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Abstract

We prove a new Carleman estimate for general linear second order parabolic equation with
nonhomogeneous boundary conditions. On basis of this estimate we obtain an improved Car-
leman estimate for the Stokes system and a system of parabolic equations with a parameter
which can be viewed as an approximation of the Stokes system.

1 Introduction.

Local Carleman estimates for elliptic and parabolic equations are known since [1] and [7] and among
other examples of applications they turn out to be essential to prove unique continuation properties.
Global Carleman estimates for parabolic equations with homogeneous boundary conditions have
been obtained by several authors in the recent years (see for example [9] for L2(0,T; L*(12)) right-
hand sides and [13] for L?(0,T; H~1(9)) right-hand sides). They have been extensively used for
obtaining observability inequalities in controllability theory and stability results for some inverse
problems.

For the case of elliptic equations with nonhomogeneous boundary conditions and H~!(Q) right-
hand sides, sharp Carleman estimates have been obtained in [12] and this result turned out to be
essential for obtaining estimates on the pressure in the context of controllability for the Navier-
Stokes equations (see [5]).

The main object of the present article is to obtain a similar result of global Carleman estimates
for general parabolic equations with nonhomogeneous boundary conditions and right-hand sides in
L%(0,T; H1(2)). To this aim, after localization and a change of coordinates, we use a factorization
of the operator and successive estimates for first order pseudodifferential operators in order to
obtain the Carleman estimate. The article is organized as follows : the main result is precisely
given in Section 2 together with its complete proof. In Sections 3 this result is applied (using
also the estimate for elliptic equations) to the Stokes operator, and in Section 4 it is applied to a
compressible Stokes operator where the incompressibility condition is approximated by penalization.
In the Appendix, we give some useful technical results on calculus for pseudodifferential operators
depending on a parameter.
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First of all we need some notations which are introduced below.

Notations.

B(zp,0) = {z| x € R™, |z — xo| < d}, v is the outward unit normal vector to 9Q = T, % =
szzl aisz‘a%j, Q=(0,T)xQ,%=(0,T) x99, Q, = (0,T) X w, where w is a subdomain of €2,
L(X,Y) is the space of linear continuous operators acting from a Banach space X into a Banach
space Y, [L, A] = LA — AL is the commutator of operators L and A.

We use the following functional spaces

oy 0%y Oy

H1’2(Q):{y| E’M’axi’yelﬂ(@) W,jE{l,...,n}},
0 0
W(Q = {uly g, € L(Q), Vi€ {1,....n}, T € DO, TH (@),

n
11 1 .
TR = {yfonw)] [ (0 1l + D l@Dlafde < +oc).
=2
The space H%%S(IR") is the space Hi%(]R”) equipped with the norm

_ 2 2 1
HyHH%,%,S(]Rn) = (”yHH%,%(Rn) + ’5’|’yHL2(Rn))2'

2 Precise statement of the result.

Let © be a bounded open set of IR” of class C? and let I be the boundary of €. We consider a
solution y € W(Q) of the following linear second order parabolic equation

oy "9 oy - oy
2.1 Lz, Dy = 2 -3 L (a(z)L ()Y
+Zzl 8;1% (Cz($)y) + d(x)y = f + ; %j? m (OaT) X Qa
(2.2) y = gon (0,7)xT,
where
(2.3) aij € 02(@), bj,Ci,d € LOO(Q) for i,j € {1, ...,n},
(2.4) aij = Qjj for i,j € {1, ...,')”L}7

and the coefficients a;; satisfy the standard ellipticity condition

n

(2.5) 3B >0, VpeR", Vo € Q, Y ay(x)nim; > Blnl>.

ij=1
On the other hand we assume that

(2.6) feL¥Q), fj € L(Q), Vi=1,..n,



and ¢ is the boundary value of a function in W (Q). For simplicity we will assume
(2.7) ge H12((0,T) xT) = Hi2(%).

Our goal is to obtain a sharp global Carleman inequality for solutions of (2.1), (2.2). In order to
formulate our main result, we first have to introduce a suitable weight function.

Lemma 2.1. Let w be an arbitrary non empty open set such that w C Q. Then there exists a
function ¢ € C%(Q) such that

(2.8) p=0onT,
(2.9) P(z) > 0VEeq,
(2.10) Vy(z)] > 0VZeQ\w.

Proof. Let us consider a function 0(x) € C2(IR"™) such that
(2.11) Q={z] 6(z) <0}, |VO(x)#0 V zeo.

By virtue of the Theorem on density of Morse functions (see [2]) there exist a sequence of Morse
functions {6 (x)}32, such that

(2.12) Op — 60 in C*Q) as k— +oo.
Let us construct a Morse function u € C?(Q2) such that
(2.13) wx)oa =0, |[Vu(z) >0 V zed.

We denote by B = {z € IR"|V6(z) = 0} the set of critical points of functions €. Since |V ‘89 >0
there exists an open set © C IR" such that

(2.14) onB={0}, once.

Let e(x) € C§°(©), e|laa = 1. Set pp(x) = 0, + e(8 — 0;). It is obvious that
(2.15) 1ukloq = 0.

By definition of the function e(z) we have

(2.16) Vur(x) = VOr(z) YreQ\o.

For all z from the set © N Q2

(2.17) Viug(x) = Vo, +e(VO —VO) + Ve(0 — 0).

By virtue of (2.12) and (2.17) we have: Ve > 0 3 ko(e) such that

(2.18) Vel = [V04] = llellcn gy V0 — V0
(2.19) —||e||01(§)|0—0k| > |Vl —e YxeONQ,
where k > kg.



It follows from (2.12), (2.14), (2.16) and these last inequalities that there exists such e > 0 and k
that

(2.20) V| >0 in ©NnQ.

Set u(x) = pj(z). By (2.15), (2.16) and (2.20) the Morse function u;(x) satisfies (2.13).
We denote by 9 the set of critical points of function u(x):

M={2cR" i=1,...7}.

Let us consider the sequence of functions {l;}]_; C C*°([0,1];IR™) such that

(2.21) lz(t) eEQVte [0, 1], li(tl) #* li(tz) Vi1, to € [O, 1] & t1#tyi=1,---,r;
(2.23) li(tl) 75 lj(tz) Vi 7&] Viti,ts € [0, 1].

By (2.21) - (2.23) there exists a sequence of functions {w(®}7_, ¢ C2(IR",IR") and {e;}}_; C C5°(Q)
such that

(2.24) dl;f) =wO@) veelo,1], i=1,---,r
(2.25) suppe; C QY i=1,---,7;

(2.26) suppe; Nsuppe; = {0} Vi # j;

(2.27) e(li(t) =1 Ytel0,1, i=1--,n
We set

V() = ej(z)w?(z).
Let us consider the system of the ordinary differential equations

(2.98) % — V), 2(0) = z0.

We denote by St(i) :IR™ — IR" the operator such that St(i) (xo) = x(t), where z(t) is the solution of

problem (2.28).
By (2.22), (2.24) and (2.27) we have

We set

(2.20) (@) = plor(@). gr(x) =505V 0 0 5(@)
By (2.25) there exists a domain & C IR" such that 9Q C & and

(2.30) Sfi)(a:):x Veed, i=1---,r



By (2.30) the mappings Sy) (z) are diffeomorphisms on the domain €. So g,(x) is a diffeomorphism
on the domain Q. By (2.30) ¢(x) = u(x) Vz € S. Hence

(2.31) ()]on = 0.

We denote by ¥ the set of critical points of function 1. Since the mapping g, : @ — Q is a
diffeomorphism we have

(2.32) U = {z € Q| g (z) € M}.
By (2.26) and (2.30)
(2.33) g (L;(0)=a; i=1,---,r
It follows from (2.32) and (2.33) that

v C wy.l
We say that the function. .

Lo(z,8) =&+ Y aju(z)é
k=1

is the principal symbol of the operator L(x, D).
For functions f(x,§), g(z,&) we introduce the Poisson bracket

-2 (k- 2
Wk ;(3& Oxj  0&; 0x;)

Definition. We say that function a(x) is pseudoconver with respect to the symbol Lo(x, &) if there
exists a constant C' > Osuch that

Im{Ly(x, &0, C"), La(x, &0, ¢)}

5]

where S = {(z,&,s)|r € Q \ Qu, ]\/{(5,5) =1, La(x,&0,¢") =0}, ¢ = (&1 +i|s|aw,, -, &n +il8|ag,)
and M(&,s) = (& + Y0, &+ s1)a.
Now, using this function v, we construct two weight functions

>0 V(z,§s) €Q\Qu xS,

M (T1,5005an) (@) (@1 5eesmn) 62)\||1p||co(§)
N al\T = 9y
% (z0) 05 (x0)

where k > 2, A € IR, A > 1 will be chosen later on large enough,

(2.34) p(r) =

e C*0,T], £(xo) >0V e (0,T),

3T

T
E(.CI}(]) = 20 on c [0, ZL E(.%‘(]) =T — o o € [T,T}.

We have
Proposition 2.2. Let the function o be given by (2.34). Then there exist 5\, C such that

i(a)
)

_ . Y ()
(2.35) Im{Ta(z, €0, € — i|s|V'a), Lo(x, &0, € +i|s|V'a)} > C\S\XL*ZTM?(; s

for all (z,&,5) €S and A > \. Here X is independent of s and C is independent of s and .



Proof. We introduce the following notations: p(j)(x,f) = Og,;p(z,§), p(j’i)(x,f) = 852],&19(1' €)

pG)(x,8) = Ou;p(7,8), Va = (0,az,,...,0z,), € = (€1,...,&). After short computations we
obtain

—L =1 7L —1.
85 2(1' 50;() z, a€ 2(1' fO;C) t
P 0%«
i .
T L2(@.60,¢") = Lo,y (.60, ¢' +Z|5|ZL (.80, () g 50
o . %«
e L2l 0. C) = Loy (w60, —llsliL ) oo

Then

Im{Ls(z, &, ("), La(z, &, ()} =

Im ( Egk)(xag(b 5,)L2,(/€)(x>£07< ) LQ (k) (l’ 507 i’ 80, C )
k=0

Simple computations provide the following formulae

Im <§0L2(:c £0,¢ )820 2(2,60,¢") — 88112(33 &0, )850 (fvaﬁo,C/))

m) Faze!
=Im|( (- )(L2(0 (z,&0,¢ +Z|3|ZL z, &, ¢ G:U 5360)

81‘m81)0

—i(Lo () (, 0, () —ZI|ZL z, &, ¢ da )}:

m), 0? SR,
= 2Ly (oy(x,€) + 25° Z L( )833 gxo + 25%a,, (z, Vo, Va),

Dai;
where ag, (z,n,m) = >, %;nmj and

I <8§L2<x 60, 0) o Lol 60, €)= 5 Lalo, 60, E’)a(ZkLa(fmﬁm <’>)

2
=1Im (I_/gk)(x,ﬁo,g‘ ) (Lo, k) (2, €0, ¢") + 45| Z L (z,&,¢ o )

(%skc%:m
= L5 (2,60, ¢) (Lo, oy (. 0. C —z\swzﬂ (:60:0) g >> -
— L (@, [8IVa) (La, 4y (@, €) — Lo,y (2, [s1Va)) + L (2, €)ImLy ) (x, €0, ')
+|s|L§’“<x,s>ZLé (.65, + 151 (o, |51V ) ZL (. [5IVa) 5
—L (z, 8|V ) (Lo, 1) (%, €) — Lo,y (, |s| V) + (fE &)ImLy (2, &0, (")
m) 0%« 9%
+\5|L (x,€) ZL W+|S|L z,|s|Va) ZL z,|s|Va) 02,02



Therefore

%Im{fg(x,&), &), Lo(x, 0, ()} =

1 0 0 - —. 0
~Im (Z ——La(x,&,¢ )6xk Ly iy (2, &0, ¢") — %Lz(%éo?(/)afh

2 £ (@ %, Cl))

D

8$k8$0

= —Lo (oy(7,§) + s Z L(Qk) (z,Va) + 25%a,, (2, Vo, Va)

k=1
fL<< 18IV Q) (Lo gty (2, €) — LY (2, |s|Va)) + LY (2, |s|Va) Im Ly 1 (2, &0, ')
92a

0z, 0T,

+ Z (18| L8 (@, ) L™ (2, €) + |s| LS (2, 5| V) L™ (i, | 5| V)
m,k=1

Observing that 690 ax = (AN, ¥y, + Mg ) S W(I)

, we have

9«

1= 37 (sl (e, O LE™ (0,€) + 51187 (o, sV ) L™ (o 3] V) o

m,k=1

= Ns|(a(z,&,Vi)® + 5

) 62)\1/)(z) >\1/1

n Xy
D7 (1257 @ L™ (.€) + 1|25 (a |5 Vo) L™ (2 ]V e) My

m,k=1

Since (z,&,s) € S the following inequality holds true

Taking A sufficiently large, for all A > A we have

N W )
(236) I > 70’8’ ’(578 I )‘ v<$7578) €S

where C is independent of A, &, s.
Finally observing that o

6ol < la(z, &, [s|Va)| V(z,€,5) €S
we obtain from (2.36)

4 M) M)
(2.37) I> %Ce |s| M2 (g, 85

where C is independent of A, &, s. On the other hand

) V(z,&,8) €S

P
afﬁkal‘o

| = Lo () (, €) + 25%a,,(z, Va, Va) —i—sZZL (z,Va)
k=1
L") (@ 8V ) (L ) (2, €) = Ly (2, |3/ V) + L™ (|3 V) Tm Ly g (2, 0. )

Xi() X ()
(238) < Cls|\2—M2(¢, 5

s )

Inequalities (2.38), (2.37) imply (2.35). &
Now we formulate our main observability estimate for the parabolic equation.



