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1 Introduction

The purpose of this paper is to present newly formulated foundations of algebraic
logic. Although it aims at applications to mathematical psychology as in [1],
results within this paper is universal and so is expected to be applied to other
branches as well.

We will define a formal language to be a certain universal sorted alge-
bra, which is generated by constants and variables and in general has unary
variable operations indexed by a formal product of a symbol and a variable.
We will also define denotable worlds (cf. Remark 4.1) for the formal lan-
guage to be certain sorted algebras similar to the operational subalgebra of
the formal language obtained by removing the variable operations. Then the
denotations of constants into each denotable world are defined to be sort-
consistent mappings which associate each constant with an element of the
denotable world of the same type. The denotations of variables are similarly
defined, and we can furthermore construct the power algebra of the denotable
world whose exponent is the set of the variable denotations into the denotable
world. The power algebras are by definition similar to the denotable worlds.
However, once the variable operations are interpreted as operations on the
power algebra, then by the universality of the formal language, each constant
denotation into the denotable world yields a sort-consistent homomorphism of
the formal language into the power algebra, which we call a meta-denotation.
Then two fundamental theorems named the denotation theorem and the
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substitution-redenotation theorem will be proved concerning the interre-
lations among meta-denotation, free occurrences of variables, and substitution
for variables. Finally, a logical system is defined to be a triple of a formal
language, a domain of its denotable worlds, and a family of interpretations of
the variable operations for the denotable worlds in the domain. Although not
required as far as [1] is concerned, we will proceed to a study of the functional
expressions of the elements of formal languages, and conclude this paper by
the determination of the denotable functions on denotable worlds.

The foundations of algebraic logic are not completed by this paper. First
of all, the above results are based on the theory of sorted algebras and related
based algebras [3], which is also considered part of algebraic logic, although
its organization is purely algebraic. Also, if a logical system has a truth, then
it yields a logical space, which is defined to be a pair of a set and a set of
its subsets, and a theory of completeness for the logical spaces is developed in
[4], which is algebra-flavored. Thus [3], [4], the present paper, and potential
successors constitute what I presently call the foundations of algebraic logic,
and [1] is their first outcome in mathematical psychology .

In fact, the above-mentioned papers and the present one are abridged trans-
lations of an impermanent aspect of the author’s personal electronic publication
Mathematical Psychology 2], where work in progress has been shown for more
than a decade by frequent revisions, and in particular, algebraic logic has been
developed more elaborately than here and applied.

It should be noted that Horikawa [5] generalized the whole theory in the
present paper by allowing variable operations to be indexed by sequences of
arbitrary length of symbols and variables.

We expect that our set-theoretical notation and terminology will be standard
except that we denote the set of all mappings of a set Y into aset Zby Y — Z.
ThusfeY > Zmeans f: Y — Z.

2 Preliminaries on sorted algebras

Here is given an account of algebras to the extent necessary for the subsequent
sections. For omitted proofs, we refer the reader to [2][3].

2.1 Basic definitions and remarks

For each set A and each natural number n, an n-ary operation on A is a
mapping o of a subset D of A™ into A. The set D is called the domain of «
and denoted by Dom «, while the image «D is denoted by Im &«. The number
1 is called an arity of «, and so if D = (), every natural number is an arity of
«. We say that « is global if D = A™. A subset B of A is said to be closed
under the operation « if «(aj,...,an) € B for each (a7,...,a,) € B*ND. If
B is closed under «, the restriction «|gnnp of & to B becomes an operation
on B.



An algebra is a set A equipped with a family (xx)aca of operations on
A, which we call the operation system or OS of the algebra A. We often
identify the operation «, with its index A. The set A is called the support of
the algebra (A, (o )aca). The algebra (A, (xx)aea) is said to be global if ay
is global for every A € A.

The algebra (A, (o )aca ) has two kinds of subalgebras. The first is an alge-
bra (A, («,)uem) obtained by reducing the OS of A from (o )aea to (Xp)uem
for a subset M of A. Such an algebra will be called an operational subalge-
bra and denoted by Apm. Also, if a subset B of A is closed under «, for each
A € A, then B becomes an algebra equipped with the operation system (fx)aca
consisting of restrictions B of oy to B. Such an algebra (B, (Ba)aca) is called
a support subalgebra.

Let (A, (axa)aen) be an algebra. Then the intersection of support subalge-
bras of A is also a support subalgebra of A, and A itself is a support subalgebra
of A. Therefore, for each subset S of A, the intersection of all support subalge-
bras of A which contain S is the smallest of the support subalgebras of A which
contain S. We denote it by [S] and call it the closure of S. Define the subsets
Sn(n=0,1,...) of A inductively as follows. First So = S. Next for eachn > 1,
S is the set of all elements ay(aq,...,am) withA € A, (a7,...,am) € Dom ay,
and a; € Sy, (i=1,...,m) for some non-negative integers ly, ..., i, such that
n=1+ Z?l:'l li. Then [S] = 59 Sn- Wecall Sy (n=0,1,...) the descen-
dants of S. It also holds that an element a € A belongs to [S] iff there exists
an S-generating sequence of a, which is defined to be a sequence ai,...,an
of elements of A satisfying a,, = a and

a; € SuU U ocy\({ah...,ai,]}“‘ ﬂDOIn(X)\)
AEA

for each 1 € {1,...,n}, where n, is an arity of x;.

Two algebras A and B are said to be similar, if they have operation systems
(aa)aen and (Ba)aen indexed by the same set A, and «, and 3 have a common
arity for each A € A.

Let (A, (o )aen) and (B, (Ba)aea) be similar algebras. Then a mapping f
of A into B is called a homomorphism or a A-homomorphism if it satisfies
the following two conditions for all A € A, where n, denotes an arity common
to an and PBa.

e If (ar,...,an,) € Domay, then (far,...,fan,) € Dom Bx
and f(aa(ar,...,an,)) = Balfar,..., fan, ).

o If (a1,...,an,) € A™ and (fai,...,fan,) € Dom B,,
then (aj,...,an,) € Dom xj.

