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Abstract

We give a framework of localization for the index of a Dirac-type
operator on an open manifold. Suppose the open manifold has a com-
pact subset whose complement is covered by a finitely many open
subset, each of which has a structure of the total space of a torus bun-
dle. Under a certain compatibility condition and acyclicity we show
that the index of the Dirac-type operator is localized on the compact
set.
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1 Introduction

This paper is the second of the series concerning a localization of index of
elliptic operator.

For a linear elliptic operator on a closed manifold, its Fredholm index
is sometimes determined by the information on a specific subset under ap-
propriate geometric condition. Such a phenomenon is called localization of
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indez. A typical example is Hopf’s theorem identifying the index of de Rham
operator with the number of zeros of a vector field counted with sign and
multiplicity. In this case the geometric condition is given by the vector field,
and the index is localized around the zeros of the vector field. Another typ-
ical example is Atiyah-Segal’s Lefschetz formula for the equivariant index
under torus action, when the geometric condition is given by the torus ac-
tion. The index is localized around its fixed point set, and the localization
is understood in terms of an algebraic localization of equivariant K-group.
In particular when the manifold is symplectic and the elliptic operator is
a Dirac type operator, the localization is extensively investigated using the
relation between the algebraic localizations of the equivariant K-group and
that of the equivariant ordinary cohomology group.

In the previous paper [4], we dealt with closed symplectic manifold equipped
with a prequantizing line bundle and a structure of Lagrangian fibration, and
described a localization of the index of Dirac-type operators, twisted by the
prequantizing line bundle, on the subset consisting of Bohr-Sommerfeld fibers
and singular fibers. A novel feature of our method is that we do not use a
global group action but use only a structure of torus bundle on an open
subset of the manifold.

In the present paper we generalize our method to deal with the case
when we do not have a global torus bundle on the open subset, but we just
have a structure of torus bundle on a neighborhood of each points, which
gives a family of torus bundles satisfying some compatibility condition. The
various torus bundles may have tori of various dimensions as their fibers.
This generalization enables us to describe the localization phenomenon more
precisely. Even for the case in the previous paper, we could replace the subset
on which the index is localized with a smaller subset. A typical example of
our generalization is the localization of index for prequantized toric manifold,
for which we would need an orbifold version of our formulation. Moreover we
can deal with some prequantized singular Lagrangian fibration without global
toric action (Section 6). In our subsequent paper we will use the localization
to give an approach to V. Guillemin and S. Sternberg’s conjecture concerning
“quantization commutes with reduction” in the case of torus actions. Though
our motivating example is the index of a prequantized symplectic manifold,
the localization of index is formulated for more general cases. In fact we first
establish a general framework to formulate the index of elliptic operator on
a complete manifold (Section 3). This section is independent of the other
sections and the framework may be interesting of its own.

The mechanism of our localization is explained as a version of Witten
deformation, where the potential term itself is a first order differential op-
erator. Our geometric input data is a family of torus bundles. Roughly
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speaking we deform the operator like an adiabatic limit shrinking the various
fiber directions at the same time in a compatible manner. The potential term
corresponds to some average of the de Rham operators along the various fiber
directions.

Formally our localization is formulated as a property for the index of the
elliptic operator on an open manifold: let D be an elliptic operator on a
(possibly non-compact) manifold X, and V' is an open subset of X whose
complement X \ V' is compact. Suppose V has a certain geometric structure
s, by which we can modify D to construct a Fredholm operator. The index of
the Fredholm operator depends on the data (X, Vs, D). Suppose the index
satisfies the following properties. Firstly the index is deformation invariant.
Secondly if X’ is an open subset of X containing X \ V', and hence X'\ V is
compact. Let D’ be the restriction of D on X’. We assume that the structure
s has its restriction s on V' = X’ NV. Then we have the index of the
Fredholm operator constructed from the data (X', V', s, D). The required
excision property is the equality between the two indices. We will construct
Fredholm operators which satisfies the above type of excision property. The
structure s on V is not extended on the whole X. In this sense X \ V is
regarded as singular locus of the structure. The index is localized on the
singular locus X \ V, and we call it the local index of the data (X, Vs, D).
When X \ V is of the form of the disjoint union of finitely many compact
subsets, the localized index is equal to the sum of the contributions from the
compact subsets.

Our first main result is the construction of the local index when the
structure s is the strongly acyclic compatible system defined in Section 2. Our
second main result is a few basic properties of the local index, in particular
a product formula of the local index.

The organization of this paper is as follows. In Section 2 we define the
notion of strongly acyclic compatible system, which we use as the geometric
structure s in the above explanation. In Section 3 we give a formulation of
index for elliptic operators on complete Riemannian manifolds. This formu-
lation is a generalization of the one given in Section 5 of [5]. This section
is independent of the other sections. In Section 4 we define the index of
elliptic operator using the framework of Section 3 under the assumption that
a strongly acyclic compatible system is given on an end of the base manifold.
In Section 5 we show a product formula for the index defined in Section 4.
In Section 6 we give an example of our formulation using some 4-dimensional
Lagrangian fibration with singular fibers. In Appendix we give proofs of the
technical lemmas used in the main part.
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1.1 Conventions/Notations

e Tangent bundle along fibers
When 7 is a projection of a fiber bundle over a smooth manifold M we

denote by T'[r] the vector bundle over M consisting of tangent vectors along
fibers of 7.

e Tensor products of Z/2-graded algebras and modules.

Let A= A°® Al and B = B° ® B! be two Z/2-graded algebras. Then
we define a structure of a Z/2-graded algebra on the tensor product A ® B
as follows. The Z/2-grading is defined as the one for vector spaces,

AB= (A" B o A'@B")) e (A2 B") o (A'® BY)).
The multiplicative structure is defined by
(a®Db)-(a/ @) = (—1)%8b¥ea (44) @ (bY),

where a,a’ € A°U A and b,V € B° U B

Now let R4 and Rp be Z/2-graded A and B modules respectively. Then
we define a structure of a Z/2-graded A ® B-module on the tensor product
R4 ® Rp by the following formula.

(a®b)-(ra®@rp) = (=1)%bdera(qr, @ brp),

where a € AU A, be B°UB!, ry € RAOURY and rp € RS U RL.
Note that under this convention there is a natural isomorphism between

Z/2-graded Clifford algebras
ClTy & Ty) = CUTY) @ Cl(Ty)

for any Hermitian vector spaces 17 and T5.

e Complex structure on vector bundles

If we denote (R*")c, then we consider R?" as the complex vector space
with the standard complex structure. Let E be a real vector bundle over a
topological space. We denote by E® the complex vector space E ®r C. If E
is equipped with a complex structure J, then we denote E¢ by the complex
vector space with /—1 := J : E — E. In addition for such E and J, we
denote the anti-holomorphic part by E%! = E2', ie., E%' is the complex
vector bundle consisting of eigenvectors of J : E¢ — E® with eigenvalue

V.
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2 Compatible fibrations and acyclic compat-
ible system

2.1 Compatible fibrations
Let M be a manifold.

Definition 2.1 A compatible fibration on M is a collection of data {7, : V, —
U, | a € A} satisfying the following properties.

1. M = U,eAV, is an open covering.
2. Each n,: V, — U, is a fiber bundle whose fiber is a closed manifold.
3. For each a and 3, we have
Vo NV =71 (10 (Va N V3)) = 5 (ma(Va N V).
4. If V, NVg # 0 and o # (3, then there exist a smooth manifold U,g,

fiber bundles 7.5 : Vo NV — Uap and pf5 1 Uag — ma(Va N Vp) such
that fibers are closed manifolds and the following diagram commutes;

Vo NV
[
7ra|VaﬂVB 7r[3|VaﬂVB
Uag

U, D wa(Va N Vg) ﬂﬁ(Va N Vg) C Ug

Let {my: Vo — U, | @ € A} be a compatible fibration on M. We often
denote it by {7, } for simplicity.

Definition 2.2 For a € A and x € V,,, we define A, and A(«; z) as follows.
1. Acp i ={B € A|V,NV5 # 0, pgﬁ : Uap — m3(VaNVjp) is a diffeomorphism. }.
2. Alaz) ={B €Az eV,NVs B€Ac.}.
Remark 2.3 Note that if § € A(«,z), then we have 7 ms(z) C 7, 'mo ().
Definition 2.4 A subset C' of M is admissible if for each a, we have

CNV,=m (ma(CNV)).



2009/10/1 7

Example 2.5 Each V, is admissible.

Proposition 2.6 Let C be an admissible open subset of M. Then {m,|cav, : CN
Vo = o (C N VL) } is a compatible fibration on C.

Proof. 1t is sufficient to show the following three equalities
L m'm(CNV,NVs) =CNV,NV;,
2. T Tap(C N Vo NVg) =CNVeNV;, and
3. 25 pes(map(C NV NVp)) = Tap(C NV N V3).

First let us show the right facing inclusion C for 1. For each z € 77, (CN
Vo N Vp) there exists © € C NV, N Vs such that m,(2) = m,(x). Then
zemtna(r) Crtma (CNV) N tna(VaNV) =C NV, NV

Next we show the right facing inclusion C for 2. For each z € W;ﬁlﬂ'ag(c N
Vo N V) there exists « € C' NV, N Vs such that ma5(2) = map(z). Then
Ta(2) = PS5 0 Tap(®) = Pos © Ta(2) = ma(z). In particular z € 7 ', (z) C
Tl (C NV, NVE) =CNV,N Vs

Finally we show the right facing inclusion C for 3. For each z € p2 3~ p%3(mas(CN
VaNVj)) there exists v € CNV,NVj such that pgs(2) = ma(z). We show that
W;ﬁl(z) C C. Forw € 7@5(2’) we have 7, (w) = pjsomas(w) = pos(2) = Ta().
Then w € m,'mo(x) C C. This shows 7_;(2) C C. Hence z € map(m,;3(2)) C
Wag(oﬂvaﬂV5>. O]

Definition 2.7 Let f : M — R be a function. If there exists an admissible
open covering {V}aca of M such that f is constant along fibers of 7, |y, for
all « € A, then we call f an admissible function.

In this article we impose the following technical assumptions for a com-
patible fibration {7, : Vo — Us }aca-

Assumption 2.8 1. The index set A is a finite set.

2. Each 7, has a continuous extension as a fiber bundle to the closure of
V., with the condition

Vo NV = w5t ma(Va NVp)
for all g € A.

3. There is an averaging operation I : C*(M) — C°°(M) whose definition
is given below in Definition 2.9.
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Definition 2.9 If a linear map [ : C*°(M) — C*°(M) satisfies the following
properties, then we call I an averaging operation.

1. I(f) is an admissible function for all f € C*°(M).

2. If f is a constant function, then I(f) is also a constant function with
the same value of f.

3. If f is a non-negative function, then I(f) is so.

4. For all f € C*(M) and = € M we have

min  f(y) <I(f)(z) < max f(y),

yETrglﬂa(a:) yETl'glﬂ'@(m)

for some o, B € {o/ € A |z € Vo }.

5. Let f : M — R be a function and C' an admissible subset of M. If
suppf is contained in C' then suppl(f) is also contained in C'

Using the averaging operation we can construct an admissible partition
of unity as in the following.

Lemma 2.10 (Existence of admissible partition of unity) LetV be an
open subset of M with a compatible fibration {m,}. There is a smooth par-
tition of unity {p2} of the open covering V = U,V, which is constant along
each fiber of wy for every of € A.

Proof. Take any partition of unity {¢,}s of V' = U,V,. Applying the av-
eraging operation we have a family of admissible functions {I(¢4)}.. Note
that it is an another partition of unity of {V,,} because of the Property 2,3

and 5 of the averaging operation. We put p, 1= I(¢a)/(/>_51(¢s)?. Then

{p?}s is a required admissible partition of unity. O

We give a sufficient condition for Assumption 2.8.

Definition 2.11 (Good compatible fibration) If a compatible fibration
{mo : Voo — Uy} over V satisfies 1 and 2 in Assumption 2.8 together with the
following 5’, then we call {r, : V,, — U,} a good compatible fibration.

5. If V, N Vs # 0, then we have o € A(f;z) or B € A(a;x) for all
reV,N V/g.

For a good compatible fibration we denote by p§; = pas for a, 8 € A with
b€ Aca



2009/10/1 9

We show the following proposition in Appendix A.

Proposition 2.12 If {n,} is a good compatible fibration, then there ezists
an averaging operation I : C*°(M) — C*(M) such that for all f € C*(M)
and x € M we have

min  f(y) <I(f)(z) < max f(y),

yETrgzl Tag (T) yEwg; Tag ()
where 72 'z, (x) C Vg, is the mazimal fiber which contains x.

Now we define an appropriate notion of Riemannian metric and connec-
tion for a compatible fibration. We first note that there exist following four
types of short exact sequences for i = a, 8

0—Tm] =TV, - 7;TU; — 0, (1)
0 = Tlrag) — T(Va N V) — 75T Ung — 0, ()
0— T[Waﬁ] — T[WiHVamvﬂ — ﬂ,’;gT[ng] — 0, (3)
0 — T[pls] — TUns — plg Tmi(Va N V) — 0. (4)

Definition 2.13 Let E°, E' and E? be smooth vector bundles with metrics.
A short exact sequence 0 — EY — E' — E? — 0 is orthogonally split if the
isomorphism E' = E° @ E? defined by the orthogonal splitting with respect
to the metric on E! is isometric with respect to the metrics on £E°, E' and
E2.

Definition 2.14 A compatible Riemannian metric of a compatible fibration
is a collection of metrics on the vector bundles T'[m;], TU;, T([mugp), TUqp, and
T'p,s] such that the exact sequences (3) and (4) are orthogonally split with
respect to these metrics.

From the definition, we have a canonical isometric isomorphism
(TTma] @ 7o TU) arvy = (Tmap] @ 15T Uap) = (Tlms] @ 75TUp) [varv, (5)
over V, NV3.

Definition 2.15 Suppose we have a compatible fibration with a compatible
Riemannian metric. A compatible connection is a collection of the splittings
of of the short exact sequences (1) and (2) such that the isomorphism (5) is
equal to the composition of the isomorphisms

(Tm] © 7 TU) |vanv, = T(Va NVs) = (T[map] © mogTUap)

induced from the splittings.
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2.2 Acyclic compatible system

Definition 2.16 Suppose we have a compatible fibration {r,} on M with a
compatible Riemannian metric. A bundle W over M is a compatible Clifford
module bundle if we have the following structures.

