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Abstract. We consider the viscoelasticity equation and the problem of recovering the spatial part p(z)
of the Lamé kernel depending on two spatial variables. We obtain a stability estimate of the solution to this
problem.

AMS subject classification: Primary 45Q05, secondary 45K05.

Key words: viscoelasticity equation, inverse problem, stability estimate.

1 Introduction

For a function w(x,t) in the domain @ = Q x (0,7), where T > 0 and Q C R? is an open
bounded domain with smooth boundary 02, we consider the equation

t

Uy = div [uo(x)Vu + /M(x,t — s)Vu(z,s) ds], (x,t) € Q. (1.1)

The above integro-differential equation occurs in the theory of viscoelastic bodies with a con-
stant density and the Lamé coefficients independent of the variable x3. As for the physical
backgrounds on the viscoelasticity, see Pipkin [22] for example. Then the corresponding third
component of the displacement vector satisfies equation (1.1) (e.g., [21]).

In this article, following paper [21], we assume that py € C*(Q), Q = QU 91, is a given
positive function, po(z) > peo > 0, and p(z,t) admits the representation

w(z,t) = k(t)p(w)

where k € C*[0,T] is a given function and p(z) is an unknown function.
In order to recover p(x) we prescribe the following initial data

u|t:0 = Qb(ff), utlt:() = w($)7 MRS Qa (]‘2)
and the boundary data
ou
= t —| = h(z,t 1.
u|F g(flf, )7 onlr <I7 )7 ( 3)

where I' is a smooth part of the lateral boundary 02 x (0,T") of the domain ). A more precise
description of I' will be given later.
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Our result is concerned with the stability of the solution to problem (1.1)-(1.3) and is based
on Carleman estimates. We recall that this method was first adapted for studying inverse
problems in the article [3] and then widely used for this goal by many researchers. In [4], the
authors consider (1.1) with source term and a Holder stability estimate is proved in determining
a spatially varying factor in a source term. In the paper [21] a Holder type stability result for the
problem of recovering the coefficient p(x) was established by using boundary conditions similar
to (1.3) for three different initial data, i.e. using three measurements. In the contrast to this,
we obtain here a similar result by using a single measurement. This is the main difference in
our paper from the previous paper. Moreover, we use here Carleman estimates with a different
weight function. The latter allows to give a more precise restriction of the observation set I' in
(1.3) in comparison with [21] (see relations (1.4), (1.5)).

We note some related works on inverse problems for hyperbolic equations that make use
of Carleman estimates: Bellassoued [1], Bukhgeim [2], Imanuvilov and Yamamoto [8] - [11],
Isakov [12], [14], [15], Isakov and Yamamoto [16], Klibanov [17], Klibanov and Timonov [18],
Klibanov and Yamamoto [19], Romanov [24], Yamamoto [25] and the references therein. As
for available Carleman estimates, see Fursikov and Imanuvilov [5], Hormander [6], Imanuvilov
7], Isakov [13], Lavrent’ev, V.G. Romanov and S.P. Shishat’skii [20], Romanov [23].

Now we introduce some basic assumptions and notations. We assume that po(z) admits a
continuation in the some open domain €’ that strongly contains € and it is still a positive func-
tion in €’ of C?(£Y') class. Moreover, we assume that the Riemannian metric dr = |dz|/+/o(z)
is simple, i.e., each couple of points x and y can be jointed in ' by a single geodesic line, and
has non-positive section curvatures in €'. The sufficient condition for this is:

for all &, &.
Let y be a fixed point, y € '\ 2. Denote by 7(z,y) the Riemannian distance between y
and z € Q. Let 0(z,t) = 72(x,y) — Bt?, where 3 € (0,1). Let the following inequalities hold

inf 72(z,y) < g0 < % = sup 72(z, ).
zef z€Q

For arbitrary € € (9,¢°), following [21], we introduce the sets
Qe) ={(z,t)|x € Q, O(x,t) > e}, Qe) = {z € Q|0(x,0) > ¢}

Note that
Qe2) C Qle1), Qea) C Qey), ifegg<er <ep < el

We suppose also that
Qo) C (A% [0,T]), Qo) N (02 x [0,T]) =Ty CT. (1.4)

The former is possible only if the condition

€0 — g

/B Y

T>T" T'= (1.5)



holds. It means that the time size of the observation set I' should be sufficiently large.
Moreover, we assume that p € P, where

P ={p e H(Q)|suppp C Q, |[plluso) < po},
and u € U, where
U = {u, D}u € H*(Q x [0,T])| HDf‘u|]H1(QX[O’TD < up}.
The main result of this article is stated in the following stability theorem.

