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ABSTRACT. A Fatou-Julia decomposition of transversally holomorphic foliations
of complex codimension one was given by Ghys, Gomez-Mont and Saludes. In
this paper, we propose another decomposition in terms of normal families. Two
decompositions have common properties as well as certain differences. It will be
shown that the Fatou sets in our sense always contain the Fatou sets in the sense of
Ghys, Gomez-Mont and Saludes and the inclusion is strict in some examples. This
property is important when discussing a version of Duminy’s theorem in relation
to secondary characteristic classes. The structure of Fatou sets is studied in detail,
and some properties of Julia sets are discussed. Some similarities and differences
between the Julia sets of foliations and those of mapping iterations will be shown.
An application to the study of the transversal Kobayashi metrics is also given.

1. INTRODUCTION

The Fatou-Julia decomposition is one of the most basic and important notions in
complex dynamical systems. It have been expected that there also exists the Fatou-
Julia decomposition of transversally holomorphic foliations. Such a decomposition
of complex codimension-one foliations was firstly introduced by Ghys, Gomez-
Mont and Saludes in [10]. We call the decomposition theGGS-decompositionfor
short. The GGS-decomposition is given according to the existence of certain sec-
tions to the complex normal bundles of foliations, and it enjoys several significant
properties. For example, foliations restricted to the GGS-Fatou sets admit transver-
sal Hermitian metrics transversally of classCω and invariant under holonomies.
This implies that foliations have simple dynamics on the Fatou sets.

On the other hand, the dynamical properties of the GGS-Julia set is complicated
in general, and the Julia sets are expected to play a role of minimal sets for real
codimension-one foliations. Indeed, a weak version of Duminy’s theorem for real
codimension-one foliation [8] is known, namely, the non-triviality of certain char-
acteristic classes implies the non-vacancy of the GGS-Julia sets [3]. However, there
are transversally holomorphic foliations of which the Julia set is the whole mani-
fold. From the viewpoint as above, it is preferable if this kind of Julia sets can be
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2 TARO ASUKE

avoided. One way to exclude such foliations is using characteristic classes. On the
other hand, it will be also possible by replacing the Julia sets with smaller ones.

In this paper, we will propose another Fatou-Julia decomposition defined in a
certain analogy to that of complex dynamical systems (Section 2). The foliation
restricted to the Fatou set is transversally Hermitian of classCω. In this sense, our
decomposition has the same property as the GGS-decomposition. Moreover, there
is a description similar to that of the GGS-Fatou sets. The structure of transversally
Hermitian foliations is well-studied by Molino, Haefliger, Salem et. al. [17], [13],
[12], [22]. The classification of the Fatou components will be done by showing
that foliations restricted on the Fatou set are locally given by actions of Lie groups
and then repeating well-developed arguments as above. On the other hand, two
decompositions are different in some examples. In fact, it will be shown that the
Fatou sets in our sense always contain the GGS-Fatou sets. These properties of the
Fatou sets are studied in Sections 3 and 4.

Some properties of the Julia sets are also studied (Section 5). It will be shown
that some basic notions concerning the Julia sets of mapping iterations work well
also in our context. In particular, a version of the Patterson-Sullivan measure is
introduced by using invariant metrics.

In relationship with characteristic classes, a weak version of Duminy’s theorem
for complex codimension-one foliation will be shown valid also for our decompo-
sition (Section 6).

The GGS-decomposition is also related with deformations of foliations. Indeed,
the definition of the GGS-decomposition is directly related with deformations and
the GGS-Julia set is largely decomposed into two parts according to the existence
of invariant Beltrami coefficients. On the other hand, it is not quite clear how the
decomposition in this paper is related with deformations. Certain GGS-Julia sets
which admit invariant Beltrami coefficients are contained in the Fatou set in our
sense so that the relationship to deformations of foliations is not necessarily the
same.

To say about invariant metrics, our construction is not canonical. Many canonical
invariant metrics and distances are known in complex geometry, and some of them
can be translated in the foliation theory. Among them, the transversal Kobayashi
distance is previously studied by Duchamp and Kalka [7]. We will discuss the
transversal Kobayashi metric and show an analogous result (Section 7).

Some examples in [10] together with some other ones are examined in the last
section (Section 8). Constructions are done in terms of compactly generated pseu-
dogroups throughout the paper, however, examples are mostly given by using folia-
tions.
Acknowledgements.
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2. DEFINITIONS

For generalities of pseudogroups we refer readers to [11], [12] and [14]. Through-
out this paper, compactly generated pseudogroups of local biholomorphic diffeo-
morphisms ofC are studied. Examples in mind are the holonomy pseudogroups
of transversally holomorphic foliations of complex codimension one. Compactly
generated pseudogroups are defined as follows [12].

Definition 2.1. A pseudogroup(Γ, T ) is compactly generated if there is a relatively
compact open setU in T which meets every orbit ofΓ , and a finite collection of
elements{γ1, · · · , γr} of Γ of which the sources and the targets are contained inU

such that

1) {γ1, · · · , γr} generatesΓ |U ,
2) eachγi is the restriction of an element ofΓ defined on a neighborhood of the

closure of the source ofγi.

(Γ |U , U) is called areductionof (Γ, T ). A reduction of(Γ, T ) will always be
denoted by(Γ ′, T ′).

Example 2.2. • Let G be a finitely generated group which acts on a closed
manifoldM . Then(G,M) is naturally a compactly generated pseudogroup.
Such a pseudogroup is called the pseudogroup generated byG, and is real-
izable as the holonomy pseudogroup of a foliation of a closed manifold by
taking suspensions.

• The holonomy pseudogroup of a transversally holomorphic foliation of a
closed manifold is compactly generated.

We adopt the following notation.

Notation 2.3. Let (Γ, T ) be a pseudogroup.

1) Forγ ∈ Γ , the source (the domain of definition) ofγ is denoted bydom γ.
2) Let x ∈ T , thenΓx = {the germ ofγ ∈ Γ atx dom γ 3 x}. By abuse of

notation, elements ofΓx are considered as elements defined on a neighbor-
hood ofx. Forγ ∈ Γx andx ∈ T , γ(x) is also denoted byγx.

3) TheΓ -orbit of a subsetX of T is by definitionΓ (X) =
⋃

x∈X Γxx.
4) RegardingT as a subset ofC, we define the derivative of an elementγ of Γ

in the natural way and denote it byγ′. The absolute value ofγ′ is denoted by
|γ′|, and|γ′(x)| is denoted also by|γ′|x.
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5) The Euclidean disc of radiusr and centered atx is denoted byDx(r). In
general, ifK is a compact set thenDK(r) denotes ther-neighborhood ofK
with respect to the Euclidean metric.

The following notion can be found in [13].

Definition 2.4. Γ -connectedsubsets ofT are characterized as follows.

1) Connected subsets ofT areΓ -connected.
2) If X andY areΓ -connected and ifγ(x) ∈ Y for somex ∈ X andγ ∈ Γ ,

thenX ∪ Y is Γ -connected.

Remark2.5. T is Γ -connected if and only ifΓ\T is connected with the quotient
topology. If X ⊂ T , thenΓ\X ⊂ Γ\T is connected ifX is Γ -connected. The
converse also holds ifX isΓ -invariant, and not always true. Indeed, letT = T1tT2,
whereT1 = T2 = R and they are equipped with the natural topology and letΓ

be the pseudogroup generated byγ : T1 → T2 given by γ(x) = x. Let X1 =

(−∞, 0] ⊂ T1, X2 = (0,∞) ⊂ T2 andX = X1 ∪X2, thenX is notΓ -connected
butΓ\X = Γ\T = R.

If (Γ, T ) is the holonomy pseudogroup of a foliation, thenΓ -connected compo-
nents ofΓ -invariant sets correspond to connected components of saturated sets.

The Fatou set is defined as a subset ofT as follows.

Definition 2.6. Let (Γ, T ) be a compactly generated pseudogroup and let(Γ ′, T ′)
be a reduction.

1) An open subsetU of T ′ is called aFatou neighborhoodif the germ of any
element ofΓ ′

x, x ∈ U , extends to an element ofΓ defined on the wholeU .
2) The union of Fatou neighborhoods is called theFatou setof (Γ ′, T ′) and

denoted byF (Γ ′). The complement of the Fatou set is called theJulia setof
(Γ ′, T ′) and denoted byJ(Γ ′).

3) TheFatou setof (Γ, T ) is theΓ -orbit of F (Γ ′), namely,F (Γ ) = Γ (F (Γ ′)).
TheJulia setof (Γ, T ) is the complement ofF (Γ ) and denoted byJ(Γ ).

4) Γ -connected components ofF (Γ ) andJ(Γ ) are called theFatou compo-
nentsandJulia components, respectively.

If x ∈ F (Γ ), then any Fatou neighborhoodU ⊂ F (Γ ′) which containsx is called a
Fatou neighborhood ofx, where(Γ ′, T ′) is a reduction of(Γ, T ) such thatx ∈ T ′.

Remark2.7. 1) F (Γ ) is open andΓ -invariant.J(Γ ) is closed andΓ -invariant.
2) LetU be a Fatou neighborhood contained inF (Γ ′) and let

ΓU = {γ ∈ Γ | γ is obtained from an element ofΓ ′
x},
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thenΓU is a normal family by virtue of Montel’s theorem. This is what we
expected. It is necessary to fix a domain of definition in order to speak of
normal families. This leads to the first condition in Definition 2.6.

3) J(Γ ) = Γ (J(Γ ′)).

We recall the notion of equivalence [13].

Definition 2.8. Let (Γ, T ) and(∆,S) be pseudogroups. Aholomorphicétale mor-
phismΦ: Γ → ∆ is a maximal collectionΦ of biholomorphic diffeomorphisms of
open sets ofT to open sets ofS such that

i) if ϕ ∈ Φ, γ ∈ Γ andδ ∈ ∆, thenδ ◦ ϕ ◦ γ ∈ Φ,
ii) the sources of the elements ofΦ form a covering ofT ,

iii) if ϕ, ϕ′ ∈ Φ, thenϕ′ ◦ ϕ−1 ∈ ∆. If Φ−1 = {ϕ−1}ϕ∈Φ is also a holomorphic
étale morphism, thenΦ is called anequivalence.

Remark2.9. 1) Any reduction(Γ ′, T ′) is equivalent to(Γ, T ).
2) Suppose that(Γ, T ) and(∆,S) are compactly generated, thenΦ is finitely

generated in the following sense. Let(Γ ′, T ′) be a reduction of(Γ, T ) let Φ′

be the restriction ofΦ to T ′. Then there is a finite collection{ψi} ⊂ Φ′ such
that{dom ψi} is an open covering ofT ′ and anyψ ∈ Φ is of the restriction
of a mapping the formδ ◦ ψi ◦ γ for someγ ∈ Γ andδ ∈ ∆. If ψ ∈ Φ, then
γ can be chosen fromΓ ′. We call{ψi} a finite set ofgeneratorsof Φ.

If Φ be anétale morphism, then setΦ−1(X) =
⋃

φ∈Φ

φ−1(X) for X ⊂ S.

Lemma 2.10. The Fatou set is well-defined on the equivalence classes of pseu-
dogroups and the Fatou-Julia decomposition has a naturality in the following sense.

1) The decompositionT = F (Γ ) t J(Γ ) is independent of the choice of the
reduction(Γ ′, T ′).

2) Let Φ: (Γ̂ , T̂ ) → (Γ, T ) be a holomorphićetale morphism, thenF (Γ̂ ) ⊃
Φ−1(F (Γ )).

3) If (Γ̂ , T̂ ) is a Galois covering of(Γ, T ) with finite Galois group[13], then
F (Γ̂ ) = p−1(F (Γ )), wherep : T̂ → T is the projection.

4) Let (Γ, T ) and (∆,S) be compactly generated pseudogroups and letϕ =

{ϕj}j∈J be an equivalence from(Γ, T ) to (∆, S), thenϕ(F (Γ )) = F (∆).

Proof. First we show 1). Let{(Γn, Tn)} be a sequence of pseudogroups such that
Tn ⊂ Tn+1, Γn = Γ |Tn, T = ∪Tn and every(Γn, Tn) is a reduction of(Γ, T ). It is
clear from the definition thatF (Γn+1) ∩ Tn+1 ⊂ F (Γn). To show the converse, let
Φ be an equivalence fromTn+1 to Tn obtained by restricting an equivalence fromT
to Tn. Φ is generated by a finite collection{ψi} as above and there is aδ > 0 such
thatDx(δ) is contained in at least one ofdom ψi, wherex ∈ Tn+1. Moreover, there
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is aδ′ > 0 independent ofi andx such that the image ofψi containsDψi(x)(δ
′) by

the Koebe 1/4-theorem. Letx ∈ F (Γn) and letU be a Fatou neighborhood ofx

in F (Γn). We may assume by shrinkingU thatγ(U) is always contained in a disc
of radiusδ′/2 for anyγ ∈ ΓU . Let y ∈ U and letγ ∈ (Γn+1)y, thenψiγ ∈ (Γn)y

for somei. Then,ζ = ψiγ is defined onU andζ(U) ⊂ Dψiγ(y)(δ
′). Henceψ−1

i ζ

is defined onU and is an extension ofγ as an element ofΓ . CosequentlyU is a
Fatou neighborhood forΓn+1 so thatF (Γn) ⊂ F (Γn+1) ∩ Tn+1. It follows that
F (Γ ) = ∪F (Γn) = Γ (F (Γn)). If (Γ ′, T ′) is a reduction, thenT ′ ⊂ Tn for somen
so thatΓ (F (Γ ′)) = Γ (F (Γn)). This completes the proof of 1).