A bijective homomorphism is called an isomorphism. If both A and B are
global algebras, a mapping f of A into B is a homomorphism iff it satisfies the
following condition for all A € A and all (a1,...,an,) € A™:

flaa(ar,...,an,)) = Balfar,...,fan, ).



A sorted algebra is an algebra A equipped with an algebra T similar to A
and a homomorphism o of A into T. We call T and o the type algebra and
the sorting of the sorted algebra A. For each a € A, we call ca the type of
a. For each subset S of A and each t € T, we define the t-part S of S to be
the inverse image {a € S| ca =t} of tin S by o.

Every global algebra A may be regarded as a sorted algebra (A, T, o), where
T is an arbitrary singleton made into a global algebra similar to A in the obvious
unique manner and o is the unique mapping of A into T. Conversely if (A, T, o)
is a sorted algebra with T global, then A is a global algebra.

Let (A,T,0) and (B, T, 1) be sorted algebras with the same type algebra T.
Then a mapping f of A into B is said to be sort-consistent, if it satisfies Tf = o,
or equivalently f(Ay) C By for all t e T.

2.2 Universal sorted algebras

A sorted algebra (A, T, o) is said to be universal or called a USA if A has a
subset S which satisfies the following two conditions, the latter being called the
universality.

o A=1[S].

e If (A, T, o) is a sorted algebra and ¢ is a mapping of S into A’ satisfying
o’@ = ols, then there exists a sort-consistent homomorphism f of A into
A’ which extends @.

We call S as above the set of the primes of A. It is known that every sorted
algebra has at most one prime set and that f in the above condition is uniquely
determined by @.

If (A,T,0,S) is a USA with T a global singleton, then A is a global algebra
and satisfies the following conditions.

e A=1[S].

e If A’ is a global algebra similar to A and ¢ is a mapping of S into A’,
then there exists a homomorphism of A into A’ extending @.

Conversely, assume that a global algebra A and its subset S satisfy these condi-

tions. Then the sorted algebra (A, T, o) made as before with a singleton T and

a unique mapping 0 € A — T together with S constitutes a USA (A, T, o,S).

Therefore, we say that A is a universal global algebra or a UGA over S.
The following theorem is known to hold.

Theorem 2.1 (Unique Existence of USA) Let S be a set, T be an algebra,
and T be a mapping of S into T. Then there exists a USA (A, T, 0,S) with ols = 1.
If (A’,T,0’,S) is also a USA with o'|s = T, then there exists a sort-consistent
isomorphism of A onto A’ extending ids.



Thus, in order to define a USA, we only need to define a set S, an algebra T,
and a mapping T of S into T. We call T the pre-sorting.

In the course of the proof of Theorem 2.1 in [2][3], it is shown that if
(A, T, 0,S) is a USA then A is the direct union of the descendants S,, (n =
0,1,...) of S. Therefore, for each element a of A, there exists a unique non-
negative integer n such that a € S;;. We call it the rank of a. It is also shown
that if a € S then a has no expression a = «(aj,...,ax) by an operation «
in the OS of A, while if a € A — S then a has a unique such expression and
ranka =1+ Y ¥ rank a;.

2.3 Power algebras

Let (A,T,0) be a sorted algebra and V be a non-empty set. Define AV =
Uier(V — Ay). Then we can construct a sorted algebra (AVT,p) as follows.
First define the sorting p of AV into T by pb =t for each b € V — A and each
t € T. Then

pb = o(bv)

for each b € AV and each v € V. Let (aa)ren and (Ta)aea be the OS’s of A
and T respectively, and let n) be an arity of x) and Tx. For each A € A, define
the operation B on AV as follows. First define the domain of B to be

Dj = {(b1,...,bn,) € (AY)™ | (pby,...,pbn,) € DomTy }.

If (b1,...,bn,) € Dy, then (o(b1v),...,0(bn,v)) = (pb1,...,pbn,) € Dom Ty
so (b1v,...,bn,v) € Dom «, for each v € V, and we can define the mapping
Ba(b1,...,bn,) of Vinto A by

(B;\(b1,...,bm))v: ar(b1v,...,bn, V)
for each v € V. Furthermore
O'(OC)\(b‘]V, s vbnxv)) = T}\(U(b‘l\)), EEEE} O-(bn)\v)) = T)\(pb1 Y prU\)»

and t = TA(pb1,...,pbn,) is not varied by v € V, hence Ba(b1,...,bn,) €
V — Ay C AV. Thus B, certainly is an operation on AY for each A € A, and
so (AVY, (Ba)aca) becomes an algebra. Furthermore

p(B?\(bh-”»bn)\)) = O—((B?\(blw-' )bnA))V)
= ()‘((XA(b]V,... )bﬂ)\v)) :T)\(pb1"-')pbﬂ)\)

with any element v € V, and so p is a homomorphism of AV into T. Thus we
have constructed the sorted algebra (AY T, p), which we call the power algebra
of A with exponent V. Furthermore, it follows from the above definition
that for each v € V the mapping b — bv of AV into A is a sort-consistent
homomorphism, which we call the projection by v.



2.4 Occurrences and substitutions

2.4.1 Occurrences

Let (A, (oa)aea) be an algebra. If, for two elements a and b of A, there exists
an element A € A such that a = «x(...,b,...), then we write b < a. If b< a
or b = a, we write b < a. If there exists a sequence by, ..., b, of elements of
A such that bp = a, by, =b and by <bj_7 fori=1,...,n, then we say that
b occurs in a and call the sequence an occurrence of b in a. For each subset
B of A and each element a € A, we denote by B the set of the elements of
B which occur in a. Furthermore, we define A* ={A € A | (Imay)?® # 0} If
A € A%, then we say that A occurs in a.

Lemma 2.1 Let (A, T,0,S) be a USA and (o )aca be the OS of A. Then the
following holds.

e For each element a € A, S® and A are finite sets.

a )0 when a € S,
A UUR A% when a = aa(ar, ..., Gn, ).

