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ABSTRACT. A Fatou-Julia decomposition of transversally holomorphic foliations

of complex codimension one was given by Ghys, Gomez-Mont and Saludes. In
this paper, we propose another decomposition in terms of normal families. Two
decompositions have common properties as well as certain differences. It will be
shown that the Fatou sets in our sense always contain the Fatou sets in the sense of
Ghys, Gomez-Mont and Saludes and the inclusion is strict in some examples. This
property is important when discussing a version of Duminy’s theorem in relation
to secondary characteristic classes. The structure of Fatou sets is studied in detail,
and some properties of Julia sets are discussed. Some similarities and differences
between the Julia sets of foliations and those of mapping iterations will be shown.
An application to the study of the transversal Kobayashi metrics is also given.

1. INTRODUCTION

The Fatou-Julia decomposition is one of the most basic and important notions in
complex dynamical systems. It have been expected that there also exists the Fatou-
Julia decomposition of transversally holomorphic foliations. Such a decomposition
of complex codimension-one foliations was firstly introduced by Ghys, Gomez-
Mont and Saludes in [10]. We call the decomposition 8@S-decompositiofor
short. The GGS-decomposition is given according to the existence of certain sec-
tions to the complex normal bundles of foliations, and it enjoys several significant
properties. For example, foliations restricted to the GGS-Fatou sets admit transver-
sal Hermitian metrics transversally of cla€$ and invariant under holonomies.
This implies that foliations have simple dynamics on the Fatou sets.

On the other hand, the dynamical properties of the GGS-Julia set is complicated
in general, and the Julia sets are expected to play a role of minimal sets for real
codimension-one foliations. Indeed, a weak version of Duminy’s theorem for real
codimension-one foliation [8] is known, namely, the non-triviality of certain char-
acteristic classes implies the non-vacancy of the GGS-Julia sets [3]. However, there
are transversally holomorphic foliations of which the Julia set is the whole mani-
fold. From the viewpoint as above, it is preferable if this kind of Julia sets can be
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2 TARO ASUKE

avoided. One way to exclude such foliations is using characteristic classes. On the
other hand, it will be also possible by replacing the Julia sets with smaller ones.

In this paper, we will propose another Fatou-Julia decomposition defined in a
certain analogy to that of complex dynamical systems (Section 2). The foliation
restricted to the Fatou set is transversally Hermitian of al&sslin this sense, our
decomposition has the same property as the GGS-decomposition. Moreover, there
is a description similar to that of the GGS-Fatou sets. The structure of transversally
Hermitian foliations is well-studied by Molino, Haefliger, Salem et. al. [17], [13],
[12], [22]. The classification of the Fatou components will be done by showing
that foliations restricted on the Fatou set are locally given by actions of Lie groups
and then repeating well-developed arguments as above. On the other hand, two
decompositions are different in some examples. In fact, it will be shown that the
Fatou sets in our sense always contain the GGS-Fatou sets. These properties of the
Fatou sets are studied in Sections 3 and 4.

Some properties of the Julia sets are also studied (Section 5). It will be shown
that some basic notions concerning the Julia sets of mapping iterations work well
also in our context. In particular, a version of the Patterson-Sullivan measure is
introduced by using invariant metrics.

In relationship with characteristic classes, a weak version of Duminy’s theorem
for complex codimension-one foliation will be shown valid also for our decompo-
sition (Section 6).

The GGS-decomposition is also related with deformations of foliations. Indeed,
the definition of the GGS-decomposition is directly related with deformations and
the GGS-Julia set is largely decomposed into two parts according to the existence
of invariant Beltrami coefficients. On the other hand, it is not quite clear how the
decomposition in this paper is related with deformations. Certain GGS-Julia sets
which admit invariant Beltrami coefficients are contained in the Fatou set in our
sense so that the relationship to deformations of foliations is not necessarily the
same.

To say about invariant metrics, our construction is not canonical. Many canonical
invariant metrics and distances are known in complex geometry, and some of them
can be translated in the foliation theory. Among them, the transversal Kobayashi
distance is previously studied by Duchamp and Kalka [7]. We will discuss the
transversal Kobayashi metric and show an analogous result (Section 7).

Some examples in [10] together with some other ones are examined in the last
section (Section 8). Constructions are done in terms of compactly generated pseu-
dogroups throughout the paper, however, examples are mostly given by using folia-
tions.
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2. DEFINITIONS

For generalities of pseudogroups we refer readers to [11], [12] and [14]. Through-
out this paper, compactly generated pseudogroups of local biholomorphic diffeo-
morphisms ofC are studied. Examples in mind are the holonomy pseudogroups
of transversally holomorphic foliations of complex codimension one. Compactly
generated pseudogroups are defined as follows [12].

Definition 2.1. A pseudogroup/’, T’) is compactly generated if there is a relatively
compact open séf in T which meets every orbit of’, and a finite collection of
elementg~,, - -- ,~,} of I of which the sources and the targets are containéd in
such that
1) {7, -+, } generates’|y,
2) eachn; is the restriction of an element éf defined on a neighborhood of the
closure of the source of,.

(I'|y,U) is called areductionof (I,7'). A reduction of(/,7) will always be
denoted by(I",T").

Example 2.2. e Let G be a finitely generated group which acts on a closed
manifold M. Then(G, M) is naturally a compactly generated pseudogroup.
Such a pseudogroup is called the pseudogroup generatéd dyd is real-
izable as the holonomy pseudogroup of a foliation of a closed manifold by
taking suspensions.
e The holonomy pseudogroup of a transversally holomorphic foliation of a
closed manifold is compactly generated.

We adopt the following notation.

Notation 2.3. Let (I, 7) be a pseudogroup.

1) Fory € I', the source (the domain of definition) 9fis denoted bylom ~.

2) Letx € T, thenl, = {the germofy € " atz|dom~ > z}. By abuse of
notation, elements aof,, are considered as elements defined on a neighbor-
hood ofz. Forvy € I', andz € T, v(z) is also denoted byzx.

3) Thel -orbit of a subseX of T"is by definitionI"(X) = (J,. x [»2.

4) Regardingdl’ as a subset df, we define the derivative of an elemenof I
in the natural way and denote it by. The absolute value of is denoted by
7’|, and|+'(x)| is denoted also by’ .
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5) The Euclidean disc of radiusand centered at is denoted byD,(r). In
general, ifK is a compact set theP (r) denotes the-neighborhood of<
with respect to the Euclidean metric.

The following notion can be found in [13].

Definition 2.4. I'-connectedubsets of” are characterized as follows.

1) Connected subsets dfare'-connected.
2) If X andY arel'-connected and ify(z) € Y for somez € X andy € I,
thenX UY is I'-connected.

Remark2.5. T'is I’-connected if and only if\7T" is connected with the quotient
topology. If X C T, thenI'\X C I'\T is connected ifX is I'-connected. The
converse also holds X is I'-invariant, and not always true. Indeed,Tét T LIT5,
whereT; = T, = R and they are equipped with the natural topology and let
be the pseudogroup generatedby7; — T, given by~(z) = z. Let X; =
(—00,0] C T1, Xy = (0,00) C Ty and X = X; U X,, thenX is not/’-connected
but/MX =I\T =R.

If (I,T) is the holonomy pseudogroup of a foliation, thBrconnected compo-
nents of/ -invariant sets correspond to connected components of saturated sets.
The Fatou set is defined as a subset’ @fs follows.

Definition 2.6. Let (1", T") be a compactly generated pseudogroup and/Tet’”)
be a reduction.

1) An open subsel/ of 7" is called aFatou neighborhoodf the germ of any
elementofl], x € U, extends to an element éf defined on the wholé&'.

2) The union of Fatou neighborhoods is called &aou setof (/”,7") and
denoted byF'(I"). The complement of the Fatou set is called dbka setof
(I, T") and denoted by (I").

3) TheFatou sewf (I, 7T') is thel-orbit of F'(I), namely,F(I") = I'(F(I")).
TheJulia setof (I, T') is the complement of'(I") and denoted by (I).

4) I'-connected components &f(/") and J(I") are called thé=atou compo-
nentsandJulia componentgespectively.

If z € F(I'), then any Fatou neighborhoddC F(I™) which contains is called a
Fatou neighborhood af, where(I”,7") is a reduction of I', T') such thate € 7".

Remark2.7. 1) F(I') is open and -invariant..J(I") is closed and -invariant.
2) LetU be a Fatou neighborhood containedrif/™) and let

Iy = {y € I"| v is obtained from an element &f },
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thenly is a normal family by virtue of Montel's theorem. This is what we
expected. It is necessary to fix a domain of definition in order to speak of
normal families. This leads to the first condition in Definition 2.6.

3) J(I') = I'(J(I")).

We recall the notion of equivalence [13].

Definition 2.8. Let (I, 7") and(A, S) be pseudogroups. Aolomorphicétale mor-
phism®: I — A is a maximal collectior of biholomorphic diffeomorphisms of
open sets of ' to open sets of such that
)if pe®d,ye'andd € A,thenjopoy € P,
i) the sources of the elements &fform a covering off’,
i) if p,¢" € @, theny’ o=t € A If &7 = {p '} ,cq is also a holomorphic
étale morphism, thef® is called arequivalence

Remark2.9. 1) Any reduction(I”,T") is equivalent tq 1", T').

2) Suppose thatl’, T') and (A, S) are compactly generated, thénis finitely
generated in the following sense. L(@t', 7") be a reduction of /", T) let &’
be the restriction of to 7”. Then there is a finite collectiofy);} € @’ such
that{dom ¢, } is an open covering df” and any;) € ® is of the restriction
of a mapping the form o ¢); o v for somey € I"andé € A. If ¢» € @, then
~ can be chosen fromi’. We call{v,} a finite set ofgeneratorsof .

If ® be anétale morphism, thensét!(X) = |J ¢ *(X)for X C S.
$eD

Lemma 2.10. The Fatou set is well-defined on the equivalence classes of pseu-
dogroups and the Fatou-Julia decomposition has a naturality in the following sense.

1) The decompositioff’ = F(I") LI J(I") is independent of the choice of the
reduction(”,T").

2) Let®: (I, T) — (I, T) be a holomorphictale morphism, the#'(I') >
QL (F(I)).

3) If (I',T) is a Galois covering of I, T') with finite Galois groug13], then
F(I') = p~Y(F(I')), wherep: T — T is the projection.

4) Let (I,T) and (A4, S) be compactly generated pseudogroups andolet
{¢;},es be an equivalence frofl", T') to (4, S), thenp(F(I")) = F(A).

Proof. First we show 1). Le{([},,T,)} be a sequence of pseudogroups such that
T, C Tpy1, Iy = |y, T = UT, and every(I},,T,) is a reduction of I, 7). Itis
clear from the definition thak'(1,1) N T,,41 C F(I3,). To show the converse, let

® be an equivalence froffi,,; to T}, obtained by restricting an equivalence frdm

to 7,,. ® is generated by a finite collectidn/;} as above and there isfa> 0 such
that D,(9) is contained in at least one dém v;, wherex € T,,,,. Moreover, there
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isad’ > 0 independent of andx such that the image af; containsD,, ,,(d") by
the Koebe 1/4-theorem. Let € F(I},) and letU be a Fatou neighborhood of
in F(I,). We may assume by shrinkirig that~(U) is always contained in a disc
of radiusy’/2 for anyy € Iy. Lety € U and lety € (1},41),, theny,y € (13,),
for somei. Then,( = vy is defined onJ and((U) C Dy, (0"). Hencey; '¢
is defined onJ and is an extension of as an element of. CosequentlyJ is a
Fatou neighborhood fof,,,; so thatF'(I},) C F([,11) N T,.1. It follows that
F(I') =UF(I,) =T'(F(I},)).If (I'",T) is areduction, thefi” C T,, for somen
sothatl"(F(I")) = I'(F(I,)). This completes the proof of 1).