Next we show 2). Let(Γ̂ ′, T̂ ′) be a reduction and let{ϕi} be a finite set of
generators ofΦ. We may assume that there is aδ1 > 0 such that at least oneϕj

is defined onDbx(2δ1) for any x̂ ∈ T̂ ′. Then, by the Koebe theorem, there is an
ε independent ofj such thatϕj(Dbx)(δ1) ⊃ Dϕj(bx)(ε). Let x̂ ∈ T̂ ′ and assume
that x = ϕi(x̂) ∈ F (Γ ). Let (Γ ′, T ′) be a reduction of(Γ, T ) such thatx ∈ T ′,
then we may assume that there is a Fatou neighborhoodU of x in T ′ such that
γ(U) ⊂ Dγx(ε) for anyγ ∈ ΓU . We may also assume thatϕ−1

i is defined onU by
shrinkingU if necessary, and set̂U = ϕ−1(U). Let γ̂′ ∈ Γ̂by, whereŷ ∈ Û , and
let ϕj be such thatϕj is defined onDbγby(2δ1). Sincex ∈ F (Γ ), ϕj ◦ γ̂ ◦ ϕ−1

i is
well-defined onU as an elementγ of Γ . Note thatϕ−1

j ◦ γ ◦ ϕi(Û) ⊂ Dbγby(δ1).

Fix now a finite set{γ̂1, · · · , γ̂r} of generators of̂Γ ′ and denote bŷΓ ′(k) the subset
of Γ̂ ′ which consists of elements obtained by composing at mostk generators, then
Γ̂ ′ =

⋃
k

Γ̂ ′(k). We may assume by decreasingδ1 and shrinkingÛ that if ŷ ∈ T̂ ′

then all the generators are defined onDby(δ1) ⊂ T̂ as an element of̂Γ . Suppose
inductively that ifγ̂ ∈ Γ̂ ′

by is the germ of an element of̂Γ ′(k), thenγ̂ is defined on̂U

as an element of̂Γ andγ̂(U) ⊂ Dbγby(δ1). This holds certainly fork = 1. Let γ̂ ∈ Γ̂ ′
by

be the germ of an element of̂Γ ′(k + 1), thenγ̂ = γ̂i ◦ ζ̂ for somei in the germinal
sense, wherêζ ∈ Γ̂ ′(k). By the hypothesis,̂ζ is well-defined onÛ as an element
of Γ̂ and ζ̂(Û) ⊂ Dbγby(δ1). Then by the choice ofδ1, γ̂i ◦ ζ̂ is well-defined onÛ .
Moreover, from what we have shown first,γ̂i ◦ ζ̂ ⊂ Dbγby(δ1). ThusÛ is a Fatou
neighborhood ofx. This completes the proof of 2). 3) can be shown by slightly
modifying the proof of 2). 4) follows from 2) at once. ¤

Lemma 2.10 justifies the following definition. LetF be a complex codimension-
one transversally holomorphic foliation of a closed manifoldM and let(Γ, T ) be
the holonomy pseudogroup ofF . We may assume thatT is embedded inM .

Definition 2.11. The Fatou setof F is the saturation ofF (Γ ) ⊂ T ⊂ M , and
denoted byF (F). TheJulia setis the complement ofF (F) and denoted byJ(F).
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The connceted components of the Fatou set and the Julia set are called theFatou
componentsand theJulia components, respectively.

It is clear thatJ(F) is the saturation ofJ(Γ ).
The following is an immediate consequence of Lemma 2.10.

Corollary 2.12. LetM andN be closed manifolds and letF be a complex codimen-
sion-one transversally holomorphic foliation ofM . Let f : N → M be a smooth
mapping transversal toF and letG = f ∗F be the induced foliation ofN , then
F (G) ⊃ f−1(F (F)). If f is a (regular) finite covering, thenF (G) = f−1(F (F)).

It is easy to see thatFGGS(G) ⊃ f−1(FGGS(F)) but the equality for coverings
does not hold in general (Example 4.3).

The existence of reductions is essential for the definition of the Fatou-Julia de-
composition as follows.

Example 2.13.Let D(r) be the disc inC of radiusr and letF be the foliation of
M = (−1, 1)×D(1) with leaves(−1, 1)×{z}. If M itself is regarded as a foliation
atlas, then the Fatou set should be the wholeM . On the other hand, leti ∈ Z and
define a foliation atlas as follows. Fori > 0, let{V (i)

j }j=1,2,... be an open covering of

D(1) by discs of radius2−i. LetW (i)
j = (−1 + 1/2−i+1,−1 + 1/2−i−1)× V

(i)
j and

T
(i)
j = {−1+1/2−i}×V

(i)
j . Giving an order to{W (i)

j }, let{W (i)
j } = {W ′

1,W
′
2, · · · }

and{T (i)
j } = {T ′

1, T
′
2, · · · }. Set thenU0 = (−1/2, 1/2)×D(1), T0 = {0} ×D(1),

andUi = W ′
|i|, Ti = T ′

|i| for i 6= 0. Simply applying the definition without taking
reduction, the Fatou set should be empty.

In what follows, we usually fix a reduction(Γ ′, T ′) and work on it.
We will show some fundamental properties of the Fatou-Julia decomposition.

Lemma 2.14. Suppose that(Γ, T ) is C0-Hermitian, namely, there is a continuous
Hermitian metric onT which is invariant underΓ , thenT = F (Γ ).

Proof. The proof is an application of arguments found in [9]. Leth be the invariant
metric and letg be the Euclidean metric onT ⊂ C, then there is a constantC ≥
1 such thatC−1g ≤ h ≤ Cg on T ′ (see Definition 3.6 for the notation). Let
{γ1, · · · , γr} be a set of generators ofΓ ′. Then, there is a positive real number
δ > 0 such that any germ ofγi at any pointx ∈ T ′ extends to an element ofΓ
defined onDx(δ). Denote byΓ ′(k) the subset ofΓ ′ which consists of elements
which can be realized by composing at mostk generators, thenΓ ′ =

⋃
Γ ′(k). Let

x ∈ T ′ and letU = Dx

(
δ

2C2

)
, and assume that germs of elements ofΓ ′(k) atu ∈ U

extend to an element ofΓ defined onU . The assumption certainly holds ifk = 1.
Let γ be the germ of an element ofΓ ′(k + 1) at u ∈ U , thenγ = γi ◦ ζ for some
ζ ∈ Γ ′(k). By the induction hypothesis,ζ extends to an element ofΓ defined onU .
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Then,γ(U) ⊂ Dζ(x)(δ). On the other hand,γi is defined onDζ(x)(δ) by the choice
of δ. Therefore,γ extends to an element ofΓ defined onU . This implies thatU is
a Fatou neighborhood ofx. ¤

The above lemma can be slightly strengthen. See Remark 7.9.

Definition 2.15. Let x ∈ T ′ and assume thatγ(x) = x for someγ ∈ Γx. Then, the
fixed pointx is called

1) hyperbolicif |γ′|x 6= 1,
2) parabolic if (γ′x)

k = 1 for somek ∈ Z but γ◦m 6= id for anym ∈ Z, where
γ◦m denotes them-th iteration ofγ (in a germinal sense),

3) irrationally indifferent if |γ′|x = 1 but (γ′x)
k 6= 1 for anyk ∈ Z.

Remark2.16. It is easy to see that none of the above cases is exclusive. For instance,
let Γ be a subgroup ofPSL(2;C) generated byg1, g2 andg3, whereg1(z) = 2z,
g2(z) = z + 1 andg3(z) = e2π

√−1θz, whereθ ∈ R \ Q. ThenΓ acts onCP 1 =

C ∪ {∞} and∞ is hyperbolic, parabolic and irrationally indifferent.

The Julia set has the following fundamental property as usual.

Lemma 2.17.Letx ∈ T . If there is an elementγ ∈ Γx which hasx as a parabolic
or hyperbolic fixed point, thenx ∈ J(Γ ).

It is difficult to tell if a given point belongs to the Fatou set or the Julia set in
general. However, we have the following lemma which is significant in the sequel.

Lemma 2.18. Let x ∈ F (Γ ′) and let{γi} be a family of elements ofΓ ′ defined on
a neighborhoodV of x. Assume that{γi(x)} converges to a pointy ∈ T ′ ⊂ T .

1) If {|γ′i|x} admits a subsequence which is bounded away from0, theny be-
longs toF (Γ ). Moreover,{|γ′i|x} is bounded and bounded away from0.

2) If {|γ′i|x} admits a subsequence which converges to0, then{|γ′i|x} converges
to 0 andy belongs toJ(Γ ).

Proof. We may assume thatV is a ball centered atx and of radiusr > 0. Then,
{|γ′i|x} is bounded from above becauseΓV is a normal family.

First let{ζj} be a subsequence of{γi} such that{
∣∣ζ ′j

∣∣
x
} is bounded away from

0. SinceΓV is a normal family, we may assume after slightly shrinkingV that{ζj}
uniformly converges to a functionγ onV . As {

∣∣ζ ′j
∣∣
x
} is bounded away from0, γ is

not a constant function so thatγ(V ) is an open set. It follows thatζi(V ) containsy
for sufficiently largei. SinceV ⊂ F (Γ ′), y belongs toF (Γ ).

Second, let{ζj} be a subsequence of{γi} such that{
∣∣ζ ′j

∣∣
x
} converges to0. As

(Γ, T ) is equivalent to(Γ ′, T ′), we may assume thaty ∈ T ′. If y ∈ F (Γ ′), then
there is a Fatou neighborhoodU of y. We may assume thatU is an open ball
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centered aty. By passing to a subsequence, we may also assume that allζj(x)

are contained inU . In particular,U is also a Fatou neighborhood ofx. After
slightly shrinkingU , we may assume that{ζj} uniformly converges to a constant
function because{∣∣ζ ′j

∣∣
x
} converges to0. Then, the imageζj(U) is contained in

U for sufficiently largej. Henceζj has a hyperbolic fixed point inU . This is a
contradiction becauseU ⊂ F (Γ ′). This completes the proof. ¤

Remark2.19.

1) The more can be said aboutγi(V ) in 1). Namely, letδ be a positive number
such that|γ′i|x > δ, then by the Koebe1/4-theorem,γi(V ) ⊃ Dγi(x)(δ/4).

2) It is possible thatx ∈ F (Γ ) admits a family{γi} which contains a subse-
quence{ζj} with ζ ′i(x) → 0 but {γ′i(x)} does not converge to0 if {γi(x)}
does not converge to a single point. See Example 3.11.

3. CONSTRUCTION OF AN INVARIANT METRIC OF CLASSCLip
loc

A metric of the formgdz ⊗ dz̄ is said to be of classCLip
loc if g is locally Lipschitz

continuous. We first show the following.

Proposition 3.1. (Γ |F (Γ ), F (Γ )) is CLip
loc -Hermitian, namely, there is a locally Lip-

schitz continuous metricgL onF (Γ ) invariant underΓ |F (Γ ).

Remark3.2. It is known that invariant metrics of classCω exist on the GGS-Fatou
sets. We will later show that there are invariant metric of classCω also on the Fatou
sets (Theorem 4.14). It will be also shown that the metric in Proposition 3.1 is of
classCω along orbit closures (Corollary 4.9).

Proposition 3.1 will be shown in steps. Note that it suffices to construct aΓ ′-
invariant metric onF (Γ ′).

Since(Γ, T ) is compactly generated, we may assume thatT =
∐

i∈I Ti, where
I is a finite set andTi is an open disc inC. We may furthermore assume that the
closuresTi of Ti are mutually disjoint. Let(Γ ′, T ′) be a reduction, then we may
also assume that each componentT ′

i of T ′ is a slightly small open disc such that
T ′

i ⊂ Ti.
Let h0 be a metric onT ′ defined as follows. By Lemma 2.10, we may assume

that each componentT ′
i of T ′ is a disc inC. Let TT ′ be the holomorphic tangent

bundle ofT ′. Let ηε, 0 < ε < 1, be a smooth positive function onR such that

1) η(t) = 1 on (−∞, 1− ε],
2) η is strictly decreasing on[1− ε, 1],
3) η(t) = 0 on [1, +∞).

Definition 3.3. Let ci ∈ C andri > 0 be the center and the radius ofT ′
i , respec-

tively. Sethi(zi) = ηε(|zi − ci| /ri) and define a Hermitian metrich0 on TT ′ by
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h0|T ′i = hi(zi)
2dzi⊗dz̄i, where| · | denotes the absolute value. The set of functions

{hi} is denoted byh and considered as a function onT ′.

In what follows,γ(x) is also denoted byγx, whereγ ∈ Γ andx ∈ T .

Definition 3.4. For x ∈ T ′
i , setgi(x) = sup

γ∈Γ ′x
h(γx) |γ′|x. The set of functions{gi}

is denoted byg and considered as a function onT ′.

Remark3.5. The meaning ofg is as follows. Letx ∈ T ′
i and set‖v‖L

x = gi(x) ‖v‖x

for v ∈ TxT
′, where‖v‖x denotes the Euclidean norm ofv multiplied byh(x), then

‖v‖L
x = sup

γ∈Γ ′x
‖γ∗v‖γx .

