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Abstract

The growing number of applications of fractional derivatives in
various fields of science and engineering indicates that there is a sig-
nificant demand for better mathematical algorithms for models with
real objects and processes. Currently, most algorithms are designed
for 1D problems due to the memory effect in fractional derivatives. In
this work, the 2D fractional subdiffusion problems are solved by an
algorithm that couples an adaptive time stepping and adaptive spa-
tial basis selection approach. The proposed algorithm is also used to
simulate a subdiffusion-convection equation.

1 Introduction

Let Ω be a bounded domain in R
2 with sufficiently smooth boundary ∂Ω =

ΓD ∪ ΓN with ΓD ∩ ΓN = ∅. We consider an initial-boundary problem for a
time fractional diffusion equation with fractional-order 0 < α < 1:

cDα
t u(x, t) = ∆u(x, t) + f(x), x ∈ Ω, t ∈ (0, T ),
u(x, 0) = u0(x), x ∈ Ω,
u(x, t) = g0(x, t), x ∈ ΓD, t ∈ (0, T ),

∂νu(x, t) = g1(x, t), x ∈ ΓN t ∈ (0, T ),

(1)
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where cDα
t denotes the Caputo fractional derivative of order α with respect

to t defined by

cDα
t u(x, t) =

1

Γ(1− α)

∫ t

0

∂u(x, η)

∂η

dη

(t− η)α
, 0 < α < 1, (2)

see monograph by Podlubny [22]. The operator ∆ is the Laplacian in R
2

and ∂ν is the outward normal derivative. Note that if α = 1, then the
Caputo fractional derivative in (2) becomes ∂tu(x, t) and the problem in (1)
represents the standard integer-order parabolic equation.

The fractional diffusion equation is related with the continuous-time ran-
dom walk and is a model for anomalous diffusion in many applied fields such
as diffusion processes of contaminants in porous media, see [8, 9, 17, 18] and
the references therein.

In this paper, we discuss a numerical algorithm that couples an adaptive
time stepping and an adaptive spatial basis selection approach, and show
numerical results.

As for works on numerical methods for fractional diffusion equations ap-
pearing in (1.1), we can refer to [1, 4, 5, 6, 11, 19, 20, 21, 23, 24, 26, 27].
Among the above works, except for [27], all the papers treat the case where
the spatial dimension is one; see also [21] for a nonlinear fractional diffu-
sion equation. As for available numerical methods for fractional diffusion
equations, see [7] and [25].

2 Methodology

2.1 Finite difference time discretization

We employ the difference approximation in [16] for the fractional time deriva-
tive. Suppose the time interval [0, T ] is discretized uniformly into n subin-
tervals; define tk = k ·△t, k = 0, 1, . . . , K, where △t = T/n is the time step.
Let λ(tk) be the exact value of a function λ(t) at time step tk. Then, the
fractional time derivative can be approximated by the following scheme:
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cDα
t λ(tk+1) =

1

Γ(1− α)

∫ t

0

∂λ(t)

∂η

dη

(t− η)α

≈ 1

Γ(1− α)

k
∑

j=0

λ(tj+1)− λ(tj)

△t

∫ (j+1)△t

j△t

dη

(tk+1 − η)α

=
1

Γ(1− α)

k
∑

j=0

λ(tj+1)− λ(tj)

△t

∫ (k−j)△t

(k−j+1)△t

η−αdη

=
1

Γ(1− α)

k
∑

j=0

λ(tk+1−j)− λ(tk−j)

△t

∫ (j+1)△t

j△t

η−αdη

=
(△t)1−α

Γ(2− α)

k
∑

j=0

λ(tk+1−j)− λ(tk−j)

△t

[

(j + 1)1−α − j1−α
]

.

