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Abstract

In this paper we propose a numerical reconstruction method for solving

a backward heat conduction problem. Based on the idea of reproducing

kernel approximation, we reconstruct the unknown initial heat distribu-

tion from a finite set of scattered measurement of transient temperature

at a fixed final time. Standard Tikhonov regularization technique using

the norm of reproducing kernel is adopt to provide a stable solution when

the measurement data contain noises. Numerical results indicate that the

proposed method is stable, efficient, and accurate.

1 Introduction

Let Ω ⊂ R
d, d ∈ N be a bounded domain with sufficiently smooth boundary

∂Ω. Consider the following initial boundary value problem for heat conduction
equation:







∂tu(t, x) = ∆u(t, x), x ∈ Ω, t ∈ (0, tf ),
u(0, x) = f0(x), x ∈ Ω;
u(t, x) = 0, x ∈ ∂Ω, t ∈ (0, tf ),

(1)

where tf > 0 is a fixed final time. The backward heat conduction problem
(BHCP) is to recover the heat distribution at any earlier time 0 ≤ t < tf

from the temperature distribution u(tf , ·). This is a well known highly ill-posed
problem [3, 25] in the Hadamard sense: There exists no solution in general that
satisfies the heat equation with final data and the boundary conditions. Even
if the solution exists, any small change in the observation data may induce
enormous change in the solution. Moreover, in practical situation, the data
u(tf , ·) are collected only at a finite set of points {z1, . . . , zM} ⊂ Ω and are con-
taminated with measurement noises. Therefore, most conventional numerical
methods often fail to give an acceptable approximation to the solution of the
BHCP.

There are quite a large number of works devoted to stable numerical meth-
ods for BHCP. The following is a partial list of articles which contain numerical
tests: the method of fundamental solutions [22], boundary element method
[10, 29], iterative boundary element method [21], inversion methods [18, 20],
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Tikhonov regularization by maximum entropy principle [23], operator-splitting
methods [14], lattice-free finite difference method [12], Fourier regularization
[7, 8], quasi-reversibility [15, 35], quasi-boundary regularization [4], modified
methods [16, 26], group preserving scheme [17], regularization by semi-implicit
finite difference method [30], nonlinear multigrid gradient method [36], approxi-
mate and analytic inversion formula [19]. Comparisons of some inverse methods
can be found in [5, 24].

For stable reconstruction of the initial heat distribution, we employ a dis-
cretized Tikhonov regularization by the Ritz approach coupled with the repro-
ducing kernel Hilbert space (RKHS), which is proposed in [31] and is applied
to a Cauchy problem for an elliptic equation.

The outline of the paper is as follows: In section 2, we give a brief review
on the results of the discretized Tikhonov regularization by reproducing kernel
Hilbert space. The formulation of the BHCP problem is then given in section
3. In section 4 our reconstruction method for the solution is described for the
BHCP. After the numerical implementation is mentioned in section 5, several
numerical examples are given in section 6 to demonstrate the accuracy and
efficiency of the proposed method.

2 The discretized Tikhonov regularization by Re-

producing Kernel Hilbert Space

We begin with a brief review on the RKHS and the discretized Tikhonov regu-
larization by RKHS. The general theory of Tikhonov regularization originates,
for instance, from [32, 33]. The discretization of Tikhonov regularization by the
Ritz approach can be found in [9]. As for the general theory of the reproducing
kernel Hilbert space, one can refer to [1, 27].

Definition 1. Let H be a real Hilbert space of functions defined on Ω ⊂ R
n

with the inner product (·, ·)H. A function Φ: Ω×Ω → R is called a reproducing

kernel for H if

1. Φ(·, x) ∈ H for all x ∈ Ω,

2. f(x) = (f, Φ(·, x))H for all f ∈ H and all x ∈ Ω.

We define the norm by ‖f‖H = (f, f)
1

2

H.

A Hilbert space of functions which admits a reproducing kernel is called a re-

producing kernel Hilbert space (in short, RKHS). The reproducing kernel of a
RKHS is uniquely determined. Conversely, if Φ is a symmetric positive definite
kernel, then one can construct a unique RKHS in which the given kernel acts
as the reproducing kernel (see [34] for details).

For later convenience, we list in the following some fundamental properties
of RKHS:

1. Φ(x, y) = (Φ(·, x), Φ(·, y))H for all x, y ∈ Ω.

