensional
manifold with corners.

Definition 6.10 ([8, 11]) A map µ : (M,ω) → B is called a locally toric
Lagrangian fibration if there exists a system {(Uα, ϕB

α )} of coordinate neigh-
borhoods of B modeled on Rn

+, and for each α there exists a symplectomor-
phism ϕM

α : (µ−1(Uα), ω) → (µ−1
Cn(ϕB

α (Uα)), ωCn) such that µCn ◦ϕM
α = ϕB

α ◦µ.

Note that a locally toric Lagrangian fibration is a singular Lagrangian
fibration that allows only elliptic singularities.

By the definition of a manifold with corners, B is equipped with a natural
stratification. We denote by S(k)B the k-dimensional part of B, namely,
S(k)B consists of those points which have exactly k nonzero components in a
local coordinate system. Then, it is easy to see that the fiber of µ at a point
in S(k)B is a k-dimensional torus. In particular, all fibers of µ are smooth.

Example 6.11 (Projective toric variety) The moment map of a nonsin-
gular projective toric variety is a locally toric Lagrangian fibration.

Example 6.12 (Non toric example) Let c ∈ N be a positive integer. We
consider the diagonal Hamiltonian S1-action on (C2, ωC2) with moment map

Φ(z) := ∥z∥2 − c.

It is well-known that the symplectic quotient
(
Φ−1(0), ωC2 |Φ−1(0)

)
/S1 is CP 1

with c times Fubini-Study form ωFS. In the rest of this example we identify
(CP 1, cωFS) with

(
Φ−1(0), ωC2 |Φ−1(0)

)
/S1.

Let µ̃ : (M̃, ω̃) → B̃ be the singular Lagrangian fibration which is defined
by

(M̃, ω̃) := (R × S1 × CP 1, dr ∧ dθ ⊕ cωFS),

B̃ := R × [0, c],

µ̃(r, u, [z0 : z1]) := (r, |z1|2),

where we use the coordinate (r, e2π
√
−1θ) ∈ R × S1. For a negative integer

a ∈ Z (a < 0) and a positive integer b ∈ N, we define the Z-actions on M̃
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and B̃ by

n(r, u, [z0 : z1]) :=
(
r + n(−a|z1|2 + b), u, [z0 : unaz1]

)
, (11)

n(r1, r2) := (r1 + n(−ar2 + b), r2). (12)

It is easy to see that (11) and (12) are free Z-actions and (11) preserves ω̃.
Then we put

(M,ω) := (M̃, ω̃)/Z,

B := B̃/Z.

It is also easy to see that µ̃ is equivariant with respect to (11) and (12).
Hence µ̃ induces the map from M to B which we denote by µ : (M,ω) → B.
By construction, B is a cylinder and µ is a locally toric Lagrangian fibration
which has singular fibers on ∂B.

Let µ : (M2n, ω) → B be a locally toric Lagrangian fibration. By defini-
tion, for each α there is a symplectomorphism ϕM

α : µ−1(Uα) → µ−1
Cn(ϕB

α (Uα)),
and µ−1

Cn(ϕB
α (Uα)) has a T n-action which is obtained by restricting the stan-

dard T n-action on Cn. Then, it is known by [11, Proposition 3.13] that on
each nonempty overlap Uα∩Uβ there exists an automorphism ραβ ∈ Aut(T n)
of T n such that ϕM

αβ := ϕM
α ◦ (ϕM

β )−1 is ραβ-equivariant, namely,

ϕM
αβ(tx) = ραβ(t)ϕM

αβ(x)

for t ∈ T 2 and x ∈ µ−1
Cn(ϕB

β (Uα ∩ Uβ)). Moreover,we can show that ραβ’s

form a Čech one-cocycle {ραβ} on {Uα} with coefficients in Aut(T n). Hence
it defines an element [{ραβ}] in the Čech cohomology H1(B; Aut(T n)). Then
we have the following lemma.

Lemma 6.13 ([11]) The Čech cohomology class [{ραβ}] is the obstruction
class in order that the T n-actions on µ−1

Cn(ϕB
α (Uα)) for all α can be patched

together to obtain a global T n-action on M .

For more detail see [11].