Theorem. Let uy € C*(Y) and the Riemannian metric dr = |dx|/\/po(x) be simple and
have non-positive curvature in . We assume that ¢ € H*(Q), k(0) = 1 and ¢ (z) = —K'(0)¢(z),
where k'(0) = D;k(0). Let functions p; € P, u; € U, gj(x,t), hj(x,t), j = 1,2, satisfy relations
(1.1)-(1.3) with the same functions ¢(x) and ¢ (z). Suppose that condition (1.4) holds and the
inequality

VO(z,0) - Vo(zr) > A >0, x€Qe), (1.6)
is valid for some positive constant \. Set
¢ = 1D (g1 = g2) [f0 ) + 1D (= ha)llEacry)- (17)

Then there exist two constants C' and €y such that for any € € (g9,€") and € € (0,¢q) the
following estimate holds

Ip1 = pollin oy < C(s™) (P + ug) e, (1.8)
where
5 Pi+ud 5(e% —¢)
 _ 1 L oy=—2E T q0,1).
° 2(580—46—50)n €2 7 50 — 4e — ¢q (0.1)
The condition ¥(z) = —k'(0)¢(x) for initial data is restrictive but thanks to it, a single

measurement yields the stability as well as the uniqueness for our inverse problem.

2 Proof of the stability Theorem

Calculating the derivatives of u(x,t) with respect to t, since ¥ (z) = —k'(0)¢(x), we find

DPuli—g = div[uo(z)Ve], (2.1)
DPuli—y = div|ue(z)Ve + p(z)Ve] = A(z), (2.2)
DM uli—g = divluo(x)Vdiv(pe(x)Ve)] + p(x)V[e(x) + K (0)6(x)]

= divp(x)Vdiv(pe(z) V)], (2.3)
DPul,y = div [p0(z)VA(z) + p(z)Va(z)], (2.4)



where

a(r) = div(uo(z)Ve(x)) + K (0)¢(z) + ¢(x) Di”k(0)
= div(u(2) V() + [~ (K (0))* + DV k(0)]p(x).
1

(2.5)

Let us now fix the function ¢(x) and consider relations (1.1)-(1.3), (2.1)-(2.4) for p; € P,

u; €U, gj, hj, Aj, 7 =1,2. Introduce the differences

D=p1—DpP2, U=u—U, §G=¢1—9g2, h=h—ho, A:A1—A2-

Then these functions satisfy the relations

Uy = div [Mo(x)Vﬂ +pi(2)V / k(s)u(x,t —s)ds

—i—ﬁ(az)V/k(s)ug(:z:,t —s) ds}, (x,t) € Qx (0,7),

Uli=o = 0, 1Ufs—0 =0, z€Q,

DViili—g = div[pio(x) VA(@) + pl)a(z)] = q(x).

Introduce the new function o(z,t) = D£4)ﬂ(x, t). This function satisfies the relations
¢
Oy = div [MO(JJ)VfJ +pi(x)V / k(t — s)v(z, s) ds
0

P () VA@) + Ba)Vb(a, 1), (@.1) € Q=).
ﬁ’tzo = 0, ﬁt‘tzo = (j(%), xr e Q(go),

ov .
ilry = DVg(x.t), —| = DWh(x,1),

on

To

where
¢
b(x,t) = DY / k(t — s)uz(x, s) ds.
0

Introduce the function
t

w(z,t) = v(x,t) — /ul(x,t — 35)0(x, s) ds,

0

(2.16)

(2.17)



where uy(x,t) =

—k(t)p1(z)/po(x). It is well known that function o(z,t) can be expressed via
function w(x,t) in a similar way, namely

t

0(x,t) = w(x,t) + / R(z,t — s)w(x,s) ds,

(2.18)
0
where
n=0
and the function R, (z,t) are defined recursively by the formulae
t
Ry(x,t) = py(z,t), Ry(x,t)= /,ul(a: t—$)Ry-1(z,s)ds, n=1,2,.... (2.20)
0