2. ‖f‖2
H =

N
∑

k=1

N
∑

j=1

αkαjΦ(xk , xj), for all f ∈ H in the form of f =

N
∑

k=1

αkΦ(·, xk)

with xk ∈ Ω.
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3. Let TΦ(v)(x) =

∫

Ω

Φ(x, y)v(y)dy, v ∈ L2(Ω), x ∈ Ω. From Mercer’s

theorem Φ can be represented as

Φ(x, y) =

∞
∑

j=1

λjϕj(x)ϕj (y),

where λj are the non-negative eigenvalues and ϕj are the eigenfunctions
of TΦ.

4. H is given by

H =
{

f ∈ L2(Ω) |
∞
∑

j=1

λ−1
j |(f, ϕj)L2(Ω)|2 < ∞

}

,

and the inner product can be written as

(f, g)H =
∞
∑

j=1

λ−1
j (f, ϕj)L2(Ω)(g, ϕj)L2(Ω), f, g ∈ H.

Now, we briefly describe the discretized Tikhonov regularization by RKHS.
For a finite set of points Xm := {x1, . . . , xm} ⊂ Ω and f ∈ H, we consider

the finite sum sf,Xm
(x) =

m
∑

k=1

αkΦ(x, xk), where the coefficients {αk}m
k=1 are

determined uniquely by the system sf,Xm
(xk) = f(xk), 1 ≤ k ≤ m, since Φ is

positive definite.
Define a subspace Vm, Vm := span {Φ(·, x) | x ∈ Xm} ⊂ H and an operator

Pm : H → Vm ⊂ H by Pm(f)(x) = sf,Xm
(x).

Let W be any Hilbert space and K be a linear compact operator from H to
W . We consider the reconstruction of f0 ∈ H in the following equation

Kf0 = g0 (2)

from noisy data gδ with ‖g0 − gδ‖W ≤ δ. In order to stably reconstruct f0 from
noisy data gδ, we consider the discretized Tikhonov regularization:

min
f∈Vm

‖Kf − gδ‖2
W + α‖f‖2

H (3)

It is well known that the solution of the minimization problem can be uniquely
determined [2] and we denote the minimizer by fα,m,δ. We can establish the
convergence of fα,m,δ to the minimum norm solution K†g0 of Kf0 = g0 if
we choose m = m(δ) and α = α(δ) suitably with respect to the noise level
δ. To state the convergence result, we fix the notations and introduce some
assumptions.

Let us define the fill distance hm of Xm by hm = sup
x∈Ω

min
xj∈Xm

‖x − xj‖. We

choose the finite set of points Xm such that lim
m→∞

hm = 0. Let γm := ‖K(I −
Pm)‖, here I : H → H is the identity map. Let lim

δ→0
m(δ) = 0 and lim

δ→0
α(δ) =

0. The next theorem shows that the solution fα,m,δ of (3) converges to the
minimum norm solution K†g0 of (2) .
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Theorem 2. Assume that the kernel Φ is uniformly continuous on Ω × Ω
and lim

m→∞
γm = 0. If γm = O(

√
α) and δ = O(

√
α), then lim

δ→0
‖fα(δ),m(δ),δ −

K†g0‖L2(Ω) = 0.

For the noise-free data case, we have

Theorem 3. Let lim
m→∞

αm = 0. If γm = O(
√

αm), then lim
m→∞

‖fαm,m −
K†g0‖L∞(Ω) = 0.

For the detail description of the discretized Tikhonov regularization by RKHS
including the proof of the theorem can be found in [31].

The above result is valid independent of the choice of any reproducing ker-
nel Φ satisfying the assumption in Theorem 2, and one can use any kernel for
a numerical reconstruction at least in principle. Taking into account that the
solution satisfies the Dirichlet boundary condition and the fact that our ap-
proximate solution is constructed in the form of the finite sum of the kernel,
the kernel should satisfy the boundary condition as well. One possible choice
for the kernel is the Green’s function of the heat equation (8) and we show that
the Green’s function satisfies the assumption in Theorem 2 in section 4.

3 Formulation of the Inverse problem

We now formulate our inverse problem. The inverse problem to be investigated
in this paper is to reconstruct the unknown initial heat distribution f0 of (8)
from some scattered noisy data uδ(tf , zj) = u(tf , zj) + noise.