1. W has a structure of a Z/2-graded Cl(T'|r,] ® 7 TU,)-module bundle
over V.

2. Over V,NVj, the above module structures on V,, and Vj are compatible
with the isomorphism (5).

The next lemma follows immediately from the definitions of compatible
metric, compatible connection and compatible Clifford module bundle.

Lemma 2.17 Suppose we have a compatible metric and compatible connec-
tion. Then we have a well-defined Riemannian metric on M. Moreover if we
have a compatible Clifford module bundle, then it has a structure of Clifford
module with respect to the well-defined Riemannian metric on M.

Let {m,} be a compatible fibration on M with compatible Riemannian metric
and W — M a compatible Clifford module bundle.

Definition 2.18 (Compatible system of Dirac-type operators) A com-
patible systemon ({m,}, W) is a data { D, } satisfying the following properties.

1. D,: T'(W|y,) — I'(W]y,) is an order-one formally self-adjoint differen-
tial operator of degree-one.

2. D, contains only the derivatives along fibers of n,: V,, — U,, i.e. D,
commutes with multiplication of the pullback of smooth functions on
U,.

3. The principal symbol o(D,) of D, is given by o(D,) = co p, ©
o T*V, — End(Wly,), where ¢y : T[m,] — TV, is the natural inclu-
sion, po: T*[ms] — T|ma] is the isomorphism induced by the Rieman-
nian metric and c¢: T[r,] — End(W|y, ) is the Clifford multiplication.

4. For b € U, and u € TyUs, let u € I'(73TUq|,-1(;) be the section
naturally induced by u. u acts on W|W;1(b) by the Clifford multiplication
c(w). Then D, and c(u) anti-commute each other, i.e.

0={D,,c(u)} := D, oc(u)+ c(u) o D,

for all b € U, and u € T, U,,.
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5. If V,NV;s # 0, then the anti-commutator { Dy, Dg} := DyoDs+DgoD,,
is a differential operator along fibers of 7,3 of order at most 2.

The properties 1, 2, and 3 in Definition 2.18 imply that D,, is of Dirac-type
when restricted to each fiber of 7.

We call a compatible system of Dirac-type operators {D,} a compatible
system for short.

Definition 2.19 (Acyclic compatible system) A compatible system { D, }aca

is acyclic if for all @« € A, x € V, and a family of non-negative numbers
{ts}sea(an) satistying tg > 0 for some 3, the operator 35 4.0y t8Ds: TW 2100 () —
D(W| 21 (. (a))) has zero kernel. Note that the above operator is well-defined

because of Remark 2.3.

Definition 2.20 (strongly acyclic compatible system) A compatible sys-
tem {D,} is strongly acyclic if it satisfies the following conditions.

1. For each o and b € Uy Dql,-1(;) has zero kernel.

2. If V, NV # 0, then the anti-commutator {D,, Dg} is a non-negative
operator over V, N Vj.

We first note that the following lemma.

Lemma 2.21 A strongly acyclic compatible system is acyclic.

Proof. 1f {D,} is strongly acyclic compatible system, then we have
2

2
D, + Z T8D3 = Di + ZTg{Da,Dg} + (Z TﬁDﬁ) > Di
B

BeA(a;z)

;)
0 for s € I(W| -1(r, () Take ag € A(a; ) so that ¢, is not 0. Then we
have

for any family of non-negative numbers {73}. Suppose (Z BeA( th5> s =

Dag+ 3. (tyfta)Ds|s=0
BeA(asz)~{ao}
and s = 0 by the above inequality and the first condition in Definition 2.20.
O

Remark 2.22 It is obvious that we have an orbifold version of the definitions

of compatible fibration and compatible system, for which Lemma 2.21 also
holds.
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Example 2.23 Let M be R x S* with the standard Riemannian metric and
(t,0) its standard coordinate. We introduce a compatible fibration on M by

To: Vo = (—00,1) x ST — U, := (—o00,1)
m5: Vg = (=1,00) x ST — Us := (—1,00).
Let W be the trivial rank 2 Hermitian vector bundle M x C? on M with

7./ 2-grading
W% =M x (Cx0), W:=M x (0 xC).

We define the Clifford multiplication of CI(T'M) on W by

(D) = (_01 (1)) () = ( \/0__1 \/?)

For smooth functions f,: V, — R, fg: V3 — R, let D,, Dg be differential
operators on I'(Wly, ), I'(W|y,) which are defined by

D, = (_01 (1)) o+ fu(t,0) (_\9__1 Va_l)
Dy = (_01 (1)) Do + f5(1,0) <_\9__1 V?)

They are order-one formally self-adjoint differential operators of degree-one.
Then, it is easy to see that the data {D,, Dg} is an acyclic compatible system
if and only if f, and fs satisfy the following properties.
1. fo(t,0)¢ Z for any (t,0) € V,. The same property also holds for fs.
2. o) "(t’fiizzfﬁ(tﬂ)gé Z for any (t,0) € V, N V3 and any non-negative real
numbers t,, t3 which satisfy ¢, + tg # 0.

Example 2.24 For non-negative integers m and n satisfying n < m let M
be R*™~" x T" where we regard T" as R"/(27Z)". Let A be an ordered set,
{V!} e a finite open covering of R*™™" and {R, }aca a family of subspaces
of R" spanned by rational vectors. We assume that if « < 3, then R, C Rg.
Weput V,, ;== V! xT" and T, := R,/R,N(27Z)". Define U, to be V! xT"/T,
and 7, : V, — U, to be the natural projection. Then these data define a
good compatible fibration on M.

Let (g, J) be the pair of the Riemannian metric and the almost complex
structure on M which is defined by

2m—n 2m—n

2m—n n n n
a (Z ald, +Y bidy, > ald, + ij?a@) = alai+) blb7,
j=1 i=1 =1

=1 =1 7j=1
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Db, 1<i<n
J(0y)=%0y, ... n+l<i<m
—0 m+1<i<2m-—n

Yi—m+n

for x = (y,0) € M. Note that since g is invariant under J, (g, J) defines the
Hermitian metric on M by

he(,v) = go(u,v) + vV —1gy(u, Jv)

for u,v € T, M. By using the horizontal lift 77U, — T'V,, with respect to
g, it is obvious that {m,} is equipped with a compatible Riemannian metric
and a compatible connection.

Next we define a compatible Clifford module bundle W and a strongly
acyclic compatible system {D,}q4ca in the following way. Take a Hermitian
line bundle (L, V%) with Hermitian connection on M whose restriction to
7 1(b) is a flat connection for each @ € A and b € U,. We assume the
following condition.

(x) For all @ and b € U, the restriction VL|7T;1(b) is not trivially flat con-
nection, i.e., its holonomy representation is non-trivial.

We define a Hermitian vector bundle W on M by
W = NeTMc® L.
A Clifford module structure ¢: CI(T'M) — End(W) is defined by

c(u)(p) =uNp —up (6)

for u € TM, ¢ € W, where L is the interior product with respect to h,
namely,

k
vi(vp Avg A - Avg) i= Z(—l)i_lh(vi,v)vl ANV N\ -+ A vy,
i=1

v1,...v € TM.

Let V/tTMe bhe the Hermitian connection on A&TMc which is induced
from the Levi-Civita connection on T'M with respect to g. Two connections
V/AETMe and VY define the Hermitian connection on W by

V = VTMe g id 4 id @ VE.
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Then we define D, by

Da ‘= CoO LZ o V‘Va: I (W‘VD) M r (T*Va X W‘VO)
L D (TH[ma]) @ W)
< r(Wiv,),

where ¢, : T|m,| — TV, is the natural inclusion.

By the construction it is obvious that {D,} satisfies the condition 1, 2,
and 3 in Definition 2.18. The condition 4 in Definition 2.18 follows from the
fact that ¢ restricted to each fiber of 7, is flat. We can show that for each
o and b € U, the kernel of D, -1, vanishes. It follows from Property ()
and the following lemma.

Lemma 2.25 Let (E,V¥) — T be a flat Hermitian line bundle on a flat
n-torus. If the degree zero cohomology H(T; E) with local system (E,V¥)
vanishes, then all cohomologies H®*(T; E) vanish.

Proof. Take and fix harmonic 1-forms {wy, - ,w,} which represent a basis
of H'(T;R). Note that harmonic forms on a flat torus are parallel forms and
they induce a trivialization of T*T'. Let w be a dg-closed form in Q*(T; E) =
['(E @ A*T*T), where dg is the covariant derivative induced by VZ. Using
the parallel basis and the trivialization of T*1T we can describe w as

w = E Sip-ip Wiy VANEIEIAN Wiy,
150k

where s;,..;, is a section of E. Since each w; is harmonic and w is dg-closed
we have

0= dEdEw = Z ((VE)*VESH%) Wiy A A Wiy
1, ik

and hence (VF)*V¥s; ;= 0. It implies s;,..;, is a parallel section. Since
H°(M; E) =0 we have s;,..;, = 0. O

These facts and Proposition 2.29, which will be shown in the next sub-
section, imply that {D,} is a strongly acyclic compatible system.
2.3 Example from torus action

Suppose an n-dimensional torus G acts on a manifold M smoothly. Let A
be the set of all the subgroups of G which appear as stabilizers

G, ={ge€G|gr =1z}
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at some points x € M. Note that A has a partial order with respect to the
inclusion. In this subsection we assume that A is a finite set.

The following lemma is useful to construct a good compatible fibration
satisfying a convenient property for some cases with torus actions. We give
a proof in Appendix B.

Lemma 2.26 (Existence of a good open covering) There exists an open
covering {Vy}uea of M parameterized by A satisfying the following proper-
ties.

1. Each Vy is G-invariant.
2. For each x € Vg we have G, C H.

3. If Vg N Vi # 0, then we have H C H' or H D H'.

Remark 2.27 Using a good covering over M we can construct a good com-
patible fibration as follows. We endow G with a rational flat Riemannian
metric. Precisely speaking we take an Euclidian metric on the Lie algebra of
G such that the intersection of the integral lattice and the lattice generated
by some orthonormal basis has rank n. We extend it on the whole G.

For a subgroup H of G let H+ be the orthogonal complement of H defined
as the image of the orthogonal complement of the Lie algebra of H by the
exponential map. Since the metric is rational H+ is well-defined as a compact
subgroup of G and it has finitely many intersection points H N H*.

Let {Vi}mea be the open covering of M in Lemma 2.26. For each H € A
we define Uy to be VH/HL and 7y : Vg — Uy to be the natural projection.
Then the data {rg : Vg — Uy | H € A} define the good compatible fibration
because of the property of the good covering.

Remark 2.28 We will show in Section 6 that there is an example that has
a good compatible fibration, but does not have a global torus action.
2.3.1 Family of flat torus bundles

Let {ma}aca be a compatible fibration on V' with a compatible Riemannian
metric and W a compatible Clifford module bundle on V. We show the
following.

Proposition 2.29 Suppose that an acyclic compatible system {mq, W, Dy}
satisfies the following three conditions.

o {Ta}taca s a good compatible fibration.



2009/10/1 16

o 7, :V,— U, is a flat torus bundle for all c.

o There is a Clifford connection ¥V on W such that the restriction of V
on each fiber of . is a flat connection for all c.

e D, is the Dirac operator along fibers of m,, defined by Vv, for alla € A.

Then for all a, 3 € A such that 3 € Ac, the anti-commutator D, o Dg+ Dgo
D, is a non-negative operator along fibers of mg. In particular if ker Dy = 0
for all o € A, then {ma, W, Dy} is strongly acyclic.

Since to show this proposition it is enough to show the non-negativity of
the anti-commutator along fibers, we consider the following setting.

e F : FEuclidian space
e [': maximal lattice of F

o [':=FE/T": flat torus

W — F : CI(TF)-module bundle

V:IT'(W)—-I(TF W) : flat Clifford connection of W
c: TF W — W : Clifford action of T'F

e A : finite set

{Es}aca : family of subspaces of F
e {p,} : family of orthogonal projections to {E,}
o We assume p,ps = pgp, for all o, 3 € A.

Note that the last condition implies that the Proposition 2.29 holds for a
compatible fibration which is not necessarily good. See Remark 2.32. Using
the metric we have the identification TF = T*F = F x E. For a symmetric
endmorphism S : E — Elet S : F x E — F x E be the induced bundle
map on the (co)tangent bundle. We define a differential operator Dg by the
composition

Dg:=coSoV :D(W)— L(W).

Since S is symmetric Dy is a self-adjoint operator.
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Proposition 2.30 Let S; and Sy be symmetric endmorphisms which com-
mute each other. Then we have

Dg, 0 Dg, + Dg, 0 Dg, =2V*0 810 S50V,
where V* : T(TF @ W) — I'(W) is the adjoint operator of V.

Proof. The equality can be checked by the direct computation using the
orthonormal basis of E consisting of simultaneously eigenvectors of S; and
So. O

When we put S; := p, and Sy := pg in Proposition 2.30, we have the
following.

Corollary 2.31 D,Dg + DgD,, = 2D§ﬁ, where D,g is the self-adjoint op-
erator co Pag oV defined by the projection p.g to the intersection E, N Eg.

Proof of Proposition 2.29. Since {m,} is a good compatible fibration we have
a family of tori at each point on V' which comes from a family of subspaces
whose projections commute each other. Then the claim follows from Corol-
lary 2.31. [

Remark 2.32 Note that a product of good compatible fibrations is not a
good compatible fibration. But Proposition 2.29 still holds for products of
good compatible fibrations. Since such compatible fibrations satisfy the last
condition in the setting of Proposition 2.30.

2.3.2 Symplectic manifold with a torus action

Let (M,w) be a 2m-dimensional symplectic manifold equipped with a Hamil-
tonian action of an n-dimensional torus GG. In this case each orbit is an affine
isotropic torus in M. Suppose that there is a G-equivariant prequantizing
line bundle (L, V) on (M,w), i.e., L is a Hermitian line bundle over M with
a Hermitian connection V whose curvature form is equal to —2mv/—1w, and
all these data are G-equivariant. Since an orbit is isotropic the restriction
of (L, V) on each orbit is a flat line bundle. According to Lemma 2.26, and
Remark 2.27, we have a good compatible fibration on M using a good open
covering {Vy } parameterized by the set of isotropy subgroups A = {H}. We
show the following.