Next we show 2). Le{I”,7") be a reduction and lefy;} be a finite set of
generators oft. We may assume that there i9a> 0 such that at least ong;
is defined onD;(24,) for anyz € T Then, by the Koebe theorem, there is an
e independent ofi such thaty;(Dz)(01) D Dy, (c). Letr € T' and assume
thatr = ¢;(z) € F(I'). Let (I”,T") be a reduction of ", T") such that: € 7",
then we may assume that there is a Fatou neighborbood = in 7" such that
v(U) C D..(¢) for anyy € I;. We may also assume thaf' is defined ori/ by
shrinking U if necessary, and séf = e 1(U). Lety € IA};, wherej € U, and
let ¢, be such thatp; is defined onD5;(26,). Sincex € F(I'), ;075 0 ¢; ' is
well-defined onlU as an element of I'. Note thaty;' oy o ¢;(U) C Ds5(d)).
Fix now a finite se{7,, - - - ,3,} of generators of ” and denote bf’(k;) the subset
of I which consists of elements obtained by composing at mgsterators, then
I = Uf’(k). We may assume by decreasifigand shrinkingl that if § € 7"

then aII the generators are defined Bp(d;) C T as an element of . Suppose
inductively that |f7 € FA is the germ of an element a)T’(k) then? is defined orl/

as an element of andv( ) C Ds5(61). This holds certalnly fok = 1. Let”y € FA

be the germ of an element Ef(k + 1), theny 5; o g for somei in the germlnal
sense, wheré € f’(k) By the hypothe5|s§ is well- deflned onl/ as an element
of I' andf((?) C D5;(81). Then by the choice ofy, 7; o C is well-defined orlJ.
Moreover, from what we have shown first,o ¢ C Ds5(61). ThusU is a Fatou
neighborhood of:. This completes the proof of 2). 3) can be shown by slightly
modifying the proof of 2). 4) follows from 2) at once. O

Lemma 2.10 justifies the following definition. L&t be a complex codimension-
one transversally holomorphic foliation of a closed manifdfdand let(I",7") be
the holonomy pseudogroup 8f. We may assume thdtis embedded /.

Definition 2.11. The Fatou setof F is the saturation of'(I") ¢ 7" C M, and
denoted byF(F). TheJulia setis the complement of'(F) and denoted by (F).
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The connceted components of the Fatou set and the Julia set are calleatdhe
componentsind theJulia componentgespectively.

Itis clear that/(F) is the saturation of (I").
The following is an immediate consequence of Lemma 2.10.

Corollary 2.12. Let M and N be closed manifolds and I1€t be a complex codimen-
sion-one transversally holomorphic foliation 8f. Let f: N — M be a smooth
mapping transversal to- and letG = f*F be the induced foliation oiV, then
F(G) D f~Y(F(F)). If fis a (regular) finite covering, theR' (G) = f~!(F(F)).

It is easy to see thallzgs(G) O f'(Faas(F)) but the equality for coverings
does not hold in general (Example 4.3).

The existence of reductions is essential for the definition of the Fatou-Julia de-
composition as follows.

Example 2.13.Let D(r) be the disc inC of radiusr and letF be the foliation of
M = (—1,1)x D(1) with leaves(—1, 1) x {z}. If M itself is regarded as a foliation
atlas, then the Fatou set should be the whidleOn the other hand, léte Z and
define a foliation atlas as follows. For- 0, Iet{Vj@ }j=1,2,.. be an open covering of
D(1) by discs of radiug~". LetW,” = (=1 +1/27"!, ~1+1/27"1) x V) and
7\ = {~1+1/27}xV”. Giving an order td W "}, let {W "} = {W{, W3, ---}
and{T\"} = {17, T3, - }. Settherl/, = (~1/2,1/2) x D(1), T;, = {0} x D(1),
andU; = W|'¢|’ T, = T|'¢| for ¢ £ 0. Simply applying the definition without taking
reduction, the Fatou set should be empty.

In what follows, we usually fix a reductiofi™, 7") and work on it.
We will show some fundamental properties of the Fatou-Julia decomposition.

Lemma 2.14. Suppose thatl’, T') is C°-Hermitian, namely, there is a continuous
Hermitian metric oril” which is invariant undet”, thenT = F(I").

Proof. The proof is an application of arguments found in [9]. Ldie the invariant
metric and lety be the Euclidean metric ofi C C, then there is a constant >

1 such thatC—'g < h < Cg on T’ (see Definition 3.6 for the notation). Let
{71, -+ ,7-} be a set of generators @f'. Then, there is a positive real number
0 > 0 such that any germ of; at any pointr € 7" extends to an element df
defined onD,(5). Denote byl (k) the subset of " which consists of elements
which can be realized by composing at mbgfenerators, theh” = | J (k). Let

z € T"andletU = D, (;%), and assume that germs of element#'gk) atu € U
extend to an element df defined onU. The assumption certainly holdskf= 1.
Let v be the germ of an element éf(k + 1) atu € U, theny = ~; o ¢ for some
¢ € I''(k). By the induction hypothesig,extends to an element &f defined orlJ.
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Then,y(U) C D¢ (). On the other handy; is defined onD(,(d) by the choice
of §. Therefore;y extends to an element &f defined onJ. This implies that/ is
a Fatou neighborhood of O

The above lemma can be slightly strengthen. See Remark 7.9.

Definition 2.15. Let x € 7" and assume that(x) = = for somey € I',.. Then, the
fixed pointz is called
1) hyperbolicif ||, # 1,
2) parabolicif (7.)* = 1 for somek € Z buty°™ # id for anym € Z, where
~°™ denotes then-th iteration ofy (in a germinal sense),
3) irrationally indifferentif |4/| = 1 but(+})* # 1 for anyk € Z.

Remark2.16 Itis easy to see that none of the above cases is exclusive. For instance,
let T be a subgroup oPSL(2;C) generated by, g, andgs, whereg,(z) = 2z,

92(2) = z+ 1 andgs(z) = e*"V=192, where§ € R\ Q. ThenI acts onCP' =

C U {o0} andco is hyperbolic, parabolic and irrationally indifferent.

The Julia set has the following fundamental property as usual.

Lemma 2.17.Letx € T. If there is an element € I, which hasr as a parabolic
or hyperbolic fixed point, them € J(I").

It is difficult to tell if a given point belongs to the Fatou set or the Julia set in
general. However, we have the following lemma which is significant in the sequel.

Lemma 2.18. Letz € F'(I") and let{~;} be a family of elements @f’ defined on
a neighborhood’ of x. Assume thafv;(x)} converges to a poing € 7' C 7.

1) If {|~/|,} admits a subsequence which is bounded away fiptheny be-
longs toF'(I"). Moreover,{|v/|,} is bounded and bounded away from

2) If {|~;|,} admits a subsequence which converges then{|+/|, } converges
to 0 andy belongs ta/(1").

Proof. We may assume thaf is a ball centered at and of radius- > 0. Then,
{l7|,} is bounded from above becaubg is a normal family.

First let{(;} be a subsequence éf;} such that{\g}x} is bounded away from
0. Sincel'y is a normal family, we may assume after slightly shrinkinghat{¢;}
uniformly converges to a functiopon V. As {}Cj’.|x} is bounded away from, ~ is
not a constant function so that!”) is an open set. It follows that(1") containsy
for sufficiently largei. Sincel’ C F(I"), y belongs taF'(I).

Second, lef(;} be a subsequence éf;} such that{\g"]’.\z} converges t@). As
(I,T) is equivalent to I”,7"), we may assume thate 7". If y € F(I"”), then
there is a Fatou neighborhodd of y. We may assume thdf is an open ball
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centered ay. By passing to a subsequence, we may also assume thg{aall
are contained irU. In particular,U is also a Fatou neighborhood of After
slightly shrinkingU, we may assume th4t;} uniformly converges to a constant
function becausd|¢;| } converges td). Then, the image;(U) is contained in
U for sufficiently largej. Hence(; has a hyperbolic fixed point ify. This is a
contradiction becaugé C F(I"). This completes the proof. O

Remark2.19

1) The more can be said aboytV’) in 1). Namely, let) be a positive number
such that~;|, >, then by the Koebe/4-theorem,y;(V') O D, (d/4).

2) It is possible that: € F(I") admits a family{~;} which contains a subse-
quence{¢;} with (/(z) — 0 but{~/(z)} does not converge t0if {v;(z)}
does not converge to a single point. See Example 3.11.

3. CONSTRUCTION OF AN INVARIANT METRIC OF CLASSC/®

A metric of the formgdz ® dz is said to be of clasé?lﬂip if g is locally Lipschitz
continuous. We first show the following.

Proposition 3.1. (I'|pry, F'(I")) is CHP-Hermitian, namely, there is a locally Lip-

loc

schitz continuous metrig” on F'(I") invariant underl’| p(r.

Remark3.2 It is known that invariant metrics of clags” exist on the GGS-Fatou
sets. We will later show that there are invariant metric of ctaésslso on the Fatou
sets (Theorem 4.14). It will be also shown that the metric in Proposition 3.1 is of
classC* along orbit closures (Corollary 4.9).

Proposition 3.1 will be shown in steps. Note that it suffices to construct a
invariant metric on?'(I").

Since(I',T) is compactly generated, we may assume hat [],_, 7;, where
I is a finite set and’; is an open disc irfC. We may furthermore assume that the
closuresT; of T; are mutually disjoint. Let/”,T") be a reduction, then we may
also assume that each compon&hof 7" is a slightly small open disc such that
T CT,.

Let hg be a metric orl” defined as follows. By Lemma 2.10, we may assume
that each componeft of 7" is a disc inC. Let 77" be the holomorphic tangent
bundle ofT”. Letn,, 0 < € < 1, be a smooth positive function dsuch that

1) n(t) =10on(—o0,1 — €,
2) n is strictly decreasing ofi — e, 1],
3) n(t) =0on]l,+o0).

Definition 3.3. Let¢; € C andr; > 0 be the center and the radiusBf, respec-
tively. Seth;(z;) = n.(|z;i — ¢;| /r;) and define a Hermitian metrig, on T'T" by
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h0|Tif = hi(z;)%dz; ® dz;, where| - | denotes the absolute value. The set of functions
{h;} is denoted by: and considered as a function dh

In what follows,~(x) is also denoted byz, wherey € I"andx € T.
Definition 3.4. Forz € T/, setg,;(xz) = sup h(yz)|y'|,. The set of functiongg; }
vEL;
is denoted by and considered as a function dh

Remark3.5. The meaning of is as follows. Let: € T/ and set|v||* = g;(z) ||v]|,
forv € T, 7", where||v|| . denotes the Euclidean normeomultiplied by A (z), then

lvlly = sup [lvll,,
veL,

We recall the notion of equivalence of metrics:

Definition 3.6. Let h! = {(h})%dz; ® dz;} andh? = {(h?)?dz; ® dz;} be Hermitian
metrics onI'T”. If there exists a constant > 0 such that,; < Ch? for anyi, then
we write h' < Ch2. If there exists a constagt > 1 such tha%h1 < h? < Ch!',

thenh! andh? are said to be equivalent.