Theorem 2.3. Let us assume that (2.5)-(2.6) holds true, and let y € W(Q) be a solution of (2.1),
(2.2). Then there exists a constant A such that for any X > \ there ezists C > 0 independent of s
and so(\) that

1 1 S ay 2 2sa 2 2sa ~1 -1 say2
(2.39) S/CJ¢;|%| dats [ elteods < Ol o2y

1 1 1 1 2 "
sl e+ [ et Y [P
s Jqg ¥ = Ja
+/ sap\y|262mdm) Vs > sg > 0.
Qu

Remark 2.4.

1) By a density argument, it suffices to prove the result when the solution y is supposed to be
more reqular, namely y € H?(Q) and the right hand side has compact support. Actually, there

exists a sequence of {f*, fE ... fF g%} € (C2(Q))"H x C°(X) conwerging to {(f, f1,--- fn,g} in
L2(Q)"H x H4’2( ) and the corresponding solution y to problem (2.1), (2.2) with right hand side

ff+ Z] 1 aTj and boundary condition g* is such that y, € H*(Q) and
y* =y in L2(0,T; HY()).

So it suffices to prove estimate (2.39) for solutions y € H%?(Q) and right hand sides with compact
support in (Q and X.

2) Without loss of generality, it is sufficient to consider the case where bj =0, ¢; =0 and d =0 as
the first and zero order terms in (2.1) can be added to the right hand side and the corresponding
terms in (2.39) can be absorbed by the terms in the left hand side by choosing § and A large enough.

The proof of Theorem 2.3 requires several steps and will be the content of the next subsections.

2.1 Localization in space and time.

For every § > 0 we can consider a covering of Q = [0, T] x Q as follows

(2.40) QC QU

rC~
%

where @y = (O,T) X Qo,ﬁo CQ, iy € (O,T) x Of).
Let (er)k=o,..r be a corresponding partition of unity, i.e.

€o € C(())O(QO)a ek € C(C))O(B(fka(s))a k=1,..,1

I
ex(xr) >0, k=0,...,1I, and Zek(m) =1, Vo € Q.

We now define



Then if L(z, D)y = 870 =D im1 8% (aij%’j) (recall that from the previous remark this corresponds

to the general case), we have for each k =0, ..., I

0
(2.41) L. Dye = [L(x.D),exly+enf + Z e’“ff ij % i Q.
(2.42) yr = geron (0,7)xT,
and
(2.43) suppyo C Qo, suppyr C B(2y,0), k=1,..., 1.

Notice that the commutator [L, eg] is a first order operator and that ey f; and fj% have compact
J

support in B(z,d) for all k=1,...,1.

Let us suppose that Theorem 2.3 is true with the additional assumption that

suppy C Qo, or suppy C B(&,9), & € (0,T) x 0.

Then, as y = Zé:o Yk, we have (the letter C' will denote various constants independent of s )

s ay s
L Day 2+ selul?) de<cz 5 Zr A2 4 sl )e dr
J

1
<oy (s—%rw—igekemw

Hi3 (%)
k=0

/‘fj€k|2 2sadx+822/ ’f] QSad.%'—i-/Q‘yPQQSada}

/ 3¢’yk|2 25adx
Qu

2
1 1 1 1 1
(2.44) S0(3_5H<P7965a||2211,%(2)+s_5\|90_1+ﬁgeso‘lliz(2)+82 Q‘f " easagy

n
+2Z/ |fj|262sadl‘—{—/ |y|2€2sad$—|—/ S(p|y|2625ad$).
o/ Q Qu

Taking now § sufficiently large, we obtain (2.39) for s > §. Therefore it is enough to prove Theorem
2.3 in the two cases :

‘f:k’| 2sad$
Q s%%°

1,1
4+ngekesa||%2(2) +

1
+s572|p

MN ||

e (i) suppy C Qo,
e (ii) suppy C B(Z,9), & € (0,T) x 0.

Case (i) immediately follows from [13] so, below, we concentrate on Case (ii).

2.2 Change of coordinates

Let us take & € (0,7) x 99, 6 > 0 and a solution y of (2.1), (2.2) such that suppy C B(%,9). B
(A.210) there exists § > 0 sufficiently small such that for some index ip € {1,...,n}

oy

61’1'0

(z) #0, Yz € B(z, ).



After renumbering we can assume that ig = n and without loss of generality we can assume that

9y

2.4
(2.45) or.

—(x) #0, Yz € B(%,9).

We now take the new coordinate system

(2.46) Tn =U(x1,... 20), Ti=x4, 1=0,...,m— 1.

As ¢ =0onT, in the new coordinate system ((0,7") x 9Q) N B(z, ) corresponds to &, = 0. Writing

Q(i’o,i’l, ,:f'n) = y($0,$1, ,CL’n)

we obtain from (2.1), (2.2)

. ) 0% . 0% . . . N Of o
2.47) L(z,D 2N Gpi——a——A)+By = f+ L in [0, T)xIR" 1% (0,7),
(2.47) L(2, D)y = Dz 972 2 ISz, 9B f 25, [0,T] (0,7)
(2.48) g(2,0) = g(«'), on [0,T7] x R™™Y, &' = (&o,...,%n_1)

and ¢ vanishes in the neighborhood of the set (0B'(0,d) x [0,7]) U (B’(0,d) x {v}) with B’(0,0) =
{#' e R", |#'| <6} and &' = (%o, ..., Tpn_1)-
We now want to show an inequality analogous to (2.39) corresponding to the weight function

(2.49) $(3) = M @remin),

More precisely we want to show that there exists a constant \ such that for any A > )\ there exist
so and C' > 0 independent of s that for all s > sg

L~ 09 2 10y 956 — Aot el s sang2
(2.50) /Q( A;ax]| + s@|g})e*ddi < C(s™2||p 4geSO¢||H21I‘%(E)

L1110 ¢4
+ sl g B + / W o +Z / fif?ed2).

The operator A has the form

2/\

(2.51) Z aij (& ax,axj

».7_

and operator B is a first order differential operator with L* coeflicients. We have already seen
that we can ignore first order terms. We also omit from now on the notation”. We then obtain

(2.52) L(x, D) —a@—@—i Oy f+z in [0,7] x R"! x (0,7)
. 5 y= Oa.TQ ax% : n]a a 8 R »Y)s

(2.53) y(2',0) = g(2), on [0,T] x R"!

10



and
(2.54) y vanishes in the neigborhood of the set (9B’(0,4) x [0,~]) U (B'(0,8) x {v}).

Here ag(x) € C1(Q) is a strictly positive function. Notice that f, fj also have compact support in
B'(0,6) x [0,) and that g has compact support in B’(0,d). Moreover if we write for z € IR"**
and ¢!, 2 e R}

(2.55) a2, 6, €)= Y ay(2)&l €

we have an ellipticity condition corresponding to (2.5) namely there exists 5 > 0, such that for all
e R",

n—1
(2.56) &+ anj(2)énd; + a(x,£,8) = IEP, Vo € Ty, = B'(0,6) x [0,],
j=1

where € = (£1,...,6,—1) € R""!. This shows that

n—1

(2.57) 3 >0, VEe R, & =1, a(x,£,8) — (D anj(2)§;)” > 4.

J=1

2.3 Localization in time.

From now on it is convenient for us to work with the function w(z) = el*l*y(z) instead of y.
Function w verifies the equation

(2.58) L(x, Dy, D' +i|s|V'a)w = F, in [0,T] x R"™ x (0,7),
(2.59) w(z',0) = gelsle,
(2.60) supp w C Il = B'(0,6) x [0,7),

where F(z) = Fo + Y i gi’FO = elslof — > i1 |s|ag, fiel*l® — |s|ag,w, F; = fiel*l*. Since the
function « has singularities at xo equal 0 and T it is the same for some coefficients of equation
(2.58). We overcome this difficulty using a localization in time. )

I:et @Z)(:EO)NE Cgo(%~, 2) be a nonn~egative function such~ that Z;’;_Ooq/)(Q_jxo) =1 (We may take
Y(zo) = B(wo) — B(2w0) where § € C§°(—2,2) and S equals 1 for |zo| < 1.) Denote 9;(zo) =
(277 mo), pj(xo) = (277 /%(20)), fij(x0) = ¥'(277 /L(w0)), ¥j(20) = pj+1(z0) + 11 (w0) + pj—1(z0)
and w;(z) = pj(xo)w(x), F j(x) = pj(w0) Fi(x), gj(x) = pj(wo)g(x)elsle.

Function w; satisfies the equation:

n
OF; ;
(2.61) L(z, Do, D' +i|s|V'a)w; = Opypjw + Foj + E WZ] in G =1R" x (0,7),
(2

i=1

11



(2.62) wj(x', 0) = g;,

(2.63) suppw; C 5.

Suppose that for a function w; the following Carleman estimate is already established:

Zus 20 %

1 1,1
(264) [ls 3o i v gyllzamm + | @soyw + Fog)/(s0) 126 +ZHF,JHL2 Vs > 50> 1,

HL2(G + 522wl 2y < Clls™50 g5 4.4 g +

where C is independent of s and j and sg is independent of j.
Observe that

(2.65) supp ;N supp p # {0}, supp ji; Nsupp iy # {0} only if [k —j| < 1.