Proposition 2.33 If the restriction of L on each G-orbit has no nontrivial
parallel sections, then M s equipped with a strongly acyclic compatible system

{DH}HGA-
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Proof. Fix a G-invariant w-compatible almost complex structure J on M.
Then using the associated G-invariant metric g; we can construct a compat-
ible Riemannian metric on M as follows. It is sufficient to construct metrics
of T|my| for each H € A and T[pgk| for a sequence H C K, and check
the compatibility coming from (2) and (3). The metric on T'[rg] is defined
as the restriction of g;, and the metric on TUy = T (Vy/H?') is defined as
the quotient metric of g;. Note that the fiber of pgyx is the quotient of the
H~-orbit by the K*-orbit. Then the metric on T'[py] is defined as the quo-
tient of the restriction of the metric g; on H+-orbit by the K-*-action. It is
straightforward to check the compatibilities. We remark that the metric g;
restricted to each orbit is a flat affine metric because it is G-invariant.
Let W be the Z/2-graded compatible Clifford module bundle

W =ANTMc® L

with Clifford module structure c¢: CI{(T'M) — End(W) defined by (6). We
show that W is a compatible Clifford module bundle with some more addi-
tional structures. For H € A, let (T[ry]® JT[rx])* be the orthogonal com-
plement of T'[ry| & JT[rg] with respect to g;. Since (g, J) is G-invariant
H*-action preserves (T[ry]| & JT|rg])* and JT|[rg]. Then we define

Ey = (T|ry) ® JT[rg))"/H*,
Fy o= JT[ry)/H*.
It is obvious that T'Uy has the natural isometry TUy = Eyx & Fy.
Since g is invariant under J, J preserves (T[ry|@®JT[ry])*. In particular
Tlry] ® JT|[rg] and (T[ry] ® JT|[ry])*t have the structures of Hermitian
vector bundles with respect to the restriction of (g, .J) to them. Moreover

(gs,J) is G-invariant it descends to the Hermitian structure on Ey. Then,
we define Wy g and Wy i by

Wl,H = /\(?:(T[WH] D JT[TI'H])(C X L,
Won == Ne(Er)c ® L,

and define the Clifford module structures

ciy: Cl(T|ry) @75 Fr) — End (Wh ),
Co.H: Cl (EH) — End (WQ’H)

by the same formula as in (6). By definition, 7V has a decomposition

TVH - (T[?TH] SY) W;{FH) D W?{EH
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as Hermitian vector bundles. With respect to this decomposition there are
the following isomorphisms

CUTM)|y, = CUT[ry] @ wlyFy) ® Cl(xl Ex),
Wiy, = Wing@myWan.

Then by the direct calculation one can check ¢ = ¢; g ® co g under the above
identifications.

Now we define a strongly acyclic compatible system {Dy} on W. Let
VIl T(TVy) — T(T*[rg] ® TVy) be the the family of Levi-Civita con-
nections along fibers of 7, namely,

VT[WH] = [/}} ® QH O VTM (@) QH7

where vy T[ry] — TVy is the natural inclusion, V™ is the Levi-Civita
connection on T'M with respect to g;, and qy: TVy — TVy is the orthog-
onal projection to T'[ry] with respect to g;. V71"l induces the family of
Hermitian connections on A*T'Mcly,, along fibers of 7y, which is denoted
by VA TMclviy - We define the family of Hermitian connections V¥ on Wy,
along fibers of my by

V= MMl @id +id @ (1 @ id oVE) : T(Wy,,) — T(T [mu] @ W vy,).

Then we define Dy: I'(W|y,,) — T'(Wly,) to be the family of de Rham
operators along fibers of my which is defined by

. H
Dy :=cigopgoV",

where py: T*[my| — T|ry] is the isomorphism via g,.

Since the restriction of L on each G-orbit has no non-trivial parallel sec-
tions, Lemma 2.25 implies ker Dy = 0. Moreover since the collection of data
{my : Vg — Uy, W, Dy} satisfies the assumptions in Proposition 2.29, { Dy}
is strongly acyclic. O]

3 An index theory for complete Riemannian
manifolds

3.1 Formulation of index on complete manifolds

Suppose M is a complete Riemannian manifold, W is a Z/2-graded Hermitian
vector bundle, and ¢ : TM — End (W) is a homomorphism such that o(v) is
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a skew-Hermitian isomorphism of degree-one for each v € TM ~ {0}. Let D
be a degree-one formally self-adjoint first-order elliptic differential operator
on W with principal symbol 0. We assume that o and the coefficients of
D are smooth. We formulate an index theory on M under the following
assumption.

Assumption 3.1 e D has finite propagation speed: there exists a posi-
tive real number Cj satisfying |o| < Cy uniformly on M,

e There exist a positive real number \y > 0 and an open subset V' of M
with its complement M .V compact such that

Mollslly < [[Dslfy

for any smooth compactly-supported section s of W with support con-
tained in V.

It is known that the finite propagation speed implies that D is essentially
self-adjoint [2]. We will give a direct proof of the following theorem.

Theorem 3.2 D is essentially self-adjoint as an operator on L*-sections of
W and its spectrum is discrete in (—v/ Ao, v/ Xo)- ]

The proof of the first part is given as Lemma 3.11 in Section 3.2. The rest
of the statement follows from Proposition 3.14 in Section 3.3.

Definition 3.3 FE) is the vector space of smooth sections s of W such that
s is L®-bounded and satisfies D?s = \s.

Theorem 3.2 implies that E) is zero for A < 0, and FE), is finite dimensional
for A < A\g. Moreover there are only discrete values A < \g for which F) is
non-zero. Note that the super dimension of E) is zero for 0 < A < \g, and
hence the super dimension of @<y, E) is constant for 0 < A; < Ag.

Definition 3.4 ind D is the super dimension of Ej, or the super dimension
of By, Ey for 0 < A < Ag.

The index has the following deformation invariance. Let {D;} (|t| < €) be
a one-parameter family of degree-one formally self-adjoint first-order elliptic
differential operators on W with principal symbols {c;}.

Assumption 3.5 e Each D; and o; satisfy Assumption 3.1 for common
Ao and V.
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e On each compact subset of M the coefficients of D; are C*° convergent
to those of Dy as t — 0.

We do not assume that the propagation speed is uniform with respect to t.
We will show the following theorem in Section 3.4.

Theorem 3.6 Under Assumption 3.5 ind D; is constant with respect to t.

Remark 3.7 So far we are fixing M and W. In Section 3.5 we will formulate
a deformation for which M and W can vary. We give a proof of Theorem 3.6
so that it can be directly generalized to this case. The generalization im-
mediately implies an excision property of index for complete Riemannian
manifolds.

3.2 Partial integration

We need two partial integration formulas. In general let W be a Hermitian
vector bundle over a complete Riemannian manifold M, and D, : I'(W) —
I'(W) be a first order partial differential operator on W with smooth coeffi-
cients whose principal symbol is 7. We assume that D, has finite propagation
speed, i.e., 7 is a smooth L>*-bounded section of TM @ End(W).

Lemma 3.8 Let s € T'(W) is an L*-bounded section such that DD, s is also
L?-bounded. Then D.,s is also L*-bounded and we have

/(DiDTS,S):/ |D,s|?.
M M

Lemma 3.9 Suppose so and s, are L*-bounded sections of W such that D.,sg
and D?sy are also L*-bounded. Then we have

/]W(DTS(%SI):/]W(SQ,D:Sl).

We follow the argument in [7] using a family of cut-off functions:

Lemma 3.10 Let M be a complete Riemmanian manifold.

1. There is a smooth proper function f : M — R such that |df| is bounded
and f~1((—o0,c]) is compact for any c.

2. There is a constant C' > 0 such that for each ¢ > 0 and a € R, we have
a compact supported function pg. : M — [0,1] which is equal to 1 on
f7H((—o00,a)), and satisfies |dp,c| < Ce.
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A proof of the above lemma is given in [6]. For completeness we give a
detailed construction in Appendix C. The existence of such a function in 1
of Lemma 3.10 is equivalent to the completeness of M. For mored details see
6].

If we choose a Hermitian connection V on W, we can describe D,s =
7-Vs+ Bs, where B is a smooth section of End(W) and - is the combination
of the product End(W) ® W — W and the contraction 7"M @ TM — R.
We do not assume that B is bounded.

Proof of Lemma 3.8. We first assume that s is smooth. We follow Gromov’s
proof of [7, Lemma 1.1 B|. From the equality

/(DiDTs, piES)I/ (Drs, Dr(pg.e5))
M ’ M ’

:/ <D7'87 P3,5D73)+/ (DTSa 2pa,e7-(dpa,e)s)a (7)
M M

there is a constant C' independent of s, a, € such that
|D;D2sllal[sll2 = ||pa,eDrsll3 — Cellpa,Drs] 2.

It implies that, as a increases, ||pq D, $||2 is bounded, i.e., D, s is L*>-bounded.
Using (7) again we have

/ (D*Dvs,s) = |IDesIB+ 1, |1] < Cel|Dyslsl|s]la.
M

Taking € — 0, we obtain the required equality.
When s is not smooth, take a smooth compactly supported section which
approximate s in L3-norm on the support of p,.. Then we can reduce the

argument to the smooth case.
O

Proof of Lemma 3.9. We first assume that s is smooth. We have

0= [ Detpnesi) s [ (50 D2nes) = [ (Doswesn)= [ (s Ds) 1

with an error term I’ satisfying |I'| < Cel|so||2||s1]|2, which implies the re-
quired equality. When s is not smooth, we can reduce the argument to the
smooth case as in the proof of Lemma 3.8. O

Using the cut off function and a standard argument we can also show:

Lemma 3.11 Under Assumption 3.1 D is essentially self-adjoint.
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Proof of Lemma 3.11. Suppose L*-sections v and v satisfies Du = v weakly.
We show that for any e > 0 there is a compactly supported smooth section
u, satisfying ||ue — u||as < 2€ and ||Du, — v||py < 4e. Take a compact subset
K such that ||u||arxk, |[|v]|mx < €. Using Lemma 3.10 choose a smooth
compactly-supported function p : M — [0, 1] satisfying p = 1 on K and
|dp| < 1. Let K’ be the compact support of p. Since D is elliptic, the
weak equality Du = v and the regularity theorem imply that u is locally
L2-bounded and there is a smooth sections u’ satisfying ||u’ — u||x» < € and
||Du’ — v||g < €. Then we have

llow = ullar < llp(e = w)llie + 11 = plullarr < 2e

and
ID(pu') — vl = |ldp- (v —u)+dp-u+ p(Du—v) = (1= p)v|ly
< ' = ullrrx + [lullxx + [ DU = vl g + [[ollarx
< Ae.
It implies that D is essentially self-adjoint. O

3.3 Min-max principle

In this section we use Assumption 3.1 for a single operator D, and Assump-
tion 3.5 for a one-parameter family {D;}.

Lemma 3.12 For any compact subset K containing M 'V there is a com-
pact set K' containing K such that if s and Ds are L*-bounded, then we have
the estimate

AP NIslare — 20 2|8l rere < ||Ds][aric

Moreover if the coefficients of Dy are C*°-convergent to those of Dy = D on
any compact set ast — 0, then we can choose K' so that the above estimate
1s valid for any t sufficiently close to 0.

Proof. Lemma 3.11 implies that we can assume that s is smooth and com-
pactly supported without loss of generality. From Lemma 3.10, for any € > 0,
there is a compact set K’ containing K and a smooth non-negative function
p: M — Rsuch that p=1o0on M ~\ K’, p=0on K and |dp| < e. Then the
above estimate follows from the next two inequalities

1/2 1/2 1/2 1/2
1D(s)|le = AP llpsllv = A [l = A2 lIs] i — Ao I8 ic

1D(ps)llar < lpDsllar +[lo - ((dp) @ )l[ar < (| Dsllarxc + C(D, K')ells||xrxc,
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where C(D, K') := maxg|o|. The last statement of the lemma follows from
the fact that C'(D;, K') is continuous with respect to t. O

Proposition 3.13 Suppose 0 < \; < Xo. Let {s;} be a sequence of L*-
sections of W satisfying ||s;||a = 1, and {t;} is a sequence convergent to 0.
Suppose each Dy, s; is L*-bounded and satisfies || Dy, s;||3; < A1. Then there
is a subsequence {sy} which is weakly convergent to some non-zero s, # 0
such that Dys. is L*-bounded and satisfies

[1Doscollnr < Mllssol[3s (8)

Proof. Take a subsequence {sy} so that {sy} and {D,s;} are weakly con-
vergent to some so, and s, in L2(M, W) respectively. Since D; is a smooth
family, for each smooth compactly-supported section ¢ the sequence Dy,
is strongly convergent to Do¢p. The equality [, (Dy,é,s¢) = [,,(¢, Dy, s¢)
implies [,,(Dod, s0c) = [3,(¢; Uoo), 1€, Dysoo = Us weakly.

Since { Dy, sy} is L?-bounded, Assumption 3.5 and a priori estimate imply
that on any compact set sy is strongly L?-convergent to su..

On the other hand for any compact set K containing M ~\ V there exists
a compact set K’ such that

2" [sollarsc = 225 llsil s < N1 Dr sl larare < N2
by Lemma 3.12. If s, is 0, then we have ||sy||x/ x converges to 0, which
contradicts to ||si||x = 1 and A\ < Ap.

Suppose the estimate (8) does not hold. Then for any ¢ > 0 and any
sufficiently small ¢ > 0 there exists a compact set K containing M ~ V
satisfying ||Seo||arx < € and Ai||Soo||%+€ < || DoSso||%- We choose € and € so
that they satisfy 8eAo(1+2¢) < €//2. Note that the weak convergence implies
[ Dosos % < liminfy o || Dy, s¢]|%. Since sy is strongly L*-convergent to se
on the compact set K, we have

/

€
Ml lsi| 5 + 7 < |Dirsa|% 9)

for sufficiently large /. Let K’ be the compact set containing K which gives
the estimate in Lemma 3.12 for sufficiently small ¢. Since , s; is strongly
L?-convergent to s, on the pre-compact set K’ \ K, we have ||sy || < 2¢
for sufficiently large i’. The estimate in Lemma 3.12 implies that we have
)\(1)/2||Sz"||M\K < ||Dsy||ar~xc + 4e>\(1)/2 for sufficiently large ¢’. Taking square,
and using A; < Ag and || Dy sy ||y < A}ﬂ, we obtain

Mllsil 3k < N1 Disullir i + 8€Xo(1 + 2¢)

Adding with (9) we have \||si|[3; < ||Dwsi||3; for sufficiently large i, which
contradicts our assumption. 0
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For a single operator D we have

Proposition 3.14 1. Suppose A < X < Ag.