We recall the notion of equivalence of metrics:

Definition 3.6. Let h1 = {(h1
i )

2dzi⊗dz̄i} andh2 = {(h2
i )

2dzi⊗dz̄i} be Hermitian
metrics onTT ′. If there exists a constantC > 0 such thath1

i ≤ Ch2
i for anyi, then

we writeh1 ≤ Ch2. If there exists a constantC ≥ 1 such that1
C
h1 ≤ h2 ≤ Ch1,

thenh1 andh2 are said to be equivalent.

The following properties are clear.

Lemma 3.7. 1) gi(x) ≥ hi(x) > 0.
2) If γ ∈ Γ ′

x, theng(γx) |γ′|x = g(x).
3) Let h̃0 = {h̃2

i dzi ⊗ dz̄i} be a Hermitian metric onTT ′. Assume that1
C
h0 ≤

h̃0 ≤ Ch0 and letg̃ = {g̃i} be the set of functions in Definition 3.4 obtained
by replacingh0 with h̃0, then 1

C
gi ≤ g̃i ≤ Cgi.

Lemma 3.8. g is lower semicontinuous onT ′.

Proof. Let x ∈ T ′. First assume thatg(x) is finite, and letγ ∈ Γ ′
x be such that

g(x) − ε < h(γx) |γ′|x. If y ∈ T ′ is sufficiently close tox, thenγy is defined
andh(γy) |γ′|y > h(γx) |γ′|x − ε by the continuity of the functionz 7→ h(γz)γ′z.
It follows that g(x) − 2ε < h(γy) |γ′|y ≤ g(y). If g(x) = +∞, then there is
an elementγ ∈ Γx such thatM < h(γx) |γ′|x for any real numberM . Then
M − ε < h(γy) |γ′|y so thatg(y) is also infinite. ¤

The following Lemma is the essential part of Proposition 3.1.

Lemma 3.9. g is locally Lipschitz continuous onF (Γ ′).

Proof. Letx ∈ F (Γ ′), theng(x) is finite by 1) of Lemma 2.18. We may furthermore
assume thatMx = sup

γ∈Γ
|γ′|x is also finite by taking reduction again. Assume that

Dx(2δ) is a Fatou neighborhood ofx and thatx = 0 after a parallel translation.
Recall now the Koebe distortion theorem [1]: iff : D0(1) → C is a univalent
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function such thatf(0) = 0 andf ′(0) = 1, then |z|
(1+|z|)2 ≤ |f(z)| ≤ |z|

(1−|z|)2 and
1−|z|

(1+|z|)3 ≤ |f ′(z)| ≤ 1+|z|
(1−|z|)3 . Let ϕ be a univalent function defined onU = Dx(δ).

Applying the Koebe theorem to the functionz 7→ 1
δϕ′x

(ϕ(δz)− ϕ(x)), we have

|ϕ′|x |y|
(1 + 1

δ
|y|)2

≤ |ϕ(y)− ϕ(x)| ≤ |ϕ′|x |y|
(1− 1

δ
|y|)2

,

1− 1
δ
|y|

(1 + 1
δ
|y|)3

≤ |ϕ′|y
|ϕ′|x

≤ 1 + 1
δ
|y|

(1− 1
δ
|y|)3

,

where|y| = |y − 0| = |y − x|. It follows from the second inequality that ifγ ∈ Γ ′
y

and|y| < δ/2, then|γ′|y ≤ 12Mx. We now show the following
Claim. There is anε1 > 0 andδ2 such thatγ ∈ Γ ′

y induces an element ofΓ ′
x defined

onDx(2δ2) if the conditions|y| < δ2 andh(γy) |γ′|y > g(y)− ε1 are satisfied.

Let ε1 be a positive real number less thang(x)
2

, then there is a positive real number

δ3 such thatg(y)− ε1 > g(x)
2

for |y| < δ3 by the lower semicontinuity ofg. Assume

that h(γy) |γ′|y > g(y) − ε1, thenh(γy) ≥ g(x)
24Mx

> 0. It follows that there is a
compact subsetK ′ of T ′ such thath(γy) |γ′|y > g(y) − ε1 holds only ifγy ∈ K ′.

Let ε2 > 0 be a real number such thatDK′(ε2) ⊂ T ′. If |y| < min
{

δ
2
, ε2

8Mx

}
, then

|γ′|x|y|
(1− 1

δ
|y|)2 ≤ 4Mx |y| < ε2

2
. Setδ2 = 1

2
min{ δ

2
, δ3,

ε2
8Mx

}, thenγ ∈ Γ ′
y induces an

element ofΓ ′
x defined onDx(2δ2) if |y| < δ2 andh(γy) |γ′|y > g(y) − ε1. This

completes the proof of Claim.
Let ε3 > 0 be any real number less thanε1 and assume that|y| < δ2. Let

γ ∈ Γ ′
y such thath(γy) |γ′|y > g(y) − ε3. The above claim shows thatγ ∈ Γ ′

z if
z ∈ Dx(2δ2). It follows thath(γz) |γ′|z ≤ g(z). Henceg(y)−g(z) < h(γy) |γ′|y−
h(γz) |γ′|z + ε3. Moreover,γ is well-defined onDz(δ) ⊂ Dx(2δ) as an element of
Γ so that the Koebe estimate is valid forγ.

Noticing that eachhi is Lipschitz continuous, letLh be the maximum of the
Lipschitz constants. Then|h(γy)− h(γz)| ≤ Lh |γy − γz| ≤ 12LhMx |y − z|.
By taking δ2 smaller if necessary, we may assume that4 − 3 |y−z|

δ
+ |y−z|2

δ2 ≤ 4 if
y, z ∈ Dx(δ2). We may also assume thatδ2 < 1, then it follows from the Koebe
distortion theorem that

|γ′|y
|γ′|z

− 1 ≤ 1 + 1
δ
|y − z|

(1− 1
δ
|y − z|)3

− 1 ≤ 32 |y − z| .

Hence|γ′|y − |γ′|z ≤ 12Mx · 32 |y − z|. Therefore, ify, z ∈ Dx(δ2) then

g(y)− g(z)− ε3 < h(γy)(|γ′|y − |γ′|z) + (h(γy)− h(γz)) |γ′|z
≤ 32 · 12Mx |y − z|+ 12LhMx |y − z| 12Mx

= 48Mx(8 + 3LhMx) |y − z| ,
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where the fact thath ≤ 1 is used. Since this estimate is independent of the choice
of γ, ε3 can be arbitrarily small. Henceg(y)− g(z) ≤ 48Mx(8 + 3LhMx) |y − z|.

Let nowγ ∈ Γ ′
z be such thatg(z)−ε3 < h(γz) |γ′|z, thenγ ∈ Γ ′

y andh(γy) |γ′|y ≤
g(y). Hence

g(z)− g(y)− ε3 < h(γz) |γ′|z − h(γy) |γ′|y
= (h(γz)− h(γy)) |γ′|z + h(γy)(|γ′|z − |γ′|y)

≤ 144LhM
2
x |y − z|+ 12Mx

(
1− |γ′|y

|γ′|z

)
.

We may assume that4 + 3 |y−z|
δ

+ |y−z|2
δ2 ≤ 8, then again by the Koebe distortion

theorem,1 − |γ′|y
|γ′|z ≤ 32 |y − z|. This estimate is also independent of the choice of

γ. Henceg(z)− g(y) ≤ 48Mx(8 + 3LhMx) |y − z|. This completes the proof.¤

The proof of Proposition 3.1 is completed by defininggL by gL|T ′i = g2
i dzi⊗dz̄i.

Indeed, the non-degeneracy andΓ ′-invariance ofgL follow from the properties 1)
and 2) in Lemma 3.7. Moreover, 1) implies thatgL ≥ h0. The property 3) in
Lemma 3.7 implies that if̃gL is constructed by a metric̃h such that1

C
h0 ≤ h̃ ≤ Ch0,

then 1
C
gL ≤ g̃L ≤ CgL.

Remark3.10. ‖ · ‖L can be either finite or infinite onJ . Indeed, it is clear that
‖ · ‖L is infinite at hyperbolic fixed points while‖ · ‖L is finite at parabolic and
irrationally indifferent fixed points which are not hyperbolic.

The metric obtained in this way can be of classCω but in general not of classC1.
For simplicity, we adopt the following function asη in Definition 3.3. Let

η0(t) =

{
1, t ≤ 0,

e−1/t, t > 0.

Let η1(t) =

∫ t

−∞
η0(s)η0(1−s)ds, η2(t) = η1(t)/η1(2) andη(t) = η2((1+ε−t)/ε).

Example 3.11. Let z be the inhomogeneous coordinates forCP 1 = C ∪ {∞}.
Let λ, µ and ν are non-zero complex numbers such that|λ| = 1, |µ| = 2 and
1 < |ν| < 2. Assume thatlog |ν| / log 2 6∈ Q. Define automorphismsfα, whereα

is one ofλ, µ andν, of CP 1 by fα(z) = αz.
First let N1 be a closed manifold such that there exists a surjective homomor-

phismϕ1 from π1(N1) to Z2 = 〈fλ, fµ〉, for example letN1 = T 2. Let (M1,F1)

be the suspension of(CP 1, ϕ1) and let(Γ1, T ) be the pseudogroup defined as fol-
lows. Let T0 = T1 = D0(

√
2) andT = T0 t T1. Let Γ1 be the pseudogroup

generated byρ0, ρ1, γ0, γ1 andγ10, whereρ : Ti → Ti is given byρi(z) = λz and
γi : Ti → Ti is given byγi(z) = z/µ for i = 0, 1, and letγ10 be the mapping from
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{z | 1/√2 < |z| < √
2} to {z | 1/√2 < |z| < √

2} defined byγ10(z) = 1/z. Then,
the holonomy pseudogroup ofF1 is equivalent to(Γ1, T ).

The Julia set is given byJ(Γ1) = J0 ∪ J∞, whereJ0 = {0} ⊂ T0 andJ∞ =

{0} ⊂ T1. In terms ofF1, J(F1) = L0 ∪ L∞, whereL0 andL∞ are the leaves
correspond to0 and∞, respectively. Leth0 be the metric onT as in Definition 3.3.
Let α be the unique positive real number greater than1 such thatη(α) = 1/α2, then
the metricgL = {g2

i dz ⊗ dz̄} is given by

g0(z) = g1(z) =





2n, 1
2n
√

2
≤ |z| ≤ 1

2nα
,

2n

|2nz|2 η
(

1
|2nz|

)
, 1

2nα
≤ |z| ≤ 1

2n ,

2nη(|2nz|), 1
2n ≤ |z| ≤ α

2n ,
2n

|2nz|2 ,
α
2n ≤ |z| ≤ 1

2n−1
√

2
.

It is locally Lipschitz and piecewise of classCω, but not of classC1.
Second, letN2 be a closed manifold such that there exists a surjective homomor-

phismϕ2 from π1(N2) toZ3 = 〈fλ, fµ, fν〉, for example letN2 = T 3. Let (M2,F2)

be the suspension of(CP 1, ϕ2), and let(Γ2, T ) be the pseudogroup generated by
ρ0, ρ1, γ0, γ1, γ10 andζi, i = 0, 1, whereζi(z) = z/µ. The holonomy pseudogroup
of (M2,F2) is equivalent to(Γ2, T ) and the metricgL = {g2

i dz ⊗ dz̄} is given by
g0(z) = g1(z) = β

|z| , whereβ = max{b ∈ R | the graphs ofη(t) andb/t have an intersection}.
Note that the metricβ2

|z|2 dz ⊗ dz̄ is also invariant underΓ1. Moreover, ifg is a

positive function which satisfiesg(2t) = g(t)/2, theng(|z|)2dz ⊗ dz̄ is invariant
underΓ1. Hence it is quite easy to find an invariant metric of classCω.

4. COMPARISON WITH THEFATOU-JULIA DECOMPOSITION BY

GHYS, GOMEZ-MONT AND SALUDES,
STRUCTURE OFFATOU COMPONENTS

The Fatou-Julia decomposition for foliations is firstly introduced and studied by
Ghys, Gomez-Mont and Saludes [10]. The GGS Fatou-Julia is originally formu-
lated for foliations but it is also defined for compactly generated pseudogroups [14].

Definition 4.1 ([10]). Let C(Γ ) be the set of continuousΓ -invariant(1, 0)-vector
fieldsX on T such that its distributional derivativē∂X is locally in L2 and∂̄X is
essentially bounded. TheFatou set(in the sense of Ghys, Gomez-Mont, Saludes)
FGGS(Γ ) is by definition given byFGGS(Γ ) = {x ∈ T X(x) 6= 0 for someX ∈ C(Γ )}.

The Fatou set and the Julia set in this sense are called the GGS-Fatou set and the
GGS-Julia set, and denoted byFGGS andJGGS, respectively. The most of results in
[10] remain valid [14]. We make use of some properties of GGS-Fatou sets without
proof. We refer to [10] and [14] for the detailed accounts.

These Fatou-Julia decompositions are related as follows.
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Proposition 4.2. F (Γ ) ⊃ FGGS(Γ ).

Proof. Let x ∈ FGGS(Γ ′), then there is a vector fieldX ∈ C(Γ ′) with X(x) 6= 0.
We may assume thatX ∈ C(Γ ). By integratingX, we can find a1-parameter
family ϕ : T ′ × D → T of homeomorphisms which is(Γ ′, Γ )-equivariant, where
D is a small disc inC. ChoosingD small, we may assume thatϕ( · , D) is a
homeomorphism intoT and moreover thatϕ(x, D) ⊂ T ′. By repeating an argument
by Ghys [9] (cf. Lemma 2.14), we see thatD is a Fatou neighborhood ofx. ¤

The inclusionsF (Γ ) ⊃ FGGS(Γ ) andJ(Γ ) ⊂ JGGS(Γ ) can be strict in general.
In fact, the naturality as in Lemma 2.10 fails for the GGS-decomposition.

