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The Growth of the Nevanlinna Proximity Function

Atsushi Nitanda

Abstract
Let f be a meromorphic mapping from Cn into a compact complex manifold

M . In this paper we give some estimates of the growth of the proximity func-
tion mf (r, D) of f with respect to a divisor D. J.E. Littlewood [2] (cf. Hay-
man [1]) proved that a merormorphic function g on the complex plane C satisfies
lim supr→∞

mg(r,a)
log T (r,g) ≤ 1

2 for almost all point a of the Riemann sphere. We extend
this result to the case of a meromrophic mapping f : Cn → M and a linear system
P (E) on M . The main reuslt is an estimate of the following type: For almost all
divisor D ∈ P (E), lim supr→∞

mf (r,D)−mf (r,IB(E))

log TfE
(r,HE) ≤ 1

2 .

1 Introduction.

J.E. Littlewood [2] (cf. [1]) proved that every non-constant meromorphic function g
on C satisfies

lim sup
r→∞

mg(r, a)

log T (r, g)
≤ 1

2

for almost all a ∈ C, where T (r, g) denotes the Nevanlinna characteristic function of g.
Our main aim is to generalize this result to the case of several complex variables. Cf. A.
Sadullaev [8], A. Sadullaev and P.V. Degtjar’ [9], and S. Mori [2] for related results (see
Remark at the end of §6).

Let L → M be a holomorphic line bundle over a compact complex manifold M . Let
Γ(M, L) be the vector space of all holomorphic sections of L over M , and E ⊂ Γ(M, L) a
vector subspace of dimension at least 2. Then we have a natural meromorphic mapping

ρE : M → P (E∗),

where P (E∗) is the projective space of the dual E∗ of E. Let HE be the hyperplane
bundle over P (E∗) and B(E) ⊂ M the base of E. Let f : Cn → M be a meromorphic
mapping such that f(Cn) ̸⊂ B(E). Then we have the composite meromrophic mapping
fE = ρE ◦ f : Cn → P (E∗).

Our main result is as follows (cf. section 2 for more notation):
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Main Theorem . Let fE = ρE ◦ f : Cn → P (E∗) be as above. If TfE
(r, HE) → ∞ (r →

∞), then

lim sup
r→∞

mf (r, D) − mf (r, IB(E))

log TfE
(r, HE)

≤ 1

2

for almost all divisor D ∈ P (E).

In section 4 we first prove the Main Theorem in the case where E = Γ(M, L) and
B(E) = ϕ. In section 5 we show an estimate of different type, In section 6 we deal with
the general case.

Acknowledgement. The author would like to expresse his sincere gratitude to Professor
Junjiro Noguchi for his valuable advice and encouragement.

2 Notation.

Let z = (z1, . . . , zn) be the natural coordinate system of Cn. We set

∥z∥2 =
n∑

j=1

|zj|2, dc =
i

4π

(
∂ − ∂

)
,

α = ddc∥z∥2, η = dc log ∥z∥2 ∧ (ddc log ∥z∥2)n−1,

B(r) = {z ∈ Cn; ∥z∥ < r} , Γ(r) = {z ∈ Cn; ∥z∥ = r} .

Let M be a compact complex manifold and (L, h) a Hermitian holomorphic line bundle
over M . For a meromorphic mapping f : Cn → M we define the order function of f with
respect to the Chern form ω of (L, h) by

Tf (r, ω) =

∫ r

1

dt

t2n−1

∫
B(t)

f ∗ω ∧ αn−1

and we define the order function of f with respect to L by

Tf (r, L) = Tf (r, ω).

Tf (r, L) is well-defined up to a bounded term. We denote the space of holomorphic sections
of L by Γ(M, L). We have the natural identification

P (Γ(M, L)) = {(σ); σ ∈ Γ(M, L) \ {0}},

where the notation (σ) stands for the effective divisor of σ. Let D ∈ P (Γ(M, L)). Then
we may take an element σ ∈ Γ(M, L) which satisfies

D = (σ), ∥σ(x)∥ =
√

h(σ(x), σ(x)) ≤ 1.
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When f(Cn) ̸⊂ supp D (the support of D), the proximity function of f with respect to
D is defined by

mf (r, D) =

∫
z∈Γ(r)

log
1

∥σ ◦ f(z)∥
η(z)

and we define the counting function of f ∗D by

N(r, f ∗D) =

∫ r

1

dt

t2n−1

∫
B(t)∩f∗D

αn−1,

where f ∗D is the pullback of D by f . If L is non-negative, then we have the First Main
Theorem

(1) Tf (r, L) = N(r, f∗D) + mf (r, D) + O(1).