(a) If s € Ey, then Ds is L*-bounded and ||Dsl||3; = \||s||3;-
(b) Ey\ and Ey are L*-orthogonal to each other.

2. Suppose 0 < A\ < \g.

(a) dim @)\S)\lE)\(D) < 0.

(b) Let Ry, be the set of L*-bounded sections s satisfying ||s||x = 1
and ||Ds||3; < Ao such that s is L?-orthogonal to ®x<x, Ex(D). If
R), is not empty, then the functional I, : Ry, — [0, o), I, (s) =
||Ds||3, attains its minimum value.

c) Let \y = ||Dsol|?, be the minimum value of I, at a minimum sg.
M 1
Then we have \; < Ay < Ay and sy € E),

Proof. The first statement for A\ < X' < Aq follows from the partial integration
formulas Lemma 3.8 and Lemma 3.9.

Suppose A\ < Ag. If @<, E\(D) is not finite dimensional, then we have a
sequence e; in the infinite space with ||e;][5s = 1 and mutually L?-orthogonal
each other. Proposition 3.13 implies that we have a weakly convergent limit
for a subsequence with non zero limit, which is a contradiction.

Suppose s; is a sequence in Ry, such that Iy, (s;) convergent to the infi-
mum of 7,. Proposition 3.13 implies that we have a weakly convergent limit
Seo # 0 for a subsequence such that sy := S /||Sx0|| is an element of Ry which
attains the infimum. For any compactly-supported smooth section s', let s”
be the L%-orthogonal projection of s’ to @x<y, Fx(D) and put s” = s — s".
Since sg attains the minimum of I, , the derivative of (so+ts")/||so+ts"||m
at 0 vanishes, and we obtain

/ (Dsgy, Ds") = )\2/ (s0,8™).
M M
Since Ds" = Ds' — Ds" and D?s" = D?s' — D?s" is L>-bounded, Lemma 3.9

implies
/ (SO,DZS/”) — /\2/ (So,Sm).
M M

On the other hand we have

[ 00 = [ s =0
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These relations imply

/M(so,D23’) =\ /M(so,s’),

i.e., D?sy = A\ysg weakly. Lemma 3.8 implies that Dsg is L?-bounded and
[Dsol|3; = Xal|sol|lar = A2. Since sg is L*-orthogonal to @y<y, Ey, we have
A1 < A2. The regularity theorem implies sy is smooth and hence sy € E,,. [

Corollary 3.15 Suppose Ay < Xg. Let E be a Z/2 graded subspace of
L*(M,W) such that such that Ds is in L*(M,W) and ||Dsl||3; < A\||s|3,
for any s € E. Then E 1is finite dimensional and

dim @/\SME/\(D) Z dim F.

Moreover the above inequality holds for each degree of Z/2.

3.4 Deformation invariance of index

For a family {D,} we have:

Proposition 3.16 Suppose \; < A\g. Let {t;} be a sequence convergent to 0
and EY be a 7./2 graded subspace of L*(M, W) such that Dy,s is in L>(M, W)
and ||Dy,s|12, < M|sl|3; for any i and s € E;. Then each EW is finite
dimensional and

dim ®x<x, Er(Dy) > limsup dim E®.

Moreover the above inequality holds for each degree of Z/2.

Proof. Suppose dim @<y, Fx(Dg) < dim E) for a subsequence {i'}. Let sy
be an element of E®) with ||sy||y; = 1 which is L2-orthogonal to ©y<x, Ex(Dy).
Let 5o be the L?-bounded section given by Proposition 3.13. Then the weak
limit s, is also L? orthogonal to @y<x, Ex(Dy), which contradicts Proposi-
tion 3.14. O

Remark 3.17 In the above proof the choice of s;; can be generalized as
follows: Fix an L2-orthonormal basis eq, e, ..., en of the finite dimensional
space @<, Fa(Do). Fix any sequence {e,(f,)}i/ for each 1 < k < N which is
strongly L?-convergent to ey, as i’ — 0o. Let sy be an element of E) with
||s:]|ar = 1 which is L?-orthogonal to all e,(f/) (1 <k < N). Then the rest of
the proof remains valid.
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Corollary 3.18 For each degree of 7./2 we have the inequality

dim EB)\S)\lE)\(DO) 2 lim sup dim EB)\S)\lE)\(Dt)
t—0
Proposition 3.19 Suppose \y < Ag. For each degree of 7./2 we have the
inequality
dim @A<>\1E>\(DO> S llItIllglfdlm @A<>\1E>\(Dt>

Proof. Let ¢y > 0 be a sufficiently small number, which we fix later. Let
e1,€s,...,en be an L?-orthonormal basis of the finite dimensional space E :=
@<, Ea(Dy) consisting of eigenvectors of Dy with eigenvalues juy, i, - . ., iy
respectively. For a sufficiently large a and sufficiently small € > 0, the trun-
cated sections e, = p, ce; satisfy

- [ ()
M

for every 1 <4,j < N as in the proof of Lemma 3.8 or Lemma 3.9. Here §;; is
Kronecker’s delta. Let E’ be the vector space spanned by e.. Since the sup-
port of all the €] are contained in the compact support of p, ., Assumption 3.5
implies that

< €, Miﬂj5ij—/ (D(J@;,Doe;-) < €
M

< €p.

umj@j—/M(DteQ,Dte})

for every ¢ sufficiently closed to 0. Let E’ be the vector space spanned by
e;. Then if ¢ is sufficiently small, each element s’ of E’ satisfies ||D;s'|[3; <
Ai||8'||3;. Corollary 3.15 implies dim £/ < dim @y, Ex(D;). It is easy to
check that the above inequality holds for each degree of Z/2. O]

Proof of Theorem 3.6. From Proposition 3.14 there is 0 < A; < \g such that
E,, = 0. Then Corollary 3.18 and Proposition 3.19 imply

dim EB/\S/\IE,\(D()) = 11651(1) dim EB)\S/\lE/\<Dt)

and the equality holds for each degree, from which the claim follows. O]

3.5 Gluing formula

In this subsection we generalize Theorem 3.6. We first need to generalize
Assumption 3.5.

Let (M,W,o0,D,V) be as in Section 3.1. For i = 1,2,... we further
suppose that the data (M;, W;, 0;, D;,V;) satisfies the setting in Section 3.1.
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Suppose M has a sequence of compact open subsets {K;} (1 = 1,2,...)
satisfying K UV = M, K; C int(K;y1) and M = U;K;. Suppose there
exists an isometric open embedding ¢; : int(K;) — M, and an isomorphism
Ui s Wik, = ;W as Z/2-graded Hermitian vector bundle over int(K;) for
each 1.

If s is a compactly supported section of W, then Z}s]mt( K,;) makes sense
as a compactly supported section of W; for large i with supp s C int(K;) by
extending as 0 outside ¢;(supp s). We simply write 7;s for this section on W;
for large 1.

If K is a compact subset of M and s; is a section of W; for large ¢ with
K C int(K;), then 7; '(si|,(x,)|r is a section of W|g. We simply write
77 's;| i for this section.

Then s — {7;*(D;i;s)|x} is a differential operator on K for large i. We
write ¢; D; for this operator on K.

Assumption 3.20 1. y;(M \V)=M;\V,.

2. The data (M;, W;, 0y, D;, V;) satisfy Assumption 3.1 with the same con-
stant Ao for (M, W, 0, D, V).

3. On each compact subset K of M the coefficients of the differential
operator ¢} D; is C*°-convergent to those of D on K as i — 00.

We do not assume that the propagation speed of {D;} is uniformly bounded
with respect to .

Theorem 3.21 Under Assumption 3.20, ind D; is equal to ind D for large
1.

Proof. The most of the arguments in Sections 3.3 and 3.4 go through.

The statement and proof of Proposition 3.13 is straightforwardly gener-
alized with replacement of D, by D,.

The statement and proof of Proposition 3.19 is also straightforwardly
generalized.

To generalize Proposition 3.16 we need the construction in Remark 3.17.
As for the statement we replace D;, with D;, and let E® be a 72 graded
subspace of L*(M;, W;). As for the proof take e,(f/) with support contained
in int(K;). Let sy be an element of E®) with |[sy||p, = 1 which is L2-
orthogonal to all 'Lvie,(f/) (1 < k < N). Then the rest of the proof remain
valid.

Then the argument of Section 3.4 can be straightforwardly generalized to
show Theorem 3.21. O
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When M has two (or more) connected components while each M, is
connected, Theorem 3.21 is regarded as a gluing formula of index as explained
below.

Proposition 3.22 Let (M, W,0,D,V) be a data satisfying Assumption 3.1.
Suppose M is the disjoint union of M' and M". Let (W' o', D", V') and
(W 6", D" V") be the restrictions of (W,o,D,V) to M’ and M" respec-
tively. Then we have

ind D; = ind D' +ind D",
for sufficiently large 1.

Proof. Since ind D = ind D’ + ind D", Theorem 3.21 implies the required
gluing formula. [

The following vanishing lemma follows from the partial integration for-
mula Lemma 3.8 and the second inequality in Assumption 3.1.

Lemma 3.23 Let (M,W,0,D,V) be a data satisfying Assumption 3.1. If
M =V, then we have ker D N L*(W) = 0.

Using the gluing formula Proposition 3.22 and the above Lemma 3.23, we
have the following excision formula of index.

Proposition 3.24 Let (M, W,0,D,V) be a data satisfying Assumption 3.1.
Suppose M is the disjoint union of M' and M", and M" is contained in V.
Let (W' o', D", V') be the restriction of (W,0,D,V) to M'. Then we have

ind D; =ind D’

for sufficiently large 1.

3.6 Product formula

Following Atiyah and Singer [1], we formulate a product formula for ellip-
tic operators. Except that we need Lemma 3.8 for partial integration on
complete Riemannian manifolds, the argument is exactly the same as in [1].
The main purpose of this subsection is to formulate Assumption 3.26 below,
which is crucial for the case of complete manifolds. To apply the product
formula it is necessary to check the assumption for specific operators, which
is our another task and is carried out in Section 5.



2009/10/1 30

For k = 0, 1 let M}, be a complete Riemannian manifold, Wy a Z/2-graded
Hermitian vector bundle over My, and Dy : I'(W) — I'(W)) a degree-one
formally self-adjoint order-one elliptic operator with principal symbol oy.

Let G be a compact Lie group and P — Mj a principal G-bundle. Sup-
pose G acts on M; isometrically, W; is G-equivariant Z/2-graded Hermitian
vector bundle, and Dy, is a G-invariant operator.

Then M = P X M is a fiber bundle over My with fiber M;. We write
7 : M — My for the projection map. Let Wy and W, be the vector bundles
over M defined by WO =7m1"Wyand W, = PxoWq, and we put W = WO X W1

We would like to lift Dy and D as operators on W. The lift of D, is
given straightforward: Defining the operator D; on F(WO ® Wl) by € ® Dy
on each fiber of w : M — M,, where ¢ : Wy — W, is equal to +id on the
degree 0 part of Wy, and to —id on the degree 1 part of W;.

We next construct Dy : I'(W) — I'(W). Let {V,} be an open covering
of My and {p2} a partition of unity. Suppose we have local trivializations
Ply, =V, x G with transition functions g,s. Using the local trivialization on
V,, we have the identifications 7(V,) 2 V, x My and W |-,y = Wly, X
Wi. Let ﬁo,a be the operator on W|-1(y,) defined by Dy using the product
structure. We put 130 =, paﬁoﬂpa.

Lemma 3.25 Eoﬁl + 5150 =0.
Proof. 1t follows from 51ﬁ0,a + anﬁl =0 and Elpa — paf)l =0. O]

Let R be a G-invariant Z /2-graded finite dimensional subspace of I'( M7, 1),
and R the fiber bundle P xg R over M,. Then we have an embedding

(Mo, Wo ® R) — D(M, W) (10)

which is preserved by the action of DO Let DR be the restriction of DO on
[(Mo, Wo ® R) Then Dp is a differential operator on Wy ® R with principal
symbol o¢ ® id 3.

Assumption 3.26 1. D, has finite propagation speed, i.e., g is L*>-
bounded.

2. The data (M, Wy, D;) satisfies Assumption 3.1.
3. R = Eo(Dl)

4. The data (M, W, Do + 151) satisfies Assumption 3.1.
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We do not assume the second condition of Assumption 3.1 for the data
(MO, W07 DO) . » » »

Recall that Dy is given by Dqy via the embedding (10). Since D; =
0 on the image of the embedding, Assumption 3.26 implies that the data
(Mo, Wo ® R, Dp satisfies Assumption 3.1 as well.

Theorem 3.27 (product formula) ind(Dy + D) = ind Dy

Proof. We show that the embedding (10) gives the isomorphism EO(ﬁR) =
Eo(ﬁo + 131) If s is in the image of EO(DR), then the construction of Dg
implies that s is obviously in EO(DO +D, ). From Lemma 3.8and Lemma 3.25
if s is an element of Eo(Dy + D;) we have

= / (Do + Dy)*s.5) = / (D§s + Dis,s) = || Dos||® + | Dus|*,
M M

ie., 505 = Dis = 0. In particular éls = 0 implies that s is in the image
of the embedding (10). Moreover Dys = 0 implies s is in the image of
Eo(Dr). O

4 Local index

In this section we first define a class of Riemannian manifolds and compatible
fibrations (resp. compatible systems) on them. Using such a class we will
define the local index of a strongly acyclic compatible system in this section
and prove the product formula in the next section.

Definition 4.1 Let M be a Riemannian manifold. If there exists an open
subset V' of M which satisfies the following properties, then we call M a
manifold with the Euclidian end V.

1. The complement M \. V is compact.
2. V contains an open subset V'’ with the pre-compact complement V'~ V".

3. There exist a closed Riemannian manifold N and positive integers
{m;}¥_, such that V' is isometric to the product Riemannian mani-
fold N x [[, R, where Rj" denotes the complement of a compact
subset of R™ for m; > 1 and R, for m; = 1.

A typical example of a manifold with Euclidian end is a manifold with
cylindrical end V' = N x R,. Products of such manifolds twisted by princi-
pal bundles are another examples, which we need to formulate the product
formula in the next section.
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Definition 4.2 Let M be a manifold with the Euclidian end V' and {r, :
Vo — Ustaca (resp. {W,D,}) a compatible fibration (resp. compatible
system) on V. If there exists a subset A of A which satisfies the following
conditions, then we call {7, : Vo, = Us}aca (resp. {W, D,}) a translationally
invariant compatible fibration (resp. compatible system)on V.