The following properties are clear.

Lemma3.7. 1) gi(x) > hi(x) > 0.
2) If v € I7, theng(yz) ||, = g().
3) Lethy = {h2dz; ® dz;} be a Hermitian metric o'T”. Assume that hy <
EO < Chy and letg = {g;} be the set of functions in Definition 3.4 obtained
by replacingh, with g, thentg; < g; < Cy;.

Lemma 3.8. g is lower semicontinuous df'.

Proof. Let z € T". First assume thaj(x) is finite, and lety € I, be such that
g(z) — e < h(yx)|y],. If y € T"is sufficiently close tar, thenvy is defined
andh(vy) [v'[, > h(vz) |7'|, — € by the continuity of the function — h(vz)7..
It follows that g(z) — 2¢ < h(vy) |¥'], < g(y). If g(z) = +oo, then there is
an elementy € I, such thatM < h(yx)|y'|, for any real number)/. Then
M — e < h(vy)|y'], so thaty(y) is also infinite. O

The following Lemma is the essential part of Proposition 3.1.
Lemma 3.9. g is locally Lipschitz continuous oR (I™).

Proof. Letx € F(I"), theng(z) is finite by 1) of Lemma 2.18. We may furthermore

assume thab/, = sup |y/|, is also finite by taking reduction again. Assume that
yel’

D,(26) is a Fatou neighborhood of and thatz = 0 after a parallel translation.
Recall now the Koebe distortion theorem [1]: fif Dy(1) — C is a univalent
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function such thaff(0) = 0 and f'(0) = 1, then —" 1+\ 7 < 1f(2)] < = ‘ |)2 and

Gros < |F(2)] € G5 Lety be a univalent function defined dh = D,(5).
5.7 (0(02) — p(x)), we have

Applying the Koebe theorem to the functien—

'], [yl '], 1yl
A+ e =P A= g e
1— 5yl el lw
L+ 51D = el = (=5 lyD?*
wherely| = [y — 0] = |y — x|. It follows from the second inequality thatif € I’
and|y| < 4/2, then|y'[, < 12M,. We now show the following
Claim. There is are; > 0 andd, such thaty € I'; induces an element @, defined
on D, (24,) if the conditionsly| < d; andh(vy) |'], > g(y) — € are satisfied.
Lete, be a positive real number less th%f\2 then there is a positive real number
d3 such thay(y) —e; > 9 ) for ly| < d3 by the lower semicontinuity af. Assume
thath(vy) [v|, > g(y) — e, thenh(yy) > L > 0. It follows that there is a

24 M,
compact subsek” of 7" such thati(yy) |/ | > g(y) — €; holds only ifyy € K.

Lete, > 0 be a real number such thB(e;) C T". If |y| < min {g, 7 } then

di%g; < AM, ly| < %. Setd, = fmin{},ds, 552}, theny e I induces an
element ofl’; defined onD,(24) if |y| < 02 andh(vy) |v'[, > g(y) — 1. This
completes the proof of Claim.

Let e3 > 0 be any real number less thap and assume thdy| < J,. Let
v € I}, such thati(yy) [v'], > g(y) — 3. The above claim shows thate I if
z € D;(24,). Itfollows thath(vz) [7/[, < g(z). Hencey(y) —g(z) < h(vy) V'], —
h(vz) |7'|, + €3. Moreover,y is well-defined onD.(§) C D,(26) as an element of
I" so that the Koebe estimate is valid far

Noticing that eachh; is Lipschitz continuous, lef, be the maximum of the
Lipschitz constants. Thefh(~yy) — h(vz)| < Lp|yy —vz| < 120, M, |y — z|.
By taking d, smaller if necessary, we may assume that 3@ + ‘yg—f'g < 4if
y,z € D,(d2). We may also assume thét < 1, then it follows from the Koebe
distortion theorem that

" 1+ 5y — 2|

/ 1 S 1 3

7l (1—=35ly—=0)

Hencely'|, — ||, < 12M, - 32|y — z|. Therefore, ify, 2 € D,(d,) then

—1<32)y —z|.

9() —9(2) —es < h(yy) (Y], = 1V'[.) + (h(vy) — h(v2)) [V'].
< 32-12M, |y — 2| + 120, M, |y — 2| 12M,
= 48 M, (8 + 3Ly M,) |y — |,
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where the fact that < 1 is used. Since this estimate is independent of the choice
of 7, €5 can be arbitrarily small. Henggy) — g(z) < 48M,.(8 + 3L, M,) |y — z|.

Letnowy € I be suchthag(z)—e; < h(vz) [y, theny € I andh(yy) [1'], <
g(y). Hence

9(2) = g(y) — ez < h(y2) V'], — h(vy) 1],
= (h(vz) = h(vy)) V'] + RO (Y], = 17'1,)

/
< 144L, M2 |y — 2| + 12M, (1 — }7,:9) :
Yl

We may assume thatt+ 3152 4 L=2% < 8 then again by the Koebe distortion

62
theorem,l — m” < 32|y — z|. This estimate is also independent of the choice of

v. Hencey(z) — g(y) < 48M,(8 + 3Ly M,) |y — z|. This completes the proof.[]

The proof of Proposition 3.1 is completed by definiffgby ¢" |1 = g7dz ® dz.
Indeed, the non-degeneracy ahtlinvariance ofg” follow from the properties 1)
and 2) in Lemma 3.7. Moreover, 1) implies thgt > hy. The property 3) in
Lemma 3.7 implies that §“ is constructed by a metricsuch thati iy < i < Chy,
then%gL < gt < Cgr.

Remark3.1Q || - ||* can be either finite or infinite od. Indeed, it is clear that
| - ||* is infinite at hyperbolic fixed points whilg - ||* is finite at parabolic and
irrationally indifferent fixed points which are not hyperbolic.

The metric obtained in this way can be of cl@gsbut in general not of class!.
For simplicity, we adopt the following function asin Definition 3.3. Let

1, t<0,
no(t) = {

eVt t>0.

Letn (t) = /_t No(8)10(1—s)ds, ma(t) = m(t)/m(2) andn(t) = na((1+e—t)/¢).

o0

Example 3.11.Let > be the inhomogeneous coordinates @P' = C U {co}.
Let A\, x andv are non-zero complex numbers such thdt= 1, || = 2 and
1 < |v| < 2. Assume thatog |v| /log2 ¢ Q. Define automorphisms,, wherea
is one of)\, u andv, of CP! by f,(z) = az.

First let N; be a closed manifold such that there exists a surjective homomor-
phisme; from 7, (N;) to Z* = (f,, f,), for example letN; = T2. Let (M, ;)
be the suspension ¢€C P!, ;) and let(I;, T') be the pseudogroup defined as fol-
lows. LetT, = T} = DO(\/§) andT = T, U T,. Let I} be the pseudogroup
generated byy, p1, Y0, 71 andyio, Wherep: T; — T; is given byp;(z) = Az and
vi: Ty — T; is given by, (z) = z/u fori = 0,1, and lety;, be the mapping from
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{2|1/vV2 < |z| < V2}to{z|1/V2 < |z| < v/2} defined byy;o(2) = 1/z. Then,
the holonomy pseudogroup & is equivalent tq 1, 7).

The Julia set is given by (1)) = Jy U Jw, WhereJ, = {0} C Ty andJ,, =
{0} c Ty. Interms of Fy, J(F1) = Lo U L, WhereL, and L, are the leaves
correspond t® andoo, respectively. Let, be the metric off” as in Definition 3.3.
Let a be the unique positive real number greater thaoch that)(«) = 1/a?, then
the metricg” = {¢?d> ® dz} is given by

on. s < 12 < 5
2" 1 1 .
90(2) = gl(z) — |2"z\277 (‘an|> y ong < ’Z’ < o+,
2"n([2"z]) L <] <a
|2721_Z\2’ o <z < 5

It is locally Lipschitz and piecewise of clag#’, but not of clas<”?.
Second, letV, be a closed manifold such that there exists a surjective homomor-

phismey from 71 (Ny) t0 Z3 = (f», f., ), for example letVy, = T3, Let (Ma, F»)

be the suspension ¢C P!, v,), and let(I:,T) be the pseudogroup generated by

Pos P15 Yos Y1, Y10 @NA¢;, i = 0, 1, where(;(z) = z/u. The holonomy pseudogroup

of (M, F,) is equivalent tq I, T') and the metrig)t = {¢?dz ® dz} is given by

go(2) = q1(2) = %, wheres = max{b € R | the graphs of)(t) andb/t have an intersectign
Note that the metri(i—;dz ® dz is also invariant undef’. Moreover, ifg is a

positive function which satisfieg(2t) = ¢(t)/2, theng(|z])*d> ® dz is invariant

under/7. Hence it is quite easy to find an invariant metric of class

4. COMPARISON WITH THE FATOU-JULIA DECOMPOSITION BY
GHYS, GOMEZ-MONT AND SALUDES,
STRUCTURE OFFATOU COMPONENTS

The Fatou-Julia decomposition for foliations is firstly introduced and studied by
Ghys, Gomez-Mont and Saludes [10]. The GGS Fatou-Julia is originally formu-
lated for foliations but it is also defined for compactly generated pseudogroups [14].

Definition 4.1 ([10]). Let C'(I") be the set of continuous-invariant(1, 0)-vector
fields X on T such that its distributional derivativ&X is locally in L? anddX is
essentially bounded. THeatou set(in the sense of Ghys, Gomez-Mont, Saludes)
Feaas(IN) is by definition given byfqs (') = {x € T'| X (z) # 0 for someX € C(I')}.

The Fatou set and the Julia set in this sense are called the GGS-Fatou set and the
GGS-Julia set, and denoted By.s and.J5¢s, respectively. The most of results in
[10] remain valid [14]. We make use of some properties of GGS-Fatou sets without
proof. We refer to [10] and [14] for the detailed accounts.

These Fatou-Julia decompositions are related as follows.
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Proposition 4.2. F(I") D Fgas(I).

Proof. Let x € Fggs(I), then there is a vector field € C(I") with X (x) # 0.
We may assume that' € C(I"). By integratingX, we can find al-parameter
family o: 7" x D — T of homeomorphisms which g, I")-equivariant, where
D is a small disc inC. ChoosingD small, we may assume that - ,D) is a
homeomorphism int@’ and moreover that(z, D) C 7". By repeating an argument
by Ghys [9] (cf. Lemma 2.14), we see thatis a Fatou neighborhood of O

The inclusionst (I") D Faas(I) andJ(I") C Jaas(I7) can be strict in general.
In fact, the naturality as in Lemma 2.10 fails for the GGS-decomposition.

Example 4.3. Considerl™? = C/Z? and letF be the foliation of ofS* x 7 with
leaves{S! x {z}}.cr2. Then the GGS-Fatou set is the whole manifold. ket

T? — T? be an automorphism induced by— —z. ThenS! x {2} c S* x, T2,

z = 0,1/2,v/=1/2,(1 + v/—1)/2 are the GGS-Julia components. On the other
hand,J(F) = @.