Let f,h € L?(G) be an arbitrary function and fj = ,ujf, izj = fi;h. By (2.65) we have

(2.66) Z |£j(@)]* < C|f(x) Z |hj(2)* < Clh(x)]* Va € G,
]_700 j—foo
Therefore
(2.67) > (1Fos/(s9)ll 2 +ZHF,]HL2 ) < 3(I1Fo/ (@)l r2c) + DI Fillr2(a))-
j=—o00 =1

:“'7f

Observing that Soe = —hHj 7 Hﬁ we have

Z 19roi () = Z wa%l e = Z Ifi7 Sl

Using (2.66) one more time we have

[e.¢]
(2.68) Z 10 xoﬂ] HL2 <Cl——= I HL2 (@)
j=—00 sp!
Since the restriction of a function ¢ on the hyperplane {z| z,, = 0} is independent of (z1,...,Zn_1)

we have

S e o M o= 30 [ e Bulateo I

j=—o00 j=—00" "

400
(269) <C / o Hlaao )Py ., dro < Cllgil?,

HE(R"Y) 3R

Next we observe that

— 2
S e 0 g = 30 [ e i a )l o dea

]7—00 ]7 o0

12



Denote G; = supp pj, h; = go_igj, h = gp_ig. According to the definition of the norm in the space
Hi we have

) h)(x )" 2
A A o) o, ) = (ush) @o. I g
!yo—m!?
(0, )R h h(xo, ) 2|15 (0) |2
<C// |15 (o, ) — (o, )3’ \h(yo,-)|? dzodyo +C/ |h(yo, -) — h(zo, )|3 |15 (o) dzodyo
lyo — o2 lyo — o2
(2.70) = C(I1(j) + I2(4))-

We estimate the terms I; and I, separately. By Young’s inequality we have

1
I :/g /[ 5 W5 (O P Ao, o1, - . - wn1)[yo — w0 Zdwodyo
-

1
g/g /[65]|h(y0,x1,...,33n1)!2|y0—:Eo|2d:1:odyo||#j”201(R) < CllujllEamwyllhC s wn-1)l72 (g,
J

Obviously
luilleray < CA+le= (o, 2n1,0)lcogy)-
Next we notice that ' 1
277 [0 () € [5,2] Vo € Gj.
Since ¢(-,x1,...,2n—1,0) = 1/£%(x¢) this implies
(1, ..., 2n-1,0) € [2771,27] Vg € G

and
1 1
(2.71) I <Cle 1% (21, .., Tn1,0)g(-, 21, .. .,$n_1)‘|%2(gj)
and
hyo,ib‘l,...,l’ -1 —hxo,xl,...,x —1 2
I §||MjH2CO(]R)// IR n-1) (§ n=)l dzodyo
RJG; ‘yo—xo‘Q
< a1 1m0y e o
h(xg,z1,...,x
s [ Mt By g
R\U/L 161 /G, lyo — ol
: ~rtag(- 2
(2.72) < Ut sty e g 975G o) )
Here we used the fact that
1

/ . —— dyo < C ~dyo < C|lp~ 4(-,:51,...,xn,l,O)H%O(gj) Vxo € G;
R\U/Z)_1G: [yo —900\2 {lyol==27972} |y0!2
By (2.65)

(o]
2.73 h(-,z1,.. h(-, @1, .. xn_1)]?
(2.73) _Z [R( 21,5 Tn1) _Z [R(s 21, 2 1)||H211(g2j)

j=—o0 j=—o0

[o¢]
+ (- 1, .. )| <2k 21, )| .
P LA PR LS BRE S AT

13



By (2.71)-(2.73)

Z s~ 4gJ||HHIRn = Z ls™56 g2 0 4 b T Z s~ 49]|leI )

j=—00 j=—00 Jj=—00

1 oo
<c|lls iy 49HH02(Rn) +572 Z (Ii(5) + I2(7))

j=—o00

(2.74) < O(ls™ ¢ ig]? + 73T R e

. = ¥ g H%’%(]R") @ g LQ(]R") .
By (2.64) for any s > s
110w 11
Zns ot e + Istebulie)
> n 1 1
(2.75) <> ( ls™2¢72 5 HL2<G + [|s2 2wy | 2 G))
j=—00 =1

1
<0 3 (e oyl g g+ I gl

j=—o00

| (@zopjw + Fo )/ (s0) | r2(c) + D I Figl
i=1

12(G))-

Finally we estimate terms in the right hand side of (2.75) using (2.67), (2.68), (2.74)

n
1 _10w 11
(2.76) D llsTze 2333,HL2(G)+IISQsOQwIILz(G)
7j=1
1 1.1
C(lls 7 49”Han + 710 1 R gl o mny

w n
==z lr2@) + [1Fo/(s9)ll 12(c) + Z | Fill2(cy) Vs > so.
s w i=1

Using the definition of the functions F; and increasing the parameter s if necessary, from (2.76) we
obtain (2.50). Thus in order to prove (2.50) it suffices to prove (2.64). We concentrate on proving

this estimate below.

2.4 Auxiliary problem.

In the previous subsection we showed that in order to prove the Carleman estimate (2.39) it suffices
to establish a countable number of Carleman estimates for slightly simpler problems. We put all
these problems in the following general framework : Consider the following partial differential

equation

(2.77) L(z,Do, D' +i|7|V'B)w=f inG,
(2.78) w(@',0) = 3,
(2.79) suppw C 15 .

14



Here f € H_%’_I’T(G), supp f CC 115, where

HAO) = (HTC Il iy = 5w ot
weHg " (G) P (€))
We take a function 3 such that
(2.80) pel,
where the set U is constructed in the following way : First we extend a function ¥ (z1,...,x,) on

the set R" ! x [0,~] up to a C? function in such a way that 1) is a constant outside of a ball of a
sufficiently large radius and ¢ (z) < 2|¢[|coq) on IR x [0,7]. (Here [4]lco@) is a norm of the
function ¥ in original coordinates.) We fix a sequence {zg ;} is such that xg; € supp p1;. The a set
U consists of the functions of the form

(e)\w - 62)\“1?“00(52) )g’f(x&j)/@?(l‘o)-

The sequence of functions {l@} is constructed in the following way. We fix sufficiently large j
such that for all j > j suppp; C [0, L1 U [TL,T]. There exist 0 < Tp(j) < T1(j) < T such that
supp ptj C [To(4), T1(j)]. So for j < j we define ¢; to be a smooth, strictly positive function on
[0, T] which coincides with ¢ on the segment [Tg( i), T1(j)] and equal to some constants on [T +oo)
and (—o0,0]. If j >jthensuppuj 277 2_*] [T—2_7T—2 m} We set £ = 2~"% on
the segment [0,27 2] and on the segment [2 5 ,2_7] we extend £ as a linear function in such
a way that the resulting function is continuous. Similarly on the segment [T' — 2_E,T | we set
Uzo) =T — 9= and on the segment [T — 27% T— 27E] we let E be a hnear function, such
that the resulting function is continuous. Finally on the segment [27 w, T — 2_7] the function £
coincides with £. It is not difficult to establish the following properties for functions of the set U.
There exists a positive constant C' such that for all 3 € U

s B

() >C >0 Vxells,, =0 Vie{l,...,n—1}, Vz € {x, =0}.

There exists a positive constant C such that
(2.82) Im{Ly(, &, &' — i[7|V'B), La(w, o, € +il7|V'B)} = C|r[M>(€, 7)

for all (z,&,7) € {(x,&, 7)|x € 15y, La(z,&0,& + i|7|V'3) = 0} where dp > 0 is some constant
independent of 3.
Let us show that problem (2.61)- (2 63) can be reduced to the problem (2.77)-(2.79). We set

w:wj,f 8xoﬂjw+F0,]+Zz 1 81:1 79 9j,

(2.83) T =s/l"(x0j), B(x)=a(x)l"(xo;) Vro € supp uj, where zg ; € supp p;.
Since
B(x) = a(x)l"(zo,;) Vxo € supp p;
we have
L(z, Dy, D' +i|7|V'B)w = L(z, Dy, D' + i|7|V'B)w; =
L(w, Do, D" +i|7|(V'a) " (z0,3))w; =

OF;
L(.%' DOvD +7J‘S‘V a)wj - xoﬂ]w—i_FOJ +Z ’J

15



Next we claim that for solutions of system (2.77)-(2.79) the following Carleman estimate holds true:
There exist a constant C and 7y, both independent of 3 € U, such that

1 Jw
ZHT 2 HL2 ) F 177w 2y < O lg])

H12(RY)

(2.84) +7—_Z+;H§HL2(]R”) S VP VT > 70.

(G))
Suppose for the moment that this estimate is proved already Let us show that it implies (2.64).

We know already that functions (wj, g;, Oz ptjw+ Fo j +> iy &C 1) satisfy (2.77)-(2.79) with 7 and
[ defined in (2.83). Making the change of unknown in (2.84) we arrive to the inequality

- s _10w |s] |s]

E N i B . <

s ||(£H($O,])) 2 Oxy, ”L2(G) + H(£H<I‘0,])) w]||L2(G) = C((gﬁ(l'o )) 4 Hg]HHZ '3 (R") +
5]

05(z0,5)

which holds for all 7 > 7.

Note that there exist two constants C; > 0, Cy > 0 independent of s, j such that
1 1 1
2.86 Ci < <Oy Vg € supp fy,
( ) o(z0, ..., Tp-1,0) = ¢ (0 ) o(xo, ..., Tn_1,0) Hi

Then previous inequality can be written in the form

[V

8F7]

(2.85) ( )i 5 gl 2arny + [10roptgw + Fo g + Z H 310

R (=g 5) ) ©)

n 1

_1 18wj 1 1 |5| 1
> llel b g e &+ Il ebuslize < O o) 15l d e *

(2:87) [[(Isle) ™7 % gjll 2 mmy + | Dwortsw + Fo )/ (s9) 2 +ZIIF,]IIL2 Vs > so.

The last thing we need to show is the existence of a constant C' > 0 such that

1
|s| 1
(gk(xw) 19511 ;3.3 gy < CUslO) 2411 4.4 gy + 1l gl mey)-

Since (2.86) immediately implies the inequality

1
sl T, ~1g.
() 1950 gy < €110 503 e

it suffices to prove
1

s 1 1
(2.88) <gk(|$(’)j)> il 3 n)_C(H(!S!sD) 49j||H% +H(\S\90) gl (R™))-

Then, elementary computations provide that for any zg € G;

1 1
|h(z0)™ % (%0, - - s Tn—-1,0) — h(Y0) P % (Yo - - - , Yn—1,0)|* =

!@‘i(xo, ooy Zp—1,0)(h(x0) — h(yo) + h(yo)(sfi(ito ey Xp—1,0) — 90_%(340 e Uno1,0))?
_1 2 2
> |~ (20, .-, Zn—1,0)|"|h(x0) — h(yo)]
—4]h(yo)*l¢ % (20, - -, Tn1,0) — 3 (3o -..,yn,1,0>|22
_1 _1
(2.89) C(W) i|h(z0) — h(wo)> — 411 (yo) %101 (20, Zn-1,0) — 9 5 (Y0, - - -, Yn_1,0)[*-
7]

16



Using (2.89) and definition of H 1 norm we have

1
sl ', n
<gk($0’j) 1931 13 0 gy < C LIS 73951 40 ey

h(yo)|? ey Tne1,0) = 7T (Y0, s Y1, 0)2
$/ 1/ | |——| y0)| |30 (1‘07 s Ln—1, ) 390 4(yo, s Yn—1, )| dzodyody . . day 1
R"™ JG;

|zo — yol2

_1
S (COR—-

\//]Rn 1/ / ’8’ 4|h Yo ‘2’( )(C)’2‘x0_y0|édw0dy0d$1d.ﬁUn_l)

1
< CUse) gl oy 1151707 H 2 gyl 2y

Thus the estimate (2.88) is established.
In (2.77) without a loss of generality one can assume that a,, = 1. The principal symbol of operator
L(z,D,T) can be written in the form

LQ(xva T) = ia‘O 50 + Z az] CZij

t,j=1

where ( = £ + i|7|V 3. Consider the equation Ly(z,&,7) = 0. The two roots in &, of this equation
are

—i|7| By, () + )\i(a?, ¢ 1),

where

n—1
M2, €, m) = =3 ani (@) £ | —(alz, ¢, ¢') +iag(z Zam 2,
j=1

and ¢/ =& +1|7|V'B.

Let M = {(¢/,7)I§ +7* + 375 & =1}

If (2,8, 7) € & ={(z, ¢, 7) € HMXM! (a(z,¢', ) +iao(x)€o) + (721 anj(2)¢;)* € C\IRY } we
assume that Im\/—(a(x, ¢, ¢") +iao(x)é0) + (37 ! anj()¢;)? is positive. Therefore outside of the

set ® functions A* are smooth. In order to regularize this expression for A (z, &', 7) near (¢/,7) = 0,
we consider v € C*®°(IRT) such that

1
v(t) =0, for t € [0, 5],
v(t)=1fort > 1,
0<wv(t)<1VvteR"

and determine \*(xz, £, 7) as

n—1
Zam )G £ v(M(€, mJ<a<x,<f,<'>+mo<x>§o>+<Zanj<x>cj>2,
j=1

17



We set
/ 0 = /
(2.90) ry(z,&, 1) = ’7“7(%‘) + i (z,&, 7).
We introduce the following sets
YT ={( )3z e IIs,, such that (2, 1) € ®}, Ye = {(¢,7)|dist((¢',7),T) < €} and Ti = M\T 5.

We claim that one can take a parameter v > 0 small enough such that there exists a positive €(7y),
which can be taken arbitrarily small and a pair of functions {xo, x1} independent of 5 € U such
that

(2.91) X0, X1 € C*(M)

(2.92) supp xo C YTe, suppxi C Ti.
(2.93) x0=>0, x1>0and xo+x1>1 on M.
(2.94) dist(Y,(0,...,0,1)) — +0 as v — 0.