Hence, we obtain a first-order discretization

cDα
t λ(tk+1) ≈ c△α

t λ(tk+1) :=
(△t)−α

Γ(2− α)

k
∑

j=0

wj

[

λ(tk+1−j)− λ(tk−j)
]

, (3)

for k = 0, . . . , K − 1 where the weight is defined as wj = [(j + 1)1−α − j1−α]
for j = 0, 1, . . . , K. Equation (3) can be easily rewritten to obtain a fully
explicit scheme for the latest approximation λ(tk+1) which depends on all
previous values λ(t0), . . . , λ(tk).

2.2 Kernel based spatial approximation

In this section, we consider a kernel-basis representation for the spatial vari-
ables. For the considered problem (1), the numerical approximation is ex-
panded as

u(x, t) ≈ U(x, t) =
N

∑

ℓ=1

λℓ(t)Φ
(

‖x− ξℓ‖/c
)

, x ∈ Ω, (4)

where c is the scaling parameter, the set Ξ = {ξℓ}Nℓ=1 is the trial centers
and Φ(·) can be any commonly used radial basis kernel; for examples, multi-
quadrics Φ(r) = (r+1)1/2, inverse multiquadrics Φ(r) = (r+1)−1/2, gaussian
Φ(r) = exp(−r2), thin plate spline Φ(r) = r2 log(r), etc. Putting (4) into
the subdiffusion equation (1) results in

N
∑

ℓ=1

cDα
t λℓ(t)Φ

(

‖x− ξℓ‖/c
)

=
N

∑

ℓ=1

λℓ(t)∆Φ
(

‖x− ξℓ‖/c
)

+ f(x). (5)

3



0.4

0.5

0.6

0.7

0.8

0.9

0

0.1

0.2

0.3

0.4

0.5

10
0

10
5

10
10

10
15

10
20

 

Order, α

Short−memory error, ε

 

M
em

or
y 

le
ng

th
, L

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 1: Memory length L required for various orders α and desired accuracy
ǫ in the “short-memory” principle.

Using a sufficiently dense set X = {x1, x2, . . . , xM} ⊂ Ω̄ for collocation,
applying the finite difference c△α

t in (3) to λℓ(·) and the strong form collo-
cations at X will result in a matrix system for updating (discrete) values of
the coefficient functions λℓ(tk), ℓ = 1, . . . , N , k = 1, . . . , K.

2.3 Geometric time grids

When t≫ 0, the size of “memory” in the fractional-derivative approximation
becomes enormously large. The “short-memory” principle suggests that, for
large t, the role of the “history” of the behavior of the solution u(x, t) near
t = 0 can be neglected. This agrees with the fact that wj ց 0 in (3) as j ր
with large n. Hence, one may take into account the behavior of u(x, t) in the
recent past in the interval [t − L, t] where L is the “memory length”. It is
shown [22, Ch.7] that

| cDα
t λ(t)− t−L

cDα
t λ(t)| ≤ ǫ, if L ≥

(

M

ǫ|Γ(1− α)|

)1/α

,

where t−L
cDα

t is the fractional derivative with moving lower integration limit
t− L in the definition (2), instead of 0.
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Despite of its success in 1D problems, Figure 1 shows that the short-
memory principle is not particularly useful in reducing the memory require-
ment in 2D when t ≈ 1. The penalty in the form of inaccuracy is too large;
for example, when α = 0.5, any memory length L < 1 will introduce an error
ǫ≫ 1. As we will see soon in the numerical experiment, small time stepping
is important to capture the fast “initial drop” [22, Ch.3] accurately. Hence,
we turn our focus to the geometric time grids [2, 3].

For large t away from 0, the solutions of subdiffusion “diffuse slower”
than the standard integer-order diffusion process. It makes sense to employ
a large time step in this region. Let U(·, tk) be the numerical approximation
for u(·, tk). To monitor this diffusion rate, we define a measure between the
numerical solutions U(x, ·) of two consecutive time steps by

∆Utk =
‖U(x, tk)− U(x, tk−1)‖L2(Ω)

‖U(x, tk−1)‖L2(Ω)

, for k = 1, . . . , K. (6)

For some user-defined relaxation parameters τ , if ∆Uti < τ , the time spacing
is relaxed:

△t← 2 · △t,

up to some prefixed value △tmax.