The Fatou components also admit a classification analogous to that of GGS-Fatou
components. The rest of this section is mostly devoted to it.

A pseudogroug!’, T') is said to becompletéaf for any =,y € T there are neigh-
borhoodsV, of = andV, of y such that every germ € I, 2’ € V, with v2’ € V,
extends to an element éf defined onV/,.

Lemma 4.4([24, Proposition 1.3.1])(I"|p(ry, F'(I")) is complete.

Proof. Letz, y € T and lety, andy, be elements of" such that the both = ~, 'z
andw = ~y,y belong toT”. LetV, be a Fatou neighborhood efwhich is contained
in dom g, thenly, C I"is a normal family. Hence we may assume that the image
of V, by any element of . is contained in an open disc of given radius- 0. Let
 be a positive real number such tha,(29) is contained in the range of and set
Vw = Dy(9), then any germy € I}, with v(w') € V,, extends to the whol&, and
the imagey(V,) is contained inlom ~; . Now setV, = o(V.), V,, = v; ' (V.. Let

¢ € Iy be such that(z) € V,, wherez’ € V,. The elementy = (v, ' extends
to the wholeV, as an element of, and the image/(V.) is contained inlom ~; *.
Hencev; 'y, is well-defined as an element &f which is defined on the whole
V. O

It is clear that(I”| g+, F((I")) is also complete.
Letz € T' and letD be an open disc centered:asuch that the closur® is
contained inV,.
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Definition 4.5. Setl';, = {y € I'"|v(D) N D # @&}, and equig '}, with the compact-
open topology. Letz, be the closure of }, in the space of holomorphic maps
defined onD.

Note thatGp consists of biholomorphic diffeomorphism by Lemma 2.18. The
local groupG p and the closure of’-orbits are related as follows.

Lemma 4.6.If x € D, thenGpx = I'},z.

Proof. It is clear thatGpx C Iz. Lety € I« and let{~,} C I}, be such
that{~,z} converges tg,. There is a subsequence {f,,} which converges to an
elementy of G'p uniformly on D becausé C V. Itis easy to see thgt= vz. [

Assume by shrinking) thatG px is connected, then by applying classical theo-
rems of Cartan, we have the following

Theorem 4.7.Let (Gp), be the identity component 6fp, then(Gp), is a local
Lie transformation group of (real) dimension at m@stLet G, be the stabilizer of
zin Gp and set(G,)o = G, N (Gp)o, then(Gp)o\Gp = (G2)o\Ge-

Proof. Elements of/, preserves the metrig® constructed in Section 3. Singé

is locally Lipschitz continuous, elements 6f, are uniquely determined by their
1-jets. Hence(Gp)o is a quasi-continuous group of analytic transformations (un
groupe quasi-continue de transformations analytique) in the sense of Cartan [6].
By Théoeme 11 of [6],(Gp), is a local Lie transformation group. Although the
assumption is slightly different, the argument of the proof oédlme 12 of [6] is

still valid so thatdimg(Gp)o is at most3. Letg € Gp, then there is an element

h € (Gp)o such thatyr = hx becaus&spx is connected. Hence the natural map
(G.)o\Gz — (Gp)o\Gp is bijective. O

Remark4.8. 1) G, is compact since elements 6f, are determined by their
1-jets. In particular(G, )o\G. is a finite group.
2) Gp is not necessarily connected. For exampleflahdg be automorphisms
of CP! given by f([z : w]) = [az : w] andg([z : w]) = [w : z], where
a = eV g c R\ Q. LetI be the group generated kfyandg. If we
take a suspension of then,Gp = R x (Z/27Z).

The following is immediate.

Corollary 4.9.

1) The closures of -orbits in the Fatou set aré“-submanifolds of’(1").
2) The metricg” constructed in Section 3 is of cla€¥ along orbit closures.
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Note thatG, depends on the choice @ as in Remark 4.8 but the dimension
does not. Moreover, the natural homomorphism fi@Gg) to Gp,, whereD, C Dy,
is injective by the uniqueness of the solution of ordinary differential equations.
The Fatou components are named after [10].

Definition 4.10. A Fatou component’ is called
1) wandering componetit dim Gp = 0,
2) semi-wandering componeifitdim Gp = 1,
3) dense componerfftdim Gp > 2.

These components admit description analogous to that of GGS-Fatou compo-
nents. LetEr be the principalS*-bundle associated to the frame bundle o¥er
Er can be considered as the unit tangent bundle évirthere are invariant Her-
mitian metrics. Note thaf’'|r acts onEr so thatGp also locally acts orEr. We
denotel’|r by I'x. Let (I'z, F) be the pseudogroup generqied]ﬁ;yandGD. Let

(FF,ﬁ) be the universal covering dff», F) [13] and let(I, F) be the lift of

Theorem 4.11.Let F' be a wandering component, then the orbit Spag& F' is a
V-manifold (an orbifold).

Proof. We work on a reductioi/” |, 7") but still denote it by(I'r, T'). First note
that = is complete by Lemma 4.4. Henég:\ F' is possibly non-Hausdorff mani-
fold. Assume thaf »\ F' is non-Hausdorff, then there are a sequefigé in F' and
a sequencé~,} of elements ofl” such thatlim x; = =z € F, limy;, = y € F,
wherey; = ~;z, but there is no elementof f;gouch thatyr = yfT_oeotD be a Fatou
neighborhood of and letD’ be a Fatou neighborhood gfas in Theorem 4.7. We
may assume that; € D for all  and thaty; € D’ for all j, then~, is defined on
D so thatz; = y,2; makes a sense. L&t = ;7 ', theng; is defined onD’ and
&z = y;.- We may assume that the sequefigé converges to a mappirggin Gp..
As dim(Gp/) = 0, we may furthermore assume tigat= ¢ for all 7. It follows that
y = &y (x) and itis a contradiction. O

LetG = {z—te+2|t,z € C, |t| =1} C Aff(C) and letG) = {z — \"z +
bln € Z, b € R} C Aff(R). G containsS' = {(¢,0)||t| =1} as a closed
subgroup.

Theorem 4.12.Let F' be a semi-wandering component, then the closure of all but
finite number of "-orbits are real codimension-one manifold properly embedded in
F'. The rest of the orbits are proper. LEt C F be the union of proper orbits.

1) If P = @, then([', F) is equivalent to a pseudogroup generated by a sub-
group H' of a groupH, whereH is eitherC or Aff(R) and H acts on a strip
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Sap={2€Cla<Imz < f}, where—co < a < < 4o0. The closure
of I"-orbits in £ are finite coverings of -orbits in F'. Let

Fy = {x € F|the closure of 'z is simply coverel, and
F, = {z € F|the closure of 'z is doubly covere}l.

ThenF = Fy U Fi, and Fy is a GGS-semi-wandering component ands

contained in a GGS-ergodic Julia component. We have the following cases.

2a) (H,S) = (C,C), H =R x y=1ZandTp\F = S,

2b) (H,S) = (C, Sap), H = RandTx\F = (a, 3).

2¢) (H,S) = (Aff(R),H), H = G, for some\ > 0 andT\F = S,
whereH denotes the upper half space.

2) If P # @, then(I',F'\ P)is asin 2b) ano(ﬁ;, E) is equivalent to a pseu-
dogroup generated by a subgroupy of the groupG suchNthatF = Sh
Let (T, Er) be the universal covering 4T, Er), thenT\Ep is either
{z € C||z| < a}, where0 < a < 400, or CP'. P consists of at most two
I'-orbits.

Proof. Letx € F and letD be a small neighborhood ef Let X be the vector field
generated by théGp)g-action. Asy/—1X is also invariant undeiGp )o-action, we
can find a holomorphic vector field on D such that Re Z is tangent to thé&- -
orbits by repeating the argument in [10, Lemma 5.2]. Moreovel) iff D’ # &,
then thus constructed vector fieldsand Z’ coincide up to multiplication of a real
constant. IfZ has no singularities for an, thenP = &. Since(f}, ]5) is simply
connected, the argument in [10] can be applied and we have the classification as in
the statement. Noticing that th&,-action induces a-dimensional foliation, the
covering degree of closures btr, z € F', by the closures of -orbits in E are at
most2. Note thatF; is closed inf’ so thatFy is open. The action offp naturally
induces a non-trivial invariant vector field dry, on the other hand, such a vector
field cannot exist od; but an invariant line field is induced.

Assume now tha¥ has singularities for somB C F, thenP # @. If v € F'is
not fixed by the(Gp)y-action, thenZ is non-singular at: by construction. Hence
the singularities ofZ are fixed by thg Gp)o-action. Letzx be a fixed point, then
(Gp)o = (G)o = S' and there is a closed orhit of 2Re Z. Let U be the con-
nected component df \ C' which containsg:, then the7.-action preserves so that
there are coordinates éhsuch that théG . )y-action is given by(t, =) — tz, where
x corresponds te = 0. Noticing that the standard Hermitian metric Oris invari-
ant undeiGz,, we identify F'r|; with the unit tangent bundle ovér with respect to
the standard Hermitian metric. Theffip |y is naturally identified withs! x U C G,
whereG is considered as' x C by forgetting the group structure. We denote by
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oy this identification. TheS!-action obtained by lifting théG, )-action is given
by the multiplication inG. Since the local holomorphic vector fields are unique
up to multiplication of real numbers, we have the case 2bfopP. Letx be a
non-fixed point and choose a neighborhdoof = such that the local holomorphic
vector fieldZ is given byZ = % andz corresponds te = 0. By using the standard
Hermitian metric onV/, Er|, can be identified with the unit tangent bundlelof
and also withS! x V' by assuming thak' is trivial on V. Definepy : S1xV — G

by oy (t,z) = (te?™V-1Rez ¢21V=12) then we may assume that is a diffeomor-
phism. Sincepy (t, z+0) = (te?™V 1 ez+0) 2mV=1G+0)) — (e27V=10 ). o (t, 2),

the lifted localG p-action onEr|y is also given by the local action ¢f! C G. It

is easy to see that each transition function of these trivializations is given by mul-
tiplication of an element of! C G. Finally, the mapping front~ to C defined by
(t,z) — (t7'z) induces a mapping frodTF\E? to C. The imaginary parts of the
local holomorphic vector fields generating tig-orbits induce the radial vector
field 2 Re z% onC, where0 € P. If F_F\E} = CP', thenP consists of at most
two orbits, otherwise’ consists of a single orbit. O

Theorem 4.13.Let F' be a dense component, then

1) the I"-orbits in £ are also dense andl», Er) is a Lie pseudogroup of
dimensiorB, namely,(I'», Er) is modeled on &-dimensional Lie groupF
is contained in a recurrent GGS-Julia component.

2) (I'r, F) is a Lie pseudogroup of dimensi@nThe closure of -orbits in Er
are finite coverings of” and the covering degree is constant. If the covering
is trivial, then F' is a wandering GGS-Fatou component. If the covering is
two fold, thenF' is contained in an ergodic GGS-Julia component. Other-
wise, F' is contained in a recurrent GGS-Julia component.