Example 4.3. ConsiderT 2 = C/Z2 and letF be the foliation of ofS1 × T 2 with
leaves{S1 × {z}}z∈T 2. Then the GGS-Fatou set is the whole manifold. Letσ :

T 2 → T 2 be an automorphism induced byz 7→ −z. ThenS1 × {z} ⊂ S1 ×σ T 2,
z = 0, 1/2,

√−1/2, (1 +
√−1)/2 are the GGS-Julia components. On the other

hand,J(F) = ∅.

The Fatou components also admit a classification analogous to that of GGS-Fatou
components. The rest of this section is mostly devoted to it.

A pseudogroup(Γ, T ) is said to becompleteif for any x, y ∈ T there are neigh-
borhoodsVx of x andVy of y such that every germγ ∈ Γx′, x′ ∈ Vx with γx′ ∈ Vy

extends to an element ofΓ defined onVx.

Lemma 4.4([24, Proposition 1.3.1]). (Γ |F (Γ ), F (Γ )) is complete.

Proof. Let x, y ∈ T and letγ0 andγ1 be elements ofΓ such that the bothz = γ−1
0 x

andw = γ1y belong toT ′. Let Vz be a Fatou neighborhood ofz which is contained
in dom γ0, thenΓVz ⊂ Γ is a normal family. Hence we may assume that the image
of Vz by any element ofΓVz is contained in an open disc of given radiusδ > 0. Let
δ be a positive real number such thatDw(2δ) is contained in the range ofγ1 and set
Vw = Dw(δ), then any germγ ∈ Γ ′

w′ with γ(w′) ∈ Vw extends to the wholeVz and
the imageγ(Vz) is contained indom γ−1

1 . Now setVx = γ0(Vz), Vy = γ−1
1 (Vw). Let

ζ ∈ Γx′ be such thatζ(x′) ∈ Vy, wherex′ ∈ Vx. The elementγ = γ1ζγ−1
0 extends

to the wholeVz as an element ofΓ , and the imageγ(Vz) is contained indom γ−1
1 .

Henceγ−1
1 γγ0 is well-defined as an element ofΓ which is defined on the whole

Vx. ¤

It is clear that(Γ ′|F (Γ ′), F (Γ ′)) is also complete.
Let x ∈ T ′ and letD be an open disc centered atx such that the closureD is

contained inVx.
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Definition 4.5. SetΓ ′
D = {γ ∈ Γ ′ γ(D) ∩D 6= ∅}, and equipΓ ′

D with the compact-
open topology. LetGD be the closure ofΓ ′

D in the space of holomorphic maps
defined onD.

Note thatGD consists of biholomorphic diffeomorphism by Lemma 2.18. The
local groupGD and the closure ofΓ ′-orbits are related as follows.

Lemma 4.6. If x ∈ D, thenGDx = Γ ′
Dx.

Proof. It is clear thatGDx ⊂ Γ ′
Dx. Let y ∈ Γ ′

Dx and let{γn} ⊂ Γ ′
D be such

that{γnx} converges toy. There is a subsequence of{γn} which converges to an
elementγ of GD uniformly onD becauseD ⊂ Vx. It is easy to see thaty = γx. ¤

Assume by shrinkingD thatGDx is connected, then by applying classical theo-
rems of Cartan, we have the following

Theorem 4.7. Let (GD)0 be the identity component ofGD, then(GD)0 is a local
Lie transformation group of (real) dimension at most3. LetGx be the stabilizer of
x in GD and set(Gx)0 = Gx ∩ (GD)0, then(GD)0\GD

∼= (Gx)0\Gx.

Proof. Elements ofGD preserves the metricgL constructed in Section 3. SincegL

is locally Lipschitz continuous, elements ofGD are uniquely determined by their
1-jets. Hence(GD)0 is a quasi-continuous group of analytic transformations (un
groupe quasi-continue de transformations analytique) in the sense of Cartan [6].
By Théor̀eme 11 of [6],(GD)0 is a local Lie transformation group. Although the
assumption is slightly different, the argument of the proof of Théor̀eme 12 of [6] is
still valid so thatdimR(GD)0 is at most3. Let g ∈ GD, then there is an element
h ∈ (GD)0 such thatgx = hx becauseGDx is connected. Hence the natural map
(Gx)0\Gx → (GD)0\GD is bijective. ¤

Remark4.8. 1) Gx is compact since elements ofGx are determined by their
1-jets. In particular,(Gx)0\Gx is a finite group.

2) GD is not necessarily connected. For example, letf andg be automorphisms
of CP 1 given byf([z : w]) = [αz : w] andg([z : w]) = [w : z], where
α = e2π

√−1θ, θ ∈ R \ Q. Let Γ be the group generated byf andg. If we
take a suspension ofΓ, then,GD = Ro (Z/2Z).

The following is immediate.

Corollary 4.9.

1) The closures ofΓ -orbits in the Fatou set areCω-submanifolds ofF (Γ ).
2) The metricgL constructed in Section 3 is of classCω along orbit closures.
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Note thatGD depends on the choice ofD as in Remark 4.8 but the dimension
does not. Moreover, the natural homomorphism fromGD2 to GD1, whereD2 ⊂ D1,
is injective by the uniqueness of the solution of ordinary differential equations.

The Fatou components are named after [10].

Definition 4.10. A Fatou componentF is called

1) wandering componentif dim GD = 0,
2) semi-wandering componentif dim GD = 1,
3) dense componentif dim GD ≥ 2.

These components admit description analogous to that of GGS-Fatou compo-
nents. LetEF be the principalS1-bundle associated to the frame bundle overF .
EF can be considered as the unit tangent bundle overF if there are invariant Her-
mitian metrics. Note thatΓ |F acts onEF so thatGD also locally acts onEF . We
denoteΓ |F by ΓF . Let (ΓF , F ) be the pseudogroup generated byΓF andGD. Let

(Γ̃F , F̃ ) be the universal covering of(ΓF , F ) [13] and let(Γ̃F , F̃ ) be the lift of
(ΓF , F ).

Theorem 4.11.Let F be a wandering component, then the orbit spaceΓF\F is a
V -manifold (an orbifold).

Proof. We work on a reduction(Γ ′|F , T ′) but still denote it by(ΓF , T ). First note
thatΓF is complete by Lemma 4.4. HenceΓF\F is possibly non-Hausdorff mani-
fold. Assume thatΓF\F is non-Hausdorff, then there are a sequence{xi} in F and
a sequence{γi} of elements ofΓ such thatlim

i→∞
xi = x ∈ F , lim

i→∞
yi = y ∈ F ,

whereyi = γix, but there is no elementγ of ΓF such thatγx = y. LetD be a Fatou
neighborhood ofx and letD′ be a Fatou neighborhood ofy as in Theorem 4.7. We
may assume thatxi ∈ D for all i and thatyj ∈ D′ for all j, thenγ1 is defined on
D so thatzi = γ1xi makes a sense. Letξi = γiγ

−1
1 , thenξi is defined onD′ and

ξizi = yi. We may assume that the sequence{ξi} converges to a mappingξ in GD′.
As dim(GD′) = 0, we may furthermore assume thatξi = ξ for all i. It follows that
y = ξγ1(x) and it is a contradiction. ¤

Let G = {x 7→ tx + z t, z ∈ C, |t| = 1} ⊂ Aff(C) and letGλ = {x 7→ λnz +

b |n ∈ Z, b ∈ R} ⊂ Aff(R). G containsS1 = {(t, 0) |t| = 1} as a closed
subgroup.

Theorem 4.12.Let F be a semi-wandering component, then the closure of all but
finite number ofΓ -orbits are real codimension-one manifold properly embedded in
F . The rest of the orbits are proper. LetP ⊂ F be the union of proper orbits.

1) If P = ∅, then(Γ, F ) is equivalent to a pseudogroup generated by a sub-
groupH ′ of a groupH, whereH is eitherC or Aff(R) andH acts on a strip
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Sα,β = {z ∈ C α < Im z < β}, where−∞ ≤ α < β ≤ +∞. The closure
of Γ -orbits inET are finite coverings ofΓ -orbits inF . Let

F0 = {x ∈ F the closure ofΓx is simply covered} , and

F1 = {x ∈ F the closure ofΓx is doubly covered} .

ThenF = F0 ∪ F1, andF0 is a GGS-semi-wandering component andF1 is
contained in a GGS-ergodic Julia component. We have the following cases.

2a) (H, S) = (C,C), H ′ = R×√−1Z andΓ̃F\F̃ = S1.

2b) (H, S) = (C, Sα,β), H ′ = R andΓ̃F\F̃ = (α, β).

2c) (H, S) = (Aff(R),H), H ′ = Gλ for someλ > 0 and Γ̃F\F̃ = S1,
whereH denotes the upper half space.

2) If P 6= ∅, then(Γ, F \ P ) is as in 2b) and(Γ̃F , Ẽ) is equivalent to a pseu-
dogroup generated by a subgroupH ′ of the groupG such thatH ′ = S1.

Let (Γ̃F , ẼF ) be the universal covering of(ΓF , EF ), thenΓ̃F\ẼF is either
{z ∈ C |z| < α}, where0 < α ≤ +∞, or CP 1. P consists of at most two
Γ -orbits.

Proof. Let x ∈ F and letD be a small neighborhood ofx. LetX be the vector field
generated by the(GD)0-action. As

√−1X is also invariant under(GD)0-action, we
can find a holomorphic vector fieldZ on D such that2 Re Z is tangent to theGD-
orbits by repeating the argument in [10, Lemma 5.2]. Moreover, ifD ∩ D′ 6= ∅,
then thus constructed vector fieldsZ andZ ′ coincide up to multiplication of a real
constant. IfZ has no singularities for anyD, thenP = ∅. Since(Γ̃F , F̃ ) is simply
connected, the argument in [10] can be applied and we have the classification as in
the statement. Noticing that theGD-action induces a1-dimensional foliation, the
covering degree of closures ofΓx, x ∈ F , by the closures ofΓ -orbits inEF are at
most2. Note thatF1 is closed inF so thatF0 is open. The action ofGD naturally
induces a non-trivial invariant vector field onF0, on the other hand, such a vector
field cannot exist onF1 but an invariant line field is induced.

Assume now thatZ has singularities for someD ⊂ F , thenP 6= ∅. If x ∈ F is
not fixed by the(GD)0-action, thenZ is non-singular atx by construction. Hence
the singularities ofZ are fixed by the(GD)0-action. Letx be a fixed point, then
(GD)0 = (Gx)0

∼= S1 and there is a closed orbitC of 2 Re Z. Let U be the con-
nected component ofF \C which containsx, then theGx-action preservesU so that
there are coordinates onU such that the(Gx)0-action is given by(t, z) 7→ tz, where
x corresponds toz = 0. Noticing that the standard Hermitian metric onU is invari-
ant underGx, we identifyEF |U with the unit tangent bundle overU with respect to
the standard Hermitian metric. Then,EF |U is naturally identified withS1×U ⊂ G,
whereG is considered asS1 × C by forgetting the group structure. We denote by
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ϕU this identification. TheS1-action obtained by lifting the(Gx)0-action is given
by the multiplication inG. Since the local holomorphic vector fields are unique
up to multiplication of real numbers, we have the case 2b) onF \ P . Let x be a
non-fixed point and choose a neighborhoodV of x such that the local holomorphic
vector fieldZ is given byZ = ∂

∂z
andx corresponds toz = 0. By using the standard

Hermitian metric onV , EF |V can be identified with the unit tangent bundle ofV

and also withS1×V by assuming thatEF is trivial onV . DefineϕV : S1×V → G

by ϕV (t, z) = (te2π
√−1Re z, e2π

√−1z), then we may assume thatϕV is a diffeomor-
phism. SinceϕV (t, z+θ) = (te2π

√−1(Re z+θ), e2π
√−1(z+θ)) = (e2π

√−1θ, 0)·ϕV (t, z),
the lifted localGD-action onEF |V is also given by the local action ofS1 ⊂ G. It
is easy to see that each transition function of these trivializations is given by mul-
tiplication of an element ofS1 ⊂ G. Finally, the mapping fromG to C defined by

(t, z) 7→ (t−1z) induces a mapping from̃ΓF\ẼF to C. The imaginary parts of the
local holomorphic vector fields generating theGD-orbits induce the radial vector

field 2 Re z ∂
∂z

onC, where0 ∈ P . If Γ̃F\ẼF = CP 1, thenP consists of at most
two orbits, otherwiseP consists of a single orbit. ¤

Theorem 4.13.LetF be a dense component, then

1) the Γ -orbits in EF are also dense and(ΓF , EF ) is a Lie pseudogroup of
dimension3, namely,(ΓF , EF ) is modeled on a3-dimensional Lie group.F
is contained in a recurrent GGS-Julia component.

2) (ΓF , F ) is a Lie pseudogroup of dimension2. The closure ofΓ -orbits inEF

are finite coverings ofF and the covering degree is constant. If the covering
is trivial, thenF is a wandering GGS-Fatou component. If the covering is
two fold, thenF is contained in an ergodic GGS-Julia component. Other-
wise,F is contained in a recurrent GGS-Julia component.