2.4.2 Notations and assumptions

In the rest of this subsection, let (A, T, 0,S) be a USA, and (o )aca and (Ta)aea
be the OS’s of A and T respectively. Furthermore, assume that A is contained
in the set of the formal products of the elements of I'IT S for some set . More
precisely, A is a subset of the free semigroup over I'II S. For each element A
of A, S? is the set of the elements of S which occur in A as defined in §2.4.1.
Furthermore, we define S = J o S™.

2.4.3 Free occurrences

Let a € A and s € S. Then an occurrence sg,...,Sy of s in a is said to be free,
if {s0,...,sn)NIm oy = () for each A € A such that s € S*. If there exists a free
occurrence of s in a, we say that s occurs free in a or write s < a. For each
subset X of S, we define X, = {x € X|x < a}. Let b € A. Then the occurrence
S0,...,5n of s in a is said to be free from b, if {sg,...,sn}NImoy = @ for
each A € A such that (S*)2 . # (. We say that s is free from b in q, if every
free occurrence of s in a is free from b.

Lemma 2.2 The following holds.

e If a=oan(ar,...,an,) € A, then S, = Up2; Sak, — S™.

e Let a=ap(ar,...,an,) €A, s€S,and b € A. Then s is free from b in
a iff either s is free from b in ay for each k € {1,...,nx} and (S*)f,.. =0
or s £ a.



o Ifa=on(ay,...,an,) €A, s€S—S* beA, and s is free from b in a,
then s is free from b in ay for each k € {1,...,ny}.

e If a,b € A and (SME, . = 0 for each A € A%, then every element of S is
free from b in a.

2.4.4 Substitutions and occurrences

Let s1,...,sn (n > 0) be distinct elements of S and cq,...,cn be elements of A

with os; = ociy (i=1,...,n). Then, for each element a of A, we can define the
$1,...,8 ) $1,...,8 . i

element a <¥> of A with o <a (¥>) = oa by induction on
Cl1,...,Cn Cl1,...,Cn

the pairs (n, 1) of n and r = rank a arranged in lexicographical order as follows.
S1y.+-,S

First of all, if n = 0, then we define a <¥

C1,...,Cn

n>1. If r=0, then a € S, and so we define

) = a. Therefore assume

a(s1,...,sn> _ {c,-L if a = sy for some i€ {l,...,n}, 2.1)

Cl,...,Cn a faé{s,...,sn},

hence o (a (ML)) = oa as desired. Therefore assume v > 1. Then a

C1y...,Cn
has a unique expression a = «x(ai,...,an, ), and 1 is greater than the ranks of
ai,...,an,. Let i1,...,1m (0 < m < m) be the numbers such that
A . .
{s1,...,8n)—S" ={si,,...,8i. ] 1< <im.

Then we define

S1y...,8n Siiy.-eySi Sigy.-eySiy,
a<;>—oo\ (CH (u)m,am <# . (2.2)
Cl1,...,Cn Ci;y---rCipy Ci;yyoroCipg

.. . . . Siqy--ySi
This is possible because, by induction, a; = ax (u has already been
CiyyeerCigg
defined and satisfies oa;, = oax for k =1,... ,na, and so since (cay,...,0an,)
belongs to Dom Ty, so does (oay,...,oa; ), hence (aj,...,a} ) € Domaa.
S1,...,Sn
Moreover, even when a | ————— | # a, we have
C1,...,Cn
STy... ,sn>) , ,
olal ———— =o(aa(ar,...,an,)
( <C1,...,Cn ( 7‘)
. / ’ _ _
=T(oay,...,0a,,) = TAloas,...,0a,,) = oa
. .. S1y...4,8n . . .
as desired. The definition of a { ——————— | by induction is complete. We call
Cl,...,Cn
S1,...,8n

the transformation a — a ( on A the (simultaneous) substitution

Cl1,...,Cn



S1y...,S . .
w)) = oa, the substitution
C1,...,Cn

is sort-consistent. Notice that the following does not always holds:

S1,...,8n S1 Sn
al——— ) =a|— || — ).
Cly...,Cn C1 Cn

of c1,...,cn for s1,...,sn. Sincec(a

L S1,...,8 . .
Lemma 2.3 As for the substitution (%), if s; does not occur free in
1y tn
an element a € A for some i € {1,...,n}, then the following holds:
(31a-~-;5n) <S1,---,Si1,si+1,-~-,8n)
a _ = Qa .
Cly.reyCn Clyevey Ciml,CigTyee-)Cn
S1y...,8 .

Lemma 2.4 Let a € Aand b =a (clc:) Then S8, € UiL; Shee U
(Sfee —{s1,--.,8n}).

Lemma 2.5 Let a7,...,am € A, BC A, and sj,..., sy be distinct elements of
S which satisfy (S)‘)E’ree C{s1,...,sn} for each A € A and each b € B. Assume
that, for each t € T with {s7,...,sn}t NS # 0, S¢ N S” is enumerable. Then
there exist distinct elements 11,...,17m € SMU ({s1,...,sn} — S”*) which satisfy

the following conditions.
e ory = 0s; for each i€ {1,...,n}.

S1y,...,8n

e Each element of S is free from b( ) in a,...,ay, for each

T1,...,Tn
element b € B.

3 Formal languages

By definition of moderate generality, a formal language is a universal sorted
algebra (A, T, 0,S) equipped with subsets C and X of S and a set " which satisfy
the following three conditions.

e The set S is the direct sum C II X of C and X # 0.

e Let (Ta)aen be the OS of the algebra T. Then its index set A is contained
in the subset I' U TX of the free semigroup over I IT S.

e The arity of each operation Ty with A € ANTX is equal to 1.

According to Theorem 2.1, any quintuple T, S, C, X, " satisfying the above con-
ditions together with any pre-sorting T € S — T determines a formal language
(A, T,0,5,C, X, T") with ols =T.