3 Lemma.

Let M be a compact complex manifold and L → M a holomolphic line bundle. Set

V = Γ(M, L), N + 1 = dim M.

Here we assume that the set B(V ) of base points of V is empty, i.e.,

B(V ) = {x ∈ M ; σ(x) = 0,∀σ ∈ V } = ϕ.

We fix a Hermitian inner product ( , ) in V . Let ({Uλ}, {sλ}) be a local trivialization
covering of L and {σ0, . . . , σN} a orthonormal base of V . We identify V ∗ = CN+1 by the
dual base of {σ0, . . . , σN}. We define a holomorphic mapping ΦL from M into P (V ∗) =
PN(C) by

ΦL(x) = [σ0λ(x) : . . . : σNλ(x)], x ∈ Uλ,

where σjλ are holomorphic functions on Uλ with σj|Uλ = σjλsλ. Then it follows that
L = Φ∗

LHV ∗ , where HV ∗ is the hyperplane bundle over P (V ∗). Hence Fubini-Study metric
in HV ∗ induces a Hermitian metric h in L satisfying

(2) h(sλ(x), sλ(x)) =
1∑N

j=0 |σjλ(x)|2
.

We denote the Chern form of (L, h) by ω. Clearly, ω is non-negative. Hence L is non-
negative. Let ωV denote the Fubini-Study metric form on P (V ) induced by the Hermitian
inner product ( , ). Since ωN

V = ∧NωV is a volume element on P (V ), it is considered as
positive measure µ. We define a C∞-function Sx on P (V ) by

Sx(D) =

√
h(σ(x), σ(x))√

(σ, σ)
, D = (σ) ∈ P (V ).

We now prove the following key lemma.

3



Lemma 1. Let the notation be as above and X ⊂ P (V ) a Lebesgue measurable subset
with µ(X) > 0. Then,∫

D∈X

log
1

Sx(D)
dµ(D) ≤ µ(X)

2

(
N + log

N

µ(X)

)
for all x ∈ M .

Proof. We identify P (V ) = PN(C) by the base {σ0, . . . , σN}. For x ∈ Uλ and [z0 : . . . :
zN ] ∈ PN(C) it follows from (2) that

(3) Sx([z
0 : . . . : zN ]) =

∣∣∣∑N
j=0 zjσjλ(x)

∣∣∣(∑N
j=0 |σjλ(x)|2

)1/2 (∑N
j=0 |zj|2

)1/2
.

Since B(V ) = ϕ, there exists a unitary matrix G = (gij) and a non-zero constant a ∈ C
such that 

1
0
...
0

 = a tG

 σ0λ(x)
...

σNλ(x)

 .

Let ρ : CN+1 \ {0} → PN(C) be the Hopf fibering. We define a biholomorphic mapping
G by G(ρ(z)) = ρ(Gz), z = t(z0, . . . , zN) ∈ CN+1. Since G is unitary, we easily see by
(3) that

(4) Sx(G([z0 : . . . : zN ])) =
|z0|(∑N

k=0 |zk|2
)1/2

.

We denote the characteristic function of a subset S ⊂ P (V ) by χS. Since ωV is unitary
invariant, it follows from (4) that

(5)

∫
ρ(w)∈X

log
1

Sx(ρ(w))
ωN

V

=

∫
ρ(w)∈PN (C)

χX(ρ(w)) log
1

Sx(ρ(w))
ωN

V

=

∫
ρ(z)∈PN (C)

G∗
(

χX(ρ(w)) log
1

Sx(ρ(w))
ωN

V

)
=

∫
ρ(z)∈PN (C)

χG−1(X)(ρ(z)) log
1

Sx(G(ρ(z)))
ωN

V
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=

∫
ρ(z)∈G−1(X)

log

(∑N
k=0 |zk|2

)1/2

|z0|
ωN

V .