Let qB : B̃ → B be the universal covering of B. Since the Čech coho-
mology H1(B; Aut(T n)) is identified with the moduli space of representa-
tions of the fundamental group π1(B) of B to Aut(T n), the fiber product

q∗BM := {(̃b, x) ∈ B̃ × M | qB (̃b) = µ(x)} admits a T n-action.
We take a representative ρ : π1(B) → Aut(T n) of the equivalence class of

representations corresponding to [{ραβ}]. Then the T n-action on q∗BM can
be written explicitly. See [12, Lemma 3.1] for the explicit description.
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On the other hand, by the construction, π1(B) acts on q∗BM from the left
by the inverse of the deck transformation, and it is shown that the T n-action
and the π1(B)-action satisfy the following relationship

t(ax̃) = a
(
ρ(a−1)(t)x̃

)
(13)

for t ∈ T n, a ∈ π1(B), and x̃ ∈ q∗BM . Let T n oρ π1(B) be the semidirect
product of T n and π1(B) with respect to ρ. Then, (13) implies that these
actions form an action of T n oρ π1(B) on q∗BM . For more details see [12].

Let qM : q∗BM → M be the natural projection. Note that q∗Mω is T n oρ

π1(B)-invariant since ω is invariant under the T n-action on µ−1(Uα) induced
by the standard T n-action on Cn for each α. Now we show the following
lemma.

Lemma 6.14 There exists a Hermitian structure (g̃, J̃) on q∗BM compatible
with q∗Mω which is invariant under the action of T n oρ π1(B).

Proof. It is sufficient to show that the existence of an invariant Riemannian
metric. Let g′ be a Riemannian metric on M . We define the Riemannian
metric g̃ on q∗BM by

g̃
ex(u, v) :=

∫
T n

(ϕ∗
t (q

∗
Mg′))

ex (u, v)dt,

where ϕt implies the T n-action for t ∈ T n. It is sufficient to show that g̃ is
π1(B)-invariant. For a ∈ π1(B) we denote the π1(B)-action by φa. Then we
have

(φ∗
ag̃)

ex(u, v) =

∫
T n

(φ∗
a (ϕ∗

t (q
∗
Mg′)))

ex (u, v)dt

=

∫
T n

(
ϕ∗

ρ(a−1)(t) (φ∗
a(q

∗
Mg′))

)
ex
(u, v)dt

=

∫
T n

(
ϕ∗

ρ(a−1)(t)(q
∗
Mg′)

)
ex
(u, v)dt

= det ρ(a−1)

∫
T n

(
ϕ∗

ρ(a−1)(t)(q
∗
Mg′)

)
ex
(u, v)ρ(a−1)∗dt

=

∫
T n

(ϕ∗
t (q

∗
Mg′))

ex (u, v)dt.

= g̃
ex(u, v).

Here we remark that det ρ(a−1) = ±1 since ρ(a−1) ∈ Aut(T n).
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Corollary 6.15 (the existence of an invariant Hermitian structure)
There exists a Hermitian structure (g, J) on M compatible with ω such that
on each µ−1(Uα) (g, J) is invariant under the T n-action on µ−1(Uα) which
is induced from the T n-action on µ−1

Cn(ϕB
α (Uα)) with the identification ϕM

α .

Proof. By Lemma 6.14 there is a T n oρ π1(B)-invariant Hermitian structure

(g̃, J̃) on q∗BM compatible with q∗Mω. In particular, since (g̃, J̃) is π1(B)-

invariant, (g̃, J̃) induces an ω-compatible Hermitian structure on M which is
denoted by (g, J). Then, (g, J) is the required one.

Lemma 6.16 (The existence of an averaging operation) Suppose that
there exists a compatible fibration {πα : Vα → Uα} on M such that for each
α a fiber of πα is contained in that of µ, namely, π−1

α πα(x) ⊂ µ−1µ(x) for
x ∈ Vα. There exists an averaging operation I : C∞(M) → C∞(M) with
respect to {πα : Vα → Uα}.

Proof. For f ∈ C∞(M) let f̃ ∈ C∞(q∗BM) be the function on q∗BM which is
defined by

f̃(x̃) :=

∫
T n

(f ◦ qM)(tx̃)dt.