Proof. First assume thatim G, = 3, then the action of7, on Er is locally free
because elements 6fp are determined by their-jets. HenceZp is always con-
nected and the germs 6f, at any points inF’ are isomorphic. LetGr be the
simply connected Lie group locally isomorphic@,, then there are local submer-
sions fromEr to Gr and(['r, EF) is a Lie pseudogroup modeled 6h-. Since the
G p-orbits are locally dense iy, there are no non-trivial invariant vector fields
nor invariant line fields orf’. HenceF' is contained in a recurrent GGS-Julia com-
ponent. Assume thatim Gp = 2, then theGG p-orbits in £ are transversal to the
fibers and5 p-orbits in F' are locally dense. It follows that for any< F, there is a
neighborhood’ of x such thatify € G, satisfieg(z) € U theng is determined by
g(z). Consequently(: p-action onF’ is locally free and the germ @f , at any point

x € F'is always isomorphic. Hence there is a Lie gra@ip such that I'», F') is a
Lie pseudogroup modeled d@rx. The group(G.)o\G. is also isomorphic for all
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x. Moreover, thel-action preserves the orientation Bfso that all/"-orbits in £
are somek-fold covering toF'. If k£ = 1, thenitis clear that there is a non-triviat
invariant vector field orf. If k = 2, then the normal directions @ p-orbits in Ex
projects down to d-invariant line filed onf’. Otherwise there are no non-trivial
invariant vector fields nor invariant line fields. O

The following is now clear.

Theorem 4.14.There is al -invariant complete metric of clags“ on each Fatou
component. The metric can be constructed in the natural conformal class deter-
mined by the transversal holomorphic structure.

The above results are expressed in terms of pseudogroups of isometries as fol-
lows. See [13] and [22] for definitions.

Corollary 4.15. Letg be the sheaf of Lie algebras ovEwith stalkg, being the Lie
algebra ofGp. The pseudogroup generated by and G, is the closure(lr, F)
of (I'r, F') and it is a Lie pseudogroup with Killing vector fielgs

The following is a direct consequence of Lemma 2.14.
Corollary 4.16. If (I',T) is C°-Hermitian, thenI", T') is C*-Hermitian.

In the simplest case whefle= F(I"), the I"-orbits are described as follows. See
also [17, Section 5].

Theorem 4.17.Let (I, T) be a compactly generated pseudogroup. Assume that
I'\T is connected and’” = F(I'), then(I,T) is C*-Hermitian. LetE = Er be

the orthonormal frame bundle @f and let 75 the be the foliation formed by orbits
of I" on E. Then, we have the following possibilities:

1) The leaves af ; are dense. The wholEforms a single recurrent GGS-Julia
component. In particular, all’-orbits on7" are dense and there are neither
invariant Beltrami coefficients nor non-trivial invariant continuous sections
of T'T.

2) The closures of the leaves &f; form a real codimension-one foliatiafi;
of E. All I'-orbits onT are also dense. The whaleis either a single dense
GGS-Fatou component or a single ergodic GGS-Julia component according
to the covering degree of the leavesff to 7', which is independent of the
leaves and is either or 2.

3) 3a) The closures of -orbits form a real codimension-one regular foliation.

T is the union of semi-wandering GGS-Fatou components and ergodic
GGS-Julia components.
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3b) The closures of -orbits form a singular foliation in the sense of Molino
[17]. The number of singular orbits is at most two. The complement of
the singular orbits is the union of semi-wandering GGS-Fatou compo-
nents and ergodic GGS-Julia components, and the singular orbits is the
union of recurrent GGS-Julia components.

4) All I'-orbits are discrete. The union d@f-orbits without holonomy is dense
and is a single wandering GGS-Fatou component. The complement is the
union of recurrent Julia components. Moreover, there iS-mvariant mero-
morphic function or{".

The union of ergodic GGS-Julia components is open in the GGS-Julia set.

Proof. The classification follows from Theorems 4.11, 4.12 and 4.13. The first
three cases correspond the cases whenesp = 3, dimGp =2 ordimGp = 1,
respectively. Assume thdim G, = 0. Since the Lebesgue measure of the GGS-
Julia set should be zero, only recurrent components are possible. The claim on the
meromorphic function is due to Brunella-Nicolau [5] and Haefliger [14]. O

5. PROPERTIES OF THEJULIA SET AND CONFORMAL MEASURES

Throughout this section, we assume thiaf") # &. An important consequence
of a theorem of Brunella-Nicolau [5] and Haefliger [14] is as follows.

Proposition 5.1. J(I") contains at most finite number of discréteorbits.

Proof. If there are infinite number of discreféorbits, then all"-orbits are discrete
andJ(I') = @. O

Remarks.2 The number of discreté-orbits are essentially bounded by the dimen-
sion of a certain cohomological space [14].

The Julia set can be characterized as follows (see also Remark 5.9).

Theorem 5.3. Letz € T, thenz € J(I") if and only if there is a sequende,, }
inT"and~, € I, such thathm z, = z and hm V|, = +oo. Here the case
wherez, = z forall nis allowed

Proof. Let z € 7" and assume that there is a neighborhbdodf = in 77 and a real
number) > 2 with the property thaty’'|,, < M if v € I" is obtained by extending
the germ of an element df,, whereu € U andw € U Ndom . We will show that

z € F(I'") by modifying Ghys’ lemma in [9]. First, there is a finite set of generators
{71, -+ ,vm} Of I becausd is compactly generated. Lét' (k) be the subset of
I which consists of elements éf which can be realized by composing at mbst
generators, theh” = | J I''(k). Letd, > 0 be such that the germ of any generatpr

k
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atapointw € T" is extended td,,(dy) as an element of and set/” = D, (6o/M).
We may assume that C U by shrinkingV' if necessary. Lety € I, where
u € V, then~ is actually the germ of an element 6f(k) for somek. If & = 1,
then~ can be defined o as an element of becausé” C D,(dy). Moreover,
V'], < Mif weV because” C U. Hencey(V') C D.)(do). Assume that can
be defined o as an element af if ~ is the germ of an element @ (k), and let
~ be the germ of an element 6f(k + 1). Then, we can decomposesy = ;o (,
where( € I''(k). By the assumptiory is defined onl” as an element of" and
C(V) C Dewy(do) because(’|,, < M if w € V. Thereforey is also defined o’
as an element af’, namely,V is a Fatou neighborhood which contains

It follows that there are sequencés,}, {u,} in 7" which converge ta and a
sequencgr, } such thaty, € I, and|y,|, tends to the infinity, where, belongs
to the domain ofy,, as an element of . By passing to a subsequence, we may
assume thaf~, (z,)} converges ta, € T C T. Choose an elementof I" such
that(z) € T’, then the pai{z,}, {y o 7.}) makes a sense for largeand is a
desired one.

On the contrary assume that F'(I"), then there is a Fatou neighborhood, say
U,ofz. If y € I, w € U, then|y'|, is bounded becaudg; is a normal family. O

Remarks.4. One cannot tell in general if the limit point z,) belongs to the Fatou
set or not.

Some notions for Kleinian groups and the Julia sets of mapping iterations will be
useful. We begin with an analogy of the limit sets for Kleinian groups.

Definition 5.5. Let Ay(I") andA(I") be as follows. First,
Ao(I) =4z € J(I")|3x € F(I'), 3.} C I, such thaty,z — =z},

and letA(I") = Ao(I"). We callA(I") thelimit setof I".
It is evident that\y(I") andA(I") are -invariant sets.

Remark5.6. We do not know any example ¢f",7") such thaOF'(I") # A(I") \
Int J(I"), wherelnt J(I") denotes the interior of (1").

The limit set of /" and the limit sets of Kleinian groups have a common property
as follows.

Lemma 5.7. Suppose that,, x» belong to the same Fatou component, thene; N
OF(I") = I,,xe NOF(I).

Proof. By lemma 2.18, there is an open neighborhdoaf x; such thatl,,z; N
OF(I') = T,yNoF(I') if y € V. The claim follows since:;; andz, belong to the
same Fatou component. O
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The following definition can be found in the theory of complex dynamical sys-
tems (see [25]) and also in the theory of Kleinian groups (see [23]).

Definition 5.8. A point z € J(I") is calledconical if there existd > 0 and an
infinite sequenceg~,} C I, n > 1, such thaty,(z) € T’, ;! is defined on
D, »(#) c T and lim ||, = +o0. The union of conical points are denoted by
J.(I""). A conical pT(l)inofis callediniformly conicalif one can find a sequende, }
such that
m }%H’Z
oo |7,
The union of uniformly conical points are denoted By.(I"”). If (I, T) is the
holonomy pseudogroup of a foliatigh, then (uniformly) conical leaves are defined

in an obvious way.

< 00

J.(I'") and J,.(I") are I''-invariant but not necessarily closed in general. See
Example 8.3.

Remark5.9. The condition that is conical implies that Theorem 5.3 holds in a
strong form, namely, the sequen¢e,} can be chosen so that = z, and the
elementsy,, have an extra condition on their targets.

Existence of a conical point implies the existence of hyperbolic fixed points.

Lemma5.10.Letz € J.(I7).

1) There is a neighborhood of z and an element € I, such thaty°" is
defined oD for all n and{~°"} uniformly converges to a constant mapping.

2) There is al”’-orbit of a hyperbolic fixed point which convergesato Here
the constant sequence equakidcs allowed.

Proof. Let# and{~, } be as in Definition 5.8. Set, = ~,(x), then we may assume
thatz,, converges tg € T’. We may also assume thgt! is defined oD, (6/2) for
anyn and that{~, '} uniformly converges to the constant mappingn D,(6/2).
Let D be a disc contained in; '(D,(/2)) N T' and set;, = ~; 'y, then(, is
defined onD, and(,(D) C D for largen because€(¢,} uniformly converges to
z. Each(, has a fixed point, say,, on D. It is clear that((,)°™ can be defined
on D for all m and that{({,)°"} converges ta,,. Fix now a fixed point,, then
{Gn(zn)} converges ta: becaus€(,,} converges ta:. O

LetHyp(1") be the union of hyperbolic fixed points. Since hyperbolic fixed points
are uniformly conical, we have the following

Corollary 5.11. Hyp(I') D J.(I") D Ju(I") D Hyp(I').
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Note that if.J.(I") is dense in/(I"), thenHyp(/") is dense in/(I").
The proof of Lemma 5.10 says much more and we have the following

Corollary 5.12. J.(I") N OF(I") C Ao(I"). More precisely,/.(I") N OF(I") =
U J.(I")NOF; andJ,(I")NOF; = {z € OF |3z € F, 3{y,} € I’ stz = lim %(m)} c
Ao(I7).

Proof. Letz € J.(I")NOF(I") and lety, D be asin Lemma5.10, then(/”)ND is
non-empty and~°"(z)} converges ta for anyz € F(I")ND. Hencer € Ay(I”).
If 2 € F;, thenI"-orbit of z is contained inF; by the definition of/”-connected
components. Thereforee OF;. O

The equality.J.(I") N OF (1) = Ay(I") does not hold in general. For example,
if J(I") consists of a single parabolic fixed point, thén/”) N 0F(I") = @ but
Ao(I") = J(I7).

A well-known fact for the Julia sets of mapping iterations holds in the following
weak form.

Proposition 5.13. Suppose that every Julia component contains a conical point,
thenT = I'(U) for any neighborhood’ of J(I").