We put
V0 = {[z0 : . . . : zN ] ∈ PN(C); z0 ̸= 0}

and we set an affine coordinate system on V0 by

ζ = (ζ1, . . . , ζN) =

(
z1

z0
, . . . ,

zN

z0

)
.

Then by (5) we have ∫
ρ(w)∈X

log
1

Sx(ρ(w))
ωN

V

=

∫
ζ∈CN

χG−1(X)N ! log (1 + ∥ζ∥2)
1/2

(1 + ∥ζ∥2)N+1

N∧
k=1

(
i

2π
dζk ∧ dζk

)

=

∫
ζ∈CN

χG−1(X) log (1 + ∥ζ∥2)
1/2

(1 + ∥ζ∥2)N+1
αN .

Furthermore, µ(X) = µ(G−1(X)), so that it suffices to prove that

(6)

∫
ζ∈CN

χX log (1 + ∥ζ∥2)
1/2

(1 + ∥ζ∥2)N+1
αN ≤ µ(X)

2

(
N + log

N

µ(X)

)
for a Lebesgue measurable set X ⊂ CN . Set

Φ(r) =

∫
X∩{ζ∈CN ; ∥ζ∥>r}

ωN
V .

Then, Φ(r) is a continuous decreasing function on [0,∞) and 0 ≤ Φ(r) ≤ µ(X) ≤ 1.
Moreover,

(7) Φ(r) =

∫
{ζ∈CN ; ∥ζ∥>r}

χX

(1 + ∥ζ∥2)N+1
αN

=

∫ ∞

r

{∫
Γ(t)

χX2Nt2N−1

(1 + t2)N+1
η

}
dt,

so that Φ(r) is an absolutely continuous function on [0, s] (s ∈ [0,∞)).
Therefore it follows that

(8)

∫ s

0

log(1 + r2)1/2d(−Φ(r))
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=

∫ s

0

log(1 + r2)1/2

{∫
Γ(r)

χX2Nr2N−1

(1 + r2)N+1
η

}
dr

=

∫
ζ∈B(s)

χX log(1 + ∥ζ∥2)1/2

(1 + ∥ζ∥2)N+1
αN .

On the other hand, we have

(9)

∫ s

0

log(1 + r2)1/2d(−Φ(r)) =

∫ s

0

rΦ(r)

1 + r2
dr − Φ(s) log(1 + s2)1/2.

The following convergence will be proved later:

(10) Φ(s) log(1 + s2)1/2 → 0 (s → ∞).

Hence by (8), (9), (10) the left side of (6) is

(11)

∫
ζ∈CN

χX log(1 + ∥ζ∥2)1/2

(1 + ∥ζ∥2)N+1
αN =

∫ ∞

0

rΦ(r)

1 + r2
dr.

To estimate (11), we put

Ψ(r) =

∫
{ζ∈CN ; ∥ζ∥>r}

ωN
V .

Then, Ψ(r) is a strictly decreasing and continuous function on [0,∞) such that 0 ≤ Φ(r) ≤
Ψ(r) ≤ 1, Ψ(0) = 1, and limr→∞ Ψ(r) = 0.

We compute Ψ(r) as follows.

Ψ(r) =

∫
{ζ∈CN ; ∥ζ∥>r}

1

(1 + ∥ζ∥2)N+1
αN

=

∫ ∞

r

{∫
Γ(t)

2Nt2N−1

(1 + t2)N+1
η

}
dt

=

∫ ∞

r

2Nt2N−1

(1 + t2)N+1
dt

=
N∑

j=1

r2(j−1)

(1 + r2)j
.

Therefore we have

(12)
1

1 + r2
≤ Ψ(r) ≤ N

1 + r2
.
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We show (10) as follows.

0 ≤ Φ(s) log(1 + s2)1/2 ≤ Ψ(s) log(1 + s2)1/2

≤ N

1 + s2
log(1 + s2)1/2 → 0 (s → ∞).

Because of µ(X) > 0 we can take a real number r1 ≥ 0 such that Ψ(r1) = µ(X). By (12)

(13)
1

µ(X)
≤ 1 + r2

1 ≤ N

µ(X)
.

Note that Φ(0) = µ(X), Φ(r) is decreasing, and that Φ(r) ≤ min{Ψ(r), µ(X)}. Therefore,
we get ∫ ∞

0

rΦ(r)

1 + r2
dr ≤

∫ r1

0

rµ(X)

1 + r2
dr +

∫ ∞

r1

rΨ(r)

1 + r2
dr

=
µ(X)

2
log(1 + r2

1) +

∫ ∞

r1

rΨ(r)

1 + r2
dr.