Then, by the similar way to that in the proof of Lemma 6.14, we can show
that f̃ is T n oρ π1(B)-invariant. Hence it descends to the function on M .
We denote it by I(f). Then, it is clear that I(f) satisfies the properties in
Definition 2.9.

6.2.2 Bohr-Sommerfeld fibers and the Riemann-Roch number

Let µ : (M,ω) → B be a prequantizable locally toric Lagrangian fibration
with prequantizing line bundle (L,∇). Recall that, as described above, all
fibers are smooth.

Definition 6.17 A fiber F of µ is said to be Bohr-Sommerfeld if the re-
striction (L,∇)|F is trivially flat. A point b of B is also said to be Bohr-
Sommerfeld if the fiber µ−1(b) is Bohr-Sommerfeld.

Remark 6.18 A fiber F of µ is Bohr-Sommerfeld if and only if the cohomol-
ogy H∗(F ; (L,∇)|F ) does not vanish, see Lemma 2.25. This is also equivalent
to the condition that the de Rham operator on F with coefficients in (L,∇)|F
has non zero kernel.

First we specify Bohr-Sommerfeld points for the local model.
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Proposition 6.19 Let (L,∇) be a prequantizing line bundle on (Cn, ωCn).
Then, a point b ∈ Rn

+ is Bohr-Sommerfeld if and only if b ∈ Rn
+ ∩ Zn.

Proof. Since Cn is contractible L is trivial as a complex line bundle. Then
we can assume that L is of the form L = Cn × C without loss of generality.
Then, ∇ can be written as

∇ = d − 2π
√
−1A

for some one form on Cn with dA = ωCn . Moreover A is unique up to exact
one form since Cn is contractible. In particular, A is of the form

A =

√
−1

4π

n∑
i=1

(zidz̄i − z̄idzi) + df

for some smooth function f on Cn.
By using the polar coordinate zi = rie

2π
√
−1θi we can write µC and A in

the following forms

µCn = (r2
1, . . . , r

2
n), A =

∑
i

r2
i dθi + df.

In particular, we see that the tangent space along a nonsingular fiber of µCn

is spanned by ∂θi
’s. Thus a direct computation shows that a point b ∈ Rn

+ is
Bohr-Sommerfeld if and only if b ∈ Rn

+ ∩ Zn.

By the above proposition and the definition of a locally toric Lagrangian
fibration we can obtain the following corollary.

Corollary 6.20 For a locally toric Lagrangian fibration Bohr-Sommerfeld
fibers appear discretely.

Example 6.21 For a nonsingular projective toric variety it is well-known
that Bohr-Sommerfeld fibers correspond one-to-one to the integral points in
the moment polytope. For example see [3].

Example 6.22 We consider the locally toric Lagrangian fibration µ : (M,ω) →
B in Example 6.12. We show that (M,ω) is prequantizable.

Let (Hc,∇Hc) be the c times tensor power of the hyperplane bundle on
CP 1. With the identification of (CP 1, cωFS) and the symplectic quotient(
Φ−1(0), ωC2 |Φ−1(0)

)
/S1 in Example 6.12 (Hc,∇Hc) can be written in the

following explicit way

(Hc,∇Hc) =

(
Φ−1(0) × C, d + 1/2

∑
i

(zidzi − zidzi)

)
/S1,
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where the S1-action is defined by

t · (z0, z1, w) := (tz0, tz1, t
cw).

Now let us define the prequantizing line bundle (L̃, ∇̃) on (M̃, ω̃) by

(L̃, ∇̃) :=
(
pr∗1(R × S1 × C, d − 2π

√
−1rdθ) ⊗C pr∗2(Hc,∇Hc)

)
.

We also define the lift of the Z-action (11) on M̃ to L̃ by

n(r, u, [z0 : z1, w]) :=
(
r + n(−a|z1|2 + b), u, [z0 : unaz1, u

nbw]
)
. (14)

It is easy to see that (14) preserves ∇̃ and the standard Hermitian metric.
We put

(L,∇) := (L̃, ∇̃)/Z.