Proof. First note thaDF' # @ for any Fatou componerft. Letx € F, thenl x
has a limit point inJ.(I") N 0F by Corollary 5.12 and Lemma 5.7 because every
Julia component contains a conical point by the assumption. Hercd'(U). O

Conformal measures are one of the most important tools in the study of Kleinian
groups and Julia sets for mapping iterations. There are some difficulties when con-
sidering a direct analogue, for example, it is clear that the Julia set in Example 3.11
admits an invariant measure. Indeed, any atomic measure supporfégl o oo}
is invariant. However, the standard construction using the Pa@rsmies does not

work. Indeed, " |v/|. does not converge for any € F/(I") ands € R. In addi-
Y€l
tion, the se{~(z)},<r, is not discrete irf’(1"). We would like to find a construction

which is also valid in such a case.
We will introduce an additional notion.

Definition 5.14. Let g = {¢?dz; ® dz;} be a Hermitian metric oi’(7") and letO
be an open subset ¢f(1”). We sayg diverges abO (resp. converges tdat 00)
if lim g;(x,) = +oo (resp. lim g;(z,) = 0) for anyi and any sequence, € T
WiTtlfToloim x, € 00. o

n—oo

If g is complete, then diverges abF for each Fatou componeht
We assume the following the rest of this section.
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Assumption 5.15. 1) F(I") is non-empty, and
2) g is a continuous invariant metric of'(I") which diverges abF'(I") in the
sense of Definition 5.14.

There exist metrics which satisfy the above assumption by Theorem 4.1l et
be the2-dimensional volume induced ly The restriction ofimto F; = T,NF(I")
is denoted bylm;. Let g; be the positive function o} such thatim,; = ¢2 !dziIQ-
We extendy; to T; by settingg; = +oc on the Julia set. Note that the functidyy;
is continuous and bounded @nh

SetF! = F(I"YNT! = F(I')NT}.

Definition 5.16. Let (I, T') andg; be as above. L&t’”,T") be a reduction and set

Sy(s) = Z/F g7 |dzl” = Z/F g; *dm.

The numben (I, g) = inf{s € R|S(s) < oo} is called the critical exponent of
J(I") with respect tog. The numbew(I") = infd(I", g) is called the critical ex-
g9

ponent of J(I"), whereg runs through invariant metrics which satisfy Assump-
tion 5.15. If (I, T) is the holonomy pseudogroup of a foliatidf then the critical
exponentd(F, g) andd(F) are defined in the natural way.

Note that the integral remains the same even if we repléeeith F(I") N 7}.

Lemma 5.17.

1) The critical exponents are independent of the choice of reductions.

2) If s > 0(I",g), thenSy(s) < +oo.

3) o(I",g) < 2.

4) §(I", g) > 0if the area of F'(I"") with respect tgy is infinite in the sense that

;/F{dmi:+oo.

5) We may assume thi/ 972 |dz)|* < oo for s > 4.
i JFi

6) The critical exponent depends only @and the equivalence class ¢fn the
sense of Definition 3.6. (Note that equivalence class is consideredoh).)

Proof. 2) is a consequence of Assumption 5.15. 3) is evident from the fact that
T' is relatively compact. 5) holds by replacing the p&it’, I"), (7", ")) with
(1", 1), (T",I'")). 1, 4) and 6) are clear. O]

Remark5.18 It is not obvious from the definition thai(/",g) > —oo. We will
show thaty(I") > 0 under a condition o’ (Corollary 5.24).
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Remarlkb.19 Fix a pointp € F; and lety € I'.. We denote by, the index such that
v(z) € T;,. Sincedm; = g7 |dz;|? is invariant under™, we havely'|, gi, (v(z)) =

g:(x). Hence, quite roughly speaking, the sum m can be regarded as the
yery "
Poincaé series off ’. The above integration is obtained by replacing the sum with

the integration with respect ton.

Definition 5.20. A Borel measure; onT’ (resp.1”) is called aj-conformal measure
if u(v(E)) = [, |7’|i du(x) holds for any Borel subset of 7' (resp.7”) and any
elementy € ' (resp.l”) defined onk.

Proposition 5.21. Assume thaf'(I") is non-empty and let = §(I", g) be the criti-
cal exponent off (I") with respect to an invariant metri¢. Assume in addition that
d > —oo, then, there is @a-conformal measure supported 6@’ (") C J(I") under
Assumption 5.15.

The following proof is an adaptation of a proof of a corresponding result for
the limit sets of Kleinian groups and the Julia sets of mapping iterations found
respectively in [19] and [18]. We work ofT”,T").

Proof. First assume thatﬁ{r% S,(s) = 4oo. Let C(T") be the set of continuous

functions onI”. Consider the functional

> F@)gi(x) 7 |l
or(f) = s wheref  C(T")
and let;, be the probability measure Gi obtained by the Riesz representation
theorem. Lefus be a weak limit of{ .1, } ass tends taj from above.
Claim 1. ys is supported o®F (") N T".
Indeed, letr € F(I")NT’ and letU be a Fatou neighborhood ofn F(I"). Then,
g; is bounded from above dii so thatlig% us(U') = 0, whereU’ = UNT'. Since

lim pus(U") > pus(U’), we haveus(U’) = 0. One can show thdnt J(1")Nsupp ps =
s\0

@ by a similar argument.
Claim 2. us is §-conformal.

Letx € T/ and lete > 0. By the Koebe theorem, there is a neighborhoodf =
in F(I") N T7 such that ify € I is defined orl/, then‘ T — 1‘ < ¢ holds for any
y € U. On the other hand, by the definition pf, we havely/|’ (1 — €)us(U) <
ws(Y(U)) < |¥]5 (L4 €)us(U). First take the limit as \, J, and there — 0, we
see thays is ad-conformal measure. Note thatpp j; cannot be contained il”
becausél’, T) is compactly generated. Indeed, de€ supp us N 977, then there is
an elementy of /" and an open séf of 7" such thaty is defined o/, us(U) # 0
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and~(U) c T'. LetV be a neighborhood of in 7" such that’ C U and set
W =V NT, thenV is measurable ands(v(V)) > C'|y'|’ us(V) for someC > 0
by the Koebe distortion theorem anetonformality ofi.s. Then, replacing:s with
ﬁﬂalm we obtain a-conformal measure of'.

If S(s) converges as tends tod, then we will apply Patterson’s construction as
follows (cf. [19, p.47]). Let{¢,} be a sequence of positive numbers decreasing to
zero. We will define a sequend&X,, }, with X,, — oo, and an increasing function
h on [0, 4+00) inductively. LetX, = 0, X; = 1 and seth(z) = 1 on[0,1]. If A is
defined on0, X,,], then chooseX,,,; so that

X : Z/ —(5+2+6n |dZZ|2 Z 1.

icl n<gz<Xn+1

This is possible becausg (6 — ¢,,) = +o0o. Set now

h(z) = h(X,) (Xin) for & € [Xo, Xpil.

thenh is increasing. Defing’ (s) by

s+2
=3 Mg e

thenS; () diverges because the inequality

z (5+2 dz _ / (gl )671 i_5+2 di2
SHW
i€l n=0

holds. For any > 0, there is a real numbey, such thath(rt) < t“h(r) holds for
r > ro andt > 1. Indeed,log h(z) = €,(logz — log X,,) + log h(X,,) so that if
e, < eandr > X, thenlogh(rt) = ¢,(logt + logr — log X,,) + log h(X,,) <
elogt + log h(r) for t > 1. Finally we show that*(s) converges ifs > . Choose
e > 0 sothatd + ¢ < s and fix anr > 1 such thath(rt) < th(r) holds for
t > 1. Sinceh is increasing,’}fgj)) < hf(L’(”f)) < ¢¢if g; > 1. SettingC' = h(r), we
haveh(g;)g; *™ < Cg;°** for g; > 1. Consequentlyy? (s) converges ifs > 4.
Repeating the construction after replactigs) with S’ (s), ad-conformal measure

can be also obtained in this case. O

The following fact is well-known.

Lemma 5.22. Let us5 be ad-conformal measure and letipp us be its support.
Assume that € J.(I"")Nsupp us, then there is a positive constatitwhich depends
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ond and s and a sequencér, } of positive numbers which converges to zero such
that

ot D)

rd -
Proof. Let {v,} be as in Definition 5.8. Let,, = ~,(z), D, = D, (0) and let

0 . , :

Pn = R then, ! (D,,) containsD,(p,) by the Koebe distortion theorem. On
rYn 4

the other hand, again by the Koebe distortion theorem, there is a constant)

/

independent of mappings such t+ k. -1

l
nlx

< Cyifx e D, (0/2). Hence we

have

15(D=(pn/2)) < 15(3, (D=, (0/2))) < (1+C1) L. ps(D=, (0/2)) < (14C) i,

: Pn 9} 4
On the other hand, set, = min .= ¢» then~, (D, (0,)) C
. = i G f e (Dl

D.(pn/2). Hence we have

15(D=(pn/2)) = p15(1, (D=, (00))) = (14 C1) 7 4l 1s( D, (o).

The proof is completed if we show the following:
Claim. For anyr > 0, there is anm > 0 such thatus(D,(r)) > m for any
T € Supp Us.

Indeed, if not, then there is a sequereg } C supp ps such thafus(D,, (1)) <
1. We may assume that, converges to a point € 7". Then,us(D,(¢")) = 0 if
§' < §/2. Onthe other hand, there is an elemert I" such thaty(x) € 7" because
(I, T') is compactly generated. We may assume+thatdefined ornD,.(¢'), and then
us(v(D,(6"))) = 0. This is a contradiction.

This completes the proof of the claim and the lemma. O

Lemma 5.23. Suppose that every Julia component/otontains a conical point
and letg, ¢’ be invariant metrics on a Fatou componentg Bind ¢’ are conformally
equivalent, thery and ¢’ are equivalent in the sense of Lemma 3.7.

Proof. Let F' be a Fatou neighborhood. LEtbe a neighborhood of (1) and letV
be a relatively compact open subsefdivhich containg”\ U. Then,C~1g < ¢’ <
Cg holds for some” > 1 onV. On the other hand, let € U, thenvy(z) € V for
somey € I by Proposition 5.13. Hence the estimates also holds on a neighborhood
of z. O

There is the following analogue to the Julia sets of rational mappings. The proof
is a modification of a standard argument [18], [25].
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Corollary 5.24. Suppose thatupp s N Ju..(I') # @. Letd(I") be the critical
exponent of ', thend(I") = §(I, g) for any invariant metricg satisfying Assump-
tion 5.15 anddé(/") > 0. In fact, 6(I") is equal to the Hausdorff dimention of
supp pis N Jue(I).

Proof. Fix an invariant metricy and denote(I”,g) by 6. Letz € suppus C
OF(I"). Let {v,} andd be as in Definition 5.8. We may assume that, | } is
strictly increasing. On the other hand, sincés uniformly conical, there is a real

/
"}/n—l—llm

numbera > 1 such that o < a. We will show that there is a positive real
Tl

numberC such that
Vr e (0,1], Ins.t. — C < |v,,|, +1logr —logd < C.