Let Φ: Ω × Ω → R be a positive definite kernel and let H be the RKHS
generated by the kernel Φ which is uniformly continuous on Ω × Ω. Let us
assume that the initial value u(0, x) belongs to the space H.

The unique solution of the equation (8) with initial value u(0, x) = f ∈ H
can be written as

u(t, x) =

∫

Ω

f(y)G(t, x, y)dy,

where G(t, x, y) is the Green’s function satisfying Dirichlet condition [13]. For
each f ∈ H we define a map K0 : H → L2(Ω) as

K0f(x) :=

∫

Ω

f(y)G(tf , x, y)dy.

Let K : H → R
M be defined by Kf := (K0f(z1), . . . , K0f(zM )) ∈ R

M and let
utf

:= (u(tf , z1), . . . , u(tf , zM )) ∈ R
M . The inverse problem in (1) is stated as

follows:

Find the minimum norm solution K†utf
∈ H of the system

Kf0 = utf

from a scattered noisy data uδ
tf

= (uδ(z1), . . . , uδ(zM )) ∈ R
M ob-

served at points Z = {z1, . . . , zM} ⊂ Ω and at a fixed final time
tf > 0 with prescribed error bound δ:

M
∑

k=1

|uδ(zk) − u(tf , zk)|2 ≤ δ2.
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4 The reconstruction of the initial heat distri-

bution

We adapt the discretized Tikhonov regularization by using RKHS for stable
reconstruction K†utf

from the noisy data uδ
tf

∈ R
M :

min
f∈Vm

‖Kf − uδ
tf
‖2

RM + α‖f‖2
H, (4)

where α > 0 is called a regularizing parameter.
As we mention above, the kernel may in principle be chosen arbitrary if it

satisfies the condition in Theorem 2. However, we focus ourselves on the special
kernel that automatically satisfies the Dirichlet boundary condition for accurate
reconstruction, namely, the Green’s function of the heat equation (8). It is not
obvious if the Green’s function satisfies the condition.

Let us begin with the following Lemma.

Lemma 1. Let tf > t0 > 0 be given. Define Φ(x, y) := G(t0, x, y). Then

Φ: Ω × Ω → R is symmetric and positive definite.

Proof. We just need to show that

n
∑

j=1

n
∑

k=1

αjαkG(t0, xj , xk) > 0

for all n ∈ N, all pairwise distinct points {x1, . . . , xn} ⊂ Ω and for all (α1, . . . , αn) ∈
R

n\{0}.
The following two properties of the Green’s function

∫

Ω

G(t, x, z)G(s, z, y)dz = G(t + s, x, y), for all s, t > 0,

and
G(t, x, y) = G(t, y, x) for all t > 0, x, y ∈ Ω,

yield

n
∑

j=1

n
∑

k=1

αjαkG(t0, xj , xk) =

n
∑

j=1

n
∑

k=1

αjαk

∫

Ω

G

(

t0
2

, xj , y

)

G

(

t0
2

, y, xk

)

dy

=

∫

Ω





n
∑

j=1

αjG

(

t0
2

, xj , y

)





2

dy =: I ≥ 0.

The lemma will be verified if I 6= 0. Consider the following heat equation






∂tu(t, x) = ∆u(t, x), x ∈ Ω, t > 0,
u(t, x) = 0, x ∈ ∂Ω, t > 0,
u(0, x) =

∑n

k=1 αkδ(x − xk), x ∈ Ω.

where δ(x − xk) is the dirac measure with center located at xk whose unique
solution is written in terms of the Green’s function G(t, x, y) as

u(t, x) =
n

∑

k=1

αkG(t, xk , x), for t > 0.
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If I = 0, we then have u(t0/2, xk, x) = 0 for all x ∈ Ω. Therefore we have
u(t, xk, x) = 0 for all x ∈ Ω and for all 0 < t < t0/2. As a result, we have that

n
∑

k=1

αkδ(x − xk) = 0 in the distribution sense, which implies that αk = 0 for all

k = 1, . . . , n. This contradicts to α ∈ R
n\{0}. �

Henceforth we denote by Ht0 the RKHS generated by the kernel G(t0, x, y).
Since the Green’s function G(t, x, y) is expanded in the eigenfunctions ϕk and
non-negative eigenvalues λj of Laplace operator ∆ with Dirchlet boundary con-

dition as G(t, x, y) =

∞
∑

j=1

e−λjtϕj(x)ϕj (y) (see [6]), the space Ht0 is given by

Ht0 =
{

f ∈ L2(Ω) |
∞
∑

j=1

eλjt0 |(f, ϕj)L2(Ω)|2 < ∞
}

.