2.4 Adaptive kernel selections

Although the geometric time grids can help reduce the number of previous
solutions needed for evaluating c△α

t u(x, t) at current time, it is not pos-
sible to completely remove the memory nature as it comes directly from
the fractional subdiffusion problem. To effectively minimize the overhead of
computer memory, the spatial information must be carefully treated. Using
kernel representation, a kind of meshless method, expansion (4) provides us
a parametric description of the numerical approximation. This is the first
motivation of employing an adaptive technique so that only a small subset
of λℓ(tk) are stored instead of all approximation values U(X, tk).

However, kernel representation is not at all trouble-free. For example,
choosing trial centers Ξ is a common problem for researchers who employ
various meshless methods. On one hand, high accuracy is always desired; on
the other, ill-conditioning problems of the resultant matrices, that may lead
to unstable algorithms, prevent some researchers from using meshless meth-
ods. For example, the optimal placements of source points in the method of
fundamental solutions, or of the centers in the radial basis functions method
are always unclear. Intuitively, such optimal locations will depend on many
factors: the partial differential equations, the domain, the trial basis used (i.e.
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the employed method itself), the computational precisions, some user-defined
parameters, and so on. Such complexity makes the hope of having optimal
trial centers placement unpromising. Our previous papers [12, 13, 14, 15] are
devoted on the sub-optimal solution to the placement problem. In particu-
lar, we employ the most up-to-date algorithm in [15]. The first assumption
is that |Ξ| ≥ |X| so that there are more than the necessary number of basis
functions in (4) and, by applying the adaptive algorithm, the “proper” sub-
set of Ξ will be selected. Before describing the algorithm, we emphasize the
algorithm presented below is matrix-free in the sense that resultant matrix
will not be fully evaluated or stored. Hence, the increase in number of basis
functions does not impose an overhead to the memory requirement; that is
one of the main concerns in solving fractional subdiffusion equations.

Without going into the how-and-why, we present the key steps of the
adaptive algorithm in [15]. Readers can refer to the original article for details.
Consider any matrix system with A ∈ R

M×N and b ∈ R
M usually with

M ≤ N . Moreover, we denote submatrices of A by A( · , · ) : (Rd)m×(Rd)n →
R

m×n as a matrix function taking sets of collocation points and sets of RBF
centers, respectively, as first and second input arguments. Similarly, the
right-hand vector b( · ) : (Rd)m → R

m can be treated as a vector function that
can be specified by the collocations points. For example, A = A(XM , ΞN) ∈
R

M×N and b = b(XM) ∈ R
M are, respectively, the original matrix and the

right-hand vector.
The adaptive algorithm will build, for Aλ = b, an ordered indexed

sets, denoted by X(k) = {x(1), . . . , x(k)} and Ξ(k) = {ξ(1), . . . , ξ(k)}, for k =
1, . . . , M , for collocation points and trial centers respectively. Suppose, after
k iterations, our algorithm selects a set of k collocation points X(k) ⊂ X and
a set k RBF centers Ξ(k) ⊂ Ξ, respectively. These sets of points define a
subproblem to the original one:

{

A(k)λ̌
(k)= b̌(k),

AT
(k)ν̌

(k)=−λ̌(k),
(7)

where A(k) = A(X(k), Ξ(k)) ∈ R
k×k is a square submatrix of the full matrix

A and b̌(k) = b(X(k)) ∈ R
k. After solving (7) for λ̌(k) ∈ R

k, let λ(k) ∈ R
N

be the extension of λ̌(k) by patching zeros into entries associated with the
non-selected RBF centers. Similarly, ν̌(k) ∈ R

k can be extended to ν(k) ∈ R
N .