L. V(= N x [, Rf") is an admissible open subset of V.

2. There exists an open covering N = U__; N, such that V,, N V' is iso-

metric to N, x [[, Ry" for all a € A.
3. If « € A~ A, then V, is pre-compact.
4. Upeni Va is an open covering of V . V.

5. There exists a family of compatible fibrations (resp. compatible sys-
tems) {7, : Ny — Ua}aeA (resp. {W,D,}) on N such that {ms|v.qv :
Vo NV = (Vo N V) }oea (esp. {Wlv,rvr, Dalvanv}) is the prod-
uct of {7, : Ny, — Ua}aeA (resp. {W,D,}) and the trivial one over
[ Rg"

Let M be a manifold with Euclidian end V. Suppose that there is a
translationally invariant compatible fibration {7, : V, — U, }aeca on V. Take
and fix a pre-compact open neighborhood V, of M ~\ V. Put A:= AU {o0}.
For later convenience we think M = U_ 3V, is equipped with a compatible
fibration such that mo, = id : Voo — V. Let {p2} i be an admissible
partition of unity of M = U__3V, constructed in Lemma 2.10. By retaking
V' we may assume that Voo NV’ = 0 and {p2} . ; is translationally invariant
on V(= N x [[, Rf"). Namely there exists an admissible partition of unity
{p2}cq of N =U, 4N, such that Paln, x1,rmi is equal to the pull back of
pa Via the projection N, x [[, xRy — [[, Ry". We first show the following
technical lemma which is used to show Theorem 4.7.

Lemma 4.3 There exists an admissible partition of unity {x2},c5 of M =

U,ciVa which is translationally invariant on the end and satisfies supp Xa ;

supp po for each a € A.

Proof. Since A is a finite set it is enough to show that if we fix o € A, then
there exists an admissible partition of unity {x3} 4.7 of M = U, zVj which
is translationally invariant on the end and satisfies supp xa ; supp peo and
supp xp = supp pg for all 5 € A~ {a}. To construct y, we first put

K, =V, U pgl(RJr).
ﬂeﬁ\{a}
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and show that the minimum m, := min(p.|x, ) exists. If & € A~ A then it

~

is true because K, is compact. If a € A, then we consider a decomposition
of K, into K} and K?;
Ey=WasV)N U 'Ry, KZ=anV)N | 'Ry
ﬁeZ\{a} ﬂeg\{a}
Since K, is a closed subset in M we have M D K, = K, = 7}! U 73 =

KLU K2 Note that K1(C V ~ V') is compact. On the other hand since
Ve NV’ =0, we have

k2= Nx[[B U ®
i BeA~{a}
= [A(ixHRg”,

where K2 is the compact set define by K2 := N, ~ Useiiay ﬁgl(R>0). Then
there exist minimums;

o m! = min(pa %)

o m7, :=min(pa|xz) = min(falgz),

and hence m, = min{m),m?} does exists.
Take and fix a non-decreasing function ¢, : R>o — R such that

%(7”)={ 0 (0<7r<my/2)

r (me <7),
and define p/, : M — R by the composition pl, := ¢, 0 po. Then this p is
an admissible and translationally invariant on the end, and we have

pu@)+ > palz) >0

BeA{a}

for all z € M. By normalizing the family of functions {p,} U{ps}sc 7 (o) We
obtained the required family of functions {x3} 5. - O

4.1 Vanishing theorem

Let M be a Riemannian manifold and V' an open subset of M. Suppose
that there exist a compatible fibration {7, : V,, — U, }aca and a compatible
system {W, Dy}aca on V. Using an admissible partition of unity {p2},c 1
of M = U, ;Va we put D, := poDaps for a € A. Take any Dirac-type
operator D on ['(IWW) and a positive real number t. We define the operator

acting on (W) by D, := D+t ., D,,.
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Remark 4.4 Note that D, and pg commute each other because pg is a
pull-back of a function on Ug and D, contains only the derivatives along
fibers.

We show the following fundamental lemma in our argument.

Lemma 4.5 For each « the anti-commutator DD!, + D! D is a differential
operator along fibers of 7w, of order at most 2.

Proof. Recall that, for each o the principal symbol of horizontal direction
Dt of D with respect to m, anti-commutes not only with the symbol of
D!, but also with the whole operator D/,. The statement follows from this
property. It is straightforward to check it using local description. Instead of
giving the detail of the local calculation, however, we here give an alternative
formal explanation for the above lemma. For b € U, let W, be the sections
of the restriction of W on the fiber 7, (). Then W = [[W), is formally
an infinite dimensional vector bundle over U,. We can regard D! as an
endmorphism on W. Then D! is a order-zero differential operator on W
whose principal symbol is equal to D!, itself. Then, as a differential operator
on W, the anti-commutator D! Dfe + DHaD! is an (at most) order-one
operator whose principal symbol is given by the anti-commutator between
the Clifford action by TU, and D!. This principal symbol vanishes, which
implies that the anti-commutator is order-zero as a differential operator on
W, i.e., it does not contain derivatives of U,-direction. O]

For an operator appearing in the above lemma we have the following a
priori estimate.

Lemma 4.6 For each fiber F' of m, and arbitrary differential operator Q) of
order at most 2 along F', there exists a constant Cq such that the inequality

/F(SF, Qsr)

holds for all sections sg.

<y / |Daspl?
F

The following vanishing theorem is a main theorem in this subsection.

Theorem 4.7 Let M be a closed manifold or a manifold with Euclidian
end V. Suppose that M is equipped with a translationally invariant strongly
acyclic compatible system {{mo}, W,{Du}}aca. Let D be a Dirac-type op-
erator acting on I'(W) which is translationally invariant on the end. Put
D!, = paDuopa and D, := D + 1ty D! for a positive number t > 0. Then
the space of L?-solutions of the equation Dys = 0 is trivial for all t > 1.
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To show this theorem we make several preparations. Let {X&}aE g be an ad-

missible partition of unity constructed in Lemma 4.3 and put K, := supp Xa-

Lemma 4.8 1. D! is an elliptic operator on each fiber of m, which is
contained in K,.

2. If Q) 1s an differential operator along fibers of order at most 2, then
there exists an constant Cq such that for each section s, satisfying
supp so C K, we have an estimate

‘/ (Sosza) S CQ/ |D,a3a|2~
M M

Proof. The first statement follows from the fact that p, takes positive values
on K,. Note that K, is compact or has Euclidian end and each D, is
translationally invariant, and hence by the similar argument in the proof of
Lemma 4.3 we can choose the constants Cg in Lemma 4.6 uniformly for all
fibers of 7, contained in K. The second statement follows from this fact. 0O

Lemma 4.9 There exists an operator Z which does not contain any differ-
ential terms and satisfying

- ZXO{D?XOL + Z.

Moreover Z does not depend on t.

Proof. 1f x is an admissible function then it commutes with D, and hence
we have [Dy, x] = [D, x|. Using this equality and the fact [D, x| does not
contain any differential operators we have

(D7 x],x] = [(Dd[Dy, X] + [Ds, x]1D¢), X]
= [(Dt[D X] [D X]Dt) ]
= [Dy, X][D,x] + [D, x][Ds, ]
= 2[D,x]*.

Put x := x. and take summation for all & we have

2D} =23 XaDixa = Y _[[DF,x),x] =2 [D, xal*.

a

Then Z := Y _[D, xal? is the required operator of order 0. O
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Proposition 4.10 If s, is an L*-bounded section of W such that Ds, and
D! s, are also L*-bounded section for all a € A and supp s, C K,, then we

have the inequality
s [ sl
M

[ 1Dl ‘ [ Zsase
M M

We use the above proposition and lemmas to show Theorem 4.7 as follows.

for allt > 1.

Proof of Theorem 4.7 assuming Proposition 4.10. We take t > 1 so that the
inequality in Proposition 4.10 holds. We first note that since M is a closed
manifold or a manifold with Euclidian end, an L?-bounded section s which
satisfies D;s = 0 is an element in the Sobolev space Li(W) for arbitrary
k € N by the elliptic estimate, and hence s, = x5 is. Moreover since D is
translationally invariant it has the bounded extension D; : L3 (W) — L*(W).
Then we can use the partial integration formula in Lemma 3.8 for D;s,, and
we have s = 0 as in the following;

0 = [ Wi
= Z/M(XaDEXaS,S)—I—/M(ZS,s) (Lemma 4.9.1)

= %:(/M|Dtsa|2—l—/M(Zsa,sa)) (S0 = Ya5)
2&: (/M|(Z=9m5a)|+/M|SZ|+/M(Z8a,$a)> (Proposition 4.10)

> [ isi= [ sk

Vv

v

4.1.1 Proof of Proposition 4.10.
For each fixed a € A, we can write D; as
Dt - D;ﬁa + tD:)z

on V,, where we put
Do :=D+t» Dj.
B#a
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Using these notations together with @, := DD, + D, D and Qp, =
DD, + D, Dj, we have

D} = D%, +1Qa + 1Y) Qga +t*DJ,
B#a

and since [, (D2, 5q,5q) and [, (QgaSa; Sa) are non-negative for an L*-
section s, satisfying the assumptions we also have

/ |Dysal? ZtQ/ |D;5a12—t'/ (QaSar Sa)| -
M M M

From Lemma 4.5 @), is a differential operator along fibers of 7, of order
at most 2. Then from Lemma 4.8.2 there exist a constant C” such that

‘/ (Qasaasa) S C,/ |Dz,1804|2'
M M

Combining these inequalities we have

/ ]Dtsa|22(t2—0't)/ D sl
M M

On the other hand using Lemma 4.8.2 again there exists a constant C” such

that
\ [ sl = [ sz < [ 10
M M M

and hence if we take t > 1 so that t> — C't > C”, then we have

/ Dysal? > ‘/ (Z50,5) +/ 5ul2
M M M

Note that since A is a finite set we may assume that C’ and C” do not depend
on «, and we complete the proof.

4.2 Definition of the local index - Euclidian end case

In this subsection we give the definition of the local index of a strongly
acyclic compatible system on a manifold with Euclidian end. Let M be
a manifold with Euclidian end V. Let W be a CI(TM)-module bundle.
Assume that there is a translationally invariant strongly acyclic compatible
system {{ma}, {Va}, {Da}}aca on V. Take any Dirac-type operator D acting
on I'(W) which is translationally invariant on the end. For an admissible
partition of unity {pi}aeg and a positive number ¢t > 0 we put D; := D +

tZa pOéDapOl'
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Lemma 4.11 Ift is large enough so that the inequality in Proposition 4.10
holds, then D, satisfies the Assumption 3.1.

Proof. Since the principal symbol of D, is given by a linear combination of
the Clifford multiplication of TM and that of fiber directions of {7, }aca, (i)
of Assumption 3.1 is satisfied. We show the condition (ii) of Assumption 3.1.
Let s be a smooth compactly-supported section of W with supp s C V.
Let {x2},ci be the admissible partition of unity constructed in Lemma 4.3.
For each s, := xo$ we can apply Proposition 4.10, and hence, we have

|Dys||3 > ||s||? as in the same way in the proof of Theorem 4.7. O

Results in Section. 3 imply the following.

Proposition 4.12 If t is large enough so that the inequality in Proposi-
tion 4.10 holds, then the space of L?-solutions of Dys = 0 is finite dimensional
and its super-dimension is independent for t > 1 and any other continuous
deformations of data.

Definition 4.13 We define the local index ind (M, V, W) as the index of D
in the sense of Section 3.

In the case of cylindrical end we have the following sum formula of local
indices.

Lemma 4.14 For i = 1,2 let M; be manifolds with cylindrical ends V; =
N; x Rog and N? be connected components of NY. Suppose that there is an
isometry ¢ : N — N2, and for some R > 0 the map ¢ : N{ x (0,R) —
N2 x (0, R) given by (z,7) — (¢(x), R — 1) induces the isomorphism between
the strongly acyclic compatible systems on them. Then we can glue My ~
(N? x [R,00)) and My ~ (N9 x [R,o0)) to obtain a new manifold M with
eylindrical end V.= N x (0,00) for N = (N; ~ N%) U (N, ~ N?), and
we also have a Clifford module bundle W obtained by gluing W and W' on
NY x (0,R) = N9 x (0, R). Then we have

ind(M,V, W) = ind(My, Vi, Wy) + ind(My, Vi, Wa).

4.3 Definition of the local index - general case

Let V' be an open subset of M such that M ~ V is compact. Assume that V'
has a strongly acyclic compatible system. We would like to define the local
index for such a general case. The way to define it is almost same in [4]. To
verify the construction we have to check the following.
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Proposition 4.15 For given (M,V,W) and the strongly acyclic compatible
system (Vo 73 Uy, Do) on'V we can deform them to (M', V', W') so that it has
a cylindrical end with a translationally invariant strongly acyclic compatible
system.

To prove the proposition, it is enough to show the following lemma.

Lemma 4.16 There exists a smooth admissible function f : M — R and
a reqular value ¢ of f such that f~'(—oo,c] is a compact subset containing

M\V.
Proof. For any subset D of M, let K (D) be

K(D) = Uy, 'ma(D N V,).

Since 7, is a proper map, if D is compact, then K (D) is again a compact
subset.

Let fo : M — R be the distance function from the compact subset K (M
V). Take a real number 7 > 0 so that f; *[0,7] is a compact neighborhood
of K(M V). Let ¢ > 0 be a positive real number satisfying 2¢ < r.
Let h : M — R be a smooth function such that |fo(x) — h(z)| < € for all
r € M. Put f := I(h), where I : C®(M) — C*(M) is the averaging
operation in Definition 2.9. Note that using the property 4 in Definition 2.9
one can check that for all subset D of M and a connected interval J C R, if
K(D) c h=Y(J), then we have K (D) C f~*(J). Let ¢ be a regular value of
f satisfying € < ¢ < r — €. Then we have

KM \V) = f10) C h™'(—e¢e).

It implies
K(M V) C fH—¢e).

In particular we have
MV C f(~o0,d.