Next we show the two conditions in Theorem 2, that is, (1) Φ is uniformly
continuous on Ω and (2) γm = ‖K(I − Pm)‖ → 0 as m → ∞. The former
condition is satisfied because the Green’s function G(t0, x, y) is smooth on Ω̄×Ω̄
[6]. We shall check that (2) is satisfied.

Lemma 2. γm = ‖K(I − Pm)‖ → 0 as m → ∞.

Proof. Since, for a fixed t0 > 0 and for any y ∈ Ω, the function G(t0, x, y)
is smooth, the RKHS H generated by the kernel Φ(x, y) = G(t0, x, y) is con-
tinuously embedded in a Sobolev space W m

2 (Ω) with sufficiently large m > 0.
With the help of Sobolev norm estimates for functions which vanish on a finite
set of points in a domain Ω, we can find a function p : R+ → R+ satisfying
lim
r→0

p(r) = 0 such that the estimate

‖f − Pmf‖L∞(Ω) ≤ p(hXm
)‖f‖H (5)

holds for all f ∈ H. Therefore we assume that the existence such function p.
The above discussion is based on the section 5 in [28]. For the detail treatise of
the estimate one can refer [34] and the references therein.

Since ‖G(tf , x, ·)‖L1(Ω) = 1 for x ∈ Ω,

‖Kf‖RM ≤ max
1≤k≤M

|K0f(xk)| = max
1≤k≤M

∣

∣

∣

∣

∫

Ω

G(tf , xk , z)f(z)dz

∣

∣

∣

∣

≤ M‖f‖L∞(Ω)

for all f ∈ H. By the property of RKHS, ‖f‖L∞(Ω) ≤ sup
x∈Ω

√

Φ(x, x)‖f‖H. Thus,

we have

‖K(I − Pm)f‖RM ≤ M‖(I − Pm)f‖L∞(Ω) ≤ Mp(hm)‖f‖H.

The last inequality follows from (5). Hence,

lim
m→∞

‖K(I − Pm)‖ = lim
m→∞

sup
f∈H

‖K(I − Pm)f‖RM

‖f‖H
≤ lim

m→∞
Mp(hm) = 0.

�
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Thus, it follows that the unique solution of (4) converges to the minimum
norm solution K†utf

. We then have

Theorem 4. If γm = O(
√

α) and δ = O(
√

α), then lim
δ→0

‖fα(δ),m(δ),δ−K†utf
‖L2(Ω) =

0.

For the noise-free data case, we have

Theorem 5. Let lim
m→∞

αm = 0. If γm = O(
√

αm), then lim
m→∞

‖fαm,m −
K†utf

‖L∞(Ω) = 0.

5 Numerical implementation

Vm is spanned by the finite sum of G(t0, ·, xk) with xk ∈ Xm ⊂ Ω, and therefore
the minimizer fα,m,δ is written as

fα,m,δ =
m

∑

k=1

λkG(t0, ·, xk), xk ∈ Xm.

Note that the minimizer so constructed automatically satisfies the Dirichlet
boundary condition, i.e., fα,m,δ|∂Ω = 0.

Lemma 3. The coefficients λmin = {λk}m
k=1 ∈ R

m is the unique solution of the

system

(A∗A + αB)λmin = A∗uδ
tf

, (6)

where uδ
tf

= (uδ(z1), . . . , uδ(zM ))> ∈ R
M , A is a M × m matrix and B is a

m × m matrix defined by

{

Aj,k = G(t0 + tf , zk, xj), j = 1, . . . , M, k = 1, . . . , m,
Bj,k = G(t0, xj , xk), j, k = 1, . . . , m.

Here, A∗ denotes the transpose of the matrix A.

Proof. ¿From the definition of RKHS [34], it follows that ‖f‖2
H =

m
∑

i,j=1

λiλjG(t0, xi, xj)

for f ∈ Vm and some λk ∈ R, k = 1, . . . , m. Since KG(t0, ·, xk) =

∫

Ω

G(t0, y, xk)G(tf , ·, y)dy =

G(t0 + tf , ·, xk), the minimization problem is equivalent to the following mini-
mization problem:

min
λ∈Rm

∥

∥

∥

∥

∥

m
∑

k=1

λkG(t0 + tf , ·, xk) − uδ
tf

∥

∥

∥

∥

∥

2

RM

+ α

m
∑

i=1

m
∑

j=1

λiλjG(t0, xi, xj).