Proof. First assume thatdim GD = 3, then the action ofGD on EF is locally free
because elements ofGD are determined by their1-jets. HenceGD is always con-
nected and the germs ofGD at any points inF are isomorphic. LetGF be the
simply connected Lie group locally isomorphic toGD, then there are local submer-
sions fromEF to GF and(ΓF , EF ) is a Lie pseudogroup modeled onGF . Since the
GD-orbits are locally dense inEF , there are no non-trivial invariant vector fields
nor invariant line fields onF . HenceF is contained in a recurrent GGS-Julia com-
ponent. Assume thatdim GD = 2, then theGD-orbits inEF are transversal to the
fibers andGD-orbits inF are locally dense. It follows that for anyx ∈ F , there is a
neighborhoodU of x such that ifg ∈ GD satisfiesg(x) ∈ U theng is determined by
g(x). Consequently,GD-action onF is locally free and the germ ofGD at any point
x ∈ F is always isomorphic. Hence there is a Lie groupGF such that(ΓF , F ) is a
Lie pseudogroup modeled onGF . The group(Gx)0\Gx is also isomorphic for all
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x. Moreover, theΓ -action preserves the orientation ofF so that allΓ -orbits inEF

are somek-fold covering toF . If k = 1, then it is clear that there is a non-trivialΓ -
invariant vector field onF . If k = 2, then the normal directions toGD-orbits inEF

projects down to aΓ -invariant line filed onF . Otherwise there are no non-trivial
invariant vector fields nor invariant line fields. ¤

The following is now clear.

Theorem 4.14.There is aΓ -invariant complete metric of classCω on each Fatou
component. The metric can be constructed in the natural conformal class deter-
mined by the transversal holomorphic structure.

The above results are expressed in terms of pseudogroups of isometries as fol-
lows. See [13] and [22] for definitions.

Corollary 4.15. Letg be the sheaf of Lie algebras overF with stalkgx being the Lie
algebra ofGD. The pseudogroup generated byΓF andGD is the closure(ΓF , F )

of (ΓF , F ) and it is a Lie pseudogroup with Killing vector fieldsg.

The following is a direct consequence of Lemma 2.14.

Corollary 4.16. If (Γ, T ) is C0-Hermitian, then(Γ, T ) is Cω-Hermitian.

In the simplest case whereT = F (Γ ), theΓ -orbits are described as follows. See
also [17, Section 5].

Theorem 4.17. Let (Γ, T ) be a compactly generated pseudogroup. Assume that
Γ\T is connected andT = F (Γ ), then(Γ, T ) is Cω-Hermitian. LetE = ET be
the orthonormal frame bundle ofT and letFE the be the foliation formed by orbits
of Γ onE. Then, we have the following possibilities:

1) The leaves ofFE are dense. The wholeT forms a single recurrent GGS-Julia
component. In particular, allΓ -orbits onT are dense and there are neither
invariant Beltrami coefficients nor non-trivial invariant continuous sections
of TT .

2) The closures of the leaves ofFE form a real codimension-one foliationFE

of E. All Γ -orbits onT are also dense. The wholeT is either a single dense
GGS-Fatou component or a single ergodic GGS-Julia component according
to the covering degree of the leaves ofFE to T , which is independent of the
leaves and is either1 or 2.

3) 3a) The closures ofΓ -orbits form a real codimension-one regular foliation.
T is the union of semi-wandering GGS-Fatou components and ergodic
GGS-Julia components.



20 TARO ASUKE

3b) The closures ofΓ -orbits form a singular foliation in the sense of Molino
[17]. The number of singular orbits is at most two. The complement of
the singular orbits is the union of semi-wandering GGS-Fatou compo-
nents and ergodic GGS-Julia components, and the singular orbits is the
union of recurrent GGS-Julia components.

4) All Γ -orbits are discrete. The union ofΓ -orbits without holonomy is dense
and is a single wandering GGS-Fatou component. The complement is the
union of recurrent Julia components. Moreover, there is aΓ -invariant mero-
morphic function onT .

The union of ergodic GGS-Julia components is open in the GGS-Julia set.

Proof. The classification follows from Theorems 4.11, 4.12 and 4.13. The first
three cases correspond the cases wheredim GD = 3, dim GD = 2 or dim GD = 1,
respectively. Assume thatdim GD = 0. Since the Lebesgue measure of the GGS-
Julia set should be zero, only recurrent components are possible. The claim on the
meromorphic function is due to Brunella-Nicolau [5] and Haefliger [14]. ¤

5. PROPERTIES OF THEJULIA SET AND CONFORMAL MEASURES

Throughout this section, we assume thatJ(Γ ) 6= ∅. An important consequence
of a theorem of Brunella-Nicolau [5] and Haefliger [14] is as follows.

Proposition 5.1. J(Γ ) contains at most finite number of discreteΓ -orbits.

Proof. If there are infinite number of discreteΓ -orbits, then allΓ -orbits are discrete
andJ(Γ ) = ∅. ¤

Remark5.2. The number of discreteΓ -orbits are essentially bounded by the dimen-
sion of a certain cohomological space [14].

The Julia set can be characterized as follows (see also Remark 5.9).

Theorem 5.3. Let z ∈ T ′, thenz ∈ J(Γ ′) if and only if there is a sequence{zn}
in T ′ andγn ∈ Γ ′

zn
such that lim

n→∞
zn = z and lim

n→∞
|γ′n|zn

= +∞. Here the case

wherezn = z for all n is allowed.

Proof. Let z ∈ T ′ and assume that there is a neighborhoodU of z in T ′ and a real
numberM > 2 with the property that|γ′|w ≤ M if γ ∈ Γ is obtained by extending
the germ of an element ofΓ ′

u, whereu ∈ U andw ∈ U ∩ dom γ. We will show that
z ∈ F (Γ ′) by modifying Ghys’ lemma in [9]. First, there is a finite set of generators
{γ1, · · · , γm} of Γ ′ becauseΓ is compactly generated. LetΓ ′(k) be the subset of
Γ ′ which consists of elements ofΓ ′ which can be realized by composing at mostk

generators, thenΓ ′ =
⋃
k

Γ ′(k). Let δ0 > 0 be such that the germ of any generatorγi
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at a pointw ∈ T ′ is extended toDw(δ0) as an element ofΓ and setV = Dz(δ0/M).
We may assume thatV ⊂ U by shrinkingV if necessary. Letγ ∈ Γ ′

u, where
u ∈ V , thenγ is actually the germ of an element ofΓ ′(k) for somek. If k = 1,
thenγ can be defined onV as an element ofΓ becauseV ⊂ Du(δ0). Moreover,
|γ′|w ≤ M if w ∈ V becauseV ⊂ U . Henceγ(V ) ⊂ Dγ(u)(δ0). Assume thatγ can
be defined onV as an element ofΓ if γ is the germ of an element ofΓ ′(k), and let
γ be the germ of an element ofΓ ′(k +1). Then, we can decomposeγ asγ = γi ◦ ζ,
whereζ ∈ Γ ′(k). By the assumption,ζ is defined onV as an element ofΓ and
ζ(V ) ⊂ Dζ(u)(δ0) because|ζ ′|w ≤ M if w ∈ V . Thereforeγ is also defined onV
as an element ofΓ , namely,V is a Fatou neighborhood which containsz.

It follows that there are sequences{zn}, {un} in T ′ which converge toz and a
sequence{γn} such thatγn ∈ Γ ′

un
and|γ′n|zn

tends to the infinity, wherezn belongs
to the domain ofγn as an element ofΓ . By passing to a subsequence, we may
assume that{γn(zn)} converges toz0 ∈ T ⊂ T . Choose an elementγ of Γ such
thatγ(z0) ∈ T ′, then the pair({zn}, {γ ◦ γn}) makes a sense for largen and is a
desired one.

On the contrary assume thatz ∈ F (Γ ′), then there is a Fatou neighborhood, say
U , of z. If γ ∈ Γ ′

w, w ∈ U , then|γ′|z is bounded becauseΓU is a normal family. ¤

Remark5.4. One cannot tell in general if the limit pointγ(z0) belongs to the Fatou
set or not.

Some notions for Kleinian groups and the Julia sets of mapping iterations will be
useful. We begin with an analogy of the limit sets for Kleinian groups.

Definition 5.5. Let Λ0(Γ ) andΛ(Γ ) be as follows. First,

Λ0(Γ ) = {z ∈ J(Γ ) ∃x ∈ F (Γ ), ∃{γn} ⊂ Γx such thatγnx → z} ,

and letΛ(Γ ) = Λ0(Γ ). We callΛ(Γ ) the limit setof Γ .

It is evident thatΛ0(Γ ) andΛ(Γ ) areΓ -invariant sets.

Remark5.6. We do not know any example of(Γ, T ) such that∂F (Γ ) 6= Λ(Γ ) \
Int J(Γ ), whereInt J(Γ ) denotes the interior ofJ(Γ ).

The limit set ofΓ and the limit sets of Kleinian groups have a common property
as follows.

Lemma 5.7.Suppose thatx1, x2 belong to the same Fatou component, thenΓx1x1∩
∂F (Γ ) = Γx2x2 ∩ ∂F (Γ ).

Proof. By lemma 2.18, there is an open neighborhoodV of x1 such thatΓx1x1 ∩
∂F (Γ ) = Γyy ∩ ∂F (Γ ) if y ∈ V . The claim follows sincex1 andx2 belong to the
same Fatou component. ¤
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The following definition can be found in the theory of complex dynamical sys-
tems (see [25]) and also in the theory of Kleinian groups (see [23]).

Definition 5.8. A point z ∈ J(Γ ′) is calledconical if there existθ > 0 and an
infinite sequence{γn} ⊂ Γz, n ≥ 1, such thatγn(z) ∈ T ′, γ−1

n is defined on
Dγn(z)(θ) ⊂ T and lim

n→∞
|γ′n|z = +∞. The union of conical points are denoted by

Jc(Γ
′). A conical point is calleduniformly conicalif one can find a sequence{γn}

such that

lim
n→∞

∣∣γ′n+1

∣∣
z

|γ′n|z
< ∞.

The union of uniformly conical points are denoted byJuc(Γ
′). If (Γ, T ) is the

holonomy pseudogroup of a foliationF , then (uniformly) conical leaves are defined
in an obvious way.

Jc(Γ
′) andJuc(Γ

′) areΓ ′-invariant but not necessarily closed in general. See
Example 8.3.

Remark5.9. The condition thatz is conical implies that Theorem 5.3 holds in a
strong form, namely, the sequence{zn} can be chosen so thatzn = z, and the
elementsγn have an extra condition on their targets.

Existence of a conical point implies the existence of hyperbolic fixed points.

Lemma 5.10.Letx ∈ Jc(Γ
′).

1) There is a neighborhoodD of x and an elementγ ∈ Γ ′
x such thatγ◦n is

defined onD for all n and{γ◦n} uniformly converges to a constant mapping.
2) There is aΓ ′-orbit of a hyperbolic fixed point which converges tox. Here

the constant sequence equal tox is allowed.

Proof. Let θ and{γn} be as in Definition 5.8. Setxn = γn(x), then we may assume
thatxn converges toy ∈ T ′. We may also assume thatγ−1

n is defined onDy(θ/2) for
anyn and that{γ−1

n } uniformly converges to the constant mappingx on Dy(θ/2).
Let D be a disc contained inγ−1

1 (Dy(θ/2)) ∩ T ′ and setζn = γ−1
n γ1, thenζn is

defined onD, andζn(D) ⊂ D for largen because{ζn} uniformly converges to
x. Eachζn has a fixed point, sayzn, on D. It is clear that(ζn)◦m can be defined
on D for all m and that{(ζn)◦m} converges tozn. Fix now a fixed pointzn, then
{ζm(zn)} converges tox because{ζm} converges tox. ¤

LetHyp(Γ ) be the union of hyperbolic fixed points. Since hyperbolic fixed points
are uniformly conical, we have the following

Corollary 5.11. Hyp(Γ ) ⊃ Jc(Γ ) ⊃ Juc(Γ ) ⊃ Hyp(Γ ).
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Note that ifJc(Γ ) is dense inJ(Γ ), thenHyp(Γ ) is dense inJ(Γ ).
The proof of Lemma 5.10 says much more and we have the following

Corollary 5.12. Jc(Γ
′) ∩ ∂F (Γ ′) ⊂ Λ0(Γ

′). More precisely,Jc(Γ
′) ∩ ∂F (Γ ′) =⋃

Jc(Γ
′)∩∂Fi andJc(Γ

′)∩∂Fi =
{

z ∈ ∂Fi ∃x ∈ Fi, ∃{γn} ⊂ Γ ′
x s.t. z = lim

n→∞
γn(x)

}
⊂

Λ0(Γ
′).

Proof. Letx ∈ Jc(Γ
′)∩∂F (Γ ′) and letγ, D be as in Lemma 5.10, thenF (Γ ′)∩D is

non-empty and{γ◦n(z)} converges tox for anyz ∈ F (Γ ′)∩D. Hencex ∈ Λ0(Γ
′).

If z ∈ Fi, thenΓ ′-orbit of z is contained inFi by the definition ofΓ ′-connected
components. Thereforex ∈ ∂Fi. ¤

The equalityJc(Γ
′) ∩ ∂F (Γ ′) = Λ0(Γ

′) does not hold in general. For example,
if J(Γ ′) consists of a single parabolic fixed point, thenJc(Γ

′) ∩ ∂F (Γ ′) = ∅ but
Λ0(Γ

′) = J(Γ ′).
A well-known fact for the Julia sets of mapping iterations holds in the following

weak form.