Indeed, se€’ = max{log |y1], ,log a}, then there is an integersuch thatog |7}, | ,—
log 7], + logr —logf < 0 < log ‘%HL — log ||, + logr — logf. Since
log !%H‘x—log 17,,],, < log a, the inequalitiesog |7, |, +logr—logf < log |vi|, <

C andlog |y, |, + logr —log 6 > log Wmﬂ‘x —loga +logr —log 6 > log 71|, —
loga > —C hold. Therefore, there is@; > 1 such that for a givem € (0, 1],
there is am such thatC; " < r |7/, |, 0~! < C;. By repeating the same argument in
the proof of Lemma 5.22, we have

ps (D ()

cyt<
2 — T6

<y

for a suitableC; > 1 independent of:. It is well-known that the last inequality
implies that the Hausdorff dimension efpp u; is equal tod [25, Theorem 1.1].
Thereforey is independent of the choice gfandé > 0. OJ

6. CHARACTERISTIC CLASSES

The arguments in [3] depend only on the fact that foliations restricted to the Fatou
sets are transversally Hermitian. Hence they are also valid for the decomposition in
the present paper and the Godbillon-Vey class and the Bott class can be localized to
the Julia set. The proof is completely the same as in [3] so that we will give only a
sketch.

Theorem 6.1.Let(M, F) be a transversally holomorphic foliation of complex codi-
mension one, of a closed manifold.

1) The Godbillon measure in the sense of Heitsch-HufdiBt is supported on
the Julia set.

2) The residue of the imaginary part of the Bott clg8% at the Julia set is
well-defined.
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Sketch of the proofFix an invariant Hermitian metrigon Q(F)| (), whereQ(F)
denotes the complex normal bundle/®f Let U be a neighborhood of (F) (which

is not necessarily saturated), then there is a Hermitian mktdn Q(F) which
coincides withg on a neighborhood, say, of F'(¥) \ U. We can find a Bott
connectiorv® which is a unitary connection faron A/ \ V', whereV’ is an open set
slightly smaller thari/. Let V* be a unitary connection far, then, representatives

of Godbillon-Vey class and the imaginary part of the Bott class obtained by using
V? andV* vanish on”. O

We have the following weak version of Duminy’s theorem [8] (see also [15]).

Corollary 6.2. Let (M, F) be a transversally holomorphic foliation of complex
codimension one, of a closed manifold.

1) The Godbillon-Vey class vanishes if the Julia set is empty.
2) The imaginary part of the Bott class vanishes if the Julia set is empty.

Remarl6.3. The first claim follows also from the second claim, because the Godbillon-
Vey class is equal to the product of the imaginary part of the Bott class and the first
Chern class of complex normal bundle [2].

Remark6.4 J(F) # @ implies that there is either a leaf with a hyperbolic holo-
nomy or a leaf to which a series of expanding local holonomy converges by Theo-
rem 5.3. If one happens to know thatf F) # @, then there is really a hyperbolic
holonomy by Lemma 5.10.

The real part of the Bott can be non-trivial even if the Julia set is empty. The
following example is essentially due to Bott and Heitsch [4].

Example 6.5. Let £ be an integer greater thahand realizeZ,, = Z/mZ as
{t € C|t™ = 1}. Define &,,-action onS**~'x CP' by t(z, 20 : 21]) = (tx, [t 20 :
z]). Let M = (S?**~1 x CP')/Z,,, thenM fibers over the Lens spadem; 1) =
S2k=1/7... with projectionp. (M, p) is a foliated fiber bundle in the sense that
M is equipped with a foliationF with leaves(S*~! x {[zy : 21]})/Z,,. Let
U = (S~ x C)/Zy,, whereC = {[z : 1]} ¢ CP!, thenU c M andU is
a line bundle ovetL(m;1). Let Fy be the restriction ofF to U, then the line
bundle is isomorphic to the complex normal bundle7f pulled back by the in-
clusion of L(m; 1) x {[0 : 1]} into M. On the other hand, singé: H*(U;Z) =
H*(L(m;1);Z) — H*(M;Z) is injective, it suffices to see that(U)? has a torsion
part. The mappingr, 2] — ([z], zx) is an embedding df’ to L(m; 1) x C*, where
the bracket means the equivalence class. It follows thét the pull-back of the
tautological bundle ove€ P*~! by the natural projection, which we denote hy
As 7* is the projection fron¥ to Z /mZ in degreet, ¢, (U)? is its generator. On the
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other hand, the foliation is clearly transversally Hermitian and therefore the Julia
set is empty.

7. THE TRANSVERSAL KOBAYASHI METRIC

The invariant metric constructed in Section 3 is not canonical although the Fatou-
Julia decomposition has naturality (Lemma 2.10). A canonical (pseudo-)metric can
be constructed by modifying the construction of the Kobayashi metric. By inte-
grating the Kobayashi metric, the transversal Kobayashi distance is obtained. The
transversal Kobayashi distance was studied by Duchamp and Kalka [7]. Here we
discuss some properties of the transversal Kobayashi metric.

Let (I, T) be a (not necessarily compactly generated) pseudogroup of local bi-
holomorphic diffeomorphisms @? and we denote by'T" the holomorphic tangent
bundle ofT.

Definition 7.1 (cf. [13]). Let X be al-dimensional complex manifold. Aolomor-
phic 1-cocycle valued id" defined onX is a triplet({¢;}, {U;}, {7;:}) as follows:

1) {U,} is an open covering ok,

2) eachyp; is a holomorphic map frony; to a component of’,

3) if U; N U; # @, then there is an elemeny; of I" such thatp; = v;; o ¢; on
U; N U;, moreoveryy,; = id, and

4) vy = 1dif U;NnU; N U, # .

Holomorphic1-cocycles valued i defined onX correspond to transversally
holomorphic mappings fronX to a foliated manifold.

Definition 7.2. For (z,v) € T'T, denote byQ2(z,v)r the set of holomorphiad-
cocycles valued id” defined onD,(R) such thatp(0) = z andy.oeq = v, Where
eo IS @ unit vector at the origin with respect to the standard Hermitian metri¢.on
It is clear that2(z, v) g is non-empty ifR is small enough. Set then

1
K = inf —.
T e R

It is immediate that<r(z,0) = 0.

Actually Dy(R) is considered as the Poinéadisc of radiusk and centered at
the origin, equipped with the metr%. The same function can be obtained
even if 1-cocycles such thap(p) = « for somep € Dy(R) andp,,(e,) = v are
considered in the definition i is replaced withRQ_LW.

We recall some fundamental properties [20].

Lemma 7.3([20]). K7(x,av) = |a| Kr(z,v) forany(z,v) € TT anda € C.
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PrOOf' Let ({SOZ}’ {Uz}a {7]1}) € Q([E, U)R- Then the COCyClQ{lﬂi}, {‘/1}7 {’7]1})1
wherey;(2) = ¢;(az) andV; = ‘%'Ui, belongs td(x, av),, -1 - O

Lemma 7.4. The functionK is I'-invariant in the sense thak'r(yz, v.,v) =
Kr(x,v) foranyy € I,.

Proof. Let ({¢:}, {U:}, {v5i}) € Q(z,v)g. Assume thai,(0) = = and(¢p).«eo =
v. Let W be an open neighborhood of which the closure is contained dtom -,
and letV,, = ;' (dom~) andV’ = ¢~ }(WW). We define a-cocycley as follows.
LetV; = U; \ V', then{V;} U {V,.} is an open covering aby(R). Let; be the
restriction ofy; and lety,, = v o ¢y on V... Noticing thatV; NV, C U; N U,
SetVsi = Y 0 Yo @NdYine = Yo 0y L if ViN Ve # @. Itis easy to see that
({0} U} AV} U{Vic}. {95} U {7}, Wherea = oo or b = oo, is al-cocycle
which belong ta2 (v, V., v) g- O

There is a following property as usual.
Proposition 7.5. The functionK; is upper semicontinuous.

Proof. We need the Royden lemma [20], [21] if the dimensiorTak greater than

one. Here we give an elementary proof in one-dimensional case. We may assume
thatT c C and denote, by ¢’. Given a positive real number> 0, choose) > 0

so that;7—5 < 1/R + € holds. Let(z,v) € TT, then there is d-cocycle in
Q(x,v)g such thatpy(0) = z, ¢,(0) = v and Fr(z,v) + € > 1/R. If (y,w) is

close enough t¢z, v), theny € Uy so thaty = ¢,(p) for somep € Uy. Moreover,
Agh(p) = w holds for some\ € C close enough td. By composing with a
Mobius transformation ob,(R), we can find a holomorphit-cocyclew defined

on Dy(R) such that)(0) = y and\y'(0) = w, where||\| — 1| < 4. It follows that

KT(y,’LU)Sﬁ<1/R+E<KT([B,U>+2E O

By integratingKr, a locally defined (pseudo) distance functibnhon 7' can be
obtained. It is easy to see thét is continuous.

Remark7.6. The locally defined distana&- is distinct from the Kobayashi distance
in general. In order to obtain the Kobayashi distance, we need the infimum of the
length of I'-paths with respect t&(.

Definition 7.7. (I, T') is said to beKobayashi hyperbolid d is locally a distance.

The Kobayashi hyperbolicity is invariant under equivalence of pseudogroups. If
(I, T') is Kobayashi hyperbolic, thefy- induces a metric on each componentif
Moreover,dr induces the same topology @has an open subset &f.

Theorem 7.8.Let (I',7') be a compactly generated pseudogroup of local biholo-
morphic diffeomorphisms @. If (I',7) is Kobayashi hyperbolic, thefV", T) is
C*“-Hermitian and the conclusion of Theorem 4.17 holds.
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Proof. We proceed as in the proof of Lemma 2.14 and retain the notation. First we
show that forve > 0, 36 > 0 such thatD;(6) C D,(e) for anyy € 1", where
D, (6) denotes the ope#rball centered ay with respect tair. If not, there is an
¢ > 0 and a sequencgy, } such thatD, (1/n) ¢ D,, (¢). We may assume that
{y.} converges to a point in 7". Note thatd(y, y,) converges td. Lete; > 0,
thenD;(e;) D D, (1/n) if dr(y,y.) + 1/n < €. HenceD, (e1) ¢ D,(e/2) for
anye; > 0. This is a contradiction.

Letz € 7" and leté’ be such thaiD,(§') c D,(4/2) for anyy € 17, whered is
chosen as in the proof of Lemma 2.14. WBétbe such thaD,(6”) C D.(§') N T".
Assume that the germ ate D, (6”) of any element of ’(k) is defined oD, (0”) as
an element of ', thendr(yx, yy) < ¢'. It follows thatyy € D! (0") C D,.(5/2).
ThereforeyD,(6") € D,,(6/2) C D,.(5) and~;y is defined onD, (") as an
element of/". Therefore,D,(0”) is a Fatou neighborhood and consequefitly-
F(I). O

Remark7.9. The proof of Theorem 7.8 does not require tthais induced byKr.

The above corollary can be regarded as a variant of the following result of Duchamp-
Kalka [7, Lemma 3.6 and Theorem 3.7].

Theorem 7.10([7]). Let (M, F) be a transversally holomorphic foliation of com-
plex codimensiory. If the transversal Kobayashi distance distinguishes distinct
leaves, then the the leaf spakg/ F is Hausdorff. If moreovel is closed, ther¥

is a (generalized) Seifert fibration.