Furthermore by (12) and (13) we see that∫ ∞

0

rΦ(r)

1 + r2
dr ≤ µ(X)

2
log

N

µ(X)
+

∫ ∞

r1

rN

(1 + r2)2
dr

=
µ(X)

2
log

N

µ(X)
+

N

2(1 + r2
1)

≤ µ(X)

2

(
N + log

N

µ(X)

)
.

Therefore, (6) follows from (11).

4 Growth of the Nevanlinna proximity function 1.

We show the following theorem.

Theorem 2. Let M be a compact complex manifold and L → M a holomorphic line
bundle satisfying B(Γ(M, L)) = ϕ. Let f : Cn → M be a meromorphic mapping such that
Tf (r, L) → ∞ (r → ∞). Then we have that for almost all divisor D ∈ P (Γ(M, L))

lim sup
r→∞

mf (r, D)

log Tf (r, L)
≤ 1

2
.

Proof. Set V = Γ(M, L). Let ω, ωV and Sx be as in the section 3. Then

Tf (r, ω) = Tf (r, L) + O(1).
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Since Tf (r, L) → ∞ (r → ∞), for all positive integer m ∈ N we can choose real number
rm ∈ (1,∞) such that

Tf (rm, ω) = m.

Let β > 1/2 be an arbitrary real number and set

G(m, β) = {D ∈ P (V ); mf (rm, D) > β log m} .

We denote by I(f) the indeterminacy locus of f . Because the codimension of I(f) is
greater than or equal to 2, it follows from lemma 1 that if µ(G(m, β)) > 0, then

µ(G(m, β))β log m <

∫
D∈G(m,β)

mf (rm, D)ωN
V

=

∫
D∈G(m,β)

{∫
z∈Γ(rm)\I(f)

log
1

Sf(z)(D)
η(z)

}
ωN

V

=

∫
z∈Γ(rm)\I(f)

{∫
D∈G(m,β)

log
1

Sf(z)(D)
ωN

V

}
η(z)

≤
∫

z∈Γ(rm)\I(f)

µ(G(m,β))

2

(
N + log

N

µ(G(m,β))

)
η(z)

=
µ(G(m, β))

2

(
N + log

N

µ(G(m, β))

)
.

Hence we deduce that

µ(G(m,β)) <
NeN

m2β
.

We set

G(β) =
∞∩

m0=1

∞∪
m=m0

G(m, β).

Because of β > 1/2 it follows that

(14) µ(G(β)) ≤ lim
m0→∞

∞∑
m=m0

µ(G(m,β)) < lim
m0→∞

∞∑
m=m0

NeN

m2β
= 0.

Note that the set X(f) defined by

X(f) = {D ∈ P (V ); supp D ⊃ f(Cn)}

has zero measure. Let D ̸∈ G(β)∪X(f). Then there exists an integer mD ∈ N such that
for all m > mD

(15) mf (rm, D) ≤ β log m.

8



We choose an arbitrary number s ≥ rmD
and we take an integer ms ∈ N satisfying

rms ≤ s < rms+1. Then ms ≥ mD. Since ω ≥ 0 and D ̸∈ X(f), we have by the First Main
Theorem (1) and (15)

mf (s, D) = Tf (s, ω) − N(s, f ∗D) + O(1)

≤ Tf (rms+1, ω) − N(rms , f
∗D) + O(1)

= Tf (rms , ω) − N(rms , f
∗D) + O(1)

= mf (rms , D) + O(1) ≤ β log ms + O(1)

≤ β log Tf (s, ω) + O(1).

Therefore it follows that for an arbitrary D ̸∈ G(β) ∪ X(f)

(16) lim sup
r→∞

mf (r, D)

log Tf (r, ω)
≤ β.

We set

G =
∞∪

k=1

G

(
1

2
+

1

k

)
∪ X(f).

Then by (14), (16) we see that

µ(G) ≤
∞∑

k=1

µ

(
G

(
1

2
+

1

k

))
+ µ(X(f)) = 0

and that for D ̸∈ G

lim sup
r→+∞

mf (r, D)

log Tf (r, ω)
≤ 1

2
.