Performing calculations, we find the following equations for function w(x,t)

t

U)tt+R($,O)U~}t+Rt<£IZ’,O)U~1+/Rtt<

t— s)w(z,s)ds
0
= div{,uo(x)vw + po(z) / [w(x, s) + /R(x, s — s1)w(x, $1) dsl} Vi (z,t —s)ds
0 0
() k(D V A(z) + ﬁ(a:)Vb(x,t)}, (z,1) € Qey), (2:21)
Wlieo =0, Wlico = d(x), € Qeo), (2.22)
@ = DWg(x,t)— /u (z,t — $)DWg(z, s)ds = G(z,t), (z,t) €Ty, (2.23)
ow ) _
8—: = DWh(x,t) — / z,t —s)DWh(z,s) + DWg(x, s) #1(8; s) ds
0
= H(x,t), (z,t) €Ty (2.24)
Rewrite then equation (2.21) in the form

Wy — po(2)Aw + R(z, 0)w; + Ri(x,0)0 — Vug(x) - Vo
t

0

/[Rl( Jt—s)w(z, s) + Re(z,t — s) - Vw(z,s)|ds
= div [pl(:p)k(t)vzzl(x)

+ p(z)Vb(z,1)], (z,t) € Q(eo), (2.25)
5



where

Ry(x,t) = Ry(x,t) — div [Mo(l’) (V,ul(x, t)+ /R(a:, 2)Vi (z,t — 2) dz)] ,

Ry(z,t) = —po(x) (Vm(m,t) + /R(x, )V (z,t — 2) dz) :

Now we make use of the following lemma:

Lemma 1. Let w € H?*(Q(eo)), po € C*(Y') and the Riemannian metric dr = |dx|/+/po(x)
be simple and have non-positive curvature in €)'. Then there exist two constants C' > 0 and
so > 1 such that

[s(w? + |Vw|?) + s°wle®? @) < D,P(x,t) + div Q(z, )
+Cwy — po(z)Aw]2e®@Y  (2.1) € Q(g0), (2.26)
for all s > so > 1. Here (P, Q) is a vector-valued function satisfying the following estimate
|P(z,t)] + |Q(x,1)] < C[s(w? + |Vwl|?) + s3w?]e??@)
Moreover, P(z,0) =0, if w(z,0) = 0 or wi(x,0) =0, € Q(eo).
The proof of this lemma directly follows from Theorem 3.2 in paper [24], where the pseudo-
convexity of the function 6(x,t) = 72(x,y) — 31> with respect to operator D? — pio(x)A is proved

under the conditions of Lemma 1. Explicit expressions for functions P(x,t) and Q(z,t) are
given in [23] by formulae (2.7), (2.8).

From Lemma 1, we can easily derive
Corollary. Let v = w(-,0) € H*(Q(eo)) and po(z) satisfy the conditions of Lemma 1.
Then there exist two constants C' > 0 and sy > 1 such that

[s| VW' |2 4 s°w?e®?@0) < div Q'(z) + C[AW2e*@0) 2 € Q(g), (2.27)
for all s > so > 1. Here Q'(x) = Q(x,0) is a function satisfying the following estimate
‘Q/(l')‘ < C[S‘VUJI’Q + 83w12]€289($’0).

Lemma 2. Let po(z) satisfy the conditions of Lemma 1. Then there exist two constants
C > 0 and sy > 1 such that

/ [s(@? + |V|?) + s30?)e®0@) d dt < 08362S€HID||%11(Q(50))

Q(e)
C - .
+% / (|AA(x)|2 + |VA(x) ]2 + p*(z) + |Vﬁ<$)|2)6289(r’0) du
Q(eo0)
+C/[3(th2 4 ‘Vw’Q) + 83w2]€259(m,t) a5 (2.28)

1)



for all € € (g9,€") and s > sy > 1.

Proof. Applying Lemma 1 with w = w(x,t) and using the usual technique for deriving
Carleman estimates, we obtain the inequality

/ [s(0? + |Vw|*) + 331212]6289(9”’t) de dt < 6’336255\\@\%1(@(50))
Q(e)
+C / (|AA(@)]? + |VA(@)]? + Vi) [* + pw)*)e*! ™ da dt
Q(=0)
+C / [s(0? + |V|?) 4+ s>0?]e®0@D gy (2.29)

1)
for all & € (e, 50) and s > sg > 1. Here dX denotes the surface measure element. Note that
/ (AA@)P + [VA@)? + 7 (2) + V() 2) @D da dt
Q(e0)

C A A D N sO(x
< % / (‘AA(x)P + ]VA(Q;)P +p2(x) + ’vp<$)‘2)62 0(2.0) 1,
Q(e0)

Using the latter inequality we can rewrite (2.29) in the form (2.28). O
Fix ¢ € (g0,£") and define the numbers ¢;, j = 1,2,...,5, by the formulae
gj=¢c0+7j0, j=1,2,...,5, e =¢, 6=(c—¢p)/5.
Now we can state the following lemma.