We call C and X the sets of the constants and variables respectively, and
call T the index basis. Henceforth, we identify each index A € A N TX with



the operation Ty, call it a variable operation, and denote its domain by Ty,
because T) is unary and so T, C T. Furthermore, we define

X' ={xeX|ANTx# 0}
and call X’ the set of qualifying variables. We also define
A =ANT,

call A’ the set of invariable indices, and denote by T’ the operational sub-
algebra Ta, of T obtained by reducing the OS of T from (Tx)aea to (TA)rear-
While T’ as an algebra is equal to T iff A’ = A, T’ as a set is equal to T.

Since A is a subset of the free semigroup over I' IT S, we may discuss free
occurrences and substitutions on (A, T, 0,S). Furthermore, since A C I' U TX,
the following holds:

Gh 0 whenAe A/, 3.1)
~{x} whenAe ANTx (x € X), '
SN =X (3.2)

Example 3.1 The propositional language may be defined to be the formal
language (A, T, 0,S,C,X,T") as follows. First, let the prime set S satisfy S = X,
or C = (). Next, let the type algebra T be the singleton {¢} equipped with
the OS consisting of the three binary global operations /\,V, = and one unary
global operation —. Necessarily, we have

Dom A = DomV = Dom = = {¢}?, Dom— = {¢},
GNP =PVI=d= =0, b =0,

and the pre-sorting T maps every element of X to ¢. Finally, let the index basis
I be equal to the index set A ={A,V,=,—} of T.

Thus, the set A’ = A NT of invariable indices is equal to A, T’ = Tx/ is
equal to T not only as a set but also as an algebra, and there are no variable
operations or qualifying variables.

Since the type algebra is a global singleton, the propositional language A
thus defined is nothing but a UGA over a non-empty set X whose OS consists
of binary operations /\,V, = and an unary operation —. Consequently, A is the
direct union of the descendants X, (n = 0,1,...) of X, and X, is inductively
described as follows. First, Xo = X. Next for n > 1, X,, is the set of the elements

(3.3)

ar Aaz, a1 Vaz, ar = az, —a,
where a7, az, a satisfy the conditions
ai € Xn, (i=1,2), n=1+n;+ny, a€ Xn_1.

Therefore, the above definition of the propositional language is equivalent to
the usual one.



Example 3.2 The first-order predicate language may be defined to be the for-
mal language (A, T, 0,S,C, X,T) as follows. First, we impose no additional con-
ditions on the prime set S. Next, we let T be a set {€, ¢} of two distinct elements
€, ¢ equipped with the OS consisting of the four operations /A, V, =, — satisfying
(3.3), and the two kinds of unary operations Vx, Ix (x € X) satisfying

Dom Vx = Dom 3x = {¢}, Vxd = Ixdp = ¢, (3.4)
and the two sets F and P # () of operations of arbitrary arities such that

Domf = {e} x --- x {e}, f(e,...,€) =€, (3.5)

Domp ={e} x --- x {e}, ple,...,e)=0¢ (3.6)

for each f € F and each p € P. Therefore, the index set A of T is equal to
NV, =, —,Vx,3x | x € XJUFUP. Next, we define I' ={A\,V,=,—,V,3JUFUP.
Then certainly A C 'UTX and the set ANTX of the variable operations consists
of the unary operations Vx, Ix (x € X). Finally, we assume that the pre-sorting
T€ S — T satisfies 1S = {e}.

Thus, the set A’ = ANT of invariable indices is equal to {A\,V,=,—}UFUP,
and the set X’ of qualifying variables is equal to X.

In order to clarify the structure of the formal language A thus defined, first
let B be the closure of S in the operational subalgebra Ar obtained by reducing
the OS of A to F. Then as in Example 3.1, B is a union Uio:o S, of the
descendants S,, (n =0,1,...) of S, and since S is contained in the e-part A of
A, it follows from (3.5) that B C A and Sy is inductively described as follows.
First, So = S. Next for n > 1, S, is the set of the elements f(by,..., by ), where
f € Fand by € Sy, (i = 1,...,k) for some non-negative integers ny,...,ng
satisfying n =1+ Y | ns.

Next, let C be the closure of B in the operational subalgebra Ap obtained by
reducing the OS of A to P. Then as before, we have C = |J;,_, Bn, and By (n =
0,1,...) are inductively described as follows. First, Bo = B. Next for n > 1,

B, is the set of the elements p(cq,...,ck), where p € P, (¢1,...,ck) € Domp,
and ¢i € By, (i=1,...,k) for some non-negative integers ny,...,ny satisfying
n=1+ Z]f:1 n. In particular, By consists of the elements p(by,...,by) with

bi,...,bx € B. Since P # (), we have By # (. Also, it follows from (3.6) that B4
is contained in the ¢-part Ay of A. Hence it furthermore follows that By, =
for n > 2. For instance if n = 2, then since 2 =1+ Zf:1 ni, we have nj =1
for some j € {1,...,k}, and since ¢; € Bn, (i=1,...,k), we have ¢c; € B1 C Ay
and so (c1,...,cx) € Domp. Therefore B = (), and we can similarly prove
B, = 0 for n > 2 by induction on n. Thus C = B U B;.

Next, let D be the closure of By in the operational subalgebra of A obtained
by reducing the OS of A to {A,V,=,—,Vx,3x | x € X}. Then as before, it
follows from (3.3) and (3.4) that D = [J_yDn C Ay and Dy, (n =0,1,...)
are inductively described as follows. First, Do = B;. Next for n > 1, Dy, is the
set of the elements

di Ady, diVd,, d; =d;, —d, Vxd, dxd,

10



where di € Dy, (1=1,2), n=1+n7+n,2, d€ Dyn_1,and x € X.

In fact A = BUD. In order to prove this, since A = [S]and S C B C BUD, we
only need to show that BUD is closed under every operation A € A. Therefore,
suppose (ai,...,ax) € (BUD)* N DomA, and let a = Aay,...,ax). Recall
B CAcand D C Ap. Hence if A € F, then ay,...,ax € B, and since B is
closed under every operation in F, we have a € B. Next if A € P, then also
ai,...,ax € B, hence a € By C D. Finally if A € {\,V,=,—,V¥x,3x | x € X},
then aj,...,ax € D, and since D is closed under A, V,=,—, Vx,Ix (x € X), we
have a € D.