Now, it is easy to see that the coefficients λmin ∈ R
m satisfies the equation

(6). �
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6 Numerical experiments

6.1 Noise-free data

In this section we verify the numerical efficiency and accuracy of the proposed
reconstruction method. For the purpose of comparison with existing works,[4,
15, 20, 21, 22], the numerical experiments are conducted with the following
typical bench-mark test problem:
Example 1 We consider the one-dimensional BHCP







∂tu(t, x) = ∆u(t, x), x ∈ (0, 1), t ∈ (0, tf ),
u(0, x) = sin(πx), x ∈ (0, 1);
u(t, 0) = u(t, 1) = 0, t ∈ (0, tf ),

(7)

whose exact solution is given by u(t, x) = sin(πx) exp(π2t). We reconstruct
numerically the initial temperature distribution sin(πx) from the knowledge of
the final time temperature distribution u(tf , x).

The Green’s function G(t, x, y) is given as G(t, x, y) =

∞
∑

j=1

e−j2π2t sin(jπx) sin(jπy)

and the space Ht0 is given by

Ht0 =
{

f ∈ L2(Ω) |
∞
∑

j=1

ej2π2t0 |(f, sin(jπx))L2(Ω)|2 < ∞
}

.

It is easy to see that the initial condition u(0, x) = sinπx belongs to the
space Ht0 for any t0.

To obtain a numerical solution with our method, we have to determine t0,
Xm, measurement points ZM := {zk}M and observation time tf to define A,
B and the data {u(tf , zk)}M

k=1. Then, we solve the equation (6) with suitable
parameter α.

The matrices A and B depend on various quantities, i.e., A = A(t0, tf , Xm, ZM )
and B = B(t0, Xm). However, we omit such dependence. Firstly, we employ
our method with the case tf = 1.5, 2.5, 3 to compare the accuracy of our results
with those obtained by [4]. These problems are highly ill-posed. We must re-
cover the initial data with the order of O(1) from the final data with the order
of O(10−7) − O(10−13).

According to the convergence theorem for noise free data case, larger m in
Xm will yield better numerical solution. Due to the ill-posedness of BHCP,
the matrix A∗A is ill-conditioned. As a result, the numerical computation of
the inverse of A∗A + αB is impossible when the regularizing term B is also
ill-conditioned. To see the effect of increasing number of m to the condition
number of B, cond(B), of the matrix B = {G(t0, xi, xj)}i,j , we plot cond(B)
verse the number of m running from 10 to 200. In this test, Xm is chosen

as Xm = { 1

m + 1
, . . . ,

m

m + 1
} for each m. We show the results for the cases

t0 = 10−2, t0 = 10−3 and t0 = 10−4 in Figure 1. In all cases, cond(B) increase
exponentially as m increase which means the matrix B corresponding larger m
may not work as the regularization.

Next, we show the effect of the increasing number of m to the accuracy of
our numerical solution for each t0 = {10−2, 10−3, 10−4}. Xm is given in the

8
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Figure 1: The effect of the increasing number of m to the condition number of
B for the case t0 ∈ {10−2, 10−3, 10−4}.

same way as above. We give 30 measurement points Z30 = { k

30 + 1
| k =

1, . . . , 30} and use the measurement data for the case tf = 3. We solve the
system (A∗A + αB)λmin = A∗utf

, utf
= [u(tf , z1), . . . , u(tf , z30)]

> to obtain λ
in

fα,m(x) =

m
∑

k=1

λkG(t0, xk, x).

Although we should select α depending on m so that γm = O(
√

αm) as in

Theorem 5, we pick α as α = 10−5 max(A∗A)

max(B)
, where max(C) = max

i,j
ci,j for a

matrix C = (ci,j). To avoid numerical instability when calculating the inverse
of A∗A + αB, we restrict the range of the number m such that cond(B) <
1017 for each t0. That is, m = 10 to 21 for t0 = 10−2, m = 10 to 65 for
t0 = 10−3 and m = 10 to 197 for t0 = 10−4. The maximum error E(m) =
‖fα,m − u(0, ·)‖L∞(0,1) for each t0 are reported in Figure 2, which shows that
the accuracy in the numerical solution decreases as m increases. However, for
the case t0 = 10−4, the accuracy begins to increase after m = 140.