Then (L,∇) is a prequantizing line bundle on (M,ω).
Next we see the Bohr-Sommerfeld fibers of µ with respect to (L,∇). The

direct computation shows that Bohr-Sommerfeld fibers of µ̃ correspond one-
to-one to the elements in B̃ ∩ Z2. Let F be a fundamental domain of the
Z-action (12) on B̃ which is defined by

F := {(r1, r2) ∈ B̃ | 0 ≤ r2 ≤ c, −1/2 ≤ r1 < −ar2 + b − 1/2}

Then, Bohr-Sommerfeld fibers of µ correspond one-to-one to the elements in
F ∩ Z2. See Figure 1.

0 b − 1
2

r1

r1 = −ar2 + b − 1
2

r2

c

B̃
F

Figure 1: Bohr-Sommerfeld points in Example 6.12
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In the rest of this section we assume that M is closed. Let (g, J) be a
Hermitian structure on M compatible with ω as in Corollary 6.15. We define
the Hermitian vector bundle W on M by

W :=
∧•

TMC ⊗C L. (15)

W is a Z2-graded Clifford module bundle with respect to the Clifford module
structure (6). Let D be the Dirac-type operator on W . We define the
Riemann-Roch number to be the index of D.

The purpose of this section is to show the following theorem.

Theorem 6.23 Let µ : (M,ω) → B be a four-dimensional prequantizable
locally toric Lagrangian fibration with prequantizing line bundle (L,∇). Then
the Riemann-Roch number is equal to the number of both nonsingular and
singular Bohr-Sommerfeld fibers.

Proof. Let BBS be the set of Bohr-Sommerfeld points of µ in B. We put
V := µ−1(B r BBS). In order to prove Theorem 6.23 we define a good
compatible fibration on V as follows.

On the regular non Bohr-Sommerfeld points U0 := S(2)B r BBS of µ we
define the fibration by

π0 := µ|V0 : V0 := µ−1(U0) → U0.

Since B is compact, there are only finitely many Bohr-Sommerfeld points
in S(1)B. Suppose we have exactly k Bohr-Sommerfeld points p1, . . . , pk in
S(1)B, namely,

{p1, . . . , pk} = BBS ∩ S(1)B.

For each i we take an contractible open neighborhood Wi of pi in B which
satisfies the following properties.

• Wi’s are pairwise disjoint, namely, Wi ∩ Wj = ∅ for all i ̸= j.

• For each i Wi does not intersect S(0)B, namely, Wi ∩ S(0)B = ∅.

• There exist finitely many non Bohr-Sommerfeld points in S(1)B, say
q1, . . . , ql, such that we have

k∪
i=1

Wi ∩ S(1)B = S(1)B r {q1, . . . , ql}.
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c

r2

r1 = −ar2 + b − 1
2

r1

b − 1
2

0

B̃

W4 W5 W6

W1

W3

W2

W7

F

Figure 2: Wi’s in Example 6.12

It is possible to take such neighborhoods since a connected component of ∂B
is compact.

We put V ′
i := µ−1(Wi). Since Wi is contractible, by [11, Proposition 3.5],

there exists a T 2-action on V ′
i . Moreover, there exist a coordinate neigh-

borhood (Uαi
, ϕB

αi
) of B containing pi, a diffeomorphism ϕM

αi
: µ−1(Uαi

) →
µ−1

C2 (ϕB
αi

(Uαi
)) in Definition 6.10, and an automorphism ραi

∈ Aut(T 2) which
satisfy the following properties.

• µC2 ◦ ϕM
αi

= ϕB
αi
◦ µ.

• On V ′
i ∩ µ−1(Uαi

) ϕM
αi

is ραi
-equivariant with respect to the T 2-action

on V ′
i and the standard T 2-action on C2.

Let ϕB
αi

(pi) = (r1, r2) ∈ R2
+. Since pi ∈ S(1)B there exists a unique coordinate

rji
such that rji

= 0. We define the circle subgroup Ti of T 2 by

Ti := ρ−1
αi

(
{t = (t1, t2) ∈ T 2 | tji

= e}
)
.

By definition Ti acts on V ′
i freely. Then for each i we define the fibration

πi : Vi → Ui to be the natural projection

πi : Vi := V ′
i r µ−1(pi) → Ui := Vi/Ti.