We have shown A =B UD. Since BC A¢, D C Ay, and AcNAg = 0, we
conclude that B = A¢ and D = Ay hold. Furthermore, using a certain theorem
in [3], we can prove that A equipped with the operation system F is a UGA over
S and that Ay equipped with the operation system {A\,V,=,— V¥x,Ix | x € X}
is a UGA over the set {p(ai,...,ax) | p € P, a1,...,ax € Ac}. Consequently
as in Example 3.1, we have Ac =[], Sn and A =[], Dn.

Thus, the predicate language defined above is the set of the terms and for-
mulas in the usually defined predicate logic.

Example 3.3 The set of A-terms in the typed A-calculus may be defined to be
the formal language (A, T, 0,S,C,X,T") as follows. However for certain reasons,
we write Q for A.

First, we impose no additional conditions on the prime set S and the pre-
sorting T € S — T. Next, we define the support of the type algebra T to be the
support of a UGA over a set Tp whose OS consists of one binary operation —.
Then T =[] T and Ty (n=1,2,...) are the set of the elements t; — t;
with t; € Tn, (i=1,2) and n =1+ ng +ny. Next, we define the OS of T to
consist of the binary operation e and the unary operations Qx (x € X) defined
by

Dome ={(t —» u,t) | t,u € T}, (t—ouwet=mu,
Dom Ox =T, Oxt=1x —t.

Therefore, the index set A of T is equal to {e, Qx | x € X}. Finally, we define
' ={e,Q}. Then certainly A C I'UTX and the set ANTX of variable operations
consists of the unary operations Qx (x € X). Furthermore, the set A’ = ANT of
invariable indices is equal to {e}, and the set X’ of qualifying variables is equal
to X.

Example 3.4 The MPC language and C language investigated in [2][1] are
formal languages.

4 Denotable worlds

Let (A,T,0,S,C,X,T) be a formal language, A be the index set of T, A’ = ANT
be the set of the invariable indices, and T’ be the operational subalgebra T of
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T. Then, a sorted algebra W is called a denotable world for A, if it satisfies
the following two conditions.

e The type algebra of W is equal to T'.
o W, # () for each t € oS, that is, for each t € T with Sy # 0.

Remark 4.1 In [1][2], denotable worlds are alternatively called cognizable
worlds from the viewpoint of mathematical psychology, and an arbitrarily cho-
sen non-empty collection of cognizable worlds for A is called the domain of the
actual worlds for A.

Example 4.1 Suppose (A, T, 0,S,C,X,T) is the propositional language defined
in Example 3.1. Then A is a UGA over X whose OS consists of the binary
operations A,V,= and the unary operation —, and since T’ = T as algebras
and T = {¢}, the denotable worlds for A are the non-empty global algebras
similar to A.

If (A, T, 0,S,C,X,T) is the predicate language defined in Example 3.2, then
T ={e, ¢}, and the denotable worlds W for A are the direct unions W LIW¢, of a
non-empty algebra We similar to A¢ and an algebra Wy, similar to a denotable
world for the propositional language.

Example 4.2 Let (A,T,0,S,C,X,T") be the set of the A-terms defined in Ex-
ample 3.3. Here we construct a specific denotable world W for A.

Since W is the direct union of its t-parts Wy (t € T), we have to first define
a family of sets Wy (t € T). Since T is a UGA over a set Tp with respect to
the binary operation —, we define Wi by induction on the rank n of t with
respect to —. If n = 0, then t € Ty, so we define Wy to be an arbitrary non-
empty set. Suppose n > 1. Then t = t; — t2 with t; € T,,, (i = 1,2) and
n =14n; +ny, and so since Wy, (i = 1,2) have already been defined, we may
define Wy = W,, — W4,. Hence

Wt_)u = Wt — WU.

for all (t,u) € T?. Since we have defined a family of sets W, (t € T), we define

W:HWt.

teT

It now remains to define a binary operation e on W. First, we define

Dome = H (Wiu x Wy).
t,ueT

Next for a € Wi, and b € Wy, since Wi, = Wy — Wy, we may define
aeb =ab,
where ab is the image in W, of b € W, by the mapping a € Wy — W,,. This

completes the construction of a specific denotable world W for A.
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Example 4.3 The MPC worlds and C worlds investigated in [2][1] are cogniz-
able worlds respectively of the MPC language and C language mentioned in
Example 3.4.

5 Denotations and meta-denotations

Let (A,T,0,S,C,X,T') be a formal language. Then for each denotable world
W for A, a C-denotation or constant denotation into W is a mapping ©
of C into W which satisfies ®Cy C W, for each t € T. There is at least
one C-denotation. If C = @, then since ® — W = {0} by the set-theoretical
definition of Y — Z, () is the unique C-denotation. Similarly, an X-denotation
or a variable denotation into W is a mapping v of X into W which satisfies
vXy € W, for each t € T. We denote the set of all X-denotations into W by
Vx . w, because denotations are alternatively called valuations. Then Vx w # ()
because Wy # () whenever S # (), and so we can construct the power algebra
(WVxw T’ o) of W with exponent Vx w as described in §2, where T/ = Ta/,
A" = ANT, and A is the index set of T. Let (Ba)reas be the OS of WVx.w
Recall that we identify each index A € A NTX with the operation T,, call it a
variable operation, and denote its domain by Ty because it is a subset of T.