At the end, we show the numerical results for the cases tf = {1.5, 2.5, 3} un-
der the setting, M = 30, t0 = 10−4 and m = 120. Figure 3 shows the absolute
error for these three cases. Each of the maximum error occurs at x = 0.5 and
they are 7.1 × 10−7 for tf = 1.5, 1.3 × 10−6 for tf = 2.5, and 4.8 × 10−4 for
tf = 3, respectively. We omit these plots here because the numerical results are
so accurate as shown in Figure 3 that the graph of these results almost coincide
with the exact solution u(0, x) = sin πx and we cannot see the difference be-
tween them. For comparison, we cite the maximum error reported in [4] which
is about 2.8 × 10−3 for the case of tf = 3.

Example 2 We test the performance of our method by using the following
example which is a hard benchmark problem of BHCP. We consider the one-
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Figure 4: Exact solution u(0, x) = 2 min(x, 1 − x) and numerical solutions for
tf = 0.01 and tf = 1. The other parameters are set as t0 = 10−4, m = 120 and
M = 30.

dimensional BHCP






∂tu(t, x) = ∆u(t, x), x ∈ (0, 1), t ∈ (0, tf ),
u(0, x) = 2 min(x, 1 − x), x ∈ (0, 1);
u(t, 0) = u(t, 1) = 0, t ∈ (0, tf ),

(8)

The exact solution is given by

u(t, x) =

∞
∑

k=1

8(−1)k+1

(2k − 1)2π2
sin{(2k − 1)πx} exp(−(2k − 1)2π2t).

We construct numerically the initial temperature distribution 2 min(x, 1 − x)
from the knowledge of the final time temperature distribution u(tf , x). Note
that the function 2 min(x, 1 − x) is not smooth at x = 0.5 and hence it does
not belong to the solution space Ht0 for any t0 > 0. Therefore, our theory
does not guarantee that we can recover this initial condition. We report the
numerical results for the cases tf = {0.01, 1} obtained under the setting M =
30, t0 = 10−4 and m = 120. The exact solution u(0, x) and the numerical
solutions are graphically shown in Figure 4(a). In Figure 4(b) the absolute
errors |u(0, x)− fα,m(x)| for both cases are reported. The maximum errors are
4.4 × 10−2 for tf = 0.01 and 1.8 × 10−1 for tf = 1, respectively. Even for this
severe problem, our method is capable of giving the satisfactory results.

6.2 Noisy data

We verify the numerical accuracy of the proposed method for the case when
the data contains noise by using Example 1. We fix tf = 0.25 and M = 30
throughout of this section. The noisy data uδ

0.25 at measurement points Z30 =
{zj | zj = j

30+1} are obtained by adding random numbers to the exact data
u(0.25, x) by

uδ
0.25(zj) = u(0.25, zj) +

δ

100
max

zj∈Z30

|u(0.25, zj)|rand(j)
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(b) The case of t0 = 10−4

Figure 5: Relative error of the reconstructed numerical solution U . The final
time tf = 0.25, t0 = 10−3 and M = 30.

for j = 1, . . . , 30, where u(0.25, zj) is the exact data in (8) and rand(j) is a
random number between [−1, 1] and δ% ∈ {5%, 15%, 20%} is noise level. For all
given noisy data uδ

0.25 with various noisy data, we apply the proposed method
to obtain an approximate solution to u(0, x). We denote the reconstructed
numerical solution by U .

The regularization parameter α has to be chosen appropriately according to
the noise level prescribed in Theorem 4. However, in practice the noise level
may not always be given and hence it is necessary to consider also error-free
parameter choice rules that compensate this lack of information for the noise
level. Here, the L-curve criterion [11] is adopted for choosing the regularization
parameter.

At first, we study the effect of the number m to the accuracy of the numerical
solution U with various noisy level and various t0. For the numerical error
estimations, we compute the relative error of the reconstructed solutions which
we denote by R(U):

R(U) =
‖U − u(0, ·)‖L2(0,1)

‖u(0, ·)‖L2(0,1)
.

