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1 Introduction and main theorems

In this paper we gather the papers [5], [6] and [12] for our talk at Kyoto
University. In particular we make the proofs of theorems in [5] easier by
using the methods in [12] and other.

We consider solutions of the initial value problem for the equation
{

ut = ∆u+ f(u),
u(x, 0) = u0(x),

x ∈ Rn, t > 0,
x ∈ Rn.

(1)

The nonlinear term f ∈ C1(R̄+) saitsfies that
∫ ∞

C

dξ

f(ξ)
<∞ with some C ≥ 0, (2)

and






























there exists a function Φ ∈ C2(R+) such that
Φ(v) > 0, Φ′(v) > 0 and Φ′′(v) ≥ 0 for v > 0,
∫ ∞

1

dξ

Φ(ξ)
<∞,

and f ′(v)Φ(v) − f(v)Φ′(v) ≥ cΦ(v)Φ′(v) for v > b
with some b ≥ 0 and c ≥ 0.

(3)

Remark. The conditions (2) and (3) were used in [12]. They are weaker
than the conditions used in [5] and [6]:

f(δb) ≤ δpf(b)

for all b ≥ b0 and for all δ ∈ (δ0, 1) with some b0 > 0, some δ0 ∈ (0, 1) and
some p > 1.
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The initial data u0 is assumed to be a measureable function in Rn satis-
fying

0 ≤ u0(x) ≤M a.e. in Rn (4)

for some positive M . We are interested in initial data such that u0 → M as
|x| → ∞ for x in some sector of Rn. We assume that there exists a sequence
{x}∞m=1 ⊂ Rn such that

lim
m→∞

u0(x + xm) = M a.e. in Rn. (5)

Remark. The condition (5) was given in [12]. This condition is equivalent
to the condition in [5] with [6]:

essinfx∈B̃m
(u0(x) −Mm(x− xm)) ≥ 0 for m = 1, 2, . . . ,

where B̃m = Brm
(xm) with a sequence {rm}

∞
m=1, a sequence of functions

{Mm(x)}∞m=1 satisfying

lim
m→∞

rm = ∞, Mm(x) ≤Mm+1(x) for m ≥ 1

lim
m→∞

inf
s∈[1,rm]

1

|Bs|

∫

Bs(0)

Mm(x)dx = M,

and some sequence of vectors {xm}
∞
m=1. Here Br(x) denotes the opened ball

of radius r centered at x.

Problem (1) has a unique bounded solution at least locally in time. How-
ever, the solution may blow up in finite time. For a given initial value u0

and nonlinear term f let T ∗ = T ∗(u0, f) be the maximal existence time of
the solution. If T ∗ = ∞, the solution exists globally in time. If T ∗ <∞, we
say that the solution blows up in finite time. It is well known that

lim sup
t→T ∗

‖u(·, t)‖∞ = ∞, (6)

where ‖ · ‖∞ denotes the L∞-norm in space variables.
In this paper we are interested in behavior of a blowing up solution near

space infinity as well as location of blow-up directions defined below. A point
xBU ∈ Rn is called a blow-up point if there exists a sequence {(xm, tm)}∞m=1

such that

tm ↑ T ∗, xm → xBU and u(xm, tm) → ∞ as m→ ∞.
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If there exists a sequence {(xm, tm)}∞m=1 such that

tm ↑ T ∗, |xm| → ∞ and u(xm, tm) → ∞ as m→ ∞,

then we say that the solution blows up to at space infinity.
A direction ψ ∈ Sn−1 is called a blow-up direction if there exists a sequence

{(xm, tm)}∞m=1 with xm ∈ Rn and tm ∈ (0, T ∗) such that u(xm, tm) → ∞ as
m→ ∞ and

xm

|xm|
→ ψ as m→ ∞. (7)

We consider the solution v(t) of an ordinary differential equation

{

vt = f(v), t > 0,
v(0) = M.

(8)

Let Tv = T ∗(M, f) be the maximal existence time of solutions of (8), i. e.,

Tv =

∫ ∞

M

ds

f(s)
.

We are now in position to state our main results.

Theorem 1. Assume that f ∈ C1(R+) is nondecreasing function and locally
Lipschitz in R̄+. Let u0 be a continuous function satisfying (4) and (5). Then
there exists a subsequence of {xm}

∞
m=1, independent of t such that

lim
m→∞

u(x+ xm, t) = v(t) in Rn. (9)

The convergence is uniform in every compact subset of Rn × [0, Tv). More-
over, the solution blows up at Tv.