Suppose that, for a denotable world W for A and for each variable operation
A € ANTX and the variable x such that A € I'x, we are given a mapping

Aw € ( U (Wox — wt)> - W (5.1)
teTy
which satisfies
}\W(Wcrx — Wt) g W)\t (52)

for each t € Tn. Then we can define the unary operation py on WVx.w for
each A € ANTX as follows, and extending the OS of WY*.W from (fa)aea’ to
(Ba)aen, we can construct the sorted algebra (WVYx.w T p). First we define, for
each pair x,w of x € X and w € Wq,y, the transformation v — (x/w)v on Vx w
by

vy when X3y #x, (5.3)

((x/wiv)y = {

We call the transformation (x/w) the redenotation for x by w. Next we define,
for each quadruple t, @,x,v consisting of t € T, ¢ € Vx w — W4, x € X and
v € Vx,w, the mapping ¢ ((x/0)v) of Wy into W, by

(0 ((x/T)) w = @ ((x/w)) (5.4)

for each w € Wyy. We finally define for each A € A N TX the unary operation
Bxr on WVYx.w as follows. Suppose A € I'x with x € X. First we define

Dom B = [ (Vxw — W4). (5.5)

teTx

w  when y = x.
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Next for each t € Ty and each ¢ € Vx,w — W¢ we define 35 @ to be the element
of Vx w — W such that

(Ba@)v =Aw (@((x/O)v)) (5.6)

for each v € Vx,w. Since @((x/0)v) € Wex — Wi and Aw(Wex — Wi) C
Wi, certainly (Ba@)v € Wi. Thus

Pr(Vx,w — W) C Vxw — Wi (5.7)

for each t € Ty. Since Vxw — W, is the t-part of WYXW for each t € T, we
have thus constructed the sorted algebra (WYx-w T p). We call the mapping
Aw used above for A € ANTX an interpretation of A on W.

Now let @ be a C-denotation into W. Then we can construct the sort-
consistent homomorhism ®* of A into WYX W as follows. First we define the
mapping ¢ of S into Vx,w — W so that

(@a)v = ®a when a € C,
¢ " |va when aeX

for each v € Vx,w. Then @S¢ C Vx,w — W; for each t € T because ®Cy C W,
and vX¢ € Wy, and so @ maps S into WY*W and satisfies p = o|s. Therefore
by the universality of A, there exists a unique sort-consistent homomorphism of
A into WVYX.W which extends ¢. We call it the meta-denotation determined
by ® and denote it by @*. Since @* is an extension of @,

(% a)y = ®a when a € C, (5.8)
" |va whenaeX '

for each v € Vx w.

Remark 5.1 By definition, a logical system is a triple A, W, (Aw )a,w of a
formal language (A, T, 0,S,C, X,T"), a domain W of denotable worlds for A, and
a family (Aw)a,w of interpretations Ay of the variable operations A € ANTX
on WeW.

Suppose the logical system A, W, (Aw ) w satisfies the following condition.

e For an element ¢ € T, the ¢p-part Ay of A is non-empty, and the ¢p-part
Wy, of each W € W is equal to T = {0, 1}.

Then we call ¢ a truth and call the elements of Ay the sentences.

Each logical system with a truth yields a “sentence logical space.” A general
theory of completeness for logical spaces is developed in [4], and a specific logical
space is investigated in [1] from the viewpoint of mathematical psychology [2].

Example 5.1 Here is shown interpretations of the variable operations which
are usually denoted by Vx and Jx.
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Assume that a variable operation A € ANTx (x € X) of a formal language
(A,T,0,S,C,X,T) satisfies Ty ={¢d} and Ad = ¢ and that a denotable world W
for A satisfies Wy, =T (cf. (3.4) in Example 3.2 and Remark 5.1). Then (5.1)
and (5.2) show that the interpretation Aw of A on W is a mapping

Aw € (Wox = Wy) — Wy,
and (5.5) and (5.7) show that the unary operation B on WYXW satisfies
Dom B = Vx,w — Wy, ImBr € Vx,w — We.
For instance, define Ay by
Aw T =inf {fw | w € Wy} (5.9)

for each f € Wox — Wy, where the infimum is taken with respect to the usual
order on Wy = T. Then (5.6) and (5.4) show that

(Ba@)v =inf{e((x/w)v) [w e Woy } (5.10)

for each @ € Vx,w — Wy and v € Vx w, which implies that (Bae)v = 1 iff
(p((x/w)v) =1 for all w € W4x. Thus, it is reasonable to denote the variable
operation A € A N I'x thus interpreted by Vx, considering that it is the product
of Vel and x € X.

Similarly, if we define Ay by

Awf =sup{fw |w € Wy}
for each f € Wy — Wy, then we have
(Br@)v =sup{e((x/W)v) |w € Wy }

for each @ € Vx,w — Wy and v € Vx w, which implies that (fa@)v = 1
iff there exists an element w € Wy, such that (p((x/w)v) = 1. Thus, it is
reasonable to denote the variable operation A € A N T’x thus interpreted by Jx,
considering that it is the product of 3 € T and x € X.

Example 5.2 Here is shown an interpretation of the variable operations Qx
on the formal language defined in Example 3.3 on its denotable world defined
in Example 4.2.

Assume more generally that a variable operation A € ANTx (x € X) of a
formal language (A, T, 0,S,C,X,T") and its denotable world W satisfy Wxy =
Wox — Wy for each t € Ty. Then (5.1) and (5.2) show that the interpretation
Aw of A on W is a transformation on UtET)\ (Wox — W,) satistying

AVV(VVGX - VV%) EZVch - VM&

for each t € Ty, and (5.5) and (5.7) show that the unary operation B on WVx.w
satisfies

Dom By = U (Vx,w — W),

teTa

Br(Vx,w — Wy) C Vxw — (Wox — Wy).
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for each t € Ty. For instance, define Ay by
Awf =f (5.11)
for all f € Wy — Wi, Then (5.6) and (5.4) show that

((Ba@)v)w = @((x/w)v) (5.12)

for each @ € UteTA(VX»W — Wy), v € Vxw, and w € Wgy. We will denote
the variable operation A € A NTx thus interpreted by Qx, considering that it is
the product of Q € T" and x € X.

6 Fundamental theorems on denotations

Throughout this section, we let (A, T,0,S,C,X,T') be a formal language, W
be its denotable world, and ® be a C-denotation into W. We also assume
that WVx.w has been made into a sorted algebra with type algebra T by some
interpretation Ay on W of each variable operation A on T. Then the meta-
denotation @* € A — WVx.w is defined. We denote the OS’s of A, WVx.w
and W by (aa)aca, (Balaea, and (wx)aen’ respectively, where A’ = ANT
because the type algebra of Wis T/ = Tx:.