In general, let M be a compact complex manifold with a Hermitian metric form ω.
Let f : Cn → M be a meromorhic mapping. Then the order function of f with respect
to ω is defined by

Tf (r, ω) =

∫ r

1

dt

t2n−1

∫
B(t)

f∗ω ∧ αn−1.

We define the order of f by

ρf = lim sup
r→∞

log Tf (r, ω)

log r
,

which is independent of the choice of the Hermitian metric form ω.
We easily deduce the following corollary from Theorem 2.
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Corollary 3. Let M be a compact complex manifold and L a very ample holomorphic
line bundle over M . Let f : Cn → M be a meromorphic mapping. Assume that the order
of f is finite and Tf (r, L) → ∞ (r → ∞). Then,

lim sup
r→∞

mf (r, D)

log r
≤ ρf

2

for almost all effective divisor D ∈ P (Γ(M, L)).

5 Growth of the Nevanlinna proximity function 2.

We now define the projective logarithmic capacity of a subset in the PN(C) (See
Molzon-Shiffman-Sibony [3]). Let K be a compact subset of PN(C). We denote by
M(K) the space of positive Borel measures on K with total mass 1. For x = [x0 : . . . :
xN ] ∈ PN(C) and ν ∈ M(K) we set

uν(x) =

∫
[w0:...:wN ]∈K

log

(∑N
j=0 |xj|2

)1/2 (∑N
j=0 |wj|2

)1/2∣∣∣∑N
j=0 xjwj

∣∣∣ dν,

and
V (K) = inf

ν∈M(K)
sup

x∈PN (C)

uν(x).

Define the projective logarithmic capacity of K by

C(K) =
1

V (K)
.

When V (K) = ∞, we set C(K) = 0. For an arbitrary subset E of PN(C) we define the
projective logarithmic capacity of E by

C(E) = sup
K⊂E

C(K),

where the supremum is taken over compact subsets K of E.
For real valued functions A(r) and B(r) on [1,∞) we write

A(r) ≤ B(r)||

if there is a Borel subset J ⊂ [1,∞) with finite measure such that A(r) ≤ B(r) for
r ∈ [1,∞) \ J .

Let the notation be as in the previous section. We now show the following theorem.
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Theorem 4. Let M be a compact complex manifold, and L → M a holomorphic line
bundle with B(Γ(M, L)) = ϕ. Let f : Cn → M be a meromorphic mapping. Let φ(r) > 0
be a Borel measurable function on [1,∞) which satisfies∫ ∞

1

dr

φ(r)
< ∞.

Then there exists a subset F of P (Γ(M, L)) such that C(F ) = 0 and that

mf (r, D) ≤ φ(r) + O(1)||

for an arbitrary divisor D ∈ P (Γ(M, L)) \ F .

Proof. We identify P (Γ(M, L)) = PN(C) by the base {σ0, . . . , σN}. We set

F =

{
D ∈ P (Γ(M, L));

∫ ∞

1

mf (r, D)

φ(r)
dr = ∞

}
.

Assume that C(F ) > 0. Then there is a compact subset K of F with C(K) > 0. Therefore
there exists a ν ∈ M(K) such that

(17) sup
x∈PN (C)

uν(x) < ∞.

It follows from (3) and (17) that∫
[ζ0:...:ζN ]∈K

{∫ ∞

1

mf (r, ([ζ
0 : . . . : ζN ]))

φ(r)
dr

}
dν

=

∫ ∞

1

1

φ(r)

{∫
z∈Γ(r)

{∫
K

log
1

Sf(z)([ζ0 : . . . : ζN ])
dν

}
dη

}
dr

≤
∫ ∞

1

1

φ(r)

{∫
Γ(r)

sup
x∈PN (C)

uν(x)η

}
dr

=

∫ ∞

1

1

φ(r)
sup

x∈PN (C)

uν(x)dr < ∞.

On the other hand, by the definition of F we have∫
[ζ0:...:ζN ]∈K

{∫ ∞

1

mf (r, ([ζ
0 : . . . : ζN ]))

φ(r)
dr

}
dν = ∞.