For this theorem we should introduce the results of Gladkov [7]. In his
paper there is the result [7, Theorem 1] relative to our first theorem. He
considered the initial-boundary value problem:







ut = uxx + f(x, t, u),
u(x, 0) = u0(x),
u(0, t) = µ(t)

x > 0, 0 < t < T0,
x > 0,
0 < t < T0,

and the ordinary differential equation

{

vt = f̃(t, u), 0 < t < T0,
v(0) = M,
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where T0 ∈ (0,∞], 0 ≤ f(x, t, u) ≤ f̃(t, u), limx→∞ f(x, t, u) = f̃(t, u),
0 ≤ u0 ≤M and limx→∞ u0(x) = M . For the equations he had u(x, t) → v(t)
as x → ∞ uniformly for [0, T ] with T < T0. For the proof of this result, he
used the fundamental solution of the heat equation.

In [5] the expression (9) was the weak sense:

lim
n→∞

u(xm, t) = v(t). (10)

After [5], (9) was used in [12]. However, for proving Theorems 2 and 3, we
can select even the expression (10).

Our second main result is on the location of blow-up points.

Theorem 2. Assume the same hypotheses of Theorem 1 and that f satisfies
(2) and (3). Let u0 6≡M a.e. in Rn. Then the solution of (1) has no blow-up
points with ∞ in R

n. (It blows up only at space infinity.)

There is a huge literature on location of blow-up points since the work of
Weissler [15] and Friedman-McLeod [1]. (We do not intend to list references
exhaustively in this paper.) However, most results consider either bounded
domains or solutions decaying at space infinity; such a solution does not blow
up at space infinity [2].

As far as the authors know, before the result of [4] the only paper dis-
cussing blow-up at space infinity is the work of Lacey [8]. He considered
the Dirichlet problem in a half line. He studied various nonlinear terms and
proved that a solution blows up only at space infinity. His method is based
on construction of suitable subsolutions and supersolutions. However, the
construction heavily depends on the Dirichlet condition at x = 0 and does
not apply to the Cauchy problem even for the case n = 1.

As previously described, the Giga-Umeda [4] proved the statement of
Theorems 1 and 2 assuming that lim|x|→∞ u0(x) = M for positive solutions
of ut = ∆u+ up. Later, Simojō[13] had the same results as in [4] by relaxing
the assumptions of initial data u0 ≥ 0 which is similar to that in the present
paper. His approach is a construction of a suitable supersolution which
implies that a ∈ Rn is not a blow-up point. Although he restricted himself
for f(s) = sp, his idea works our f under slightly strong assumption on u0.
Here we give a different approach.

By Simojō’s results[13] it is natural to consider a problem of “blow-up
direction” defined in (7). We next study this “blow-up direction” for the
value ∞.

Theorem 3. Assume the same hypotheses of Theorem 1. Let a direction
ψ ∈ Sn−1. If and only if there exists sequences {ym}

∞
m=1 and satisfying
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limm→∞ ym/|ym| = ψ such that

lim
m→∞

u0(x + ym) = M a.e. in Rn, (11)

then ψ is a blow-up direction.

After [5] there are some results in this field. Shimojō had the result of
the upperbound and the lowerbound:

v(t− η(x, t)) ≤ u(x, t) ≤ v(t− cη(x, t))

with some function η and c ∈ (0, 1). Moreover, he proved the complete
blow-up of the solution. Seki-Suzuki-Umeda [12] and Seki [11] improved the
results of [5] for the quasilinear parabolic equation:

ut = ∆ϕ(u) + f(u).

In particular they had more results for more general case. In [3] some of the
proofs of theorems in [5] were corrected.

This paper is organized as follows. In section 2 we prove Theorem 1 by
using the fundamental solution of the heat equation. The proof of Theorem
2 is given in section 3 by using the argument used in [12]. In section 4 we
show Theorem 3 using Theorem 1 and Lemma 3.2.

2 Behavior at space infinity

In this section we prove Theorem 1. We give proof of Theorem 1 which is
inspired in private communication with Y. Seki and M. Shimojō.

Proof of Theorem 1. Put w = v − x. Then, we have for t ∈ (0, T0] with
T0 ∈ (0, T (M)),

wt = ∆w + f(v(t)) − f(u(·, t)) ≤ ∆w + C(v − u),

where

C = sup
t∈[0,T0]

∥

∥

∥

∥

∫ 1

0

f ′(θv(t) + (1 − θ)u(·, t))dθ

∥

∥

∥

∥

∞

.

Then, by comparison we obtain

w(x, t) ≤ eCT0e∆t(M − u0(x)) =
1

(4πt)n/2

∫

Rn

e−|x−y|2/4t(M − u0(y))dy.
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From (5) we have

lim
m→∞

u(x+ xm, t) = v(t) in Rn. (12)

It remains to prove that u blows up at t = Tv. For this purpose it suffices
to prove that limm→∞ u(xm, tm) = ∞ for some sequence tm → Tv. We argue
by contradiction. Suppose that limm→∞ u(xm, tm) ≤ C for some C ∈ [M,∞).
Then we could take t0 ∈ (0, Tv) satisfying v(t0) ≥ C and vt(t) > 0 for t ≥ t0.
By (12) we have

lim
m→∞

u

(

xm,
t0 + Tv

2

)

= v

(

t0 + Tv

2

)

> C,

which yields a contradiction. We thus proved that limm→∞ u(xm, tm) = ∞,
so that u(x, t) blows up at Tv.