Lemma 3. Let the conditions of Theorem hold. Then for each € € (g¢,€°) there exist two
constants C > 0 and sy > 1 such that

/ |AA ()20 dy < Cs*e® | |31 ey + CE 2 IAANR (000
Q(Eg)

+C / [s(@2 + |V ]?) + s*52]e20@D g5

o

c / (IVA@)P + 72(2) + V(@) 2) @O de (2.30)
Q(eo)

for all s > sg.

Proof. Let a function y € C®(Q(gy)) satisfy the following requirements

vsxrn <t w0 ={ (CHESEN o) 231)

7



and z(z,t) = x(z,t)w(z,t)e?@H. We can write an equation for z(x,t) in the form
2y — po(x)Az = F(x,t), (2.32)
where

F(x,t) = ese{th(Xt + sxb;) — 2oV - (Vx + sx Vo)

FW[xue — poAx + sx(0n — poAb)

+25(x:0; — oV x - VO) + s*x (02 — 10| VO[?)]

“x [R@;, 0)@; + Ri(z,0) — V() - Vi

+ /[Rl(x,t — s)w(x,s) + Re(z,t — s) - Vw(x,s)]ds
—div(py (2)k(t) VA(z) + (z) Vb(z, t))] } (2.33)

Using the identity

0
27+ p10(2)|V2]?) + div(2p0(2) % V2) — 22,Vpo(z) - Vz, (2.34)

—2zt(ztt — uo(x)Az) = —a(

and equation (2.32), we can find a constant C' such that

—%(zf + po(x)|V2]?) + div(2u0(2) 2 Vz) < C(s7'F? + 527 + s|Vz|?) (2.35)

for any s > 1. Integrating the latter relation over Q(g9) and recalling (2.22), we obtain the
inequality

/ [x(x,0)q(z)]?*?@0 4z < C / (s7'F? + 827 + s|Vz|?) da dt
Q(Eo) Q(EO)

+C/(z§ + |V 2|?) dX. (2.36)

o

Note that for s > 1 we have

/ (s'F? + 522 + s|Vz))dzdt < C / [s(@? + |V|?) + s30?])e* @D da dt

Q(EO) Q(El)
C A A y ~ st(x
N / (IAA@) P + [VA(@)]? + p*(2) + |Vi(@)]}) e dx,  (2.37)
Q(e0)
/(Zf +|Vz[)d < C/(sw? + 5|V ? + s*02)e? @D gy (2.38)
To To



Using inequality (2.28) with ¢ = ¢; for an estimation of the first term on the right-hand side of
(2.37), we obtain

/ [x(, 0)F(2)]2e%=0 dir < O™ ]300
Q(eo)

C _ _
+2= | (1AAWPE + VAP + 7 (@) + Vi) )= ds
Q(eo)
+C / [s(@? + |V |?) + sPw?]e? @D g% (2.39)
o
for all s > s5 > 1. On the other hand, recalling that
q(x) = po(x)AA(x) + V() - VA(x) + px) - a(x) + Vi(z) - Va(x)
(see (2.12)), we have
/ [X(Ia 0)6(%)]26289(1’0) dx > / q2(x)€259(x,0) dr > L400 / |AA(x)’26239(x,0) dx

Q(e0) Qe2) Q(e2)

—C/(!Vfl(w)\“r!Vﬁ(aﬁ)l2+\25(1:)\2)6259“’0)6196- (2.40)

2(eo)

Hence, formula (2.39) leads to the following estimate

A sO(x se1 ||~ C ~ $O(x
/ AA()Pe de < C*e illin g + 72 / AA(z) 2200 dy
Q(éz) Q(eo)
+0 [ (VA + 7 + TP da
Q(eo)

+C / [s(w? + |Vi|?) + sPw?]e0 @l gy, (2.41)

To
Since
|Af~1(x)|26259(x’0) dr = / |A/I(1’)|26289(z’0) dr + / |A/~1([E)|26250($’0) dx
Q(e0) Q(e2) Q(e0)\2(e2)
< / |AA(z)[2e?50@0) g 4 2522 / |AA(x) % da,
Q(e2) Q(e0)\2(e2)

from formula (2.37) follows (2.30) for all sufficiently large s. O

Now we need the following lemma.