On the other hand if z ¢ K(h™'(—o00, ¢]), then we have K ({z}) C h™*(c, 00),
and hence, f(z) > c¢. Then

[ (=00,¢] C K(h™!(=o00,c]) C K(fy (=00, c+¢€]) C K(f5[0,7]).
In particular f~'(—o0, ¢] is compact. O

Definition 4.17 We define the local index ind(M,V, W) to be the local
index for the deformed data (M', V', W").
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Note that the local index ind(M,V, W) is well-defined, i.e, it does not
depend on various choice of the construction. It follows from the sum for-
mula (Lemma 4.14) and Theorem 4.7 as in the same way in [4]. The well-
definedness means the excision property of local index.

Theorem 4.18 Let M be a Riemannian manifold and V an open subset
such that M 'V is compact. Let W be a CI(T'M)-module bundle on M and
suppose that the metric on V' is a compatible metric and V' has a strongly
acyclic compatible system. Let V' be an admissible open subset of M such
that M V' is a compact neighborhood of M~V . Put M' :== M ~\V'. Then
we have

ind(M,V,W) =ind(M",V V' W|y).

Note that if M is closed, then ind(M,V, W) is equal to the index of the
Dirac-type operator D because of the homotopy invariance of indices. Using
the excision property, additivity for disjoint unions and vanishing theorems
we have the localization theorem.

Theorem 4.19 Let M be a closed Riemannian manifold and V' an open sub-
set. Let W be a Cl(TM)-module bundle on M and D a Dirac-type operator
acting on T'(W). Suppose that V' has a strongly acyclic compatible system.
Let UN,V; be an open neighborhood of M NV such that V;\V; =0 if i # j.
Then we have the following equality.

N
ind D =) " ind(V;, Vi NV, Wlyav).

i=1

Remark 4.20 The arguments in this section are valid in orbifold category.

5 Product formula of local indices

In this section we formulate the product of acyclic compatible systems. Once
we have an appropriate formulation of the product, then we obtain the prod-
uct formula of local indices of the strongly acyclic compatible systems by
results in Section 3.

5.1 Product of compatible fibrations

In this subsection we formulate a product of compatible fibrations. The
product is defined for the following collection of data for ¢ = 0,1 which
satisfy the Assumption 5.1.
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1. M; : a manifold.

2. V; . an open set of M;.

3. {Tin Vi = Uia, Uiap | @, 5 € A;} : a compatible fibration on V;.
4. G : a compact Lie group which acts smoothly on M;.

5. mp : P — My : a principal G-bundle over M.

Assumption 5.1 (1) Vi is G-invariant and the fibrations Vi, — U,
ViaNVig — Upap and Uy o — m1.0(ViaNVi ) are G-equivariant fiber
bundles for all o, 5 € Aj;.

(2) there exist principal G-bundles P, — Uy, Pag — Upap and bun-

dle maps P|V0,amVO,B — Pa|7r07a(\/07aﬁvowg)7 P|V0,aﬂV07g - afs POZB -
Palno.a(Voantp z) for all a, 3 € Ag such that the following diagrams com-
mute;

P|V0,amvo,ﬂ

— S

P|7rOaV0amVO/3) %am%/@

- S

WOa(%am%ﬁ UOa,B

P|VO «MVo 8

N

Py |7T00¢(V0 aNVo,5) Pg‘m B8(V0,aMVo,8)

For later convenience we take an open neighborhood V; o of M; \'V; and
consider the trivial fiber bundle structure m; » : V; 50 — Vi . In other words
we consider a compatible fibration {m; o : Vo — Uin | @ € A; U {0o0}} on
M; =V, U (U4Via). Let M be the quotient manifold by the diagonal action
of G on P x M;. Then the natural map = : M — M, is a fiber bundle whose
fiber is equal to M;. To define a structure of compatible fibration on M we
first prepare several notations for ¢ = 0, 1.



2009/10/1 42

A :AO X Al
A=A~ (00, 00).

VOéooz1- P|V0a0 XG‘/ial fOIO[EA
® Uspar = Poy Xqg Upo, for a € A;.

o U(ao,oél)(ﬁo,ﬂﬂ ‘= Lagfy XG Ul,alﬁl'
b V = U(cxo,al)eA vaO,al'

Then we have the following.

Proposition 5.2 A collection of data

{77-040,01 : Vao,m - Uao,alv U(ao,al)(ﬁoﬁl) | (050,041), (50751) € A}

is a compatible fibration on' V' = 4, a1yea Vao,an -

5.2 Product of acyclic compatible systems

In this subsection we define a product of acyclic compatible systems. To
define the product we consider the following data together with the data 1,
2, 3, 4 and 5 in Subsection 5.1.

6. a compatible Riemannian metric on M;.

7. W; . a compatible Cl(TM;)-module bundle over M,;.

8. {D;n | @€ A;}: strongly acyclic compatible system over V; = Uyea, Vi o
Together with Assumption 5.1 we assume the following.

Assumption 5.3 The metric on M; is G-invariant, and W; — M; and
{D1,.} are G-equivariant.

From the Assumption 5.1 (2). the restrictions of P at each fibers of mg ,
are trivial. Moreover we have the following.

Lemma 5.4 There exists a connection on P which is trivial flat over each
fibers of mp o for all o € Ay.

Proof. Take connections V, for each P, — Upa. Let V, be the pull-back
connections of them to P|V0’a — Voo by M. Define a connection V on P
by patching {V,}, by an admissible partition of unity {p?},, which satisfies
the required property. ]
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Using this connection on P and the compatible metric on M, we have the
metric on P, and hence the metric on M. Moreover since the connection is
trivial along fibers of {m,} it induces a family of connections of {P,} and
{P,s}, and hence a family of metrics on them. Combining them with the G-
invariant compatible metric on M; we have a family of metrics of {T'[mqga,]}s
{TUaga, } and so on. It defines a compatible metric of a compatible fibration
M = U(ao,al)VaO a- We put WO =1 Wy = mpWy Xa My, W1 =P xqgW;
and W := Wy®W;. Then W — M is a compatible Clifford module bundle of
M = U(ag,01)Vao,an Withrespect to the above induced compatible metric. Now
we define differential operators 150,% and 15170[1 for each oy € Ag and ay € A4
which act on F(WO|VQO,QI) and F(Wﬂvao’al) respectively. The operator ﬁl,al
is the one induced from the G-equivariant operator D ,, on F(W1|V1,a1)-

On the other hand 50,% is the operator defined as follows: Since Dy, is a
differential operator along fibers of 7 ., and P is trivial at each fiber of 7 ,,
we can define the operator acting on the restriction I'(75 Wo|gber X ¢ M1 ) using
Do o0 lfiver and a trivialization of Plgpe,. Since such operators along fibers do
not depend on trivialization we have a differential operator IN)O ao acting on
F(Woh/ao o) Usmg these operators we define an operator acting on I'(WW|y)

by Dag.ar 1= DO a0 @ 1dg e, © D1 a1, Where W, is a map on W() defined

by e, (v) = (= 1)degvy, For later convenience we put Dyy oo = Do.a, = 0.

Proposition 5.5 A collection of differential operators {Dygya, | (o, 1) €
A} is a strongly acyclic compatible system on (V, Wy ).

Proof. Since 1507040 ® idW1 and &7, @ 151,&1 anti-commute each other we have

(Z tao,alDao,m) - (Z (Z toco,oq) D, ao> ® idwl
ag
2
+idg ® (Z (Z t%m) 51,a1>
ai ag

for any family of non-negative numbers (4,4, ), and the equality among anti-
commutators

{Dao,ozla Daé,o/l} = {DO,ocm DO,aé} ® ldf/i}l + idWO ®{D1,a1a Dl,o/l}-

These equalities imply that if {D; ., }a, are strongly acyclic compatible sys-
tems, then {Dag a; }(ag,ar) 18 SO O



2009/10/1 44

5.3 Product formula

To apply results in Subsection 4.1 and 4.2, we have to deform the end of
M; and M as in the following way; As we showed in Subsection 4.3, we can
deform M,; into M, together with their strongly acyclic compatible systems so
that M; has the cylindrical end structure. In addition we can deform P into
P so that it has the cylindrical end and may assume that the deformation M1
for M, is G-equivariant. Then one can check that the product M = PxgM,
has the Euclidian end structure. Because of the excision property of the
local index, we have that M; (resp. M) and M; (resp. M) have the same
local index. So hereafter we assume that M; and M has the Euclidian end
structure.

Let {pia}&e i, be admissible partition of unities of M;. We may assume
that {pf,} is G-invariant. Using these partition of unities we have an ad-
missible partition of unity {p?xo,al}(%al)eg on M = U(ag,a)Vag,ar Which is
defined by paa, ([t 1) = .00 (7(4))p1.0, () for [u,5] € M.

For any translationally invariant Dirac-type operators D; on I'(W;), using
a local trivialization of P we have their lifts Dy ®idy, and ey, ® Dy on T(W)

as in Subsection 3.6. Note that D := D0®1d e ®D1 is a translationally
invariant Dirac-type operator on I'(W).

Because of Lemma 5.5 if we take a positive number ¢ large enough, then
the inequality in Proposition 4.10 holds for deformed operators D;; and D,
on M; and M. On the other hand we have a decomposition D; = DB + Df
where

. (50 ey (Zpgl) W*povaoﬁovaow*po,a()) o iy

aQ al

= (DQ +1 Z W*PO,ao DO’O‘OT‘-*pO,cm) X ldW1

@0

Df = 6w/() ® <D1 + tz (Z W*pi()) pl,alDl,alpl,a1>
a1 ag
I (fn +tzpmﬁmm> |

aq

Note that DI is a differential operator along fibers of m : M — M,. They
anti-commutes each other. Namely,

Lemma 5.6 DD + DFDE = 0.
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Moreover since M; and M have the Euclidian end structure, we have the
following by Lemma 4.2.

Lemma 5.7 D; and D} satisfy Assumption 3.26.

When we write ker Dy ; = E° @ E' as the G-equivariant Z/2-graded vector

space, G-equivariant local index of (Mj, V1, W1) can be written as indg(M;, Vi, W1) =
[E°] — [E'] € R(G). Let E' be the vector bundle over M, defined by

E'" = P xg E'. Then the strongly acyclic compatible system on (M, Vy, W)
induces another strongly acyclic compatible systems on (M, Vg, Wy ® EY) via

{Dyo ®idgi} for i = 0,1. Lemma 5.6, Lemma 5.7 and the product formula

in Section 3 imply the following product formula of local indices.

Theorem 5.8 We have the following product formula.
ind( Mo, Vo, Wy @ E°) — ind(My, Vo, Wo ® E') = ind(M,V, W) € Z.

6 Four-dimensional case

6.1 Local indices for elliptic singularities

A critical point of a 2n-dimensional singular Lagrangian fibration p: (M,w) —
B is called a nondegenerate elliptic singular point of rank k (< n) if there

exists a symplectic coordinates x1, ..., Zn, Y1, .., Y, such that in these coor-

dinate, p is written as pp = (21, ..., T, T3+ Vi, - - -, To+y2). See [10, 9, 8].

In this subsection we calculate local indices for elliptic singularities in four-

dimensional case.

6.1.1 Definition of RRy(ai, as)

Let D :={z € C| |z| < 1} be the open unit disc in C. Let X, be the product
of two copies of D with symplectic structure

v/ —1 2 _
Wo ‘= 7 kz_;de A de,

and (Lo, V) a prequantizing line bundle on (X, wp).
Let us consider the structure of a singular Lagrangian fibration g: (Xo,wy) —
[0,1) x [0,1) on X, which is defined by

po(2) == (|z1|2, ’Z2|2) :

We put the following assumption.
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Assumption 6.1 The cohomology groups H* <u51(b); (Lo, V0)|#61(b)> van-
ish for all points b € [0,1) x [0, 1) except for b = (0,0).

Let a; and ay € Z be arbitrary integers. We define a good compatible
fibration on Xy ~\ {(0,0)} consisting of three quotient maps of the torus
actions by

mo: Vi = XoN(C* x C*) — U ==V /T?,
VP i={(z1,22) € Xo | |21] > |22]} — U} :=V/S,
mo: Vy i={(z1,22) € Xo | |21] < |22]} — U3 :=V3/S,

where the T?-action on V{ is the standard one, the S'-action on V¥ is defined
by

t(z1,29) := (tz1,t" 29),

and the S'-action on V3 is defined by
t(z1,29) := (t%%21, t29).

We take and fix an arbitrary Hermitian structure (go, Jo) invariant under the

standard T2-action on X, and compatible with wy. Since gy is T?-invariant

go induces a compatible Riemannian metric of this compatible fibration.
Let Wy be the Hermitian vector bundle on X, which is defined by

Wo = /\ (TXo)c ®c Lo.

W is a Zo-graded Clifford module bundle with respect to the Clifford module
structure (6). We take a compatible system {D;};—o 1.2 to be the family of de
Rham operators along fibers of ¥ (i = 0,1,2) which is defined by the same
way as in Example 2.24. Assumption 6.1 implies that the kernel of all D;
vanish. Hence {D;} is strongly acyclic.

Definition 6.2 Let D be a Dirac-type operator on Wy. We define RRy(aq, as)
to be the local index in the sense of Definition 4.17 with respect to D and
the above data.

Remark 6.3 RRy(a;,as) does not depend on the choice of a compatible
Hermitian structure (go, Jo) and a connection V0 of the prequantizing line
bundle which satisfies Assumption 6.1 since it is deformation invariant.
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6.1.2 Definition of RR;(ay,a_)
Let X, := (0,1) x S x D be the product of (0,1) x S* and D with symplectic

structure
v—1

T
for (r,e?™V=1 2) € Xy, and (L, V*) a prequantizing line bundle on (X7, w; ).
Let us consider the structure of singular Lagrangian fibration p;: (X7, w;) —
(0,1) x [0,1) which is defined by
pa(r,u, z) == (r,|2]?).

We put the following assumption.

wy :=dr Adf + dz N dz

Assumption 6.4 For all points b € [0,1) x [0,1) H*(uy *(b); (L1, Vi)l—1@)
vanish.

Let a, and a_ € Z be arbitrary integers. We take an element r; € (0, 1)
and fix it. Then, we define a good compatible fibration on X; \ u;'(r1,0)
consisting of three quotient maps of the torus actions by

w5 Vo o= (0,1) x ST x (D~ {0}) — Uy = V' /T?,
V= (r,1) x S* x D — U} :=V}!/S,
my: Vi = (0,7) x S* x D — U} :=V,} /S,
where the T?-action on Vj is defined by
t(r,u, z) := (r, tiu, taz),
the S'-action on V}! is defined by
t(r,u, z) == (r, tu, t* z),
and the S'-action on V! is defined by
t(r,u, z) := (r, tu, t z).
We take an arbitrary Hermitian structure (gq, J;) which is invariant under
the standard T2-action on X; and compatible with w; and fix it. We define

the Zs-graded Clifford module bundle W and the strongly acyclic compatible
system in the same way as in Section 6.1.1.