3 No blow-up point in Rn

In this section we prove Theorem 2. We use three lemmas for proving the
theorem..

Lemma 3.1. Assume the same hypothesis of Theorem 1. Let u and v be
solutions of (1) and (8) with u0, M and f satisfying (2), (3) and (4). Then
there exist δ = δ(a, t0, u0, f) ∈ (0, 1) such that for (x, t) ∈ B1(a) × [t0, Tv),

u(x, t) ≤ δv(t)

with t0 ∈ [0, Tv).

Proof. By (2) there exist Mf = Mf (f) > M and δf = δf (f) ∈ (0, 1) satisfy-
ing for r ≥Mf and δ ∈ (δf , 1),

f(δr) ≤ δf(r). (13)

Let T0 = T0(u0, f) ∈ (0, Tv) such that v(T0) = Mf . Since u0 ≤ M and
u0 6≡ M a.e. in Rn, we have u(x, T0) < v(T0). Note that u(x, t) < v(t) for
t ∈ (0, T0]. Let w be the solution of

{

wt = ∆w,
w(x, T0) = max{u(x, T0)/v(T0), δf},

x ∈ Rn, t ∈ (T0, T
∗),

x ∈ Rn.

Put ū = vw. Then we have
{

ūt = ∆ū+ wf(v),
ū(x, T0) = max{u(x, T0), δfv(T0)},

x ∈ Rn, t ∈ (T0, T
∗),

x ∈ Rn.
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Since w(x, t) ∈ [δf , 1) and v(t) ≥Mf , we have

wf(v) ≥ f(wv) = f(ū)

by (13). This ū is supersolution of (1).
Since for any x ∈ Rn, supt∈[T0,T ∗)w(x, t) < 1, we can take δ = δ(a, T0, u0, f) ∈

(0, 1) satisfying w(x, t) ≤ δ for (x, t) ∈ B1(a) × [T0, Tv). Thus, we obtain

u(x, t) ≤ ū(x, t) = w(x, t)v(t) ≤ δv(t)

and Lemma 3.1 is proved.

For any a ∈ Rn, we consider the solution φ = φa of the equation:







φt = ∆φ+ f(φ),
φ(x, 0) = φ0(x),
φ(x, t) = v(t),

x ∈ B1, t ∈ (t1, Tv),
x ∈ B1,
x ∈ ∂B1, t ∈ (t1, Tv),

(14)

where φ0(x) = v(t1)(1 − ε cos π|x|
2

) with ε = ε(u0, f, a) > 0 sufficiently small
satisfying

φ0(x) ≥ u(x+ a, t1) (15)

and B1 denotes the open ball of radius 1 and centered at 0. It is easily seen
that

∆φ0(x) + f(φ0(x)) ≥ 0.

By the maximum principle [10] we have

φ(x, t) ≥ u(x+ a, t) and φt ≥ 0 for x ∈ B̄1, t ∈ [t1, Tv). (16)

If w has no blow-up point in Rn, the u has no blow-up point in Rn, neither.
We should show that w has no blow-up point.

Lemma 3.2. Assume the same hypotheses of Lemma 3.1. Let Ω ∈ B1 be a
domain. If ∂tφ(x, t) ≥ 0 in Ω × (t1, Tv) and there exist ν ∈ Sn−1 and δ > 0,
such that

ν · ∇φ(x, t) ≤ −δ|∇φ(x, t)| < 0 in Ω × (t1, Tv),

then φ does not uniformly blow-up in Ω:

inf
x∈Ω

φ(x, t) ≤ L <∞ for t ∈ (t1, Tv).
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Proof of Lemma 3.2. This lemma is proved in [9] (See [9, Lemma 4.1]).

Proof of Theorem 2. Put r ∈ (0, 1). Define

µ(x, t) = φ(2r − x1, x
′, t) − φ(x1, x

′, t),

where x = (x1, x
′) with x′ = (x2, x3, . . . , xn) ∈ Rn−1. Then, we obtain







µt ≥ ∆µ+ C(x, t)µ,
µ(x, 0) = φ0(2r − x1, x

′) − φ0(x1, x
′) ≥ 0,

µ(x, t) ≥ 0,

x ∈ Dr, t ∈ (t1, Tv),
x ∈ Dr,
x ∈ ∂Dr, t ∈ (t1, Tv),

where

C(x, t) =

∫ 1

0

{θφ(2r − x1, x
′, t) + (1 − θ)φ(x1, x

′, t)} dθ

Dr = {x : x1 < r} ∩
{

x : (x− 2r)2 < 1
}

.