Lemma 4. Under the conditions of Lemma 1 there exist two constants C' > 0 and sy > 1
such that

/ [s]Vfl|2 + 3 A2 | e20@0) gy < C / |AA(2)]2e*0@0) dg 4 062863”121“%11(9(60)) (2.42)
Q(es) Q(e2)

for all s > sg.

Proof. Introduce the function A(z) = yi(x)A(z), where y; € C®(Q(eo)) satisfies the
following requirements

Note that supp A(z) belongs to the open set Q(e5) N Q. Applying the corollary of Lemma 1
with w’ = A(x), we conclude that there exist two constants C' and sy > 1 such that

(S|VA|2 + S3A2)€280($’0) < Cldiv Q' () 4 (AA)Ze20@0)), (2.44)
where the function @’(z) satisfies the estimate
1Q'(z)] < C[s|VA? + s° A2]e20(=0)
and supp Q' (z) C Q(g2) N Q. Integrating (2.44) over 2(gq), we obtain

/ [3|V/1|2 + 83/12] 200 4y < C / (AA)2e250@0) g (2.45)
Q(es3) Q(e2)
On the other hand,

Hence,
/ [S|V/~l|2 +33/~12} £250(.0) 7. < C / |AA|26250(J;,0) dr
) 2(e2)
+C / (IVA[? + A2)e20@0) gy (2.47)
Q(e2)\2(e3)
Therefore estimate (2.42) follows. O

An estimate for p via A is given by the following lemma.

Lemma 5. Let the condition (1.6) of Theorem hold. Then there exist two constants C' > 0
and sg > 1 such that

/ <52|Vﬁ|2 + 54}32)6289(‘”’0) dr < Cs*e™|pllin o)
Q(ea)
+C / (s]V;lF + s°A2 + 33]52>6239("’3’0) dr (2.48)

Q(e3)

10



for all s > sg.
Proof. From (2.2) we have
p-Vo+ pAp = A. (2.49)

Set xa2(2)p(x) = p(x), x2(x)A(z) = A(x), 8(x,0) = by(x), where y, € C®(Q(ep)) satisfy the

following requirements

1, xe€Qey),
0< x2(x) <1, xolx) = { 0 e ng?é; \ Qfes). (2.50)
Then p satisfies the equation
Vp-Vé+pAp=(A+pVxa- Vo). (2.51)

2560 (x)

Multiplying both sides of the above equation by —2e p/s, one has

1 2 _ -
——dw( i2e?0V ¢) + pPe % (2V6, - Vo — EA¢) = _;p(A + pVx2 - Vg)e?ho, (2.52)
According to condition (1.6), we have
Voo(x) -Vo(z) >v>0, x€Qe).
Then for sufficiently large s one has
256 C —2 289 c 2 2s6, ~2 255 =2 259
pret < le( Vo) + <A 0 4 pTe”*t + pe 0) (2.53)
Assuming that s > C, we absorb the last summand in the above equation to obtain
—2 250 g s (=2 256y g 12 2sbg ~2 _2sey
pre™ < —div(pe*°Ve) + — | A% 4 pre . (2.54)
s s
Similarly, we have

Ve, Vo + oAb = (A+ VX2 - VP)u, — VD Voo, — PAG,., i=1,2, (2.55)

1
—;dlv( e*"V¢) + p2 ™ (2Vl, - Vo — gAgb)
2 _
= =P [(A+ BVXa - Vo), = V- Voo, — pAG,, | €%, i = 1,2, (2.56)
From (2.56), for sufficiently large s, one finds the estimate

C . — s sto(x S5€4
[VpPe < —div(|Vp*e** V) + [(!VAP P+ ([VB[* + p)et =] (2.57)

11



Integrating inequalities (2.54), (2.57) over Q(eg), we find that all the divergence terms vanish
and we obtain the following estimates