Really we observe that (3, (2’,0) =0 for i € {1,...,n — 1} and

min min{ReZ, —|Im Z|} < 0,
ze{z|rn=0,lz’|<d}
where Z = —4(a(z, (', (') + iag(x)&o) + (Z?;ll anj(7)¢j)%. So if a point (¢/,7) belongs to T and
M(£',0) > 0 the quantity Z?z_ll [732,| can not be closed to zero. Really if 7 = 0 then (' is a real

vector. Since ag is a strictly positive function then £y = 0 but in this case inequality (2.57) implies
that Z is a real, negative number. This contradicts the fact that (£,7) € T. On the other hand

n—1

: 0 0.

Therefore (2.94) holds true and for sufficiently small positive € the choice of the functions x; is
possible.
Next we extend x,, to the set {(&',7)|M (&', 7) > 1} by the formula

Xﬂ(§/7 T) = XM(€0/M2(§I7T)7§1/M(5/7 T)v cee 7€n/M(§/7T)7T/M(€/7T))

and we extend functions x, up to C* function on {(&',7)|M (&', 7) < 1}. Let x,(D’,7) be the
pseudodifferential operator with symbol x, (¢, 7).

18



Applying the operator x,(D’,T) to the both sides of the equation (2.77) we have

(2.95) L(z, Do, D' +i|7|V'B)w, = xuf — [Xu, L(x, Do, D' +i|7|V'B)]w = f, inG,

(2.96) w#(a:', 0) = (xug)(svl) z € R,

where w, = x,(D/, T)w.
Observe that by Lemma A.5

(2.97) s L(z, Do, D' +ilr|V'B)wll 3 _, ,

@ = Cllul,y

_1
/LI e {01,

2.5 Proof of the main estimate.

First we obtain an a priori estimate for the function wg = xo(D’, 7)w. We claim that there exists
a constant C' > 0 such that

. lwll 317
(2.98) lwoll 4y < €\ IF M -3 07 ) F At )

Really, using the notations W = (W1, Ws), F = (0,ify) where W, = A(D/, 7wy, Wa = g%g —
|71 B, wo and A(D', T)wy = Jre(1+ M (&', 7))boe’<E*">d¢’ we rewrite system (2.95), (2.96) in the

form

ow _
Oxy,

(2.100) W(z',v) = 82W(x’,’y) = 0.

(2.99) K(z,D',7)W +F in G,

Here we set

op 0 AD', 1)+ [A, |7]8:,]

!/ _ o ] 9 Tn

K(l’,D 77') = ‘T|8Jjn1+ <K12(.’L’, D,,’T) KQQ(QT,D/,T) ’

where
n—1 ~ ~

Kip(z, D', 7) = Y agj(@)(D; +i|7]8e,) (D, + il 7|8e, A (D', 7) + iao DoA™ (D', 7)

Gk=1

and

n—1
Kyp(2,D',7) = =i Y ajn(x)(D; +i|7|Bs,).
j=1

The eigenvalues of the matrix K(x,&,7) are iry(x,&, 7). Hence by (2.94) there exists a positive
constant C, independent of 3 € U such that

(2.101) Re(K (z,¢,7)v,7) > C|v]* V(2,¢,7) € 5, x Tc and & € IR?,
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We extend the symbol K (z,¢’,7) from II;, x T on G x IR™*! in such a way that the new symbol

K(z,¢,71) € CcllS%’l’TQG) and inequality (2.101) holds true on G' x IR"*! with the constant C/2.
Moreover the symbol K is independent of 2’ if |2/| is sufficiently large. The function W verifies

(2.102) ZTW = K(z,D',7YW + F in G,

0
(2.103) W(x', ~) = %W(x’,y) =0.

Applying Lemma A.8 and using (2.97) we obtain (2.98).

Next we obtain an estimate for the function wy; = x1(D’, 7)w. The symbols ri(z,{’, 7) are smooth
on 5, x TL. We would like to extend symbols 71 on the set G x IR™*!. First we observe that for
some positive constant C

Rer_(z,&,7) > CM(&,7) V(x,&,7) € IIs,, x Ti.

Therefore we extend the symbol 7_ on the set G x IR"*! in such a way that r_ € C’CllS%’l(G), the
previous inequality holds true with a constant C'//2 on G' x IR™! and r_ is independent of z for all
|2'| > K:

(2.104) Rer_(z, &, 1) > %M(f/ﬂ') Y(z,& 7)€ G x R,

Next we extend the symbol r.
Observe that

—Re T+(.’E, €/7 7—) > CM(§/7 T) V([L‘, 6/7 7—) € {(I‘, 5/7 T)|SU € H(S,’Yv (f/v 7—) € a’ri}
Therefore we extend 74 on Iy, x (IR™™\ T!) in such a way that
(2.105)  —Rery(z,¢,7) > CM(¢,7) V(x,¢,7) € {(2,& , 7)|x €Ty, (&,7) € R\ T}

This is possible if the difference 8 — 4§ > 0 is small. Then in the definition of the symbol of operator
AT we substitute the function 3 by by Bx—_1 where x_1 € C§°(B(0,4’)) and X-1lB(,s5) = 1. Finally

we extend r from Ily - x IR™"! on G x R"*! up to a symbol of a class C’cllS%’l’T(G) in such a way
that the symbol ry is independent of x for all 2’ such that |2/| > C' and

—Reri(z,6,7) 2 CM(€,7) V(z,&,7) € {(z,&,7)[]| > C, (¢,7) e R}

We denote by Ry (xz, D', 7) the pseudodifferential operator with symbol ry(z,£’, 7), namely
(2.106) Rei(x, D', 7)u(z) = / i (2, &, TV, ) e <" > de.

Since ry(z,&,7) € CCIIS%’LS(G), by Lemma A.3, Ry € E(H%’LT(G); L?*(@)). Using these pseudodif-
ferential operators Ry (x, D', 7), we construct two operators

L_(x,D,7) = % —R_(x,D',7), Li(x,D,7)= % — Ry(x,D',1).

Symbols of the operators L_(x, D,7) and Ly (x, D, T) are
(2.107) L (x,6,7) =i —r_(2,&,7), Li(x,&,7) =i —ri(x,&,7).
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If suppw(¢',xpn,7) C YL for any x, € [0,7], the operator L(z,D,T) can be represented in the
following form

(2.108)  L(z,D,7)w = (i — R_(z,D',7))( 0

_ /
('31‘” al'n RJr(‘T) D aT))w + K(xn)w Tn € [07’)/]a

where,

|-

(2.109) Kw € L®(0,~; L(H25(R™), L2(R™))), || K| <C(1+]7))

cbir oy S YV, € [0,7].

Really, observe that

0 0 0?
(87 — R_(CU, D/,T))(BT — R+(.’E, D/,T)) = 8? + R_(.’E,D,, T)R+($, D/,T)
0

Iz,
According to Lemma A.4, the operator R_R; = R + K; there R is the pseudodifferential
operator of the form (A.203) with symbol ri(x,& 7)r_(x,&',7) and the operator Ki(z,) €
L(H%’LT(G),LQ(G)) is such that sup, cjo~ [K1(zn)ll < Clmer(e,), morp_)) < C(1+ |7’|)% The
operator R (,.) is the pseudodifferential operator with symbol %74 (x,&,1) € CBZS%J’T(IR") for

any o, in [0,7v]. By Lemma A.1 this operator belongs to LOO(O,7;£(H%’1’T(IR"),L2(IR”))). Next
observe that (R (w, D',7) + R (v, D', 7)) 5% = 2=} ang(D; -+ il]8s,) 52 By Lemma A4

(2.110) —(Ry(z,D',7)+ R_(z,D', 7)) — Ry (py(z,D',7).

R_(z,D',7)Ry(z,D',7) = a(z, D' +i|7|V'B, D' +i|r|V'B) — iDo + Ka(z)

where the operator Ky(z,) € L(H2M(G),L2(G)) is such that SUP, clo] [H2(xn) || <

C(met(ry)s Tor(r)) < C(1 4 |7])%. This proves (2.108), (2.109).
Denote the function L, (z, D, T)w; as z :

(2.111) Ly(x,D,7)wy =z in G.

Consider the initial value problem

(2.112) L (z,D,7)z=fi —Kw; in G, z(-,7)=0.

By (2.104) and Lemma A.8 there exists a constant C' independent of  such that

(2.113) l2llz2) < CUAN -3 mre gy + 1B oy e )

Now we concentrate on obtaining an a priori estimate for equation (2.111). We introduce the
operators

(2.114) Q(=z,D,7) = %(L+(:1;,D,T) + Ly(x,D,7)"),

(2.115) P(x,D,7) %(L+(a:,p,¢) Lo (2,D,7)) = ai _ %(m(x,p',f) _Ry(z,D',7)").

Therefore
Q=0Q", P'=-P.
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Then equation (2.111) can be written in the form
Q(x, D', 7)wy + P(z,D,7)wy = z in G,
Taking the L?-norm of the left and right hand side of this equation we have:
1Qu1l1Z2(y + 1Pwi72) + Re(Qur, Pwi) 2y = |2l 72(c)-

Observe that

Re(Quy, Pwi)2(q) = (Qwi, Pwi)r2(g) + (Pwi, Qui)r2e) =
(2.116) ([Q, Plwi,wi) o) — (Q(",0, D', m)wi (-, 0), w1 (-, 0)) L2 ()
Therefore

||Qw1|!%2(c) + ||Pw1||%2(G) + ([Q, Plwi, w1)r2(c)
(2117) _(Q(:U/)O?D,aT)wl("O)awl('vo))L2(]R") = ||z||%2(G)

By (2.82) there exists a positive constant C' such that
(2.118) Re{Q, P}(x,&,7) > CM(¢,7) Y(2,&,7) € {(2,&,7)|x € Ug, Q(z,&,7)=0,|7| > 1},
where ¢’ > 6.

Proposition 2.5. Suppose that (2.118) holds true. Let w € H%’l(G) and suppw C g . Then
there exist positive constants Cy and C1 such that

|Quia) + 1Pl + Re([Q: Plw,w) a2 Collwl?, — CillwlBa-

11
LERa(E)

Proof. The pseudodifferential operators P and @ have a symbols with C'-smoothness in variable
x. We approximate these operators by pseudodifferential operators with smooth symbols. The
approximations are constructed in the following way:

1 * 1 *
Qr = §(L+7T(ZL‘,D,7') + Ly (x,D,71)"), Pr = §(L+7T(£L',D,7') — Ly -(z,D,7)").

0
Lo = Ban

The symbol of the operator R, ; given by

— R_A,_’T(.f, D,, 7').

9p-

oz, +iXt(z, ¢, 1),

(2, 7) = I7]

n—1 n—1
M2, 1) =) argj(@)G £ 0(M(E,7)), | ~(ar(z, ¢, () +iaro(@)€0) + (D arni(2)())2.
j=1 J=1

Here

0B~
ox g

(2.119) Ar0 = Q0 ¥ 1) Licr Qrij = Qij %1 1y Br=0*0 1,0, =& +il7]
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where the function 7 is the standard mollifier (see e.g. [3] p. 620), and € is a positive parameter.
Using the properties of mollifiers we obtain

||Q QTH H2 ,1, 7' ),LQ(Q)) + ||P - PT‘|£(H%’1’T(Q)7L2(Q)) S C(TFCO(QfOT) + WCO(prq—))
(2.120) < Ll
(14 |r[)z*
and
~_1 ) CA’
(2121) (1 + I DIA 2@l < S1Qewla(c
where
1 1 A i<a! E> gt
A2 (D)yw = ——we™" S 7dg
G T T )
By (2.118), (2.119) there exists 79 > 0 such that
(2.122) 70|Q- (2, &, 7)P/M(€',7) + Re{Qr, P} (x,&,7) > CM(E, 7).
Some short computations provide
~ 1 _1
10l Qr A" w726y + ([Qr, Prlw, w) 2y = (10(QrA 2 QA" 2w, w) 126y + ([Qr, Prlw, w) p2() =

1
e((TO(QT ) QT 2+ [Qw w, w)LQ(G)~
By (2.122) applying Gardings inequality
70/ QA 2w||L2(G) + Re([Qr, Prlw, w)2(q)
(2123) > C [Nty e~ Cilwlay

Next we observe that

~_1 v _1 v _1
1Q- A 2w 2(qy = A 2Qrw + [Qr, A7 2]wll 12
~_1
< Co([[A2Qrw 2y + [wll2(a))

|Qrwlz2q)
(2.124) <C <1+\T| + ||wHL2(G)> :

where in the last inequality we used the estimate (2.121). Combining this inequality and (2.123)
we obtain

(2125)  [|1Qrwla + Re(IQr. Prlw,w) 2 > C / Iy . g e = CalolEay

Since there exists a constant C independent of 7 such that
Re Q7 (,&',7) + C|r* > M(¢,7)

by Gardings inequality
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2 2
1Qrwlae) + lwlay = Cllwl?, . o
This inequality and (2.125) imply
(2.126)

i
n@wm@ﬁRw@Jﬂwwp@204|mm%W

H%,LT(Rn)/(l + |T|)d$n - ClHWH%Z(G)

On the other hand 9
w
5 lz2(@) < IPAwlzae) + Cllel pae g

So (2.126) can be transformed into the following estimate

(2127)  [|Prwl3a(g) + [ @rwlag) +Re(Qr, Prlw,w) gz 2 Cllwl . -~ Cillwl3aq

1 ,1, T(G)
By (2.120) we can put in the left hand side of (2.127) the L?-norms of functions Pw and Qw instead
of P-w and Q,w respectively. The proof of proposition is finished. B

By (2.117) and Proposition 2.5 there exist two positive constants C,C} independent of 3,7 such
that

1
2 2 2
Ialiae) = 51Quila) + 51 Pwaley + Cllunllyy .