The (k + 1)st collocation point x(k+1) and RBF center ξ(k+1) can be se-
lected from the primal residual

r(k) = Aλ(k) − b = A(XM , Ξ(k))λ̌
(k) − b. (8)
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Figure 2: Boundary labels for Ω = [−1, 1]2.

and the dual residual

q(k) = λ(k) + AT ν(k) = λ(k) + [A(X(k), ΞN)]T ν̌(k). (9)

respectively, using the greedy technique. We pick from the set of collocation
points XM a collocation point x(k+1) such that the corresponding entry in
the primal residual r(k) is the largest in absolute value. Similarly, the new
RBF center ξ(k+1) is selected from all candidates in ΞN such that q(k) is the
largest in absolute value among all others.

3 Numerical verifications for α = 1
2

For the sake of error analysis, the existence of a unique exact solution is de-
sired. We verify the proposed numerical scheme to solve a simplified problem
with zero Dirichlet/Neumann/mized boundary conditions:

cDα
t u(x, t) = ∆u(x, t), x ∈ Ω, t ∈ (0, T ), 0 < α < 1,
u(x, 0) = u0(x), x ∈ Ω,
u(x, t) = 0, x ∈ ΓD, t ∈ (0, T ),

∂νu(x, t) = 0, x ∈ ΓN t ∈ (0, T ).

(10)

Let Ω = [−1, 1]2 whose boundaries are labeled as in Figure 2. We consider
three cases:

Dirichlet BC is imposed on the whole boundary ΓD = ∂Ω. Using the fact
that

cD
1

2

t erfcx(λt) = −λ erfcx(λt),
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the exact solution of (10) associated with initial condition

u0(x) = cos
(π

2
x
)

cos
(π

2
y
)

is given as

w1(x, t) = erfcx

(

1

2
π2tα

)

cos
(π

2
x
)

cos
(π

2
y
)

,

where erfcx is the scaled complementary error function defined by

erfcx(z) =
2√
π

exp(z2)

∫

∞

z

exp(−η2) dη.

Neumann BC: is imposed on the whole boundary ΓN = ∂Ω with initial
condition

u0(x) = sin
(π

2
x
)

sin
(π

2
y
)

.

The exact solution is erfcx
(

1
2
π2tα

)

u0(x).

Mixed BC: with Dirichlet BC on ΓD = Γ1∪Γ3 and Neumann BC on ΓN =
Γ2 ∪ Γ4. Initial condition is

u0(x) = cos
(π

2
x
)

sin
(π

2
y
)

.

Similarly, the exact solution is erfcx
(

1
2
π2tα

)

u0(x).

A total number of 1537 trial basis functions, including both interior and
boundary nodes, is fed into the adaptive algorithm for all time. For all three
boundary conditions and all time updates, the numbers of selected basis
range between 82 to 146 that is an over 90% saving in memory requirement.
The initial time step is dt = 2−13 and it is relaxed whenever the measure
in (6) is less than τ = 0%, 0.5%, 1.0%, and 10%. When τ = 0%, the time
stepping is fixed at dt = 2−13 for all time. Figure 3 to Figure 4 show the
absolute and relative errors over t = (0, 1].

One interesting observation (see Figure 3 and Figure 4) is that fine time
stepping (τ = 0%) does not result in the best accuracy due to the presence
of cancelation errors. When τ is large, e.g. 10%, the time spacing is relaxed
too early and hence thus results in poor accuracy near t = 0. However, as t
increases, we see that the numerical solutions for τ = 10% is more accurate
than those for τ = 0%. This tells how severe the cancelation errors are.
Better results can be obtained by small tolerances τ = 0.5% or 1.0%. Note
that using small τ > 0 requires more (but still much faster than using fixed
small time step) computational time.
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Figure 3: Dirichlet boundary conditions: Absolute and relative errors over
time for different relaxation parameters τ = 0%, 0.5%, 1.0%, and 10%.
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Figure 4: Neumann boundary conditions: Absolute and relative errors over
time for different relaxation parameters τ = 0%, 0.5%, 1.0%, and 10%.
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Figure 5: Mixed boundary conditions: Absolute and relative errors over time
for different relaxation parameters τ = 0%, 0.5%, 1.0%, and 10%.