Proposition 5.13. Suppose that every Julia component contains a conical point,
thenT = Γ (U) for any neighborhoodU of J(Γ ).

Proof. First note that∂F 6= ∅ for any Fatou componentF . Let x ∈ F , thenΓ ′
xx

has a limit point inJc(Γ
′) ∩ ∂F by Corollary 5.12 and Lemma 5.7 because every

Julia component contains a conical point by the assumption. HenceF ⊂ Γ (U). ¤

Conformal measures are one of the most important tools in the study of Kleinian
groups and Julia sets for mapping iterations. There are some difficulties when con-
sidering a direct analogue, for example, it is clear that the Julia set in Example 3.11
admits an invariant measure. Indeed, any atomic measure supported on{0} ∪ {∞}
is invariant. However, the standard construction using the Poincaré series does not
work. Indeed,

∑
γ∈Γx

|γ′|sx does not converge for anyx ∈ F (Γ ) ands ∈ R. In addi-

tion, the set{γ(x)}γ∈Γx is not discrete inF (Γ ). We would like to find a construction
which is also valid in such a case.

We will introduce an additional notion.

Definition 5.14. Let g = {g2
i dzi ⊗ dz̄i} be a Hermitian metric onF (Γ ′) and letO

be an open subset ofF (Γ ′). We sayg diverges at∂O (resp. converges to0 at ∂O)
if lim

n→∞
gi(xn) = +∞ (resp. lim

n→∞
gi(xn) = 0) for any i and any sequencexn ∈ T ′

i

with lim
n→∞

xn ∈ ∂O.

If g is complete, theng diverges at∂F for each Fatou componentF .
We assume the following the rest of this section.
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Assumption 5.15. 1) F (Γ ) is non-empty, and
2) g is a continuous invariant metric onF (Γ ) which diverges at∂F (Γ ) in the

sense of Definition 5.14.

There exist metrics which satisfy the above assumption by Theorem 4.14. Letdm

be the2-dimensional volume induced byg. The restriction ofdm to Fi = Ti∩F (Γ )

is denoted bydmi. Let gi be the positive function onFi such thatdmi = g2
i |dzi|2.

We extendgi to Ti by settinggi = +∞ on the Julia set. Note that the function1/gi

is continuous and bounded onTi.
SetF ′

i = F (Γ ′) ∩ T ′
i = F (Γ ) ∩ T ′

i .

Definition 5.16. Let (Γ, T ) andgi be as above. Let(Γ ′, T ′) be a reduction and set

Sg(s) =
∑

i

∫

F ′i

g−s+2
i |dzi|2 =

∑
i

∫

F ′i

g−s
i dmi.

The numberδ(Γ, g) = inf {s ∈ R S(s) < +∞} is called the critical exponent of
J(Γ ) with respect tog. The numberδ(Γ ) = inf

g
δ(Γ, g) is called the critical ex-

ponent ofJ(Γ ), whereg runs through invariant metrics which satisfy Assump-
tion 5.15. If(Γ, T ) is the holonomy pseudogroup of a foliationF , then the critical
exponentsδ(F , g) andδ(F) are defined in the natural way.

Note that the integral remains the same even if we replaceF ′
i with F (Γ ) ∩ T ′

i .

Lemma 5.17.

1) The critical exponents are independent of the choice of reductions.
2) If s > δ(Γ ′, g), thenSg(s) < +∞.
3) δ(Γ ′, g) ≤ 2.
4) δ(Γ ′, g) ≥ 0 if the area ofF (Γ ′) with respect tog is infinite in the sense that

∑
i

∫

F ′i

dmi = +∞.

5) We may assume that
∑

i

∫

Fi

g−s+2
i |dzi|2 < ∞ for s > δ.

6) The critical exponent depends only onδ and the equivalence class ofg in the
sense of Definition 3.6. (Note that equivalence class is considered onF (Γ ′).)

Proof. 2) is a consequence of Assumption 5.15. 3) is evident from the fact that
T ′ is relatively compact. 5) holds by replacing the pair((T, Γ ), (T ′, Γ ′)) with
((T ′, Γ ′), (T ′′, Γ ′′)). 1, 4) and 6) are clear. ¤

Remark5.18. It is not obvious from the definition thatδ(Γ, g) > −∞. We will
show thatδ(Γ ) ≥ 0 under a condition onΓ (Corollary 5.24).
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Remark5.19. Fix a pointp ∈ Fi and letγ ∈ Γ ′
x. We denote byiγ the index such that

γ(x) ∈ T ′
iγ . Sincedmi = g2

i |dzi|2 is invariant underΓ ′, we have|γ′|x giγ (γ(x)) =

gi(x). Hence, quite roughly speaking, the sum
∑

γ∈Γ ′x

1
giγ (γ(x))s can be regarded as the

Poincaŕe series ofΓ ′. The above integration is obtained by replacing the sum with
the integration with respect todm.

Definition 5.20. A Borel measureµ onT (resp.T ′) is called aδ-conformal measure
if µ(γ(E)) =

∫
E
|γ′|δx dµ(x) holds for any Borel subsetE of T (resp.T ′) and any

elementγ ∈ Γ (resp.Γ ′) defined onE.

Proposition 5.21.Assume thatF (Γ ) is non-empty and letδ = δ(Γ, g) be the criti-
cal exponent ofJ(Γ ) with respect to an invariant metricg. Assume in addition that
δ > −∞, then, there is aδ-conformal measure supported on∂F (Γ ) ⊂ J(Γ ) under
Assumption 5.15.

The following proof is an adaptation of a proof of a corresponding result for
the limit sets of Kleinian groups and the Julia sets of mapping iterations found
respectively in [19] and [18]. We work on(Γ ′, T ′).

Proof. First assume thatlim
s↘δ

Sg(s) = +∞. Let C(T ′) be the set of continuous

functions onT ′. Consider the functional

ϕs(f) =

∑
i∈I

∫

F ′i

f(x)gi(x)−s+2 |dzi|2

Sg(s)
, wheref ∈ C(T ′)

and letµs be the probability measure onT ′ obtained by the Riesz representation
theorem. Letµδ be a weak limit of{µs} ass tends toδ from above.
Claim 1. µδ is supported on∂F (Γ ) ∩ T ′.

Indeed, letx ∈ F (Γ )∩T ′ and letU be a Fatou neighborhood ofx in F (Γ ). Then,
gi is bounded from above onU so thatlim

s↘δ
µs(U

′) = 0, whereU ′ = U ∩ T ′. Since

lim
s↘δ

µs(U
′) ≥ µδ(U

′), we haveµδ(U
′) = 0. One can show thatInt J(Γ )∩supp µδ =

∅ by a similar argument.
Claim 2. µδ is δ-conformal.

Let x ∈ T ′
i and letε > 0. By the Koebe theorem, there is a neighborhoodU of x

in F (Γ ) ∩ T ′ such that ifγ ∈ Γ is defined onU , then
∣∣∣ |γ

′|y
|γ′|x − 1

∣∣∣ < ε holds for any

y ∈ U . On the other hand, by the definition ofµs, we have|γ′|sx (1 − ε)µs(U) ≤
µs(γ(U)) ≤ |γ′|sx (1 + ε)µs(U). First take the limit ass ↘ δ, and thenε → 0, we
see thatµδ is aδ-conformal measure. Note thatsupp µδ cannot be contained in∂T ′

because(Γ, T ) is compactly generated. Indeed, letx ∈ supp µδ ∩ ∂T ′, then there is
an elementγ of Γ and an open setU of T such thatγ is defined onU , µδ(U) 6= 0
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andγ(U) ⊂ T ′. Let V be a neighborhood ofx in T such thatV ⊂ U and set
W = V ∩ T ′, thenV is measurable andµδ(γ(V )) ≥ C |γ′|δx µδ(V ) for someC > 0

by the Koebe distortion theorem andδ-conformality ofµδ. Then, replacingµδ with
1

µδ(T ′)µδ|T ′, we obtain aδ-conformal measure onT ′.
If S(s) converges ass tends toδ, then we will apply Patterson’s construction as

follows (cf. [19, p.47]). Let{εn} be a sequence of positive numbers decreasing to
zero. We will define a sequence{Xn}, with Xn → ∞, and an increasing function
h on [0, +∞) inductively. LetX0 = 0, X1 = 1 and seth(x) = 1 on [0, 1]. If h is
defined on[0, Xn], then chooseXn+1 so that

h(Xn)

Xn
εn

∑
i∈I

∫

Xn<gi≤Xn+1

g−δ+2+εn
i |dzi|2 ≥ 1.

This is possible becauseSg(δ − εn) = +∞. Set now

h(x) = h(Xn)

(
x

Xn

)εn

for x ∈ [Xn, Xn+1],

thenh is increasing. DefineS∗g (s) by

S∗g (s) =
∑
i∈I

∫

F ′i

h(gi)g
−s+2
i |dzi|2 ,

thenS∗g (δ) diverges because the inequality

∑
i∈I

∫

F ′i

h(gi)g
−δ+2
i |dzi|2 =

∑
i∈I

∞∑
n=0

∫

gi∈(Xn,Xn+1]

h(Xn)

(
gi

Xn

)εn

g−s+2
i |dzi|2

≥
∑
i∈I

∞∑
n=0

1

holds. For anyε > 0, there is a real numberr0 such thath(rt) ≤ tεh(r) holds for
r > r0 andt > 1. Indeed,log h(x) = εn(log x − log Xn) + log h(Xn) so that if
εn < ε andr > Xn, thenlog h(rt) = εn(log t + log r − log Xn) + log h(Xn) ≤
ε log t + log h(r) for t > 1. Finally we show thatS∗(s) converges ifs > δ. Choose
ε > 0 so thatδ + ε < s and fix anr > 1 such thath(rt) ≤ tεh(r) holds for
t > 1. Sinceh is increasing,h(gi)

h(r)
≤ h(rgi)

h(r)
≤ gε

i if gi > 1. SettingC = h(r), we

haveh(gi)g
−s+2
i ≤ Cg−δ+2

i for gi > 1. Consequently,S∗g (s) converges ifs > δ.
Repeating the construction after replacingSg(s) with S∗g (s), aδ-conformal measure
can be also obtained in this case. ¤

The following fact is well-known.

Lemma 5.22. Let µδ be a δ-conformal measure and letsupp µδ be its support.
Assume thatz ∈ Jc(Γ

′)∩supp µδ, then there is a positive constantC which depends
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onθ andµδ and a sequence{rn} of positive numbers which converges to zero such
that

C−1 ≤ µδ(Drn(z))

rδ
n

≤ C.

Proof. Let {γn} be as in Definition 5.8. Letzn = γn(z), Dn = Dzn(θ) and let

ρn =
θ

4 |γ′n|z
, thenγ−1

n (Dn) containsDz(ρn) by the Koebe distortion theorem. On

the other hand, again by the Koebe distortion theorem, there is a constantC1 > 0

independent of mappings such that

∣∣∣∣
|γ′n|zn

|γ′n|x
− 1

∣∣∣∣ < C1 if x ∈ Dzn(θ/2). Hence we

have

µδ(Dz(ρn/2)) ≤ µδ(γ
−1
n (Dzn(θ/2))) ≤ (1+C1) |γ′n|−δ

z µδ(Dzn(θ/2)) ≤ (1+C1) |γ′n|−δ
z .

On the other hand, setσn = min

{
ρn

2(1 + C1) |γ′n|z
,
θ

2

}
, thenγ−1

n (Dzn(σn)) ⊂
Dz(ρn/2). Hence we have

µδ(Dz(ρn/2)) ≥ µδ(γ
−1
n (Dzn(σn))) ≥ (1 + C1)

−1 |γ′n|−δ
z µδ(Dzn(σn)).

The proof is completed if we show the following:
Claim. For anyr > 0, there is anm > 0 such thatµδ(Dx(r)) > m for any
x ∈ supp µδ.

Indeed, if not, then there is a sequence{xn} ⊂ supp µδ such thatµδ(Dxn(r)) ≤
1
n
. We may assume thatxn converges to a pointx ∈ T ′. Then,µδ(Dx(δ

′)) = 0 if
δ′ < δ/2. On the other hand, there is an elementγ ∈ Γ such thatγ(x) ∈ T ′ because
(Γ, T ) is compactly generated. We may assume thatγ is defined onDx(δ

′), and then
µδ(γ(Dx(δ

′))) = 0. This is a contradiction.
This completes the proof of the claim and the lemma. ¤

Lemma 5.23. Suppose that every Julia component ofΓ contains a conical point
and letg, g′ be invariant metrics on a Fatou component. Ifg andg′ are conformally
equivalent, theng andg′ are equivalent in the sense of Lemma 3.7.

Proof. Let F be a Fatou neighborhood. LetU be a neighborhood ofJ(Γ ′) and letV
be a relatively compact open subset ofF which containsF \U . Then,C−1g ≤ g′ ≤
Cg holds for someC ≥ 1 on V . On the other hand, letx ∈ U , thenγ(x) ∈ V for
someγ ∈ Γ ′ by Proposition 5.13. Hence the estimates also holds on a neighborhood
of x. ¤

There is the following analogue to the Julia sets of rational mappings. The proof
is a modification of a standard argument [18], [25].
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Corollary 5.24. Suppose thatsupp µδ ∩ Juc(Γ ) 6= ∅. Let δ(Γ ) be the critical
exponent ofΓ , thenδ(Γ ) = δ(Γ, g) for any invariant metricg satisfying Assump-
tion 5.15 andδ(Γ ) ≥ 0. In fact, δ(Γ ) is equal to the Hausdorff dimention of
supp µδ ∩ Juc(Γ ).