By the construction {πi : Vi → Ui | i = 0, . . . , k} is a good compatible
fibration on V . Moreover, by Lemma 6.16, there is an averaging operation
with respect to {πi : Vi → Ui | i = 0, . . . , k}.
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Recall that (g, J) is a Hermitian structure on M compatible with ω as
in Corollary 6.15. Then, as in the case of usual torus actions, g defines
the compatible Riemannian metric of {πi : Vi → Ui | i = 0, . . . , k} whose
restriction to each fiber of µ is flat, and the Z2-graded Clifford module bundle
W defined by (15) becomes a compatible Clifford module bundle in the sense
of Definition 2.16. We define the strongly acyclic compatible system in the
same way as in Section 6.1.1. Then by Theorem 4.19, the Riemann-Roch
number is localized at Bohr-Sommerfeld fibers and the fibers at q1, . . . , ql.

We consider their contributions. Since a fiber of µ is connected, by The-
orem [4, Theorem 6.11], the contribution of a regular Bohr-Sommerfeld fiber
is equal to one.

Next we consider the contributions of singular Bohr-Sommerfeld fibers.
By Definition each fiber on S(0)B is Bohr-Sommerfeld, and its contribution
is RR0(a1, a2) for some a1 and a2. By Theorem 6.9 it is equal to one.

By the construction of the compatible fibration the local Riemann-Roch
number for each singular Bohr-Sommerfeld fiber on S(1)B is obtained from
[BS+] and [D+] in [4, Theorem 6.7] by the product formula 5.8. It is also
one.

Finally it is easy to see that the contribution of each fibers at q1, . . . , ql

is equal to RR1(a+, a−) in Section 6.1.2 for some a+ and a−. Then by The-
orem 6.9 it is zero. This proves Theorem 6.23.

Example 6.24 Theorem 6.23 recovers Danilov’s result [3], which says that
for a nonsingular projective toric variety the Riemann-Roch number is equal
to the number of the lattice points in the moment polytope, in the four-
dimensional case.

Example 6.25 As we described in Example 6.22 the Bohr-Sommerfeld fibers
correspond one-to-one to the elements in F ∩Z2. Then by Theorem 6.23 the
Riemann-Roch number of (M,ω) is equal to the number of the elements in
F ∩ Z2 which is (c + 1)(2b − ac)/2.

A Proof of Proposition 2.12

In this appendix we give a proof of Proposition 2.12. That is,

Proposition A.1 If {πα} is a good compatible fibration, then there exists
an averaging operation I : C∞(M) → C∞(M) such that for all f ∈ C∞(M)
and x ∈ M we have

min
y∈π−1

αx
παx (x)

f(y) ≤ I(f)(x) ≤ max
y∈π−1

αx
παx (x)

f(y),
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where π−1
αx

παx(x) ⊂ V αx is the maximal fiber which contains x.

Recall that we assume the following;

Assumption A.2 Each πα has a continuous extension as a fiber bundle to
the closure of Vα with the condition

Vα ∩ Vβ = π−1
β πβ(Vα ∩ Vβ)

for all β ∈ A.

We first show the following.

Lemma A.3 There exist an admissible open covering {V ′
α | α ∈ A} of M

such that V
′
α ⊂ Vα.

Proof. Take and fix any open covering {Wα}α∈A of V which satisfies Wα ⊂
Vα. Fix any total order of A = {α1, · · · , αn} so that if Vαi

∩ Vαj
̸= ∅ and

the dimension of παi
is bigger than that of παj

then i > j. Fix α ∈ A and

we define an increasing sequence of open sets V
(k)
α ⊂ Vα inductively in the

following way:

V (0)
α := Wα

...

V (k)
α := π−1

αk
παk

(V (k−1)
α ∩ Vαk

) ∪ V (k−1)
α

...

V (n)
α := π−1

αn
παn(V (n−1)

α ∩ Vαn) ∪ V (n−1)
α .

By the construction {V ′
α := V

(n)
α }α∈A is an admissible open covering of V . We

show V
(k)

α ⊂ Vα by induction on k. Suppose that {pi}i∈N is a sequence in V
(k)
α

which converges to p∞ in V . It is enough to show that if pi ∈ π−1
αk

παk
(V

(k−1)
α ∩

Vαk
) for all i then p∞ ∈ Vα. In this case we have p∞ ∈ π−1

αk
παk

(V
(k−1)
α ∩ Vαk

).