Theorem 6.1 (Denotation theorem) Let a € A and v,v’ € Vx w. Assume
vx = v'x for every variable x which occurs free in a. Then (®*a)v = (O*a)v’.

Proof Since A is a USA, we may argue by induction on the rank r of a.
Assume r =0. Then a € S=CUX. If a € C, then

(0*a)y = @a = (O*a)v’
by (5.8). If a € X, then since a < a,
(O*a)v=va=v'a=(DP*a)’

by (5.8) and our assumption. Therefore, (O*a)v = (®*a)v’ holds in this case.

Therefore assume v > 1. Then a has an expression a = ax(aj,...,an,)
and T is greater than the ranks of aj,...,an,. Since ®* € A — WYXV ig a
/A-homomorphism, we have

(@*a)v = (Br(P*ar,..., P an,))v.

Assume A € A’. Then, since the projection by v is a A’-homomorphism of
WVx.w into W, the above equation may be rewritten

(d)*a)v = (.U}\(((D*a] )V, ) ((D*Cln)\ )V),

and a similar equation holds with v replaced by v/. Also since A € A/, S» = () by
(3.1), and so Lemma 2.2 shows that Xgk C X&__, hence (D*ay)v = (O*ay)v’ for

free = ““Mree’
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all k € {1,...,nx} by the induction hypothesis. Therefore, (0*a)v = (O*a)v’
holds in this case.

Therefore assume A ¢ A’. Then A € I'x for some x € X and n) = 1, hence
a = xxaj. Therefore

(@*ajv = (Br(@*ar))v = A ((@*ar) ((x/O)v))

by (5.6), and a similar equation holds with v replaced by v’. Therefore, we only
need to show (®*a; )((X/D)v) = (®*a, )((X/D)v’). In order to do so, in view
of (5.4), we have to show

(@*a1) ((x/w)v) = (@*ar)((x/w)v')

for each w € Wgy. This will follow from the induction hypothesis, if we show
that ((x/w)v)y = ((x/w)v’)y for each y € Xg! . This certainly holds, because
if y = x, then ((x/w)v)y =w = ((x/w)v')y by (5.3), while if y # x, then
y ¢ S* by (3.1), and so y € X, by Lemma 2.2, hence ((x/w)v)y = vy =

viy = ((X/w)v’)y by (5.3) and our assumption. The proof is complete.

In order to state the next theorem, we generalize the redenotation v +—
(x/w)v on Vx w defined by (5.3). Let x1,...,%xn (n > 0) be distinct variables
and let wi € Wy, (i=1,...,n). Then, for each X-denotation v, there exists
an X-denotation v/ which satisfies

vy — wi if x = x4 for some i€ {1,...,n},
vx ifxeX—{x1,...,xn}.

We denote it by M) v. Then the symbol M) may be

Wi,...,Wn 1y.yWn
regarded as denoting a transformation on Vx w, which we call a redenotation
for (x1,...,%n) by (W1,...,wyn). When n =0, it is the identity transformation

on Vx w. As an immediate consequence of this definition, we have

<x1,...,xn > _<x1,...,xi1 > (xi,...,xn>
Wi,..., W Wi,..., Wi Wi,..., Wn

(6.1)
B (xi,...,xn ) (x1,...,xi1 )
Wi,...,Wqn Wi, ..., Wi

for each number i € {2,...,n}.
Theorem 6.2 (Substitution-redenotation theorem) Let x1,...,xn be dis-
tinct variables of A and a,c1,...,cn € A. Assume, for each 1 € {1,...,n}, that
oxi = oci and xq is free from ¢; in a. Then the following holds for each
Ve Vx)w.

. X1,.0e,Xn P X1yeoreannnn ) Xn
<(D (a(c1,...,cn>))v_(® a)<<(®*C1)V,...,(®*Cn)v>v) (6.2)
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Proof We argue by induction on the pairs (n,r) of n and r = rank a arranged

in lexicographical order. If n = 0, then both the substitution (%) and
Ty:e+yCn
Xlyeorennnnn y Xn
(D*cy)v,...,(D*cn)v
both sides of (6.2) are equal to (®*a)v. Therefore assume n > 1.

Assumer =0. Then a e S=CUX. If a € C, then a & {x1,...,xn}, and
so the left-hand side of (6.2) is equal to (®*a)v by (2.1), and therefore, both
sides are equal to ®a by (5.8). If a = x; for some 1 € {1,...,n}, then the left-
hand side is equal to (®*ci)v by (2.1), while the right-hand side is also equal to
(®*ci)v by (5.8) and the definition of the redenotations. If a € X—{x1,...,%xn},
then the left-hand side is equal to va as in the case a € C, while the right-hand
side is also equal to va by (5.8) and the definition of the redenotations.

Therefore assume v > 1. Then a has an expression a = ax(ai,...,an,) and
T is greater than the ranks of aj,...,an,. Define

the redenotation ( ) are identity transformations, and so

= Xlyeooeononn y Xn v
\(DFcy)y,..., (D ca)v/)
b:a<x1,...,xn>’
Cly...,Cn
bkzak<w) (kz],...,m\).
C1y,...,Cn
We have to show (®*b)v = (®*a)u.
Suppose x; €« aforsomei € {1,...,n}. Then Lemma 2.3 shows that the left-
hand side of (6.2) is unchanged by the deletion of X—T, while Theorem 6.1 shows

Ci
Xi

that the right-hand side is unchanged by the deletion of ————
(D*cy)v

. Therefore,

(6.2) holds by the induction hypothesis.

Therefore assume x; < a for alli € {1,...,n}. Then {x1,...,xa}NS* =10
by Lemma 2.2. Hence b = ap(b1,...,bn,) by (2.2), and x; is free from c; in
ax by Lemma 2.2 for each i € {1,...,n} and each k € {1,...,n,}. Therefore
(®*by)v = (®*ax)u by the induction hypothesis for each k € {1,...,n}. Also,
since ®* € A — WYX W is a A-homomorphism, we have

(@*b)v = (BA(D*b1,..., D" b))V,
(@ a)u= (BA(P*as,..., P an,))u.