Figure 5(a) plots the relative error R(U) for each m for the case of t0 = 10−3.
The number m runs from 10 to 65. It can be seen from Figure 5(a) that large
m does not affect the accuracy of U . The result for the case of t0 = 10−4 is
reported in Figure 5(b) where m runs from 40 to 120. We can see the same trend
as that for the case of t0 = 10−3. We can conclude that t0 and the number m
do not affect the accuracy of the numerical solution if m is not too small, and
our method still gives reasonable approximations to the solution u(0, x). At
the end of this section, we show some numerical results with various noise level
δ% ∈ {5%, 15%, 20%}. The parameters are t0 = 10−3, m = 30, tf = 0.25 and
M = 30. The exact solution u(0, x) = sin πx and the numerical solutions are
shown in Figure 6(a) and the absolute error in Figure 6(b). It can be observed
that the method works for the case of Example 2 with noisy data as well.
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Figure 6: Exact solution u(0, x) = sinπx and numerical solutions for δ% ∈
{5%, 15%, 20%}. The final time tf = 0.25, t0 = 10−3, m = 30 and M = 30.

Table 1: Maximum error ‖u(0, ·)−U‖L∞(Ω) with t0 = 10−3, m = 302, M = 102.

Noise tf = 0.1 tf = 0.5 tf = 1 tf = 1.5 tf = 2.5 tf = 3
0% 7.5994e-007 4.8941e-007 4.9085e-007 4.9195e-007 4.6232e-006 8.6056e-003
1% 4.7273e-002 1.1895e-003 1.1810e-003 1.1805e-003 1.2448e-003 3.9789e-003
5% 8.5255e-002 5.8740e-003 5.9071e-003 5.9024e-003 5.6362e-003 5.7660e-003
15% 6.9104e-002 1.7640e-002 1.7722e-002 1.7713e-002 1.6776e-002 1.1838e-002
20% 6.8063e-002 2.3532e-002 2.3629e-002 2.3619e-002 2.2427e-002 1.4842e-002

6.3 Two-dimensional case

We consider the following two-dimensional case where Ω = [0, 1] × [0, 1]. We
recover the initial distribution u(0, x, y) = sin πx sin πy of the exact solution

u(t, x, y) = sin πx sin πy exp(−π2t).

for heat equation (8) from the data at tf = 0.5 so that we compare our result
with the one obtained by [18]. On the basis of the investigation for 1D case in
the previous section, we only treat the case of t0 = 10−3, m = 302. The points

Xm = {x1, . . . , xm} are equally distributed in Ω, i.e., Xm = {( i

m + 1
,

j

m + 1
) |

i, j = 1, . . . , m}. Since the numerical results are not sensitive to the number of
measurement points, we fix M = 102. The measurement points ZM are equally
distributed in the domain as well. We give numerical results for noise-free case
with various finial observation time tf = {0.1, 0.5, 1, 1.5, 2.5, 3} and noise level

δ% ∈ {0%, 1%, 5%, 15%, 20%}. As 1D case, we select α as α = 10−5 max(A∗A)

max(B)
for the noise-free case, and determine α by using L-curve method for the noisy
data case. Table 1 shows the maximum error of U and Table 2 shows the relative
error of U , where U denotes the reconstructed numerical solution. Even in the
case of tf = 3 where the order of the exact solution u(tf , ·) is about O(10−26),
the numerical results for all noisy cases are satisfactory.
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Table 2: Relative error
‖u(0, ·) − U‖L2(Ω)

‖u(0, ·)‖L2(Ω)
with t0 = 10−3, m = 302, M = 102.

Noise tf = 0.1 tf = 0.5 tf = 1 tf = 1.5 tf = 2.5 tf = 3
0% 8.5862e-007 4.9031e-007 4.9031e-007 4.9031e-007 1.2676e-006 3.4250e-003
1% 3.4029e-002 1.1796e-003 1.1813e-003 1.1809e-003 1.1407e-003 1.8338e-003
5% 7.4784e-002 5.8729e-003 5.9085e-003 5.9040e-003 5.6122e-003 4.0537e-003
15% 6.3677e-002 1.7641e-002 1.7726e-002 1.7718e-002 1.6777e-002 1.0491e-002
20% 6.2946e-002 2.3534e-002 2.3635e-002 2.3625e-002 2.2434e-002 1.3572e-002

7 Conclusion

In this paper we apply the discretized Tikhonov regularization by reproducing
kernel Hilbert space to reconstruct the solution of the backward heat conduction
problem. The implementation of the method is simple and easy. Numerical
examples verify that the proposed method is efficient and accurate.
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