On the other hand since the fibers are compact, παk
: V αk

→ Uαk
is a closed

map. Using the Assumption A.2 we have

π−1
αk

παk
(V

(k−1)
α ∩ Vαk

) ⊂ π−1
αk

(παk
(V

(k−1)
α ∩ Vαk

)) ⊂ π−1
αk

παk
(V

(k−1)
α ∩Vαk

) ⊂ Vα∩Vαk
.

In particular we have p∞ ∈ Vα.

Remark A.4 Since V ′
α ⊂ Vα, one can check that {V ′

α}α satisfies the same
condition as in Assumption A.2, i.e., V ′

α∩V ′
β = π−1

β πβ(V ′
α∩V ′

β) for all α, β ∈ A.
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Let {V ′
α} be an admissible open covering of M obtained in Lemma A.3.

Proof of Proposition A.1. We first take an open covering {V ′′
α }α of M and a

family of smooth functions {τα : M → [0, 1] | α ∈ A} which satisfy

• V ′
α ⊂ V ′′

α and V ′′
α ⊂ Vα,

• τα ≡ 1 on V ′
α and τα ≡ 0 on M r V ′′

α .

For each α ∈ A we define a map Iα : C∞(M) → C∞(M) by

Iα(f)(x) := (1 − τα(x))f(x) + τα(x)I0
α(f)(x),

where I0
α(f) is the integration along fibers of πα : Vα → Uα with the nor-

malization condition I0
α(1) ≡ 1. Fix any total order of A = {α1, · · · , αn} so

that if Vαi
∩Vαj

̸= ∅ and the dimension of παi
is bigger than that of παj

then
i > j. Using this total order we can define the map I : C∞(M) → C∞(M)
with the required properties by

I(f) := Iα1 · · · Iαn(f).

In fact the first four properties is clear. To show the Property 5 we show that
for f ∈ C∞(M) if suppf ⊂ C for some admissible subset C, then we have
suppIβ(f) ⊂ C for all β ∈ A. Take x ∈ suppIβ(f) and a sequence {xn} in M
which satisfies Iβ(f)(xn) ̸= 0 and converges to x. By definition of Iβ(f) we
have f(xn) ̸= 0 or τβ(xn)I0

β(f)(xn) ̸= 0 for infinitely many n. The former case
implies that x ∈ suppf ⊂ C. In the latter case by taking a subsequence we
may assume that xn ∈ V ′′

β and I0
β(f)(xn) ̸= 0 for all n. In particular we have

x ∈ V ′′
β ⊂ Vβ. Since I0

β is the integration along fibers there exist a sequence

{yn ∈ π−1
β πβ(xn)} such that f(yn) ̸= 0 for all n. By taking a subsequence we

may assume {yn} converges to some y ∈ π−1
β πβ(x) ∩ suppf ⊂ C. Since C is

admissible we have x ∈ π−1
β πβ(x) ⊂ C.

B Proof of Lemma 2.26

Proof. Let H1, H2, . . . , Hm be the elements of A. Without loss of generality
we assume that Hi ⊃ Hj implies i ≤ j. We construct a family of open sets

V
(j)
i (1 ≤ i ≤ j ≤ m) by induction on 1 ≤ i ≤ m. For the construction with

i = i0 we assume the following properties.

(A1) V
(j)
i contains the closure of V

(j+1)
i for all 1 ≤ i < i0 and i ≤ j < m.

(A2) If x ∈ V
(i)
i for 1 ≤ i < i0, then we have Gx ⊂ Hi.
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(A3) For x ∈ M with Gx = Hi for some 1 ≤ i < i0, we have

x ∈
∪

{j |Hj⊃Hi}

V
(m)
j .

(A4) If the intersection V
(j)
i ∩ V

(j)
j is not empty for 1 ≤ i < j < i0, then we

have Hi ⊃ Hj.

If i0 = 1, then the above is the empty assumption. For 1 ≤ i0 ≤ m, using
the above properties as the assumption of induction, we construct V

(j)
i0

(i0 ≤
j ≤ m) which satisfy the above properties with replacement of i0 by i0 + 1.