1 *Cl\|w1||L2
(2.128) ~Re(Q(a',0,D', 7)wi(-,0), wi(-,0)) 2 ().

Depending on the sign of the fifth term in the right hand side of (2.128) we consider two cases.
Case 1. Assume that Re(Q(2',0,D",7)w1(:,0),w1(-,0))r2(gny < 0. Then from (2.128) we
obtain

(2.129) |lwn ||

< C(Hfl” bt T llwLllz2e)-

HT27(G) (@)

Case 2. Assume that Re(Q(2',0, D", 7)w1(+,0),w1(+,0))2(rny > 0. Note that by (2.81), (2.90),
(2.107) there exists a constant C' > 0 independent of 7, 3 such that
(2.130) VI To1(0) 2y < Clon(0) 3 e
Let us consider the following (adjoint) problem

(2.131) Ly(z,D,7)p = <_ai CRe(, D) )p = (1+ |rwr + v in G.

Denote
mo(2) =1 @€l mi(e)=1/1+]|r]) x € R\,

where 0 € (8,9"). We have

Lemma 2.6. There exists a constant C' > 0 independent of T and there exists a pair (p,v) satisfying
(2.131) such that

(2.132) \/1—1—\7/ (Ip]* + m2|v|?) da:—i—/ m2|p(x’,0)|?de’ < C(1+ |7]) 3/ wy [2d.
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Proof. For € > 0, let us consider the functional

1

(2133) Je(p7v) = ||m7—U”L2(G) + 2 Ha

1
§||pH%2(G + Ry (2, D', 7)"p + (1 + [r))wi + vl[72(q)-

Notice that there exists a pair (p,v) such that J.(p,v) is finite, for example (p,v) = 0. We consider
the minimization problem

min J¢(p,v),
Join, (p;v)

where

D Ry, D7)+ (1 + |r))wn + v € LA(G)}.

U = {(p.v) € LAG) x L(G), | 52

There exists a minimizing sequence {(py,vg)} 5o, such that (pg,vy) € U and

inf J.(p,v).

Je y V) —
(Pr, i) i

Then ||(pk, vk)llr2() is bounded and ||ap’“ + Ry(x, D', 7)pr + (1 + [Thwr + vkllr2q) is
bounded. Therefore R (z, D', 7)*py is bounded in L?(0,~; H™ %’_17T(]R”)) and 8pr is bounded
in L2(0, 7 H 717 (IR")).

We can then extract a subsequence, still denoted by {(pg, vi)}3, such that

(pr,svr) —  (Pe,ve) in L*(G) x L*(G) weakly,

gi: g;f; in L2(0,7 H_l(]R”)) weakly,
0 Ope
G+ B D) pit (L Irwn o = 5 4 R, D7) pe+ (14 [rl)wn + v

in L2(0,~; H™ 2 L(R™)) weakly.
But as ||ap’“ + Ry(z, D', 7)*pr + (1 + |T))wy + Uk”?ﬂ(G) stays bounded, we have

0
G+ R, D)+ (U 4o

(2, D', 7)*pe + (1 + |7])w1 + ve

Pe
Oxy,
in L*(G) weakly.

Then (pe, ve) is a minimizer of J, that is to say (pe,ve) € U and

(2.134) Je(pe,ve) = min Je(p,v).
(pv)eU

Writing the first order optimality conditions we have for every r € H %’1(6*) and for every 7 € L%(G)
(2.135) < Opde(pe,ve),m >=0 < OypJe(pe, ve), T >= 0.

Let us define ¢, by

(2.136) g = L2

+ Ri(z, D', 7)" pe + (1 + |7))w1 + ve).
€ Oxy,
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We obtain from (2.135), for every r € H%’I(G)

o

(2.137) /perd:c+/ qe( + Ry (z, D', 7)*r)dz =0
G ¢ Oz,

and for every 7 € L?(G)

(2.138) / vjd$—|—/ qerdx = 0.
G G

Then g, satisfies the following problem

G,
(2.139) Li(z,D,7)qe = 8;{6 — Ry(z,D,7)q = p. in G,
n
(2.140) ge = —m2v. in G,
(2.141) qe(2',0) =0, q.(z',v) =0, 2’ € R"™

We can also write (2.139)-(2.141) as follows

(2.142) Li(z,D,7)qg. = (P + Q)ge = pc in G,
(2.143) ge = —m2v. in G,
(2.144) q(2',0) =0, q.(z',7) =0, 2’ € R™.

Using Proposition 2.5 and (2.143) we obtain that there exists a constant C' > 0 such that

(2.145) 1Qgell L2y + 1 Paell 2y + ||quHi,%,T(G) < Oll(pe; mrve)ll 2(c)-

Notice that Qq. € L*(G) implies g € L?(0,~; H%I(IR”)), which from (2.139) implies gg; € L*(G).
Now from the definition (2.136) of g, p. satisfies

%)
Pe + Ry(x,D',7)" pe = €qc — (1 + |7|)w1 — ve
o0z,
which can be written as
_ Ope Ik
(2.146) (P —Q)pe = 9 + Ri(z, D", 7)"pe = €qe — (1 + |7|)w1 — ve.
n

Multiplying (2.146) by ¢ in L?(G), we obtain (using the boundary conditions on g)

—/mm@mmmng/m&m—/u+wm@m+/n&wx
G G G G

/]pGIQdac—i—/mz\ve\de—i—e/ \qe\de:/(l—i—]T\)wlqua:
G G G G

SO

and by (2.145)
(pemevltagy < ([ 1+l P (14 rlafan)?

1
<aLﬂHwWW%MmeMhmy
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Therefore we obtain the first estimate on (pe, v)

(2.147) |(pe, mrve) HL2 )y S CVI1+ | 7] Hw1HL2(G)

By (2.147) there exists a subsequence {(pe,, , Ve,,) }oo_; such that
(2.148) (Pers Ve,,) — (p,v)  in L3(G) x L*(G),

2pe,, — 22p in H27(G),
¢ —q in H2Y(G).

Using the above relations we pass to the limit in (2.142)-(2.144). The pair (p,v,q) € L*(G) x

L*(G) x L*(0,~; H%’LT(]R”)) satisfies the optimality system

(2.149) Ly(z,D,7)p=(1+|r)wy +v, inG,
(2.150) Li(x,D,T)g=p in G,

(2.151) q= —m?v in G,

(2.152) a(-0) = g(-,7) = 0.

Using Proposition 2.5 and (2.151) we have

(2.153) 1Qall 2y + 1Pall2e) + llall 1 < Cll(pymrv)| L2

HI57 (@) =
The inequality (2.147) and (2.148) imply

(2.154) [(p, mr)ll12q) < V1 + [7l|[wilL2(c

Notice that

By (2.149), (2.150)

&(x,D,7)q = Ly(z,D,7) L (2,D,7)q = (Q* — P* +[Q, P])g = (L +|r])wi +v

Let O(xz,) € C*[0,v], #(0) = 1, 8 = 0 in a neighborhood of x,, = v and x(zo,...

C5°(B(0,¢")) such that x|p(o,s,) = 1. Denote x = x0. Then function yq verifies
&(z, D,7)(xq) = (1 + [T))xw1 + Xv = [X, &]g in G.
Multiplying this equation by P(z, D, 7)(xq) we have

(2.155) Re(8(xq), P(X0)) 12(c) = (Q°(Xa), P(X0)) 12(c) + (P(X0), Q*(X9)) 12(c)
—(P*(Xq), P(X0)) 12(c) — (P(X4), P*(X0)) r2(c:) + Re(1Q, P1(Xq), P(X9)) 12(c)
= (L + |7[) (w1, P(X9)) 2(c) + (Xv — [X, Blgq, P(Xq)) 2(c)-
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By (2.153), (2.151)
(2.156) 1Rl z2) + IPRDNz26) + lal 31,0 oy VL + 171 < Cll(pymav)ll 226

Using (2.156) and Lemma A.5 we have

I([Q, P1(xq), P(X2)) 2y | < 1@, PY(XD 2y 1 P(XD) 2y < C||Q||H7 L) 1P(XD 22

(2.157) < Clidll ;1. L )||(pa m-0)| 2y < 1+ 7]l (p, mrv) 172

Next

(Q*(Rq), P(Xa))r2() + (P(XQ), Q*(X0)) 12(c) = —(PQ*(X4), X0 r2(cr) + (Q*P(X4), X0 r2(cr) =
—(QPQ(Xq), X0)12(c) + (Q°P(Xq), X9) 12y + (1Q, PIQ(X9), X0) r2(c3)

(2.158) = ([Q, PI(xq), Q(X9)) 2(c) + (Q(X9), [Q, PI"(X2)) 12(c3)-

Hence, by (2.156) and Lemma A.5 we have

(2.159)  |Re(Q*(Xq), P(Xq))r2(c)| < Cligll 3.1~ G)||(p7 m-0)| 2y < G/ 1+ [7][[(p, mrv) 72

Finally

Re(P*(Xq), P(Xq))12(c) = (P*(Xa), P(X0)) 12(c) + (P(Xa), P*(XQ)) 12(q) = — (P*(R4), XO) 12(c)
(2.160) +(P*(%9), X0) 226y — IxP( 012y = —1IxP(, 0) |72 (s -

We observe that

|(Xv = [X,8]q, P(X2)) 2 ()| < CIvll 2y + 1Pall2e) + 11Qdl 2 1P(X) |2 ()
(2.161) < C|l(p,mr0) 1 72(y-

From (2.155)-(2.161) we have

VI IllIxp( 0)IZ2 gy < CA+ [TDII (0, mr0) 726

By (2.154) the right hand side of this inequality can be estimated as

(2.162) Ixp( 0172y < VL [Tl mr0) 2y < C(L+ 7)) lwill72(c

Proof of the Lemma 2.6 is complete. l
We remind that

(2.163) suppw(-,x,) C B(0,6) Va, € [0,7], and suppg(-,z,) C B(0,9).