Proof. Fix an invariant metricg and denoteδ(Γ ′, g) by δ. Let x ∈ supp µδ ⊂
∂F (Γ ′). Let {γn} andθ be as in Definition 5.8. We may assume that{|γ′n|x} is
strictly increasing. On the other hand, sincex is uniformly conical, there is a real

numberα > 1 such that

∣∣γ′n+1

∣∣
x

|γ′n|x
< α. We will show that there is a positive real

numberC such that

∀r ∈ (0, 1], ∃n s.t.− C < |γ′n|x + log r − log θ < C.

Indeed, setC = max{log |γ1|x , log α}, then there is an integern such thatlog |γ′n|x−
log |γ′1|x + log r − log θ ≤ 0 < log

∣∣γ′n+1

∣∣
x
− log |γ′1|x + log r − log θ. Since

log
∣∣γ′n+1

∣∣
x
−log |γ′n|x < log α, the inequalitieslog |γ′n|x+log r−log θ < log |γ′1|x <

C andlog |γ′n|x + log r − log θ > log
∣∣γ′n+1

∣∣
x
− log α + log r − log θ > log |γ′1|x −

log α > −C hold. Therefore, there is aC1 > 1 such that for a givenr ∈ (0, 1],
there is ann such thatC−1

1 < r |γ′n|x θ−1 < C1. By repeating the same argument in
the proof of Lemma 5.22, we have

C−1
2 ≤ µδ(Dr(x))

rδ
≤ C2

for a suitableC2 > 1 independent ofx. It is well-known that the last inequality
implies that the Hausdorff dimension ofsupp µδ is equal toδ [25, Theorem 1.1].
Therefore,δ is independent of the choice ofg andδ ≥ 0. ¤

6. CHARACTERISTIC CLASSES

The arguments in [3] depend only on the fact that foliations restricted to the Fatou
sets are transversally Hermitian. Hence they are also valid for the decomposition in
the present paper and the Godbillon-Vey class and the Bott class can be localized to
the Julia set. The proof is completely the same as in [3] so that we will give only a
sketch.

Theorem 6.1.Let(M,F) be a transversally holomorphic foliation of complex codi-
mension one, of a closed manifold.

1) The Godbillon measure in the sense of Heitsch-Hurder[15] is supported on
the Julia set.

2) The residue of the imaginary part of the Bott class[3] at the Julia set is
well-defined.
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Sketch of the proof.Fix an invariant Hermitian metricg onQ(F)|F (F), whereQ(F)

denotes the complex normal bundle ofF . LetU be a neighborhood ofJ(F) (which
is not necessarily saturated), then there is a Hermitian metrich on Q(F) which
coincides withg on a neighborhood, sayV , of F (F) \ U . We can find a Bott
connection∇b which is a unitary connection forh onM\V ′, whereV ′ is an open set
slightly smaller thanV . Let∇u be a unitary connection forh, then, representatives
of Godbillon-Vey class and the imaginary part of the Bott class obtained by using
∇b and∇u vanish onV ′. ¤

We have the following weak version of Duminy’s theorem [8] (see also [15]).

Corollary 6.2. Let (M,F) be a transversally holomorphic foliation of complex
codimension one, of a closed manifold.

1) The Godbillon-Vey class vanishes if the Julia set is empty.
2) The imaginary part of the Bott class vanishes if the Julia set is empty.

Remark6.3. The first claim follows also from the second claim, because the Godbillon-
Vey class is equal to the product of the imaginary part of the Bott class and the first
Chern class of complex normal bundle [2].

Remark6.4. J(F) 6= ∅ implies that there is either a leaf with a hyperbolic holo-
nomy or a leaf to which a series of expanding local holonomy converges by Theo-
rem 5.3. If one happens to know thatJc(F) 6= ∅, then there is really a hyperbolic
holonomy by Lemma 5.10.

The real part of the Bott can be non-trivial even if the Julia set is empty. The
following example is essentially due to Bott and Heitsch [4].

Example 6.5. Let k be an integer greater than2 and realizeZm = Z/mZ as
{t ∈ C tm = 1}. Define aZm-action onS2k−1×CP 1 by t(x, [z0 : z1]) = (tx, [t−1z0 :

z1]). Let M = (S2k−1 × CP 1)/Zm, thenM fibers over the Lens spaceL(m; 1) =

S2k−1/Zm with projectionp. (M, p) is a foliated fiber bundle in the sense that
M is equipped with a foliationF with leaves(S2k−1 × {[z0 : z1]})/Zm. Let
U = (S2k−1 × C)/Zm, whereC = {[z : 1]} ⊂ CP 1, thenU ⊂ M andU is
a line bundle overL(m; 1). Let FU be the restriction ofF to U , then the line
bundle is isomorphic to the complex normal bundle ofFU pulled back by the in-
clusion ofL(m; 1) × {[0 : 1]} into M . On the other hand, sincep∗ : H∗(U ;Z) ∼=
H∗(L(m; 1);Z) → H∗(M ;Z) is injective, it suffices to see thatc1(U)2 has a torsion
part. The mapping[x, z] → ([x], zx) is an embedding ofU to L(m; 1)×Ck, where
the bracket means the equivalence class. It follows thatU is the pull-back of the
tautological bundle overCP k−1 by the natural projection, which we denote byπ.
As π∗ is the projection fromZ toZ/mZ in degree4, c1(U)2 is its generator. On the
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other hand, the foliation is clearly transversally Hermitian and therefore the Julia
set is empty.

7. THE TRANSVERSALKOBAYASHI METRIC

The invariant metric constructed in Section 3 is not canonical although the Fatou-
Julia decomposition has naturality (Lemma 2.10). A canonical (pseudo-)metric can
be constructed by modifying the construction of the Kobayashi metric. By inte-
grating the Kobayashi metric, the transversal Kobayashi distance is obtained. The
transversal Kobayashi distance was studied by Duchamp and Kalka [7]. Here we
discuss some properties of the transversal Kobayashi metric.

Let (Γ, T ) be a (not necessarily compactly generated) pseudogroup of local bi-
holomorphic diffeomorphisms ofCq and we denote byTT the holomorphic tangent
bundle ofT .

Definition 7.1 (cf. [13]). Let X be a1-dimensional complex manifold. Aholomor-
phic1-cocycle valued inΓ defined onX is a triplet({ϕi}, {Ui}, {γji}) as follows:

1) {Ui} is an open covering ofX,
2) eachϕi is a holomorphic map fromUi to a component ofT ,
3) if Ui ∩ Uj 6= ∅, then there is an elementγji of Γ such thatϕj = γji ◦ ϕi on

Ui ∩ Uj, moreover,γii = id, and
4) γikγkjγji = id if Ui ∩ Uj ∩ Uk 6= ∅.

Holomorphic1-cocycles valued inΓ defined onX correspond to transversally
holomorphic mappings fromX to a foliated manifold.

Definition 7.2. For (x, v) ∈ TT , denote byΩ(x, v)R the set of holomorphic1-
cocycles valued inΓ defined onD0(R) such thatϕ(0) = x andϕ∗0e0 = v, where
e0 is a unit vector at the origin with respect to the standard Hermitian metric onC.
It is clear thatΩ(x, v)R is non-empty ifR is small enough. Set then

KT (x, v) = inf
Ω(x,v)R 6=?

1

R
.

It is immediate thatKT (x, 0) = 0.

Actually D0(R) is considered as the Poincaré disc of radiusR and centered at
the origin, equipped with the metricR2dz2

(R2−|z|2)2
. The same function can be obtained

even if1-cocycles such thatϕ(p) = x for somep ∈ D0(R) andϕ∗p(ep) = v are
considered in the definition if1

R
is replaced with R

R2−|p|2 .
We recall some fundamental properties [20].

Lemma 7.3([20]). KT (x, αv) = |α|KT (x, v) for any(x, v) ∈ TT andα ∈ C.
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Proof. Let ({ϕi}, {Ui}, {γji}) ∈ Ω(x, v)R. Then the cocycle({ψi}, {Vi}, {γji}),
whereψi(z) = ϕi(αz) andVi = 1

|α|Ui, belongs toΩ(x, αv)|α|−1R. ¤
Lemma 7.4. The functionKT is Γ -invariant in the sense thatKT (γx, γ∗xv) =

KT (x, v) for anyγ ∈ Γx.

Proof. Let ({ϕi}, {Ui}, {γji}) ∈ Ω(x, v)R. Assume thatϕ0(0) = x and(ϕ0)∗0e0 =

v. LetW be an open neighborhood ofx of which the closure is contained indom γ,
and letV∞ = ϕ−1

0 (dom γ) andV ′ = ϕ−1(W ). We define a1-cocycleψ as follows.
Let Vi = Ui \ V ′, then{Vi} ∪ {V∞} is an open covering ofD0(R). Let ψi be the
restriction ofϕi and letψ∞ = γ ◦ ϕ0 on V∞. Noticing thatVi ∩ V∞ ⊂ Ui ∩ U0,
setγ∞i = γ ◦ γ0i andγi∞ = γi0 ◦ γ−1 if Vi ∩ V∞ 6= ∅. It is easy to see that
({ψi}∪{ψ∞}, {Vi}∪{V∞}, {γji}∪{γab}), wherea = ∞ or b = ∞, is a1-cocycle
which belong toΩ(γx, γ∗xv)R. ¤

There is a following property as usual.

Proposition 7.5. The functionKT is upper semicontinuous.

Proof. We need the Royden lemma [20], [21] if the dimension ofT is greater than
one. Here we give an elementary proof in one-dimensional case. We may assume
thatT ⊂ C and denoteϕ∗ by ϕ′. Given a positive real numberε > 0, chooseδ > 0

so that 1
R(1−δ)

< 1/R + ε holds. Let(x, v) ∈ TT , then there is a1-cocycle in
Ω(x, v)R such thatϕ0(0) = x, ϕ′0(0) = v andFT (x, v) + ε > 1/R. If (y, w) is
close enough to(x, v), theny ∈ U0 so thaty = ϕ0(p) for somep ∈ U0. Moreover,
λϕ′0(p) = w holds for someλ ∈ C close enough to1. By composing with a
Möbius transformation ofD0(R), we can find a holomorphic1-cocycleψ defined
onD0(R) such thatψ(0) = y andλψ′(0) = w, where||λ| − 1| < δ. It follows that
KT (y, w) ≤ 1

R(1−δ)
< 1/R + ε < KT (x, v) + 2ε. ¤

By integratingKT , a locally defined (pseudo) distance functiondT on T can be
obtained. It is easy to see thatdT is continuous.

Remark7.6. The locally defined distancedT is distinct from the Kobayashi distance
in general. In order to obtain the Kobayashi distance, we need the infimum of the
length ofΓ -paths with respect toKT .

Definition 7.7. (Γ, T ) is said to beKobayashi hyperbolicif dT is locally a distance.

The Kobayashi hyperbolicity is invariant under equivalence of pseudogroups. If
(Γ, T ) is Kobayashi hyperbolic, thendT induces a metric on each component ofTi.
Moreover,dT induces the same topology onT as an open subset ofC.

Theorem 7.8. Let (Γ, T ) be a compactly generated pseudogroup of local biholo-
morphic diffeomorphisms ofC. If (Γ, T ) is Kobayashi hyperbolic, then(Γ, T ) is
Cω-Hermitian and the conclusion of Theorem 4.17 holds.
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Proof. We proceed as in the proof of Lemma 2.14 and retain the notation. First we
show that for∀ε > 0, ∃δ > 0 such thatD′

y(δ) ⊂ Dy(ε) for any y ∈ T ′, where
D′

y(δ) denotes the openδ-ball centered aty with respect todT . If not, there is an
ε > 0 and a sequence{yn} such thatD′

yn
(1/n) 6⊂ Dyn(ε). We may assume that

{yn} converges to a pointy in T ′. Note thatdT (y, yn) converges to0. Let ε1 > 0,
thenD′

y(ε1) ⊃ D′
yn

(1/n) if dT (y, yn) + 1/n < ε1. HenceD′
y(ε1) 6⊂ Dy(ε/2) for

anyε1 > 0. This is a contradiction.
Let x ∈ T ′ and letδ′ be such thatD′

y(δ
′) ⊂ Dy(δ/2) for anyy ∈ T ′, whereδ is

chosen as in the proof of Lemma 2.14. Letδ′′ be such thatDx(δ
′′) ⊂ D′

x(δ
′) ∩ T ′.

Assume that the germ atz ∈ Dx(δ
′′) of any element ofΓ ′(k) is defined onDx(δ

′′) as
an element ofΓ , thendT (γx, γy) < δ′. It follows thatγy ∈ D′

γx(δ
′) ⊂ Dγx(δ/2).

ThereforeγDx(δ
′′) ⊂ Dγx(δ/2) ⊂ Dγz(δ) andγiγ is defined onDx(δ

′′) as an
element ofΓ . Therefore,Dx(δ

′′) is a Fatou neighborhood and consequentlyT =

F (Γ ). ¤

Remark7.9. The proof of Theorem 7.8 does not require thatdT is induced byKT .