Thus, by the maximum principle [10] we have

µ ≥ 0 in D × [t1, Tv)

and

φ(2r − x1, x
′, t) ≥ φ(x1, x

′, t) in D × [t1, Tv).

Since r ∈ (0, 1) is arbitrary, we obtain that φx1
≥ 0 for x ∈ {x|x1 > 0} and

−e1 · ∇φ ≤ −φx1
≤ −

δx1

|x|
|∇φ|, in D ∪ {x|x1 ≥ 0}

with some δ > 0, where e1 = t(1, 0, 0, . . . , 0). Since φt ≥ 0 and infx∈B1
φ(x, t) =

φ(0, t), by Lemma 3.2 we have

lim
t→Tv

φ(0, t) ≤ L with some L <∞.

Thus

lim
t→Tv

u(a, t) ≤ L with same L.

Since a ∈ Rn is arbitrary, u does not blow up at t = Tv in Rn.
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4 On blow-up direction

We shall prove Theorem 3 which gives a condition for blow-up direction.

Proof of Theorem 3. We first prove that if u0 satisfies (11), then ψ is a blow-
up direction. By assumption we obtain that u0(x) satisfies (5) with some
sequences {xm}

∞
m=1 satisfying limm→∞ xm/|xm| = ψ. Then, from the proof

of Theorem 1 it follows that

lim
m→∞

u(xm, tm) = ∞

with the sequence {tm}
∞
m=1 satisfying limm→∞ tm = Tv. Since limm→∞ xm/|xm| =

ψ by the assumption we obtain that ψ is a blow-up direction.
We next show that if ψ is a blow-up direction, then there exist {xm}

∞
m=0 ⊂

Rn such that xm/|xm| → ψ, tm → Tv and u(xm, , tm) → ∞ as m → ∞.
In contrary it says that if for any sequences {xm}

∞
m=1 ⊂ Rn satisfying

limm→∞ xm/|xm| = ψ, u0 does not satisfy (11), then ψ is not a blow-up
direction.

Since limm→∞ u0(x + xm) = M a.e. in Rn, we have

lim
m→∞

sup
x∈B3(xm)

1

(4πt)n/2

∫

Rn

e−(x−y)2/4tu0(y)dy < M (17)

for t > 0. Since the solution of (1) satisfies the integral equation

u(x, t) = e∆tu0(x) +

∫ t

0

e∆(t−s)f(u(x, s))ds,

we have

u(x, t) ≤ e∆tu0(x) +

∫ t

0

f(v(s))ds = v(t) −M + e∆tu0(x)

for (x, t) ∈ Rn × [0, T ∗).
Let Mf , δf and T0 be the same as proof of Lemma 3.1. We consider the

solution w of
{

wt = ∆w,
w(x, T0) = max

{

{v(T0) −M + e∆T0u0(x)}/v(T0), δf
}

,
x ∈ Rn, t ∈ (T0, Tv),
x ∈ Rn.

We now introduce ũ = vw. From the proof of Lemma 3.1, it follows that
ũ ≥ u for (x, t) ∈ Rn × [T0, T

∗). Then we have

u(x, t) ≤ v(t)e∆(t−T0) max
{

{v(T0) −M + e∆T0u0(x)}/v(T0), δf
}
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for (x, t) ∈ Rn × [T0, Tv).
Put Um = supx∈B2(xm) e

T0u(x). From (17), there exists M0 ∈ (0,M) such
that

lim
m→∞

Um ≤ M0(< M).

There exists a sequence {Vk}
∞
k=1 such that Vk = (M0+M)/2, limk→∞ Vk = M0

Vk+1 ≤ Vk and Vk ≥ Umk
with a sequence {mk}

∞
k=1 satisfying uk+1 > uk for

k ∈ N. Thus, since (x− y)2 ≤ 2x2 + 2y2, we obtain

sup
x∈B1(x̃k)

w(x, t) ≤ Wk(t)

= e∆(t−T0) max

{

v(T0) − (M − Vk)e
−|x|2/2t

∫

|y|<2
e−|y|2/2tu0(y)dy

(4πT0)−n/2v(T0)
, δf

}

< 1

for t ∈ [T0, Tv), where x̃k = xmk
. By comparison we have Wk+1(t) ≤ Wk(t)

for t ∈ [T0, Tv) and k ∈ N. From Lemma 3.2 and comparison it follows that
there exist the sequence {ηk}

∞
k=1 satisfying 0 < ηk+1 ≤ ηk <∞ such that

lim
t→Tv

u(xmk
, t) ≤ ηk.

Since the sequence {xm}
∞
m=1 is arbitrary, we obtain that ψ is not blow-up

direction.
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