This is a contradiction. Hence C(F ) = 0. For an arbitrary divisor D ∈ P (Γ(M, L)) we
set

J(D) =

{
r ∈ [1,∞);

mf (r, D)

φ(r)
> 1

}
.
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If D ̸∈ F , then we see∫
J(D)

dr <

∫
r∈J(D)

mf (r, D)

φ(r)
dr ≤

∫ ∞

1

mf (r, D)

φ(r)
dr < ∞.

Therefore for D ∈ P (Γ(M, L)) \ F

mf (r, D) ≤ φ(r) + O(1)||.

6 The general case.

In this section we deal with the growth of the proximity function with respect to an
effective divisor D ∈ P (E), where L → M be a holomorphic line bundle and E is a linear
subspace of Γ(M, L), and complete the proof of the Main Theorem.

Let M be a compact complex manifold and I a coherent ideal sheaf of the structure
sheaf OM over M . Let {Vλ} be a finite open covering of M and ηλj ∈ Γ(Vλ, I), j = 1, 2, . . .,
be finitely many sections of which germs ηλ1x

, ηλ2x
, . . ., generate the fiber Ix for all x ∈ Vλ.

Following to [5], Chap. 2 or [7], §2, we let {ρλ} be a partition of unity associated with
{Vλ} and set

dI(x) =
∑

λ

ρλ(x)

(∑
j

|ηλj(x)|2
)1/2

, x ∈ M.

Let f be a meromorphic mapping from Cn into M such that

f(Cn) ̸⊂ supp OM/I.

We define the proximity function of f for I by

mf (r, I) =

∫
z∈Γ(r)

− log dI ◦ f(z)η(z).

Next let L → M be a holomorphic line bundle and dim Γ(M, L) = N +1. Let E be an
(l + 1)-dimensional linear subspace of Γ(M, L). We take a base {σ0, . . . , σN} of Γ(M, L)
and we identify Γ(M, L) ∼= CN+1 by {σ0, . . . , σN}. Moreover we assume that E is spanned
by {σ0, . . . , σl}. Let I denote the coherent ideal sheaf of OM of which fiber over x ∈ M
is generated by {σx; σ ∈ E}. Then the base of E is defined by B(E) = OM/I. Thus we
write I = IB(E).

Let f : Cn → M be a meromorphic mapping. Suppose that

f(Cn) ̸⊂ supp B(E).
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Let ({Uλ}, {sλ}) be a local trivialization covering of L. We define a meromorphic mapping
ΦL : M → PN(C) by

ΦL(x) = [σ0λ(x) : . . . : σNλ(x)], x ∈ Uλ,

where σjλ is a holomorphic function on Uλ such that σj|Uλ = σjλsλ. Let (f0, . . . , fN) be
a reduced representation of ΦL ◦ f . We denote by fE the meromorphic mapping from Cn

into Pl(C) represented by (f0, . . . , f l). For z ∈ f |(Cn \ I(f))−1(Uλ \ supp B(E))

fE(z) = [σ0λ ◦ f(z) : . . . : σlλ ◦ f(z)].

We denote by Hl hyperplane bundle over Pl(C). The following is known.

Proposition 5. Let the notation be as above. We have the following.
(i) If B(Γ(M, L)) = ϕ, then

Tf (r, L) ≥ TfE
(r, Hl) + O(1).

(ii) (Cf. Noguchi [5].) For [ζ0 : . . . : ζ l] ∈ P (E)

mf

(
r,

(∑l
j=0 ζjσj

))
− mf (r, IB(E)) = mfE

(r, ([ζ0 : . . . : ζ l])) + O(1).

Proof. (i) We assume that B(Γ(M, L)) = ϕ. Let (g0, . . . , gl) be a reduced represen-
tation of fE. Then there is a holomorphic function h on Cn such that (f 0, . . . , f l) =
(hg0, . . . , hgl). Since L = Φ∗

LHN it follows that

Tf (r, L) =

∫
z∈Γ(r)

log

(
N∑

j=0

|f j(z)|2
)1/2

η + O(1)

≥
∫

z∈Γ(r)

log

(
l∑

j=0

|f j(z)|2
)1/2

η + O(1)

≥
∫

z∈Γ(r)

log

(
l∑

j=0

|gj(z)|2
)1/2

+

∫
z∈Γ(1)

log |h| η + O(1)

≥ TfE
(r, Hl) + O(1).