/ ]5262590(35) dr < / p2€2590(m) dr < g / [A262890($) +ﬁ2€2864} dr
S

f(ea) Q(e0) Q(e3)
< ¢ / [Aze2seo(m)+ﬁze2354} dz, (2.59)
89(63)
/ |vﬁ|262300($) do < / |Vp|262s6'0(x) de
Q(ea) Q(eo)
<< / [(IVAP? + p*)e @ 4 (V| + p*)e>=] da
89(83)
= g / [(IVAP + AP + p*)e™ @ + (VB[ + 57)e* ] do. (2.59)
Q(es)

Therefore the inequality (2.48) follows. O
Now we derive other estimate of the function p(z):

Lemma 6. Let the conditions of Theorem hold. Then there exist two constants C > 0 and
so > 1 such that

/ (32|VI5|2 + 84152> ?0w0) gy < Csle? <||@||%11(Q(so)) + ||15||%I3(Q(Eo))>
Q(e)
+C / [s(0? + |Vi|?) + s*w?]e??@t) dx. (2.60)
o

for all s > sp.

Proof. Recall that ¢ = 5 = ¢4 + 9, and use estimates given by Lemma 4 and Lemma 5.
From inequalities (2.48), (2.42) we obtain

/ (SQIV]?P X 54]32)6289(:”’0) dr < C / (|Af~1(x)|2 4 83]32)6239(35,0) du
Q(eq) Q(e2)
+Ce*% || Allfp (e, + O bl e,y (2:61)

Combining (2.42) and (2.61), we obtain
[ [s09AR 4 sIVaR) + 55082 4 572|200
Q(eq)
<C / (|AA(z)[? + s°p%)e* 0 da + 062864(”;1”%11(9(50)) + 15l ey (2:62)

Q(e2)

12



Applying now Lemma 3, we obtain

Q(ea)

s¢ / (IVA(@)]? + *5* () + |VB(x)|?)e**D d
Q(e0)

+C / [s(w? + |Vi|?) + sPw?)e?? @l g%
o

+Ce* (011 0geo)) + [ AllE2(0e0) + 181l @0y (2:63)

Decompose the first integral on the right-hand side into two integrals: the first integral over
Q(e4) and the second over Q(eg) \ 2(e4). Absorbing for sufficiently large s the integral over
Q(e4) on the left-hand side of the inequality and noting that 0(x,0) < g4 for € Q(g¢) \ Q(g4),
we obtain

/ [S(]V[H? + s|Vj?) —|—83(A2—|—8ﬁ2>i|6280(z’0) da

Q(ea)

< C/[S(ﬁ}? —+ ‘V@’Q) + 831172]6259(35,15) ds
o

+Cs%e (|0l ey + Al (e + 1P 0(er)))- (2:64)

Noting that

||A||%-IQ(Q(€0)) + ||ﬁ||%—ll(9(€0)) < CHﬁH%—I?’(Q(Eo))’ (265)
and Q(e) C Q(ey), we obtain (2.60). O

Now we can obtain the final estimate for p. Using inequality (2.60) and the boundary data
(2.23), (2.24), we have the following inequality

Pl ey < Cs?e®™ (Hﬁ”%{l(ﬂ(m)) + H?I)H%F(Q(eo)))
se0 ~ ]
+C5e™ (Gl + 1 ey ). (2.66)
Since € — g4 = 0,

HﬁH%-Il(Q(s)) < CSZ@*QS&(HﬁH%{l(Q(eo)) + HwH%U(Q(eo))>
+C5%e™ (Gl + 1 aqry) ). (2.67)

Note that
A i 4) ~ 4)7 _
1G s oy + 122y < C (1D 310 ) + 1D Ry ) = C2 (2.68)
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Using the assumptions in Theorem, we find that
||]3||%_11(Q(5)) S 052 (6_286(]93 + Ug) + 628(60_5)62) (269)
for all s larger than some sy > 1. Let €2 < (p2 + u2). Choose s* as a root of the equation
0

67256(]?(2] + ug) — 623(5 75)62’

ie.,

N S £y S B 1Y
2(eY — e+ 90) €2 2(5e — 4e — g9) e
Observe that s* > sq if € is chosen small enough. Then
||]5H%-11(Q(a)) < O(57)%* @2 = C(s7)2(pf + ug) e, (2.70)
where
5(e —
N = S —e) € (0,1).

5e0 — 4e — gy

Therefore (2.70) proves estimate (1.8) of Theorem.
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