Then by Lemma A.6 for any §o > ¢

(2.164) Ix1w(, 20) |22 (Rm\ B(0.62)) <

(2'165) HXlg('7‘rn)HLQ(]R”\B(O,cb)) S | ’Hg( xn)”[ﬂ (R"™)-
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Taking the scalar product in L?(G) of (2.131) by w;, integrating by parts and using (2.164) we
have

(L + [TDl[wi |72y = (w1, Ly(2, D, 7)*p = 0) 2y = (Lt (2, D7) w1, p) 2y — (w1,0) 12(c)
+(x19, (-, 0)) p2(wrry = —(w1,0) 2y + (X215 P(+0)) p2rm) + (X125 D) 22()

+([Ls x1]w, p) 2y < Cllzll 2@ Pl L2 @) + 19l L2@my [mrp(, 0)[ L2 ey + Wl 2@y llmrvllLzq)
Hlwll L2 P2 (@)

By (2.132) we obtain from this inequality
s 3
(1+ \T|)leHi2(G) < Clzllez Pl 2@y + 19l 2y (1 + 7D 2 lwill 2@y + 1wl z2@)llmevll z2@))

5 3
< Cllzllr2eV/1 + Irlllwillzze) + 13l 2arey (L + 7)) lwi ]l 2y +v/1 + ’T|Hw1H%2(G)
1+ [rllwlZ2(e)-

This inequality and (2.113) imply

w1 2 < C ”XlgHLQ(]Rn) 2]l 22 ||7UHL2(G
L2(G) =

“ (1+ |r])7 \/W \/ﬁ
(2.166) < o | gl 1Al ol

_|_
1+ |71 V17 1+ |7

By (2.130) we have

||X1§|| 11
H7 2 (R" ~
(2.167) VIF ol < ¢ —2E Al A+ ol | -
1+ =276

Taking into account (2.167), (2.129) and (2.98) we obtain (2.84). Really

1
VIt Irlllwllze =vV1+ Y w2

pn=0
1
<O (Ixuf + x> Lz, D, 1) a-beir TATITDT 4qugHm 3wy
n=0
) ol 30 )
(2.168) <C HfHHf%,,l,T(G)HH!T\) HgHHM(W)Jrm .

Then, from energy estimate for solutions of problem (2.77)-(2.79), we have

(2.169) ]l + (L | lwll 2y + I,

H%,l(G) (HgHHZ g Rn) ,—1,7 G))

From (2.168), (2.169) we obtain (2.84). The proof of Theorem 2.3 is complete.ll
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3 Carleman estimate for the Stokes system.

Consider the Stokes system

(3.170) P(D)y = (;973/ —Ay=Vp+f inQ,
0
divy=0, y=0on (0,7) xT,
(3.171) y(0,2) = o.

We introduce the following spaces
H={u=(u1,...,up) € (L*(Q)"] divu = 0, (u,v)|gn = 0}, n = {2,3}.
V={u=(u,...,u,) € (H}(Q))"| v € H}.
The proof of the following proposition can be found in the classical book [18].

Proposition 3.1. A)Let yo € H and f € L*(0,T;V"'). Then there exists a unique solution y
to problem (3.170)-(5.171) with y € L*(0,T;V) N C(0,T; H), 2% € L*(0,T;V'). B)Let yg € V
and f € L*(0,T; H). Then there exists a solution (y,p) to problem (3.170)-(3.171) with (y,p) €
C(0,T; V)N HY2(Q) x L?(0,T; H(Q)) and the following a priori estimate holds

(3.172) (v, )l Er2@)xr2@) < Clyollv + 1l 20,1 m))-

The goal of this section is to prove the following Carleman estimate for solutions of problem (3.170)-
(3.171).

Theorem 3.2. Let k =6, f € L*>(0,T, H) and yo €EVandye€ L?(0,T,V) ﬂﬁ172(Q) be a solution
of (3.170), (3.171). Then there exists a constant \ such that for any A\ > X there exist constant
C > 0 and s independent of s such that

11
822 (roty)e*||L2q) + lIseye™ L2y < Ol fe* 2
11 .
(3.173) +[s2p2 (roty)e™ | 2q.) + Iseye™ |l r2(q.)) Vs = 5.
First we prove the following simple proposition
Proposition 3.3. Let u € H-2(Q) N L2(0,T; HY()). Then 2% € Hi3(%).
Proof. Let 7i(x1,...,2,) € C*(Q) be a smooth vector field such that @ = v on 9. Since the

function Y1, n;0y,u € L2(0,T; H(Q)) then % € L*(0,T; H%(OQ)) In order to show that % €

Hi (0,T; L?(09Q)) we observe that using a partition of unity and a local change of variables it
suffices to consider a situation when Q = {(z1,...,x,)|z, > 0} and the function u has a support in
B(0,6)n{(x1,...,zpn)|zn > 0}. Denote by @ the Fourier transform respect to variables g, . .., Zn_1.
Then

0 , o0u
2 _ 2
HuHHzl; (0,7:L2(992)) = /]Ri"'l O | 83}71‘ 1+ |£O|d£0 . dép_1dxy,

- ‘/ 02, 100, U+ O, 00 N1+ [€0ldEo - - dEn—1dan
R}

< [ 0 4 (1 )0, ) . d
®]
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Integrating by parts and taking into account the Dirichlet boundary conditions we have

j/ (1_%|§M)ﬁ%mi”2d£0---dfn—ld$n::b/a (1 + |&|)ad2 , ads. .. d&,—1de,.
]Rn+1 Rn+1

+ +

Applying the Cauchy-Bynakovskii inequality we obtain

(3.174) / +1(1+goy)|am|2dgo...dgn_ldggng/ (002, 0+ (L €0 ) . s
R Ri

+

Combining (3.174) and (3.174) we have

HUHHi(OyT;LQ(am) < Cllull gr2(g)-

The proof of the Proposition is finished. W
Proof. Applying to equation (3.170) the operator rot we have

Jrot
(3.175) YW _ Aroty = rotf in Q

BCL‘O
Next we apply to (3.175) the Carleman estimate (2.39). There exists so > 0 such that
(3.176) s/Qcp|r0ty|2625adas < C’(s_%Hgo_irotyesaﬂii’%(z)

1 1 1 A
+57§H‘P71+§r0'ﬂy€m||%2(z)

+/ ’f\2€23adw+/ sp|rot y[2e**Ydx) Vs > sq,
Q

w

where &(z9) = a(z)|sq. Since divy = 0 we have Ay = rotroty. Setting u = ye*® we obtain
e**Ae **u = e**rotroty = rot(e*“roty) + [e°, rot]roty.

Notice that

(3.177) [e°*, rot|roty(t,x) = s C(x)n (e*“roty),

where c(z) € (C1(£2))3 is some function.
Applying the Carleman estimate for elliptic equations obtained in [12] and using (4.194) we have:

S St St § S
(3.178) m”ye 22(0) < C([[rotye™ || 12(q) ‘H/m”?/@ z2(w)) Vs > s1,Vzo € (0,77,
where constant C' and sg are independent of s, zg. Therefore combining (3.176) and (3.178) we have
(3.179) / splroty2e??da + 5[ pye™ |3 g < Cls™3 |1 22e| 2
Q
bl e g + [ (e

—I—/Q s|rot y|2e**“dx + 52||g0yesaHL2(Qw)), Vs > max{so, s1}.
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We need to estimate the first term in the right hand side of (3.179). Denote (w,q) =
E%(yeS&(xo),peS&(xo)). The pair (w, q) solves the following initial/boundary value problem :

0 k=2 o . a6k —2
(3.180) P(D)w = a—w —Aw =Vqg+ fﬁ%eso‘ + 8@ 0T w A+ yesaﬁ’ETG r
L0
divw=0, w=0on (0,7)xT,

(3.181)  w(0,-) = 0

in @,

By Proposition 3.1 and the fact that

we have
s& 343 g4
[(w, )l 2@y x 20,1501 @) < CUIFE 200y + st 27 ye™ | 12(g))
3,3 sa
(3.182) < C(lfe* 2@ + lswi 2 ye* | 12(q))-

Using Proposition 3.3 observe that there exists a constant C' > 0 such that

ow
(3.183) 15, 1433 5y < Cllwllzz)-

We fix k = 6 then . s
[sp3 25 ye*®|| 120y = lIseye® Il r2(g)-
Combining (3.183) with (3.182) we have

ow
(3‘184) HEHH%%(E) < C(”fesaH[;(Q) + Hsg@yemHLz(Q)).
Hence
1y _10Y 4002 “1h 11 0Y a0
s 2llp 476306\’H%,%(2)+3 el 4+2”$€SQHL2(Z)
1y 2101 0Y a0 —1 2
<Cs 2|[p7a QﬂaesaHH;{,%(E)§08 2[lwllg 2 )
_1
(3.185) < Cs72 ([ fe™ 172 (g) + lIseye™ 12 (0))-

The first two terms in the right hand side of (3.179) can be estimated by the right hand side of

(3.185). Observe that the term Cs™2 HsgpyeSO‘HQLQ(Q) can be absorbed by the left hand side of (3.179)
for all sufficiently large s. This proves the statement of the theorem.l

4 Observability estimate for parabolic system with parameter.

Consider the system of parabolic equations

(4.186) P(D)y = 9y Ay — 1Vdivy =f inQ,
61‘0 £

(4.187) y=0on (0,T) xT,

(4.188) y(0,z) = yo.

Here ¢ is the positive parameter. The goal of this section is to obtain an observability estimate for
system (4.186)-(4.188) which is uniform with respect to the small parameter e.
We have
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Theorem 4.1. Let k = 6, f € L*(Q) and yo € H}(Q) and y € L0, T; HH(Q)) N I:Il’Q(Q) be a
solution of (4.186), (4.188). Then there exists a constant A\ such that for any A > X there exist
constant C > 0 and § independent of s such that

11 . 1 1
[s2 2 (divy)e®|| 12 (q) + Is292 (roty)e® || L2 (q) + lIseye™ (| L2q) < Ol fe* (L2 (q)
(4.189)  +[|s292 (divy)e™ || r2(q.) + 1702 (roty)e*® | 12 (qu) + Is0ye™llr2(q.)) ¥s > 8.

Proof. Applying to equation (4.186) the operators rot and div we have

(4.190) droty _ Aroty =rotf in Q.
8.7}0
(4.191) 0divy 1 4 Y Adivy = divf i Q.
Oz €

Next we apply to (4.190) and to (4.191) the Carleman estimate (2.39). There exists sg > 0 such
that

(4.192) S/Q(p|r0ty|2€28adﬂf < C(S_%H(,O_%I‘OtyGSdHZ%,%(Z)
—i—s*%HLp’%*irotyeSé‘H%z(z)

+ / PP da + / splroty[2e*dz) Vs > s,
Q

(4.193) / o|divy|?e?**dx < C(s~ 2Hg0 4d1vyeSO‘H2 L)
Q

+572||p 1T 2R rotye™| |L2(E)

+/ |f|262sad$+/ sp|divy|*e**dz) Vs > so,
Q

w

where &(z9) = a(z)|gq. Using the formula Ay = rotroty + Vdiv and setting u = ye*® we obtain
e**Ae™*Yu = e**(rotroty + Vdivy) = rot(e*“roty) + V(e**divy) + [e**, rot|roty + [e*, V]divy.

Notice that

(4.194) [e**, rot|roty(t,x) = s “Uroty),

where c(z) € (C1(£2))3 is some function.
Applying the Carleman estimate for elliptic equations obtained in [12] and using (4.194) we have
Vs > s1 and Vg € [0,T] :

llyesalle ) < Clllrotye™ L2 + lldivye™ |2 ) + [ 7o llye Ir2(w))

(4.195)
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where constant C' and sg are independent of s, xy. Therefore combining (4.192), (4.193) and (4.195)
we have

(1196) [ sipllrotyl? + divyP)e* e+ 2loye e gy < Cls Bl SLet P
Q v
1 0
+s~ 2”90 4 2 y SaHLQ /‘f|2 2sad$
2 2sa : 2 2sa 2 sa||2
+/ sp|rot y|“e dx—l—/ spldivy|“e™dz + 57|l pye®*||72g,)) Vs = max{so, s1}.
Qu Qu

We need to estimate the first term in the right hand side of (4.196). Denote w = T ye*™(@0) The
function w solves the following initial/boundary value problem:

K— A K— ~ K— —2
(4.197) P(D)w = gw — Aw — delvw = ST eSS 4 s/ T w + yet T
To
divw =0, w=0on (O,T) x I,

(4.198)  w(0,-) = 0.

in Q,

Using the standard a priori estimates for a parabolic equations and the fact that

a(z) < az) Vre@

we have

3

A 343 sé
lwll mrzg) < CUIFE L2y + 50322 ye™ || 12(g))
S § l S
(4.199) < C(Ife* 2 + s 2rye™ || 12(q))-

Using Proposition 3.3 observe that there exists a constant C' > 0 such that

(4.200) < CHU}HHI,Q(Q).

||*H abds
We fix K = 6 then .