8. EXAMPLES

Example 8.1.Let [z, : 21 : 23] be the homogeneous coordinate@P? and let
U; = {[20: 21 : 22) € CP?|2; # 0}, and let(uy, us), (vi,ve) and (wy, w,) be the
inhomogeneous coordinate 6f, U; andUs, respectively. LetX; be a vector field
on respectivé/; given by the formula

0 0
Xo = Muj=— + Mtg—
0 1U18u1 + Aguo Oty
0 0
X, = _)\wla_vl + (=1 + )\2)1}28_027
0 0
X9 = —)\zw1a—wl + (A1 — )\Q)WQa—w,

We assume that; \; # 0, A\; # Xy and ) /Ay ¢ R, then the (singular) foliation
F of CP? induced from these vector fields has three singularjties [0 : 0 : 1],
p2=1[0:1:0landps =[1:0:0]. LetL;, = {[20 : 21 : 22) € CP?|2; = 0}, thenF
is Hermitian when restricted t6 P2 \ L, whereL = Lo U L, U L,. Indeed, choose
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1, e € C such thath\yps — Aoy # 0, 11 # o @and lety = “1“18%1 + MQuza%g.
ThenY induces a foliated section @§(F) on CP? \ L. Hence by requiring the
length of Y to bel, a transverse invariant Hermitian metric, Sayis obtained.
SinceY and.X; are linearly dependent ai, the metrich diverges at_ in the sense
of Definition 5.14.

Let D, be a small round ball centered;atand letS; ~ S? be its boundary. The
condition \; /X, ¢ R implies thatF is transversal t&5;. Let M = CP?\ (D, U
Dy U D3) and letM; be its double, ther/; is naturally inherits a transversally
holomorphic foliationF; induced fromF. The foliation F; has three compact
leavesL,, £, andL,, namely, the leaves induced frofy, L, and L,. The above
description shows thdt(F3) = M3\ (Lo U L, U Ly). The residue of the Bott class
at.J(Fs3) is calculated in [2].

The number of the Julia components can be arbitrary largeM die a copy of
M and letoM' = S; U S, U S;. Let M, be the manifold with boundary obtained
by gluing M with M’ alongS; and S}, and S, and .S;, thendM; = Ss U Si.
Let 7, be the natural foliation of the doubl&, of M, thenJ(F,) consists ofi
connected components. In general Ngt- - - , N,_, be copies of\/; and letM, be
the manifold obtained by gluing them. L&t be the naturally induced foliation of
M, thenJ(F,) consists of- connected components. The Julia sets of foliations in
this example consist of conical leaves and the critical exponents are equal to zero.

There is another description of the above example.

Example 8.2. Let {U,, Uy, UQ}Ab/e as in the previous example. We blow @p>
at the origin ofU;, namely, 16tC? = {((u1, ua), [t1 : t2]) [tiuz — tous = 0} be C?

blown up at the origin and replaég by C2. Denote byC P? the resulting manifold.

Consider again the vector field, on C2, then X, can be lifted taCP? as fol-
lows. LetV; = {((ul,uQ), [t1 : to]) € C? t; # O} (i = 1,2) and lety;: V; — C?
be as follows, namely, defing, by ¢ (((u1, u2), [t1 : t2])) = (u1,t2/t1) andes by
p2(((u1, u2), [t1 : ta])) = (u2, t1/t2), respectively. LetZi, Zo) = 1 (w1, u2), [ta : 12]))
and(Wy, Wy) = o (((u1, us), [t1 : t2])). Define vector fields(, on C? by the prop-
erty

~ 0 0
P1:Xp = )\1218—21 + (A2 — )\1)228_22’
~ 0
«Xo = W, A — o)W )
P2xXo 2 18W1 + (M 2) QGWQ

Itis easy to see tha,, is well-defined and it coincides withi, onC2\ {0} = C2\ E,
where E/ denotes the exceptional fiber. Thus obtained foliatio&F has4 sin-
gularities. The leaves induced from, L,, L3 and the exceptional fiber are sep-

aratrices. By imitating the previous construction, one can obtain a (non-singular)
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foliation of which the Julia set consists éfcomponents. Then by continuing cut
and paste procedure, foliations with arbitrary number (greaterthahJulia com-
ponents can be obtained.

We will examine some examples in [10].

Example 8.3([10, Example 8.4]) LetT" be a Kleinian group and I€&EP! = QU A

be the decomposition into the domain of discontinuity and the limit set/Le¢ a
suspension of this action, thét{F) corresponds t& and theJ(F) corresponds to

A. Indeed, one can repeat the same argument as in the proof of Proposition 4.2 after
introducing the Poinc&rmetric on each component Qf If T" is not torsion-free,

we havel’(F) 2 Foas(F). Onthe other hand, if is geometrically finite, then the
conformal measure constructed in Section 5 coincides with the Patterson-Sullivan
measure by the uniqueness [23]. Moreover, the critical exponefhtisfequal to

the critical exponent of the Poin@series of".

The same construction by suspension is also possilleisf non-discrete but
finitely generated. I\ = CP?, thenJ(F) is the whole manifold.

The case wher& C Aff(R) is non-discrete and non-abelian is important. In
this case J(F) = Jaas(F) and they correspond f& U {co}. The leafL., which
corresponds tdoo} is closed and not conical. We havg(l") = J(I') \ L., and
they correspond t& so that/.(I") is not closed. The critical exponent&fis equal
to 1.

Example 8.4([10, Example 8.10]) Example 8.3 can be modified using ramified
covers. We adopt the notation in [10]. Let 7, (B) — Aff(R) C PSL(2;C) be

a homomorphism and form the suspension. Assume that the image is non-discrete
and non-abelian and that the ambient manifbldis diffeomorphic toB x CP!.

Let L be the leaf which corresponds to € CP!, then the holonomy group of

L consists of germs of mappings of the form— az/(1 + bz) with a > 0 and

b € R, whereoo is considered as the origin. Skf’ = B x S* and consider the
mappingM’ — M induced by the Hopf fibratios® — CP*. By pulling-back,M’

is equipped with a foliation with a compact leAfwhich is equal toB times the
fiber of the Hopf fibration. By construction, there is a non-trivial homomorphism
fromm (M'\ L) ontoZ. Hence there is an-fold covering)! of M’ ramified along

L for anyn > 0. Let F, be the foliation ofM], by pull-back, thenF,, is naturally
transversally holomorphic and has a compact leaf, sgywith holonomy group
which consists of the germs of the mappings of the ferm (az"/(1 + bz"))/".

The Fatou-Julia decompositions also coincide in this c4&€;,) is the pull-back of
real line of CP!, which is locally the union of codimension-one submanifolds with
singular locus.,,, while F'(F,,) consists of two components which are pull-back of
the upper and lower half spaces. The critical exponeti,of equal tol.
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Example 8.5([10, Example 8.6]) There is a foliation which is transversally Her-
mitian but of which the GGS-Julia set is the whole manifold. On the other hand, the
Julia set in our sense is empty by Lemma 2.14. In partichlaf,) 2O Faes(F).

Example 8.6([10, Example 8.9]) There is a foliation of a connected manifold of
which the GGS-Julia set has non-empty interior without being the whole manifold.
Itis constructed by inserting a certain foliation ([10, Example 8.7]) into Example 8.3
which has two GGS-Fatou components corresponding to the upper and the lower
half spaces. Then, one of the GGS-Fatou components are changed into a GGS-
Julia component so that this GGS-Julia component has non-empty interior without
being the whole manifold. The Fatou-Julia decomposition of the original foliation

is the same as ours. On the other hand, the modified foliation is still transversally
Hermitian on the modified part. It is easy to see that the new GGS-Julia component
is still a Fatou component in our sense so that the interior of the Julia set is empty.

In fact, the author does not know if there is an example of a compactly generated
pseudogroug ", T') such that/"\T is connected and that the Julia s&") has
non-empty interior without being equal 7a

Example 8.7.Let I" be a lattice irSL(2; C) such thatV/ = I"\SL(2; C)/U(1) is a
closed manifold, wher&(1) = {(8 a91> la| = 1}. LetH = {(g a[il) acCrbe C},

and letF be the foliation ofSL(2; C)/U(1) with leavesgH/U(1), g € SL(2;C).
There is a foliationF of M naturally induced fromF. It is easy to see that
J(F) = M, on the other hand, it is known that the Godbillon-Vey classFois
non-trivial [2].

There are foliations of which the Julia set is the whole manifold as in Exam-
ples 8.3 and 8.7. There is another kind of such examples.

Example 8.8.LetT = (C\{0})/(v), where(v) denotes the group generated by the
mappingy(z) = 2z. We denote again bythe pointinT represented by by abuse

of notation. Lett: T — T be&(z) = 2%. The mapping is not a diffeomorphism

but there is an open coveriq@); } of T such that the each restrictignof £ to O, is

a diffeomorphism onto its image. Itis easy to see that the pseudogrgeperated

by &’s acting onT' is compactly generated. It is also easy to see fhat) = 7.

By applying a construction by Hector presented in [16, p.139¢an be realized

as the holonomy pseudogroup of a transversally holomorphic foliation of an open
manifold. However, we do not know if it is possible to find such a foliation of a
closed manifold.

We do not know if there is a reasonable extension of the Fatou-Julia decompo-
sition to not necessarily compactly generated pseudogroups. Indeed, it is easy to
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obtain non-compactly generated pseudogroups such that they are equivalent but the
Julia sets do not correspond under the equivalence. In terms of foliations, this im-
plies that the Fatou-Julia decomposition of a foliation of a nhon-compact manifold
depends on the choice of the realization of the holonomy pseudogroup.

If (I,T) is not compactly generated, we tentatively say that. 7" is a Fatou
neighborhood if any germ, € I, u € U, extends to an element &f defined on
U, and letF(I") be the union of Fatou neighborhood. The Julia set in this sense can
have non-empty interior without being the whole space.

Example 8.9. Let (I',T) as in Example 8.8 and lef = {z € C||z| <1+ €},
wheree is a small positive real number. L&t = {z € C|1 < |z| < 1+ ¢} and let
n: O" — T be the mapping naturally induced by the inclusiorfdinto C. Let I’}

be the pseudogroup generated®yndn and let7; = T'U O, then,J(I}) = T;.
The pseudogroup; is however not compactly generated.

Example 8.10.Let D;,.(0) be a disc of radiu$ + ¢ centered ad and let7 =
T, UT,, whereT; = T, = D5,.(0). We denote the natural coordinates’Bnand
T, by z andw, respectively. Lef" be the pseudogroup generated-gy~; and~,
defined as follows. First set

Si={z€T;|25/(b+¢€) <|z|<b+¢€},i1=1,2,
and definey,: S; — S by 0(z) = 25/2. Second, let
Olz{reﬁt€T1‘1<r<2, ]t|<6},

whered is chosen so small that : O, — T; defined byy,(z) = 2? is a diffeomor-
phism onto its image. Finally set
02:{r6mtET1‘2<r<4, |t|<(5},

and definey,: O; — Oy by 15(2) = 22. N

It is easy to see that the pseudogrdujs not compactly generated, add!") =
1,4 UL, UU A;, wherel, = {é’“ﬁét ‘ 1<t< 4}, k=0,1,---,andA, =
{Qi/zeﬁt

1=0,...,2[,0<t < 26}. Adding an irrational rotation t@" as a gen-

erator, one can obtain a pseudogrdypsuch that/(I7) = {z € T1 |1 < |z| < 4}.
The pseudogroup; is not compactly generated, either.
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