Definition 6.5 Let D be a Dirac-type operator on W;. Then, we define
RR;(a4,a_) to be the local index in the sense of Definition 4.17 with respect
to D and the above data.

Remark 6.6 RR;(a.,a_) does not depend on the choice of a compatible
Hermitian structure (g;, J;) and a connection VI of the prequantizing line
bundle which satisfies Assumption 6.4 since it is deformation invariant.
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6.1.3 Computation

First we can show the following lemma.
Lemma 6.7 For integers a,b,c € Z we have
RRy(a,b) = RRy(b,a), RRi(a,b) = RRi(a+c,b+c).

Proof. We prove the latter equation. The proof of the former equation is
similar. Let ¢: (0,1) x S' x D — (0,1) x S* x D be the diffeomorphism
which is defined by

o(ryu, z) = (r,u,uz).

On the target space of ¢ we consider the same compatible fibration as
{m}}iz0.1,2 except that a and b are replaced by a + ¢ and b + ¢, respectively.
Then ¢ induces an isomorphism between compatible fibrations.

As the other data on the target space of ¢ we consider the data which
are induced from those on the source space by ¢~!. Then the local index for
the induced data on the target space is nothing but RR;(a,b).

On the other hand, the data (¢~*)*w; and (¢~!)*V can be deformed to
w; and V¥ by linear deformations. Since the local index is invariant under
continuous deformation this implies that the latter equation. ]

Moreover, we can also show the following lemma by Theorem 4.18.
Lemma 6.8
RRy(a,b) = RRy(a’,b) + RRy(d',a), RR;(a,c) = RRy(a,b) + RR(b, ).
Then we can calculate RRy(ay, a2) and RRy (a4, a-).
Theorem 6.9
RRy(ai,as) =1, RRi(ay,a_) =0.

Proof. We show RRy(0,1) =1 and RRy(0,0) = 1. Then the theorem follows
from these equalities and Lemma 6.7 and 6.8.

First we show RRy(0,1) = 1. Let us consider the standard toric action on
CP? with hyperplane bundle as a prequantizing line bundle. We adopt the
moment map g of this action as a singular Lagrangian fibration. The image
B of p is the triangle in R? with vertices (0,0), (1,0), (0,1), and p has three
Bohr-Sommerfeld fibers which corresponds one-to-one to three fixed points
[1:0:0],[0:1:0],[0:0: 1] of the toric action.
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We construct a compatible fibration on CP? ~ {[1:0: 0],[0: 1: 0],[0 :
0 : 1]}. For each k € Z/3 let Vj, be a pairwise disjoint T*invariant open
neighborhood of {[zp : 21 : 23] € CP? | 2z, =0} ~{[1:0:0],[0:1:0],[0:
0 : 1]}, and G}, the stabilizer of {[zg : 21 : 29] € CP? | 2, = 0} ~ {[1: 0 :
0,[0:1:0],[0:0:1]}. Each G} is a circle subgroup in 7% and Gj_; acts
on Vi freely. Then we put Uy, := Vi, /Gy_1 and define 7y.: Vi, — Uy to be the
quotient map. We also put V; := U, := B ~. 0B and define my: V, — U,
to be the identity map. These data define a good compatible fibration on
CP?~{[1:0:0,[0:1:0],[0:0:1]}.

The Zs-graded Clifford module bundle and the strongly acyclic compati-
ble system are defined by the same way as in Section 6.1.1.

Then by Theorem 4.19 the Riemann-Roch number is localized at [1: 0 :
0[,[0:1:0],][0:0: 1], and the contribution of each fixed point is equal to
RRy(0,1).

On the other hand it is well-known that the Riemann-Roch number of
CP? is 3. Thus we obtain RRy(0,1) = 1.

Next we show RR,(0,0) = 1. It is a direct consequence of the product
formula 5.8 and the fact [D*] = 1(see [4, Theorem 6.7]).

We can also show RRy(0,0) = 1 in the following way. We consider CP! x
CP?! with standard toric action. The image of the moment map is a square.
By the similar construction as above the Riemann-Roch number is localized
at four vertices and the contribution of any vertex is RRy(0,0). On the
other hand the Riemann-Roch number of CP! x CP! is four. This implies
RRy(0,0) = 1. O

6.2 Application to locally toric Lagrangian fibrations

In this subsection we apply the localization formula (Theorem 4.19), the
product formula (Theorem 5.8), and Theorem 6.9 to show that for a four-
dimensional closed locally toric Lagrangian fibration the Riemann-Roch num-
ber is equal to the number of Bohr-Sommerfeld fibers (Theorem 6.23).

6.2.1 Locally toric Lagrangian fibrations

Let wen be the standard symplectic structure on C™

e

n
Wen &= —— de A dzk.
2m —

The standard action of 7™ on C" preserves wen and the map pcn: C* — R”
which is defined by

pen(2) = (|l J2al?)
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for z = (z1,...,2,) € C" is a moment map of the standard 7"-action. Note
that the image of pcn is the n-dimensional standard positive cone

RY :i={r=(r,...,rn) ER":1; >0i=1,...,n}.

Let (M, w) be a 2n-dimensional symplectic manifold and B an n-dimensional
manifold with corners.

Definition 6.10 ([8, 11]) A map pu: (M,w) — B is called a locally toric
Lagrangian fibration if there exists a system {(Us, ©Z)} of coordinate neigh-
borhoods of B modeled on R}, and for each « there exists a symplectomor-

phism @ (1 (Un), w) — (45 (¢B(Ua)), wen) such that pien ol = pBop

Note that a locally toric Lagrangian fibration is a singular Lagrangian
fibration that allows only elliptic singularities.

By the definition of a manifold with corners, B is equipped with a natural
stratification. We denote by S® B the k-dimensional part of B, namely,
S B consists of those points which have exactly k nonzero components in a
local coordinate system. Then, it is easy to see that the fiber of i at a point
in S® B is a k-dimensional torus. In particular, all fibers of y are smooth.

Example 6.11 (Projective toric variety) The moment map of a nonsin-
gular projective toric variety is a locally toric Lagrangian fibration.

Example 6.12 (Non toric example) Let ¢ € N be a positive integer. We
consider the diagonal Hamiltonian S'-action on (C?, we2) with moment map

D(2) = ||2|]* — e

It is well-known that the symplectic quotient (®7*(0), wez|p-1(9)) /S* is CP!
with ¢ times Fubini-Study form wpg. In the rest of this example we identify
(CP', cwpg) with (©71(0), wezle-1(0)) /S

—~

Let pi: (M,w) — B be the singular Lagrangian fibration which is defined
by
(M,%) := (R x S' x CP',dr A df & cwrs),
B:=Rx|0,d,
ﬁ(r,u, [ZO : Zl]) = (T, |Zl|2)7

where we use the coordinate (r,e?™V=1) € R x S*. For a negative integer
a € Z (a < 0) and a positive integer b € N, we define the Z-actions on M
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and B by

n(r,u, (20 : 21]) :== (7“ +n(—alz |+ b),u, [z : u"“zl]) , (11)
n(ry,ra) = (r1 + n(—arg + 0),r3). (12)

It is easy to see that (11) and (12) are free Z-actions and (11) preserves w.
Then we put

(M,w) := (M,3)/Z,
B := B/Z.

It is also easy to see that i is equivariant with respect to (11) and (12).
Hence zi induces the map from M to B which we denote by u: (M,w) — B.
By construction, B is a cylinder and p is a locally toric Lagrangian fibration
which has singular fibers on 0B.

Let u: (M*,w) — B be a locally toric Lagrangian fibration. By defini-
tion, for each « there is a symplectomorphism ¢ : =2 (U,) — pen (92(UL)),
and gt (0B(U,)) has a T™-action which is obtained by restricting the stan-
dard T"-action on C". Then, it is known by [11, Proposition 3.13| that on
each nonempty overlap U, NUjp there exists an automorphism p,g € Aut(7™)
of T™ such that @) := o} o (p}) 7! is pag-equivariant, namely,

P (tr) = pas(t)pas(z)

for t € T? and = € pg.(¢5(Ua N Ug)). Moreover,we can show that pas’s
form a Cech one-cocycle {pas} on {U,} with coefficients in Aut(7™). Hence
it defines an element [{p4s}] in the Cech cohomology H'(B; Aut(T™)). Then
we have the following lemma.

Lemma 6.13 ([11]) The Cech cohomology class [{pas}] is the obstruction
class in order that the T"-actions on jga(p2(Uy,)) for all a can be patched
together to obtain a global T™-action on M.

For more detail see [11].

Let ¢p: B — B be the universal covering of B. Since the Cech coho-
mology H'(B;Aut(T™)) is identified with the moduli space of representa-
tions of the fundamental group m1(B) of B to Aut(T™), the fiber product
quM = {(b,z) € Bx M | qz(b) = u(x)} admits a T"-action.

We take a representative p: m(B) — Aut(T") of the equivalence class of
representations corresponding to [{pas}]. Then the T"-action on gzM can
be written explicitly. See [12, Lemma 3.1] for the explicit description.
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On the other hand, by the construction, m(B) acts on ¢ M from the left
by the inverse of the deck transformation, and it is shown that the T™-action
and the 7 (B)-action satisfy the following relationship

t(az) = a (p(a™")(t)2) (13)

fort € T", a € m(B), and € gzM. Let T™ x, m(B) be the semidirect
product of 7™ and m;(B) with respect to p. Then, (13) implies that these
actions form an action of 7™ x, 71 (B) on ¢z M. For more details see [12].

Let qu: ggM — M be the natural projection. Note that ¢y,w is T™ 1,
71 (B)-invariant since w is invariant under the 7™-action on p~*(U,,) induced
by the standard 7™-action on C" for each a. Now we show the following
lemma.

Lemma 6.14 There exists a Hermitian structure (g, J) on g M compatible
with qy;w which is invariant under the action of T" %, m(B).

Proof. 1t is sufficient to show that the existence of an invariant Riemannian
metric. Let ¢’ be a Riemannian metric on M. We define the Riemannian
metric g on g5 M by

T 0) = [ (eilaiug)s (w0l

where ¢, implies the T™-action for ¢t € T™. It is sufficient to show that ¢ is
m(B)-invariant. For a € m(B) we denote the 7 (B)-action by ¢,. Then we
have

= | (¢i(qn9)z (u,v)dt.

Here we remark that det p(a™!) = %1 since p(a™!) € Aut(T™). O
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Corollary 6.15 (the existence of an invariant Hermitian structure)
There exists a Hermitian structure (g, J) on M compatible with w such that
on each = (U,) (g,J) is invariant under the T"-action on u~*(U,) which
is induced from the T"-action on g (p2(U,)) with the identification p™.

Proof. By Lemma 6.14 there is a T™ x, 71 (B)-invariant Hermitian structure

(g, j) on gpM compatible with ¢},w. In particular, since (g, j) is m1(B)-

invariant, (g, J) induces an w-compatible Hermitian structure on M which is
denoted by (g, J). Then, (g,J) is the required one. O

Lemma 6.16 (The existence of an averaging operation) Suppose that
there exists a compatible fibration {my: Vo, — Uy} on M such that for each
« a fiber of w4 is contained in that of p, namely, 7, 'w,(x) C pu(x) for
x € V,. There exists an averaging operation I: C*(M) — C*°(M) with
respect to {mo: Vo, — Uy}

Proof. For f € C®(M) let f € C*(qiM) be the function on ¢ M which is
defined by

f(@) = /n(fqu)(t%’)dt.

Then, by the similar way to that in the proof of Lemma 6.14, we can show
that f is 7™ x, m(B)-invariant. Hence it descends to the function on M.
We denote it by I(f). Then, it is clear that I(f) satisfies the properties in
Definition 2.9. [

6.2.2 Bohr-Sommerfeld fibers and the Riemann-Roch number

Let u: (M,w) — B be a prequantizable locally toric Lagrangian fibration
with prequantizing line bundle (L, V). Recall that, as described above, all
fibers are smooth.

Definition 6.17 A fiber F' of p is said to be Bohr-Sommerfeld if the re-
striction (L, V)|r is trivially flat. A point b of B is also said to be Bohr-
Sommerfeld if the fiber ! (b) is Bohr-Sommerfeld.

Remark 6.18 A fiber F of p is Bohr-Sommerfeld if and only if the cohomol-
ogy H*(F; (L, V)|r) does not vanish, see Lemma 2.25. This is also equivalent
to the condition that the de Rham operator on F' with coefficients in (L, V)|p
has non zero kernel.

First we specify Bohr-Sommerfeld points for the local model.
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Proposition 6.19 Let (L, V) be a prequantizing line bundle on (C", wen).
Then, a point b € R is Bohr-Sommerfeld if and only of b € R} NZ".

Proof. Since C" is contractible L is trivial as a complex line bundle. Then
we can assume that L is of the form L = C" x C without loss of generality.
Then, V can be written as

V=d-2nv—-1A

for some one form on C" with dA = wen. Moreover A is unique up to exact
one form since C” is contractible. In particular, A is of the form

VI

4 4
=1

for some smooth function f on C".

By using the polar coordinate z; = ;,¢*™ "% we can write yuc and A in
the following forms

pen = (13, 12), A= Z?"izd@i + df.

In particular, we see that the tangent space along a nonsingular fiber of pcn
is spanned by dp,’s. Thus a direct computation shows that a point b € R} is
Bohr-Sommerfeld if and only if b € R} N Z". O

By the above proposition and the definition of a locally toric Lagrangian
fibration we can obtain the following corollary.

Corollary 6.20 For a locally toric Lagrangian fibration Bohr-Sommerfeld
fibers appear discretely.

Example 6.21 For a nonsingular projective toric variety it is well-known
that Bohr-Sommerfeld fibers correspond one-to-one to the integral points in
the moment polytope. For example see [3].

Example 6.22 We consider the locally toric Lagrangian fibration p: (M,w) —
B in Example 6.12. We show that (M,w) is prequantizable.