[s@i T2y || 2q) = llsoye’ Il L2 (q)-
Combining (4.200) with (4.199) we have

ow sou
(4.201) 15, 13 s < CUIFE 2@ + llseye™lrz@))-
Hence

) L 9
] e T iy T
+1 6y A2 -1 2
<OsHllp HESLe ) < Ol
_1 so s

(4.202) < Cs™2 ([ fe 1720y + lIseye™ (72

The first two terms in the right hand side of (4.196) can be estimated by the right hand side of

(4.202). Observe that the term Cs™32 ||sg0yeso‘||%2(Q) can be absorbed be the left hand side of (4.196)
for all sufficiently large s. This proves the statement of the theorem.l
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A Calculus for pseudodifferential operators with a parameter.

Let O be a domain in IR™.
Definition. We say that the symbol a(z',¢', s) € CO(O x R™ 1) belongs to the class C*.S%/25:3(0)
if

A) There exists a compact set K CC O such that a(2',¢', s)|o\x = 0;

B) For any B = (Bo, ..., Bn) there exists a constant Cg

850 aﬁn—l 6ﬁn , n-1 Kk—|B]
a'?&as kiSC 50 +52+ ng )
||a§go 8551’11 DsbPn ( )HC (0) ﬁ(| | ; )
where |B| = 28 + Z?:l B; and M(&',s) > 1;
C) For any N € Ny the symbol a can be represented as
N
a(xla 5/7 5) = Z Qj (ﬂj‘,, f/a S) + RN(QSI) f/’ S)

j=1

where functions aj have the following properties
a;(x', 720, 7E1, .. Tén_1,78) = T Tai(x! €, s) V> 1, V(2! & s) € {(2),¢,8)|2) € K, M(¢,s) > 1}

n—1 .
(&, 8)ler oy < CollCol+s>+3€2) 7, V8 and V(€ ) such that M(¢',s) > 1
=1

9% 0. o

I .. s
aégo agﬁi—ll 85’3" J

and the term Ry satisfies the estimate

n—1
IR (€ 8)llero) < On(I&o] +5* + Y €)"F V(& s) such that M(€',s) > 1.
=1

For the symbol a we introduce the following seminorm
N

el (a) = sup sup || . a;
jz; Bl<N M(&5)>1 060 dehnt Os™

Hbo 9bn—1 §bn

(&, 8)ler@) /(L + M€, 5))—= 1A

+ sup ||(l('7§,»5)”c~((5)
M(¢,s)<1

Let {w;}32; be a sequence of eigenfunctions of the operator A on M = {(&, ... L En)|E3 +Z?:1 & =
1} and {\; }‘;‘;1 be a sequence of corresponding eigenvalues. Assume that

(Wi, wj) 2(m) = 0ij-
The following asymptotic formula is established in [§]
Aj=c¢j2 +03E"V?) asj— oo
For each k thanks to the standard elliptic estimate for the Laplace operator we have

(A.203) ||wj||H2k(M) < C]f)\?.
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Therefore by the Sobolev embedding theorem
(A.204) ||wj'Hco(M) < C)\;L Vj € {1,...,00}.
We extend the function w; on the set {£|¢2 + >°1 & < 1} as a smooth function and we set

wj(€) = wj(€o/M*(€),&1/M(€),. .., & /M(E))
We introduce the pseudodifferential operator

1

& w = W ) ei<ac,§> D -
(D= [ el@n©e s ) = ooy

/ w(x)e <S> dg,

Below in order to distinguish the Fourier transforms respect to different variables we will use the
following notations

1 isTn—l e
Fxlﬂélu = — / e_ZZj:1 xfg]u(xl, ey IEnfl)dZEl,
(2m) 2 Jmrr!
1 —izpé
Fy,—eu= - [ e "nSru(xy,)dx,.
(2m)2 JR

First we define the operator A(z'D’, s) for functions in C§°(O) :
A(xlv D/7 S)u - / a(m/7 5/’ S)Fx’—f’uei Zy;ll xﬂfjdx’.
Rn—l

The following lemma allows us to extend the definition of the operator A on Sobolev spaces.

11
Lemma A.l. Let a(2',&,....,6n—1,8) € CSIS%’LS(O). Then A € E(HOZ”L (0); L*(0)) and
A <C .
41 b1 o = Cle0 @)

Proof. Thanks to the assumption C it suffices to consider the case when
(A.205) a(x', 7280, TE, . T 1,78) = Ta(z &0, .. . En1,5) VT > 1.

The operator

A, D)o = / A& Go, . ., 60)0(E)<PE> de
{8+, ¢l<1y

is a continuous operator from L?(O x R) into L?(O x IR) with a norm estimated as
IA(2", D)|| < C(nco(a)).
Consider the symbol b(z’, &, . .., &) = a(x’, &, ..., &n) /(€3 + Z?:l 521)% Then by (A.205)

b(x/772§0’T§1’ ce 77—677») = b(x/7§07§17 e 7{71) VT 2 1.

We can represent the symbol b as

(o)

bz, €) =) bj(a")w;(60/MP(€), /M (€),... . &/M(€)),  bj(a") = (b(a", €),w;(€)) r2(my-
j=1
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Observe that b;(z’) = (Algb(x’,§),wj(§))Lz(M)/)\;?. So
(A.206) 1bjllco@) < CmA;™ ¥m € {1,...,00}.
By (A.204) and (A.206)

IB(2, D)vll2ioxmy < Y Ibillco@) 1@ (D)ol zzioxmy < Y Cond; ™At 0]l 1205wy
j=1 j=1

Taking m = 3n we have
o0
IB(2', D)ol r20xm) < Y CmA; vl r2(0xm)-
j=1
Therefore the operator

AM(a!, Dy = / ala, €)0(€)e<HE> de
{2+, ¢1>1}

is a continuous operator from HO%’I(O x IR) into L?(O x IR) with the norm satisfying the estimate
o
1AP] <) CmA?
j=1
Next we observe that for the function v(x) = u(xo,...,zrn—1)w(zy)

|A(2', D)ol L2(0xw) =V2r||A(2’, Dy, ..., Dp—1,&)uFy, —¢, 0l 2(0xR)
1
oo 2
(A.207) < oo ) ([ 12 g o s Pl )

We take a sequence {w;(x,)}7° such that F,, ¢, w;(&,) has a compact support and |Fy,, ¢, w;|* —
6(&n — s) where s € IR be an arbitrary point. Since the function &, — [|A(2', D', & )ull 20y is
continuous we have

|A!, Do, .., D1, &) utbl| 720 m) =
/IR HA([L'/, D07 e Dn_17 577,)“’”%2(0)’}?171*’571“}]’2d€n — HA(;U/, D07 . 7D'r7,—1; S)U/H%Q((’))

This fact and (A.207) implies

1A(", D', s)ullr2(0) < Clmco(@Dlull g 1,0,

for almost all s. Since the norm of the operator A is a continuous function of s we have this
inequality for all s. B

The following theorem provides an estimate for a commutator of a Lipschitz function and the
pseudodifferential operator @;.

Theorem A.2. Let f € WL (O) be a function with compact support then

1L/, @j]HE(LQ(O)’H%,LS(O)) < Olflwa @A™

where the constant C s independent of j.
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The proof of this theorem is similar to the proof of Corollary in [15], page 309.

Lemma A.3. Let a(2/, &, ..., En—1,5) € CLSY/215(0). Then A(a', D', s)* = A*(2', D', s)+R, where
A* is the pseudodifferential operator with symbol a(z',&o, ... ,&n—1,8) and R € L(L*(O), L*(0)) is
such that

IRl z(2(0),2(0)) < Cmen(a).

Proof. Thanks to the assumption C it suffices to consider the case when
a(x!, 7280, 7€, . . Tén_1,78) = Ta(z &0, ... En_1,5) YT > 1.

The symbol a(2/,£) can be represented as
a(@',€) =) a;(«") M (€)a;(€).
j=1

Consider the operator

A, D) = 3 (¢ )M(D)3;(D), M(Dyw= [ | M()ie'<"< e
j=1
Then
A2, D) =Y (aj(a")M(D)2;(D))* = > M(D)a;(D)a;(2)
j=1 j=1
= " a;(#')M(D)@;(D) + > [M(D)a;(D), aj(a")].
=1 =1

Observe that » 22, a;(2') M (D)w;(D) is the operator with symbol a(a’, &, ..., &n) € CCIZS%’LS((’)).
Let us estimate the norm of the operator » 22, [M(D)w;(D),a;(z')]. By Theorem A.2

1S " Ja; (@), M(D)@; (D) < Cm > Nlasllon @A™ < Con Y N e (@)A;™ < Cren (a).
j=1 j=1 j=1

Denote v = u(xo, . .., Tn—1)w(xy,), 0 = (g, ..., Tn—1)0(zy,). We have

(A(2', D)0, D) r20xm) = (v, A(2/, D)*)12(0xw) = (v, A*(2', D)D) 12(0xw) + (v, RT) 12(0xR)-

On the other hand
(A(:ZI/, D)”? ﬁ)Lz(OX]R) = 277/ (A(xla D/7 gn)ua ﬂ)LQ(O)wu:)dé.n = 27T/ (U, A(‘rlv D/a gn)*ﬂ’)L%O)wu:)dgn
R R

Taking into account that (v, A*(2’, D)?) r20xr) = [R(u, A* (', D', &)1) 2(0ywwdE, we have

I/IR(u, (A, D', &)= A" (2", D', &n))i) 2 (0ywiwdén| = |(v, RD) 12(0xm)| < Cllvll 205wy 9]l 22(0xR)-
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We take a sequence {w; }72, such that F, ¢, w; has a compact support and |Fy,, ¢, w; 2 — 6(&,—5)
where s € IR is an arbitrary point. Since the function &, — [|A(2', D', §,)ul| 120y is continuous we
have

I/]R(u, (A, D', 6n)" — A*(2!, D', 2))0) 20y lw;[dén| — | (u, (A(a', D', 8)* — A*(2/, D', ))i) 2(0) |
Since

|(u, (A(2', D', 5)" = A*(2', D', 5))t) L2 (0)| < Cllull 20yl 2(0)
the statement of the Lemma is proved. B

Lemma A.4. Let a(/,&o, ..., En1,5) € CLS1/205(0) where j € {0,1} and b/, &0, ..., En1,5) €

CLSH/2:4:5(0). Then A2, D',s)B(z',D',s) = C(z', D', s) + Ry where C(x', D', s) is the operator
AT b T

with SymbOZ (I( » €0, - >£n 1,8 ) ( 507' o &n— 173) and Ry € ‘a(IJO‘u2 e (O)vH#’TJFLS(O)) fOT

any T € [—1,0] if 7 = 0 and Ry € L(H, 2’“S(O),LQ(O)) if 7 = 1. Moreover we have

b o) 1oy = CTer T (@ () for g =1,

41 < C(mei(a)mo (b)) for j=0.

R
Il SO

HLE o) 1

Proof. We set

o [e.e]

A@. D)= a;(2") MY (D)3 (D), B!, D) = 3" bj(a')M*(D)is(D).
j=1

J=1

Observe that

A(2',D)B(2', D) = Z am(x,)bk(x/)M3+ﬂ(D)¢:) D)+ 2 am (2 [ M7 wm,bk]M“(D) (D).
Since C(a/, D) = Y0% .y @i ()bi (') MI (D)o (D) (D), and for j = 1,

Eos
L(HE " (0),L2(0))

Z am | co@y I M@, bl 22,22y @k (D)l 22,12y < Ci Z A M@y bl 22, py Ap ™
m,k=1 m,k=1

Applying Theorem A.2 we obtain

oo

< mllco e | M@, bi]|[]|@w (D
1Rl NS(O)’LQ(O))_mzk;lIa o @) | [M @, bi] l[|ow (D)

<G S Mbkller @ A
m,k=1

(A.208) < Cyy Z AR \R) < o Z)\ E\E1(n Z)\ bR
m,k=1 =
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Let v = v; = u(o,...,zn—1)wj(zn). We take a sequence {w;}32; such that Fy, ¢, w; has a
compact support and |Fy,_¢ w;|> — §(¢, — s) where s € IR be an arbitrary point. Then for any

lip
ue HO2+2,1+M(O)

(A.200) |G, D)B(a', D)vj = C(a', D)vjl|fa(0m) =
2n [ (AW D 6) B, D' 6) — O D' )l ety < Clls g
Passing to the limit in (A.209) as j — 400 we obtain

||(A(.CC,7DI,S)B(CC,7D/,S) - C(.’IZ‘/,D/, S))UH%?(O) < CHUH2 5oms .