4 Numerical simulations

Our first simulation studies the effect of the order α on the decay rate of the
subdiffusion solution. We consider (10) with Neumann boundary condition
for insulated boundary. Initial time stepping is dt = 2−13 and the relaxation
parameter is set to be τ = 0.05%. Figure 6 shows the maximum norm of
the numerical solution for α = 0.1, 0.2, . . . , 0.9 and time t ∈ [0, 1]; the dots
in Figure 6 indicate all visited times in each run. For small α, say 0.1, the
initial drop is enormous; in case of α = 0.1, the maximum norm of the
solution immediately drops from 1 to 0.34 after the first time update. On
the other hand, when time gets large, the change in the solution is relatively
minor; dt is relaxed all the way to dtmax = 2−5. For large α, the solution
behaves more like the integer-order case. When α = 0.9, the largest time
stepping used is dt = 2−8. In the experiment, we see that a very small
initial time stepping is desired for small α. Whereas, when α is large, a more
easygoing relaxation scheme is desired.

Our last example simulates the fractional subdiffusion-convection prob-
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Figure 7: Numerical solution (cross section) for a fractional subdiffusion-
convection problem with different α.

lem,

cDα
t u(x, t) = ∆u(x, t) + ω

∂

∂x
u(x, t), x ∈ Ω,

u(x, 0) = 2

(

x1 + 1

2

)5

− 1, x = (x1, x2) ∈ Ω,

u(x, t) = x1, x ∈ Γ1 ∪ Γ3,
∂νu(x, t) = 0, x ∈ Γ2 ∪ Γ4

for α = {0.9, 0.8, 0.5, 0.2}, t ∈ (0, 1) and ω = 0.005 is the convection coef-
ficient. Due to the symmetry of the problem, we show the cross section of
the numerical solution (parallel to the x1-axis) in Figure 7 for every 1/32 sec
moving up from the lower-right towards the diagonal.

The effect of convection can be seen most clearly in the case of α = 0.9;
the presence of the points of inflection is obvious for small t. The effect
of convection is less clear as α decreases. After careful examination, one
may still find some inflection points for the case of α = 0.8. However, when
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α = 0.5, the effect of convection becomes even less significant. For α = 0.2, as
in the previous example, we see a very rapid change in the solution between
(0, ǫ); after that, the solution varies slowly. Note also that the numerical
solutions for different α are more distinct near the left endpoint where fluid
is being pumped out. For experiment design, it makes sense to place sensors
somewhere in −1 < x1 < 0 instead of in 0 < x1 < 1.

5 Conclusion

We present a numerical scheme, which includes geometric time grids relax-
ation and adaptive kernel selection, for solving the 2D fraction subdiffusion
problems. The algorithm is tested with different boundary conditions, for
which exact solutions are known, in order to verify its accuracy. Next, the
algorithm is applied to simulate the subdiffusion problems with different
fractional-orders and a subdiffusion-convection problem.

Since the kernel presentation is used for spatial discretization, implicitly,
we required the initial condition to be of certainly smoothness. In cases
that is not true, one should employ finite element or finite difference scheme
for the first few time steps. Once the numerical solution (sub)diffuses and
becomes smooth, the kernel presentation can be re-introduced. The memory
saving provided by the adaptive kernel selection will become more significant
in 3D. The simulations in [10] suggest that the adaptive algorithm takes
roughly about 500 trial basis for approximating smooth functions in [−1, 1]3.
This suggests that the proposed algorithm has a good chance in solving 3D
subdiffusion problems without modification. We leave this to our future
studies.
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