Suppose 1 ≤ i0 < m and assume (A1),(A2),(A3) and (A4). Then (A3)
implies that the closed set

Ki0 := MHi0 r
∪

{k |Hk%Hi0
}

V
(m)
k

is contained in {x ∈ M |Gx = Hi0}, where MHi0 is the fixed point set
MHi0 = {x ∈ M |Gx ⊃ Hi0}. Hence (A2) implies that Ki0 does not intersect
with the open set ∪

{j<i0 |Hi0
̸⊂Hj}

V
(i0−1)
j .

Let Li0 be the closure of ∪
{j<i0 |Hi0

̸⊂Hj}

V
(i0)
j .

Then (A1) implies Ki0∩Li0 = ∅. Since Ki0 is a subset of {x ∈ M |Gx = Hi0},
there is an open neighborhood V of the closed set Ki0 in the complement of
Li0 such that for each x ∈ V we have Gx ⊂ Hi0 . Now we take a decreasing

sequence of open neighborhoods V
(j)
i0

(i0 ≤ j ≤ m) of Ki0 so that V
(i0)
i0

= V ,

V
(m)
i0

⊃ Ki0 and V
(j)
i0

contains the closure of V
(j+1)
i0

for i0 ≤ j < m. We can

choose the decreasing sequence so that the open sets V
(j)
i0

(i0 ≤ j ≤ m) are
G-invariant because the quotient space M/G is a regular space.

Then it is straightforward to check (A1),(A2),(A3) and (A4) are satisfied
with i0 replaced by i0 + 1.

The family of open sets {VHi
:= V

(m)
i }1≤i≤m is an open covering of M

and satisfies the required properties.
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C Proof of Lemma 3.10

Proof of Lemma 3.10. If there is a function f satisfying the property in (1),
then ρϵ,a is constructed as follows: For each ϵ > 0 let ρϵ : R → [0, 1] be a
smooth non-increasing function such that ρϵ(l) = 1 for l ≤ 0, ρϵ(l) = 0 for
l ≥ 2/ϵ and |dρϵ(l)| < ϵ for i ∈ R. Then the composition ρ̃a,ϵ(x) = ρϵ(f(x)−a)
has the required properties.

Not we construct f by smoothing the length function as follows. Fix
a point x0 ∈ M . Let f0 : M → R be the length from x0. Then f0 is a
Lipschitz continuous function with Lipschitz constant 1. Since M is complete,
f0 is a proper function such that f−1

0 ((−∞, c]) is compact for any c. Let
{int(Dxγ (Rγ))} be a locally finite open covering of M by open disks centered
in xγ with radius Rγ. Fix an isometry TMxγ

∼= Rn. We also assume that the
exponential map centered in xγ gives a coordinate of Mγ = int(Dxγ (Rγ)),
and the derivative of the exponential map and its inverse at any point has
bounded by 2 with respect to operator norm. In particular f0 has Lipschitz
constant 2 for the standard metric on Rn. We use this coordinate in the
following local construction. Let {ργ} be a smooth partition of unity for it.
Let 0 < rγ < Rγ be the radius of the smallest disk centered in xr containing
the image of the support of ργ. Let Cγ be the maximal value of |dργ| for the
standard metric on Rn. Let nγ be the number of open disks in the locally
finite covering which intersects Dxγ (rγ). Take a smooth function K : Rn → R
satisfying

∫
K(y)dy = 1 and K(y) = 0 if |y| > min{1, (Rγ−rγ)/2, 1/(nγCγ)}.

Then the smoothing of f defined by fγ(x) =
∫

K(x−y)f0(y)dy (x ∈ Dxγ (rγ))
is Lipschitz continuous with Lipschitz constant 2 for the standard metric
on Rn, and satisfies |fγ(x) − f0(x)| < min{1, 2/(nγCγ)} for x ∈ Dxγ (rγ).
Now define f to be

∑
γ ργfγ. Then |f − f0| ≤ 1. In particular f is also a

proper map and f−1((−∞, c]) is compact for any c. Decompose df as follows:
df = (

∑
γ ργdfγ)+ (

∑
γ(dργ)f0)+ (

∑
γ dργ(fγ − f0)) Since the second term is

zero, we have |df | ≤
∑

γ ργ · |dfγ|+
∑

γ |dργ||fγ −f0|. Both terms are bounded
from our construction.
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