Hy ™ (0)

Let 7 = 0.
(A.210)
R r A [On, O | M7 41 wR(D
L T ‘m;” o BIMT o e o) 9Dz ©).0200)
In order to estimate the norm ||an,[@m,bk]M 7| Lot we observe that

o) T o)
M7 a0 (O, bt )M = am M7 [y, ] M7 + [MTL 4] [@m, k] M 7. For the second term in
this equality we have

(A.211) &, be]M TN < Mokl @) lomllzzz).20)), - M7 am]ll < Cllam|lcr(o)-
In order to estimate the first term we observe that [0, bg]* = —[@m, bg]. Then

(G, il € LLPRY), HENIR™), [, bel € L0 27 (R™), L(R™))
Using an interpolation argument

(A.212) (G, bi] € L(H-377(R™), H 2 1Y(R™)) Vv € [0, 1].

(A.213) 1om, belll ., 5

L(H™3 V(R H 251 (R) vy €[0.1]

< Moms Blll ey g ey

Applying (A.211)-(A.213) to (A.210) we obtain

HROHE i‘éi p+T7,8 LF,T+1,S

(Hy? " 7(0),H, (0))
<G> A:Jkullcu@Aﬁ%(")AZ(”)

m,k=1
(A.214) <Cy, Z Ay laT AR () \R () <szle ENFa(n ZA bR
m,k=1 k=1

We finish the proof of Lemma using similar arguments as in case j = 1.1
The direct consequence of the Lemma A.4 is the following commutator estimate.
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Lemma A.5. Let a(z/,&, ..., &n—1,5) € CLSY215(0) and b(a', &g, ..., En1, 5) € CLSO03(O). Then
[A, B] € L(L?*(0); L*(0)) and

I[A, Blll £(z2(0);22(0)) < C(meo(a)meo(b) + meo(a)mer (b) + men(a)meo (D).
Proof. By Lemma A.4 we have
A(2',D',s)B(z',D',s) = C(a',D',s) + Ry, B(z',D',s)A(z',D',s) =C(2',D',s) + Ry,

where R, Ry € L(L*(0), L*(0)). Since [A, B] = Ry — Ry we immediately obtain the statement of
the Lemma. W

Lemma A.6. Let a(2/,&,s) € CcllS%’l’s((’)) be a symbol with compact support in O. Let u €
H%’I’S(O) and suppu C B(0,9). Let &' > & then there exists a constant C(¢',0, o1 (a)) such that

Cllull,

/ /
||14(3j ’D ’S)UHH%’LS(O\B((L(S,)) — 1 ,1, S(O)
Proof. Consider the operator
5 (e}
A(z',D) = a;(z')M(D)a;(D).
j=1

From (A.203), for any multiindex § we have
0%w;(©)] < X7,

So, by Lemma 2.2 (see Chapter II [17]), we have for every function w such that suppw C B(0,J) x

[M(D)&;(D)vl| < CXflloll

HEYO\BO.8)x[-11\~5.4]) ~ B(0,6)x[~1.1])
Therefore
1A, DYoll 11 (07 0.6 [~ 1,11\~ 1.1)) ZH% Wi (DYl 1 o\ B(0.57)x [~ 1.1\~ 1.1))
Z lajllcr@) 1M (D)w; (D)v HHl((’)\B(Oé’)x[ LIN[-2,1])
(A.215) <C]ZI)\ Aol NBOSXLL)
Let v = v; = u(o,...,zn—1)wj(zn). We take a sequence {w;}32; such that Fy, ¢, w; has a

compact support and |Fy, ¢, w;|? — 8(&, — so) where sy € IR is an arbitrary point. Then

||A(37/7D) HHl (O\B(0,6") x [—1,1]\[~ 2,2])

1

(A.216) / !

and

HA(:U/7 _D/7 S)UH%ILS(O\B(O,(S/))|Fxﬂ—>£nw]|2d€n — HA(.T, _D/7 SO)UH%ILSO(O\B(O,(S/))

=

Pl 31 im0, 1,3y = Tild a0 o 0y 88 9 = Fo0

These relations and (A.215) prove the statement of the Lemma. B
We shall use the following variant of Garding’s inequality:
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Lemma A.7. Let p(2/,&,s) € C’CllS%’l’S((’)) be a symbol with compact support in O. Let u €
{I%’l’S(O) and suppu C B(0,0). Let &' > § be such that B(0,8’) C O and Rep(a’,£,s) >
Cls|M (&', s) for any x € B(0,0"). Then

Re(Pu,u) 2 Clslllul? 1 3 . ) = Cillullio

Proof. Let x € C§°(B(0,d)) be a function such that x|p(os) = 1. Conmder the pseudodifferential

operator A(z’,D’,s) with symbol A(2’,¢',s) = (Rep(z/, &, s) — x$|s|M(¢, ))é € 015’4’2’ (0).
Then, according to Lemma A.4

~

A(2',D',s)*A(2’, D', s) = Rep(z, &, s) — X%\S\M(f/, s) + R,

where R € L(L?(0); L*(0)). Therefore

C
Re(Pu,u)12(0) = [|A@@", D, )| 20y = (1 = )M (D), u) p2meny + = ||l + (Ru, u) 12(0).-
Observing that |(Ru, u)2(0) < C(mer(p))l|ull7. (0)» and since by Lemma, 2.2 (see Chapter II [17]),

we have |((1 — x)M (D)u,u)r2gr)| < C’Hu||L2 , we obtain the statement of the Lemma. W
Consider the following system of equations

(A.217) Z—W VK2, D, s\W=F inG,
Tn

(A.218) W (a',0) = g,

where W = (w1, ..., wm), F = (f1,---,fm), 9= (g1,---,9m)- Let K(x, D’,s) be the m x m matrix
pseudodifferential operator such that

(A.219) Ki(z,€,s) € CL9215(G)

and there exists a constant C' > 0 such that

(A.220) (ReK (z,¢&, s)v,v) > Clv]* V(x,¢,s) € G x R" Vv € R"
and the matrix

(A.221) K(z,¢,s) is independent of = outside of a ball B(0,d).

We have

Lemma A.8. Suppose that assumptions (A.219) - (A.221) hold true. Then
A) For each g € H%%S(IR”), F € L?*(G) there exists a unique solution to problem (A.217), (A.218)
W e H%’l’S(G) and the following a priori estimate holds true

(A.222) Ity + I b by < CUTN 4oy + I Fll22(6):

B) For each g € L*(IR"), F € Hfé’fl’S(G) with suppF CC G there exists a unique solution to
problem (A.217), (A.218) W € L?(G) and the following a priori estimate holds true

(A.223) Wilz2e) + W] aal V| T

Loo(o,yH—* -2 (Rn)) S C(HgHH—i,—%,S(Rn) (G))
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Remark. For the initial data g € L*(IR"), F € H_%’_I’S(G) with suppF CC G we understand
solution of problem (A.217), (A.218) in the following way

0 .
W, (—% + K(z,D',5))®) 12y = (9, ®(+,0)) p2(mry + (F, @) 125

for any function ® € H%’l’S(G), o(-,v) =0.
Proof. We set

n—1
R3(D, s)w = / (L+ &+ € +sh)sbe€> e,
Let K1(z,¢&, s) be the principal symbol of the operator K. Consider the matrix
(A.224) P(x,¢)s) = / e BTt gy
0

By (A.220) the integral in the right hand side of (A.224) is convergent. Then for the principal
symbol of the operator K we have
PK, + K{P=1.

We also observe that
(A.225) (P¥,7) > C1||7]|> VYo € R™.

In order to show the solvability of (A.217), (A.218), we will first consider regularized problems.
For € €]0, 1], let us consider a family of the Friedrichs mollifiers (J;)e with 7. € S™°(IR") (cf [16])
(SP(IR™) is the class of pseudodifferential operators of order p on IR™). It is known that

Jeu — u in L*(IR™) as € — +0,

sup || Tellzzzmny,L2mmy) < C,
€€[0,1]

{[A, 7] :0 < e < 1} is a bounded set in £(L*(IR"), L*(IR™))

for any A(x,D,s) € C°([0, 1],0215%’175(]1%”)). Let € € (0,1). We consider the following Cauchy
problem for ordinary differential equation in a Banach space.

oW,
o0z,
(A.227) W.(z',0) = g.

(A.226) +JXK(x,D',s)JW. = J*F in G,

Forany g € Hi'z (IR™) and F € L?(G) there exists a unique solution W, to problem (A.226),(A.227)
with We € L(0,7; H1'3*(R™)), 9% € L2(G).
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Simple computations provide the following

<1 <1 1 0W, <1
E(PAQWG,A2W€)L2(]RH) (PA2 6mn 7A2W€)L2(]R")
- -1 0W, <1 ~1
F(PARWe, A2 50) ooy + (PAR W, A2 W) ey =

(PA2 (- T*KIW. + J*
+(PA2W,, Az (—T KJEW + T F))L2 ®) + (PAZW, AZW,) oy =

—(PRIW, TP K TRTW,) oy + (P]\%We, ]\%j:F)LZ)(Rn) + (PR W, A2 W,) po gy =
—(PTIKT. + T K*TP)A W, A3W,) oy + (PA2 T F, A
—i-(P/\§ A2j F)L2 Rn) —|— (P,]\%WHA%WG)LQ(IR'”) =

1 ~ ~

~((PK + K*P) TR We, T A2 W) 2y + (PR2 TFF, A2 W) 2y
(T K Tes PIAIWe, ASW) oy + (PAZWe, A2 TFF) gy + (PP AW, A3W0) 2

Here P’ is the pseudodifferential operator with symbol %p(l‘, ¢, s). Note that

% 1
(A.228) |(Fel* (Tes YRS W, A W) 2| < CIWel 15 g
and
1 1
(A.229) [(P'A2We, A2 W) [2rmy| < C||W]| .

(Here and below all constants C' are independent of € € (0, 1).) After simple computations we obtain
(PAZTF,AZW) pomey = ([PA2, T2V F, A2 W) ooy + (PAZF, T AW, 2y
([PA2 6] A%W)LQ(RH)JF( F,Azp* $A§W) LR =

l\)\b—‘

P*[J., A5W, We) 2 (rm)-

Therefore for any positive &
1 T 1 71
(A.230) [(PA2 JF, A2Wo) 2| < CONEC, @) 7y +CIAZWel Loy TV 3 s
In similar way we have
(A.231)

~1 c1 <1
(PREWe RS T2 F) o] < COIECon) oy + CIASWel oy + Ty 1

Using (A.228)-(A.231) we obtain

d
(A.232) S (PRI AW oy + CLITWEE ) < COREWe gy 1P ) i)
Applying Gronwall’s inequality we obtain
(A233) Wl ot by 1TVl by S CUI e gy + IF N2
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Using (A.233) from (A.217) we obtain the estimate for g‘gﬁ::

oW,

(A.234) | oz, lz2e) < Cllall 140 gmy T IF N 22(69)-

Inequalities (A.233) and (A.234) imply

We can now extract a subsequence, still denoted by € such that

(A.236) W, — W in L>=(0, v; L*(IR")) weakly,
oW, oW .
(A.237) 9z, o, in L*(G) weakly,
(A.238) JW. = W in L2(0,7; Hz"'(IR")) weakly,
(A.239) JW. =W in L®(0,; H12 (IR™)) weakly .

Of course W € H%’l(G) and W is a solution of (A.217), (A.218). From (A.235) we obtain (A.222).
Now we prove the statement B of this Lemma. Since the space L?(G) is dense in the space

{F € H_%’_I’S(G)|suppF CC G} in order to prove the statement B it suffices to establish the a
priori estimate (A.223). Let ® be a solution to the following boundary value problem

(A.240) (—% + K*(x,D,s))®=W inG, &(,v) =0.

From the definition of a weak solution we have

(A.241) HWH%2(G) =(9,2(,7)r2mr) + (F, @) 12(6)-
By the statement A of this Lemma solution to (A.240) satisfies the estimate

(A.242) P

2

LOO(O,’)/;H%P%’S(R”)) S C||W||L2(G)

Using in equality (A.241) estimate (A.242) we obtain (A.223). B
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