The above corollary can be regarded as a variant of the following result of Duchamp-
Kalka [7, Lemma 3.6 and Theorem 3.7].

Theorem 7.10([7]). Let (M,F) be a transversally holomorphic foliation of com-
plex codimensionq. If the transversal Kobayashi distance distinguishes distinct
leaves, then the the leaf spaceM/F is Hausdorff. If moreoverM is closed, thenF
is a (generalized) Seifert fibration.

8. EXAMPLES

Example 8.1. Let [z0 : z1 : z2] be the homogeneous coordinate ofCP 2 and let
Ui = {[z0 : z1 : z2] ∈ CP 2 zi 6= 0}, and let(u1, u2), (v1, v2) and(w1, w2) be the
inhomogeneous coordinate onU0, U1 andU2, respectively. LetXi be a vector field
on respectiveUi given by the formula

X0 = λ1u1
∂

∂u1

+ λ2u2
∂

∂u2

,

X1 = −λ1v1
∂

∂v1

+ (−λ1 + λ2)v2
∂

∂v2

,

X2 = −λ2w1
∂

∂w1

+ (λ1 − λ2)w2
∂

∂w2

,

We assume thatλ1λ2 6= 0, λ1 6= λ2 andλ1/λ2 6∈ R, then the (singular) foliation
F of CP 2 induced from these vector fields has three singularitiesp1 = [0 : 0 : 1],
p2 = [0 : 1 : 0] andp3 = [1 : 0 : 0]. LetLi = {[z0 : z1 : z2] ∈ CP 2 zi = 0}, thenF
is Hermitian when restricted toCP 2 \ L, whereL = L0 ∪ L1 ∪ L2. Indeed, choose
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µ1, µ2 ∈ C such thatλ1µ2 − λ2µ1 6= 0, µ1 6= µ2 and letY = µ1u1
∂

∂u1
+ µ2u2

∂
∂u2

.
ThenY induces a foliated section ofQ(F) onCP 2 \ L. Hence by requiring the
length ofY to be1, a transverse invariant Hermitian metric, sayh, is obtained.
SinceY andXi are linearly dependent onL, the metrich diverges atL in the sense
of Definition 5.14.

Let Di be a small round ball centered atpi and letSi ≈ S3 be its boundary. The
conditionλ1/λ2 6∈ R implies thatF is transversal toSi. Let M = CP 2 \ (D1 ∪
D2 ∪ D3) and letM3 be its double, thenM3 is naturally inherits a transversally
holomorphic foliationF3 induced fromF . The foliationF3 has three compact
leavesL0, L1 andL2, namely, the leaves induced fromL0, L1 andL2. The above
description shows thatF (F3) = M3 \ (L0 ∪L1 ∪L2). The residue of the Bott class
atJ(F3) is calculated in [2].

The number of the Julia components can be arbitrary large. LetM ′ be a copy of
M and let∂M ′ = S ′1 ∪ S ′2 ∪ S ′3. Let M1 be the manifold with boundary obtained
by gluing M with M ′ along S1 and S ′1, andS2 and S ′2, then∂M1 = S3 ∪ S ′3.
Let F4 be the natural foliation of the doubleM4 of M1, thenJ(F4) consists of4
connected components. In general, letN1, · · · , Nr−2 be copies ofM1 and letMr be
the manifold obtained by gluing them. LetFr be the naturally induced foliation of
Mr, thenJ(Fr) consists ofr connected components. The Julia sets of foliations in
this example consist of conical leaves and the critical exponents are equal to zero.

There is another description of the above example.

Example 8.2. Let {U0, U1, U2} be as in the previous example. We blow upCP 2

at the origin ofU0, namely, letC̃2 = {((u1, u2), [t1 : t2]) t1u2 − t2u1 = 0} beC2

blown up at the origin and replaceU0 by C̃2. Denote byC̃P 2 the resulting manifold.
Consider again the vector fieldX0 onC2, thenX0 can be lifted toC̃P 2 as fol-

lows. LetVi =
{

((u1, u2), [t1 : t2]) ∈ C̃2 ti 6= 0
}

(i = 1, 2) and letϕi : Vi → C2

be as follows, namely, defineϕ1 by ϕ1(((u1, u2), [t1 : t2])) = (u1, t2/t1) andϕ2 by
ϕ2(((u1, u2), [t1 : t2])) = (u2, t1/t2), respectively. Let(Z1, Z2) = ϕ1 (((u1, u2), [t1 : t2]))

and(W1, W2) = ϕ2 (((u1, u2), [t1 : t2])). Define vector fields̃X0 onC̃2 by the prop-
erty

ϕ1∗X̃0 = λ1Z1
∂

∂Z1

+ (λ2 − λ1)Z2
∂

∂Z2

,

ϕ2∗X̃0 = λ2W1
∂

∂W1

+ (λ1 − λ2)W2
∂

∂W2

.

It is easy to see that̃X0 is well-defined and it coincides withX0 onC2\{0} = C2\E,
whereE denotes the exceptional fiber. Thus obtained foliation of̃CP 2 has4 sin-
gularities. The leaves induced fromL1, L2, L3 and the exceptional fiberE are sep-
aratrices. By imitating the previous construction, one can obtain a (non-singular)
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foliation of which the Julia set consists of4 components. Then by continuing cut
and paste procedure, foliations with arbitrary number (greater than3) of Julia com-
ponents can be obtained.

We will examine some examples in [10].

Example 8.3([10, Example 8.4]). Let Γ be a Kleinian group and letCP 1 = ΩtΛ

be the decomposition into the domain of discontinuity and the limit set. LetF be a
suspension of this action, thenF (F) corresponds toΩ and theJ(F) corresponds to
Λ. Indeed, one can repeat the same argument as in the proof of Proposition 4.2 after
introducing the Poincaré metric on each component ofΩ. If Γ is not torsion-free,
we haveF (F) ) FGGS(F). On the other hand, ifΓ is geometrically finite, then the
conformal measure constructed in Section 5 coincides with the Patterson-Sullivan
measure by the uniqueness [23]. Moreover, the critical exponent ofF is equal to
the critical exponent of the Poincaré series ofΓ.

The same construction by suspension is also possible ifΓ is non-discrete but
finitely generated. IfΛ = CP 1, thenJ(F) is the whole manifold.

The case whereΓ ⊂ Aff(R) is non-discrete and non-abelian is important. In
this case,J(F) = JGGS(F) and they correspond toR ∪ {∞}. The leafL∞ which
corresponds to{∞} is closed and not conical. We haveJc(Γ ) = J(Γ ) \ L∞ and
they correspond toR so thatJc(Γ ) is not closed. The critical exponent ofF is equal
to 1.

Example 8.4([10, Example 8.10]). Example 8.3 can be modified using ramified
covers. We adopt the notation in [10]. Leth : π1(B) → Aff(R) ⊂ PSL(2;C) be
a homomorphism and form the suspension. Assume that the image is non-discrete
and non-abelian and that the ambient manifoldM is diffeomorphic toB × CP 1.
Let L be the leaf which corresponds to∞ ∈ CP 1, then the holonomy group of
L consists of germs of mappings of the formz 7→ az/(1 + bz) with a > 0 and
b ∈ R, where∞ is considered as the origin. SetM ′ = B × S3 and consider the
mappingM ′ → M induced by the Hopf fibrationS3 → CP 1. By pulling-back,M ′

is equipped with a foliation with a compact leafL which is equal toB times the
fiber of the Hopf fibration. By construction, there is a non-trivial homomorphism
fromπ1(M

′\L) ontoZ. Hence there is ann-fold coveringM ′
n of M ′ ramified along

L for anyn > 0. LetFn be the foliation ofM ′
n by pull-back, thenFn is naturally

transversally holomorphic and has a compact leaf, sayLn, with holonomy group
which consists of the germs of the mappings of the formz 7→ (azn/(1 + bzn))1/n.
The Fatou-Julia decompositions also coincide in this case:J(Fn) is the pull-back of
real line ofCP 1, which is locally the union of codimension-one submanifolds with
singular locusLn, while F (Fn) consists of two components which are pull-back of
the upper and lower half spaces. The critical exponent ofFn is equal to1.
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Example 8.5([10, Example 8.6]). There is a foliation which is transversally Her-
mitian but of which the GGS-Julia set is the whole manifold. On the other hand, the
Julia set in our sense is empty by Lemma 2.14. In particular,F (F) ) FGGS(F).

Example 8.6([10, Example 8.9]). There is a foliation of a connected manifold of
which the GGS-Julia set has non-empty interior without being the whole manifold.
It is constructed by inserting a certain foliation ([10, Example 8.7]) into Example 8.3
which has two GGS-Fatou components corresponding to the upper and the lower
half spaces. Then, one of the GGS-Fatou components are changed into a GGS-
Julia component so that this GGS-Julia component has non-empty interior without
being the whole manifold. The Fatou-Julia decomposition of the original foliation
is the same as ours. On the other hand, the modified foliation is still transversally
Hermitian on the modified part. It is easy to see that the new GGS-Julia component
is still a Fatou component in our sense so that the interior of the Julia set is empty.

In fact, the author does not know if there is an example of a compactly generated
pseudogroup(Γ, T ) such thatΓ\T is connected and that the Julia setJ(Γ ) has
non-empty interior without being equal toT .

Example 8.7. Let Γ be a lattice inSL(2;C) such thatM = Γ\SL(2;C)/U(1) is a

closed manifold, whereU(1) =

{(
a 0
0 a−1

)
|a| = 1

}
. LetH =

{(
a b
0 a−1

)
a ∈ C∗, b ∈ C

}
,

and letF̃ be the foliation ofSL(2;C)/U(1) with leavesgH/U(1), g ∈ SL(2;C).
There is a foliationF of M naturally induced fromF̃ . It is easy to see that
J(F) = M , on the other hand, it is known that the Godbillon-Vey class ofF is
non-trivial [2].

There are foliations of which the Julia set is the whole manifold as in Exam-
ples 8.3 and 8.7. There is another kind of such examples.

Example 8.8.LetT = (C\{0})/〈γ〉, where〈γ〉 denotes the group generated by the
mappingγ(z) = 2z. We denote again byz the point inT represented byz by abuse
of notation. Letξ : T → T beξ(z) = z2. The mappingξ is not a diffeomorphism
but there is an open covering{Oi} of T such that the each restrictionξi of ξ to Oi is
a diffeomorphism onto its image. It is easy to see that the pseudogroupΓ generated
by ξi’s acting onT is compactly generated. It is also easy to see thatJ(Γ ) = T .
By applying a construction by Hector presented in [16, p.139],Γ can be realized
as the holonomy pseudogroup of a transversally holomorphic foliation of an open
manifold. However, we do not know if it is possible to find such a foliation of a
closed manifold.

We do not know if there is a reasonable extension of the Fatou-Julia decompo-
sition to not necessarily compactly generated pseudogroups. Indeed, it is easy to
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obtain non-compactly generated pseudogroups such that they are equivalent but the
Julia sets do not correspond under the equivalence. In terms of foliations, this im-
plies that the Fatou-Julia decomposition of a foliation of a non-compact manifold
depends on the choice of the realization of the holonomy pseudogroup.

If (Γ, T ) is not compactly generated, we tentatively say thatU ⊂ T is a Fatou
neighborhood if any germγu ∈ Γu, u ∈ U , extends to an element ofΓ defined on
U , and letF̃ (Γ ) be the union of Fatou neighborhood. The Julia set in this sense can
have non-empty interior without being the whole space.

Example 8.9. Let (Γ, T ) as in Example 8.8 and letS = {z ∈ C |z| < 1 + ε},
whereε is a small positive real number. LetO′ = {z ∈ C 1 < |z| < 1 + ε} and let
η : O′ → T be the mapping naturally induced by the inclusion ofO′ intoC. Let Γ1

be the pseudogroup generated byΓ andη and letT1 = T t O′, then,J̃(Γ1) = T1.
The pseudogroupΓ1 is however not compactly generated.

Example 8.10.Let D5+ε(0) be a disc of radius5 + ε centered at0 and letT =

T1 t T2, whereT1 = T2 = D5+ε(0). We denote the natural coordinates onT1 and
T2 by z andw, respectively. LetΓ be the pseudogroup generated byγ0, γ1 andγ2

defined as follows. First set

Si = {z ∈ Ti 25/(5 + ε) < |z| < 5 + ε} , i = 1, 2,

and defineγ0 : S1 → S2 by γ0(z) = 25/z. Second, let

O1 =
{

re
√−1t ∈ T1 1 < r < 2, |t| < δ

}
,

whereδ is chosen so small thatγ1 : O1 → T1 defined byγ1(z) = z2 is a diffeomor-
phism onto its image. Finally set

O2 =
{

re
√−1t ∈ T1 2 < r < 4, |t| < δ

}
,

and defineγ2 : O1 → O2 by γ2(z) = 2z.
It is easy to see that the pseudogroupΓ is not compactly generated, and̃J(Γ ) =

[1, 4]∪⋃
Ik ∪

⋃
Al, whereIk =

{
e2k−1

√−1δt 1 ≤ t ≤ 4
}

, k = 0, 1, · · · , andAl ={
2i/le

√−1t i = 0, . . . , 2l, 0 ≤ t ≤ 2δ
}

. Adding an irrational rotation toΓ as a gen-

erator, one can obtain a pseudogroupΓ1 such thatJ̃(Γ1) = {z ∈ T1 1 ≤ |z| ≤ 4}.
The pseudogroupΓ1 is not compactly generated, either.
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