Let (H., V) be the ¢ times tensor power of the hyperplane bundle on
CP'. With the identification of (CP', cwpg) and the symplectic quotient
(@71(0), wez|e-1(0)) /S* in Example 6.12 (H,, V¢) can be written in the
following explicit way

(H., V) = (cpl(o) X C,d+1/23 (27, - Eidzl-)> /1,
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where the S'-action is defined by
t- (20,21, w) 1= (tzq,tz1, tW).
Now let us define the prequantizing line bundle (Z, %) on (M ,w) by
(L, V) := (pri(R x S' x C,d — 2w/ —1rdf) ®c pry(H,, V).
We also define the lift of the Z-action (11) on M to L by
n(r,u, [z : 21, w)) := (r+n(—a|z|* +b),u, [z : "2, v w)) . (14)

It is easy to see that (14) preserves V and the standard Hermitian metric.
We put o
(L,V):=(L,V)/Z.

Then (L, V) is a prequantizing line bundle on (M,w).

Next we see the Bohr-Sommerfeld fibers of p with respect to (L, V). The
direct computation shows that Bohr-Sommerfeld fibers of 1z correspond one-
to-one to the elements in B NZ* Let F be a fundamental domain of the
Z-action (12) on B which is defined by

Fi={(r,r) €B|0<ry<e¢, —=1/2<1r < —aro+b—1/2}

Then, Bohr-Sommerfeld fibers of i correspond one-to-one to the elements in
FN7Z2 See Figure 1.

T2 1

r1=—ar2+b—§

™

Figure 1: Bohr-Sommerfeld points in Example 6.12
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In the rest of this section we assume that M is closed. Let (g,J) be a
Hermitian structure on M compatible with w as in Corollary 6.15. We define
the Hermitian vector bundle W on M by

W= N\'TMc ¢ L. (15)

W is a Zs-graded Clifford module bundle with respect to the Clifford module
structure (6). Let D be the Dirac-type operator on W. We define the
Riemann-Roch number to be the index of D.

The purpose of this section is to show the following theorem.

Theorem 6.23 Let pu: (M,w) — B be a four-dimensional prequantizable
locally toric Lagrangian fibration with prequantizing line bundle (L, V). Then
the Riemann-Roch number is equal to the number of both nonsingular and
singular Bohr-Sommerfeld fibers.

Proof. Let Bpg be the set of Bohr-Sommerfeld points of 4 in B. We put
V := p (B \ Bggs). In order to prove Theorem 6.23 we define a good
compatible fibration on V' as follows.

On the regular non Bohr-Sommerfeld points Uy := S® B \ Bpg of [ we
define the fibration by

7o = |y Vo i= /fl(UO) — Up.

Since B is compact, there are only finitely many Bohr-Sommerfeld points
in SWB. Suppose we have exactly k& Bohr-Sommerfeld points p1, ..., ps in
SW B, namely,

{p1,. ..o} = Bes N SYB.

For each i we take an contractible open neighborhood W; of p; in B which
satisfies the following properties.

e W,’s are pairwise disjoint, namely, W; N W; = for all i # j.
e For each i W; does not intersect S© B, namely, W; NSO B = ().

e There exist finitely many non Bohr-Sommerfeld points in SM B, say
qi,--.,q, such that we have

k
UVVZ- NSYB=8YB~{q,...,q}

i=1
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T2

1
r1:—a7“2+b—§

™

Figure 2: W;’s in Example 6.12

It is possible to take such neighborhoods since a connected component of 0B
is compact.

We put V/ := u=*(W;). Since W is contractible, by [11, Proposition 3.5],
there exists a T?-action on V/. Moreover, there exist a coordinate neigh-
borhood (U,,, %) of B containing p;, a diffeomorphism ¢} : p=(U,,) —
tigs (92 (U,,)) in Definition 6.10, and an automorphism p,, € Aut(7?) which
satisfy the following properties.

o ficz 0@y = Py O .

o On V/Npu Y (Uy,) ©Ais pa,-equivariant with respect to the T?-action
on V' and the standard T?-action on C2.

Let 05 (p;) = (r1,72) € R%. Since p; € S B there exists a unique coordinate
r;, such that r;, = 0. We define the circle subgroup T; of T? by

T; = p;il ({t = (tht?) eT’ | tj, = 6}) .

By definition 7; acts on V; freely. Then for each i we define the fibration
;. V; — U; to be the natural projection

i V=V u N p) — U = Vi T,
By the construction {m;: V; — U; | i = 0,...,k} is a good compatible

fibration on V. Moreover, by Lemma 6.16, there is an averaging operation
with respect to {m;: V; = U; | i =0,...,k}.
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Recall that (g,.J) is a Hermitian structure on M compatible with w as
in Corollary 6.15. Then, as in the case of usual torus actions, g defines
the compatible Riemannian metric of {m;: V; — U; | i = 0,...,k} whose
restriction to each fiber of p is flat, and the Z,-graded Clifford module bundle
W defined by (15) becomes a compatible Clifford module bundle in the sense
of Definition 2.16. We define the strongly acyclic compatible system in the
same way as in Section 6.1.1. Then by Theorem 4.19, the Riemann-Roch
number is localized at Bohr-Sommerfeld fibers and the fibers at ¢y, ..., q.

We consider their contributions. Since a fiber of p is connected, by The-
orem [4, Theorem 6.11], the contribution of a regular Bohr-Sommerfeld fiber
is equal to one.

Next we consider the contributions of singular Bohr-Sommerfeld fibers.
By Definition each fiber on S B is Bohr-Sommerfeld, and its contribution
is RRo(aq,as) for some a; and ay. By Theorem 6.9 it is equal to one.

By the construction of the compatible fibration the local Riemann-Roch
number for each singular Bohr-Sommerfeld fiber on SV B is obtained from
[BST] and [D*] in [4, Theorem 6.7] by the product formula 5.8. It is also
one.

Finally it is easy to see that the contribution of each fibers at ¢i,...,q
is equal to RRi(ay,a_) in Section 6.1.2 for some a, and a_. Then by The-
orem 6.9 it is zero. This proves Theorem 6.23. O]

Example 6.24 Theorem 6.23 recovers Danilov’s result [3], which says that
for a nonsingular projective toric variety the Riemann-Roch number is equal
to the number of the lattice points in the moment polytope, in the four-
dimensional case.

Example 6.25 As we described in Example 6.22 the Bohr-Sommerfeld fibers
correspond one-to-one to the elements in F'NZ2. Then by Theorem 6.23 the
Riemann-Roch number of (M,w) is equal to the number of the elements in
F NZ? which is (¢ + 1)(2b — ac)/2.

A Proof of Proposition 2.12

In this appendix we give a proof of Proposition 2.12. That is,

Proposition A.1 If {n,} is a good compatible fibration, then there exists
an averaging operation I : C°(M) — C*(M) such that for all f € C>*(M)
and x € M we have

min f(y) <I(f)(x) < max f(y),

yeﬂ'gzlﬂaz (z) yEﬂg;Waz (z)
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where 7 'z, (x) C Vg, is the mazimal fiber which contains x.

Recall that we assume the following;

Assumption A.2 Each 7w, has a continuous extension as a fiber bundle to
the closure of V, with the condition

Vo NV = mgims(Va NVp)
for all g € A.
We first show the following.

Lemma A.3 There exist an admissible open covering {V! | a« € A} of M
such that V/a C V.

Proof. Take and fix any open covering {Wy }aca of V which satisfies W, C
V. Fix any total order of A = {ay,---, @y} so that if V,,, NV, # () and
the dimension of 7., is bigger than that of m,; then i > j. Fix a € A and
we define an increasing sequence of open sets Ve < V,, inductively in the
following way:

ARSI
VI = i, (VD NV, ) U VY
VOE") = w;ﬂlwan(VOE"*” NVa,) UVOE"*U.

By the construction {V := Vé”)}ae 4 is an admissible open covering of V. We

show V((f) C V,, by induction on k. Suppose that {p;};cn is a sequence in AR

which converges to p., in V. It is enough to show that if p;, € W;:ﬂak( DA

Ve, ) for all i then py, € V. In this case we have po, € 7317, (Va(k_l) N Va, ).
On the other hand since the fibers are compact, m,, : Va, — Ua, is a closed
map. Using the Assumption A.2 we have

Tl (VA" N V) € 1 (o (V"D N V,)) € e (VA NV, € VNV,
In particular we have p,, € V,. O

Remark A.4 Since V] C V,, one can check that {V}, satisfies the same
condition as in Assumption A.2, i.e., VoNVj; = ngﬂ'ﬁ(volémvﬂ/) for all o, 3 € A.
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Let {V!} be an admissible open covering of M obtained in Lemma A.3.

Proof of Proposition A.1. We first take an open covering {V!'}, of M and a
family of smooth functions {7, : M — [0,1] | « € A} which satisfy

o VI C V" and V/ C V,,
e ,=1onV and 7, =0on M V.

For each a € A we define a map I, : C®°(M) — C*(M) by

L(f)(@) = (1 = 7a(2)) f () + Ta(@) [a(f) (2),

where I2(f) is the integration along fibers of 7, : V,, — U, with the nor-
malization condition I2(1) = 1. Fix any total order of A = {ay, -+ ,a,} so
that if V,,, NV, # () and the dimension of 7, is bigger than that of T, then
i > j. Using this total order we can define the map I : C°(M) — C*(M)
with the required properties by

I(f) = Io, -+ Lo, ()

In fact the first four properties is clear. To show the Property 5 we show that
for f € C°(M) if suppf C C for some admissible subset C, then we have
supplg(f) C C for all § € A. Take x € suppls(f) and a sequence {z,,} in M
which satisfies I5(f)(x,) # 0 and converges to x. By definition of I5(f) we
have f(z,,) # 0 or 75(x,)I5(f)(2,) # 0 for infinitely many n. The former case
implies that x € suppf C C. In the latter case by taking a subsequence we
may assume that x,, € Vj and I5(f)(x,) # 0 for all n. In particular we have
S V_é’ C V3. Since [,8 is the integration along fibers there exist a sequence
{yn € Wﬁ_lﬂ'g(l‘n)} such that f(y,) # 0 for all n. By taking a subsequence we
may assume {y, } converges to some y € w5 mz(x) N suppf C C. Since C' is
admissible we have = € 71'5171'/3(1‘) cdC. ]

B Proof of Lemma 2.26

Proof. Let Hy, Ho, ..., H,, be the elements of A. Without loss of generality
we assume that H; D H; implies ¢ < 7. We construct a family of open sets

Vi(j) (1 <i<j<m) by induction on 1 < i < m. For the construction with
1 = 19 we assume the following properties.

(A1) V;(j) contains the closure of V;(jﬂ) for all 1 <7<y andi <j<m.

(A2) If z € Vi(i) for 1 <i < ig, then we have G, C H;.
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(A3) For x € M with G, = H; for some 1 <i < ig, we have

T € U Vj(m).

{71 H;DH;}

(A4) If the intersection Vi(j) N Vj(j) is not empty for 1 <17 < j < 49, then we
have H;, D Hj;.

If ip = 1, then the above is the empty assumption. For 1 < iy < m, using
the above properties as the assumption of induction, we construct V;(()j ) (1o <
j < m) which satisfy the above properties with replacement of iy by i + 1.
Suppose 1 < 45 < m and assume (A1),(A2),(A3) and (A4). Then (A3)

implies that the closed set
K

20

— MH«;O ~ U V;C(m)

{k|Hp2Hi,}

is contained in {x € M|G, = H,,}, where M is the fixed point set
MU ={x € M |G, D H;,}. Hence (A2) implies that K;, does not intersect

with the open set
U po=1)
f .

{5<io | Hiy ¢ Hj}

U V;(ZO)
{i<io | HigZ H;}

Then (A1) implies K;,NL;, = (). Since K, is a subset of {x € M |G, = H;, },
there is an open neighborhood V' of the closed set K, in the complement of
L;, such that for each x € V' we have G, C H;,. Now we take a decreasing
sequence of open neighborhoods Vigj) (1o < j < m) of K;, so that Vigi(’) =V,
Vigm) D K, and V;gj ) contains the closure of Vzgj ™ for iy < j < m. We can
choose the decreasing sequence so that the open sets Vlgj ) (1o < j < m) are
G-invariant because the quotient space M/G is a regular space.

Then it is straightforward to check (A1),(A2),(A3) and (A4) are satisfied
with ig replaced by 79 + 1.

The family of open sets {Vy, = Vi(m)}lgigm is an open covering of M
and satisfies the required properties. ]

Let L;, be the closure of
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C Proof of Lemma 3.10

Proof of Lemma 3.10. If there is a function f satisfying the property in (1),
then p, is constructed as follows: For each € > 0 let p. : R — [0, 1] be a
smooth non-increasing function such that p.(I) =1 for | <0, p.(I) = 0 for
[ >2/eand |dp.(l)| < efori € R. Then the composition p, () = pe(f(z)—a)
has the required properties.

Not we construct f by smoothing the length function as follows. Fix
a point zp € M. Let fy : M — R be the length from zy. Then fy is a
Lipschitz continuous function with Lipschitz constant 1. Since M is complete,
fo is a proper function such that f;'((—o0,c]) is compact for any c. Let
{int(D,,(R,))} be alocally finite open covering of M by open disks centered
in 7, with radius R,. Fix an isometry T'M, = R". We also assume that the
exponential map centered in z, gives a coordinate of M, = int(D,, (R,)),
and the derivative of the exponential map and its inverse at any point has
bounded by 2 with respect to operator norm. In particular fy has Lipschitz
constant 2 for the standard metric on R”. We use this coordinate in the
following local construction. Let {p,} be a smooth partition of unity for it.
Let 0 < r, < R, be the radius of the smallest disk centered in x, containing
the image of the support of p,. Let C, be the maximal value of |dp,| for the
standard metric on R". Let n, be the number of open disks in the locally
finite covering which intersects D,_(r,). Take a smooth function K : R — R
satisfying [ K (y)dy = 1 and K (y) = 01if |y| > min{1, (R,—r,)/2,1/(n,C,)}.
Then the smoothing of f defined by f,(z) = [ K(x—y)fo(y)dy (x € D, (r,))
is Lipschitz continuous with Lipschitz constant 2 for the standard metric
on R", and satisfies |f,(z) — fo(z)| < min{1,2/(n,C,)} for x € D, (r,).
Now define f to be >° p,f,. Then |f — fo| < 1. In particular f is also a
proper map and f~!((—oo, ¢]) is compact for any c. Decompose df as follows:
df = (X, pydfy) + (32, (dps) fo) + (3=, dpy(fy — fo)) Since the second term is
zero, we have |df | <> py-|dfy |+ |dp,||f, — fol- Both terms are bounded

from our construction. O]
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