(ii) Let h be a Hermitian metric in L and || · || denote the norms on L. Let {τλ} be a
partition of unity associated with {Uλ}. For x ∈ Uν we set

k(x) = log

(∑l
j=0 |ζj|2

)1/2

||
∑l

j=0 ζjσj(x)||
− log

(∑l
j=0 |σjν(x)|2

)1/2 (∑l
j=0 |ζj|2

)1/2

|
∑l

j=0 σjν(x)ζj|

13



+ log
∑

λ

τλ(x)

(
l∑

j=0

|σjλ(x)|2
)1/2

.

Since
||

∑l
j=0 ζjσj(x)|| = |

∑l
j=0 σjν(x)ζj|||sν(x)||,

we see

k(x) = log

∑
λ τλ(x)

(∑l
j=0 |σjλ(x)|2

)1/2

||sν(x)||
(∑l

j=0 |σjν(x)|2
)1/2

.

We take an arbitrary point y ∈ M and ν such that τν(y) > 0. Then there are a relatively
compact neighborhood V ⊂ Uν of y and positive constant C1, C2, C3 > 0 such that for
x ∈ V

k(x) ≤ log

∑
λ C1τλ(x)

(∑l
j=0 |σjν(x)|2

)1/2

||sν(x)||
(∑l

j=0 |σjν(x)|2
)1/2

= log
C1

||sν(x)||
≤ log C2,

and

k(x) ≥ log
τν(x)

||sν(x)||
≥ log C3.

Since M is compact there exists a positive constant C such that for an arbitrary x ∈ M

|k(x)| < C.

This finishes the proof of (ii).

Let µE denote the positive measure induced by Fubini-Study metric on P (E) = Pl(C).

Theorem 6. Let M be a compact complex manifold and L → M a holomorphic line
bundle. Let 1 ≤ l ≤ N be an integer and E an (l+1)-dimensional linear subspace of
Γ(M, L). Let f : Cn → M be a meromorphic mapping such that f(Cn) ̸⊂ supp B(E). If
TfE

(r, Hl) → ∞ (r → ∞), then for almost all divisor D ∈ P (E)

lim sup
r→∞

mf (r, D) − mf (r, IB(E))

log TfE
(r, Hl)

≤ 1

2
.

Otherwise for almost all divisor D ∈ P (E)

mf (r, D) − mf (r, IB(E)) = O(1).
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Proof. Set

I =

{
[ζ0 : . . . : ζ l] ∈ P (E); lim sup

r→∞

mf (r, (
∑l

j=0 ζjσj)) − mf (r, IB(E))

log TfE
(r, Hl)

>
1

2

}
.

Because of Proposition 5 we have that for [ζ0 : . . . : ζ l] ∈ I

1

2
< lim sup

r→∞

mfE
(r, ([ζ0 : . . . : ζ l]))

log TfE
(r, Hl)

.

Hence, if TfE
(r, Hl) → ∞ (r → ∞), then we have µE(I) = 0 by Theorem 2. We assume

that TfE
(r, Hl) = O(1). Then fE is a constant mapping. Hence by Proposition 5 (ii)

mf (r, D) − mf (r, IB(E)) = O(1).

By making use of the methods in the proofs of Proposition 5 and Theorem 4 one may
aslo deduce the following:

Theorem 7. Let M be a compact complex manifold and L → M a holomorphic line
bundle. Let 1 ≤ l ≤ N be an integer and E an (l+1)-dimensional linear subspace of
Γ(M, L). Let f : Cn → M be a meromorphic mapping. Let φ(r) > 0 be a Borel measurable
function on [1,∞) which satisfies ∫ ∞

1

dr

φ(r)
< ∞.

Then there exists a subset F of P (E) such that C(F ) = 0 and that for all D ∈ P (E) \ F

mf (r, D) − mf (r, IB(E)) ≤ φ(r) + O(1)||.

Remark. S. Mori [4] proved that for a non-constant meromprphic mapping f : Cn →
PN(C), the set {

H ∈ PN(C)∗; lim sup
r→∞

mf (r, D)√
Tf (r, HN) log Tf (r, HN)

> 0

}

is of projective logarithmic capacity zero. Moreover, A. Sadullaev [8] showed that this set
forms a polar set.

Note the differences between these results and our Theorems 2 and 7.
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