If A € A’, then since the projections by v and u are A’-homomorphisms of
WVx.w into W, the above equations may be rewritten

(@D = wr (@ b1 )y, ..., (@ bn, V),
(@*a)u = wxr((P*ar)u,..., (@ an, Ju).

Since (@*by)v = (®*ax)u for each k € {1,...,n}, we conclude that (O*b)v =
(®*a)u as desired.
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Therefore assume A ¢ A’. Then A € I'x for some x € X and n) = 1, so
a=axaj and b = x)\b;. Therefore

(@70)v = (BA(@7B1))v = A (@71 (/D) ),
(@*aju = (Br(@"ar))u=Aw( (@ ar)((x/Du))

by (5.6). Therefore, we only need to show (®*b; )((X/D)v) = (®*a; )((X/D)u).
In order to do so, in view of (5.4), we have to show

(@*b1) ((x/w)v) = (@*ar)((x/w)u)

for any w € Wyy. Recall that x; is free from c; in a; for each i € {1,...,n}.
Therefore
Xlyeweeononn y Xn

O*b = (D*

(@1 (/) = (07ar) (i (/) )
by the induction hypothesis, where v/ = (x/w)v. We are assuming that x; is
free from ¢; in a = «xay and x; < a for each i € {1,...,n} and x € S
Therefore, x 4« ¢i by Lemma 2.2, and so (®*ci)v’ = (®*ci)v by Theorem 6.1
for each i € {1,...,n}. Recall also that {x1,...,xn} N S* = @, while x € S
Hence x1,...,%n,x are distinct. Therefore

by (6.1), hence (®*b1)((x/w)v) = (®*ar)((x/w)u) as desired.

7 Functional expressions

Throughout this section as in §6, we let (A, T, 0,S, C, X, T") be a formal language,
W be its denotable world, and @ be a C-denotation into W. We also assume
that WVYx.w has been made into a sorted algebra with type algebra T by some
interpretation Ayw on W of each variable operation A on T. We denote the
OS’s of A, WYXW T and W by (oa)aen, (Ba)aea, (Ta)aea, and (wa)aea:
respectively, where A’ = ANT.

7.1 The definition

Here is shown that the C-denotation @ associates each element a of A with a
function on W.

First of all, (A,T,0,S) is a USA, and A is a subset of the free semigroup
over I'I1S. Therefore, the assumption in §2.4.2 is satisfied, and so we may apply
all the definitions and lemmas in §2.4 to (A, T,0,S). In particular, X§ , is a
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finite set by Lemma 2.1, and so there exists a sequence (x1,...,%n) of distinct
elements x1,...,xn of X of finite length n > 0 which satisfies

Xfee S{x1,.-.,Xn} (7.1)

We call it a free base of a. Notice that it is not uniquely determined by a and
that not all variables in it actually occur free in a. Notice also that (7.1) with
n =0 means X{_, = (), in which case we say that a is closed.

Now we define a function F € Wgy, X - -+ X Wsy, — Weq. If n =0, then
Wex, X -+ X Wey, is equal to {#} by its set-theoretical definition, and so we
regard Wey, X -+ X Woy,, — Wisq as Wiq. Therefore if n =0, F is an element
of Wqq, which we regard as a O-ary function.

The definition of F is as follows. If (W1,...,Wn) € Wy, X +-+ X Wey, |
then since x1,...,Xxn are distinct and x; and w; are of the same type, there
exists an element v € Vx w which satisfies vxi = wy for each i € {1,...,n}.
Using any one of such v € Vx w, we define F(wq,...,wy) = (0*a)v. Since O*

is sort-consistent, we have ®*a € Vx w — W, and so the right-hand side
of this equation certainly belongs to Wso. Moreover, Theorem 6.1 shows that
the right-hand side does not depend on the choice of v € Vx w which satisfies

vxi{ = w; for each 1 € {1,...,n}. Thus, the function F is determined by @, a,
and (x1,...,%Xn). We call it the functional expression of a under @ with
respect to (x1,...,%n), and denote it by
a(D(X1)' .. vx‘ll)»
while we abbreviate its image at (W1,...,Wn) € Wgyx, X -+ X Wgy, to
a®wi,...,wn).
Therefore, a® (w1,...,wn) is defined formally by
a®(wr, .., wn) = (a®(x1,... %)) (Wr, .., wn)

and substantially by

a®(

Wi,.o,wn) = (@%a)v (vE Vxw, v =w; (i=1,...,n)).

Two alternative definitions are as follows:

a®(vxy,...,vxn) = (@*a)v (veVxw),
a®(wr,...,wn) = (®*a) ((X]”Xn> v) (v e Vx.w).
Wi,...,Wn
As for the former one, notice {(vx1,...,vXn) [V € Vx w} = Wgx, X+ X Wy, .

Example 7.1 Suppose a € C. Then, since a is closed, an arbitrary sequence
(x1,...,xn) of distinct variables is a free base of a, and so the functional expres-
sion a®(x1,...,%n) of ais defined on Wyyx, X -+ X Wy, . Since (0*a)v = ®a
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for all v € Vx w by (5.8), it follows that a® (x1,...,xn) is the constant function
of value ®@a.

Suppose x € X. Then, since X§., = {x}, an arbitrary sequence (x1,...,%n)
of distinct variables satisfying x € {x1,...,%xn} is a free base of x, and so the
functional expression x® (x1,...,%n) of x is defined on Wgy, X -+ x Woy,. .
Let 1 € {1,...,n} be the number for which x = x;. Then since (®*x)v = vx;
for all v € Vx w by (5.8), it follows that x®(x1,...,%xn) is the projection of
Wox, X -+ X Wey, onto Wey, .

7.2 Functional expressions and operations

Recall that, for each A € A NTX, we identify 1) with A and denote its domain
by Tx, because Ty is unary and so Ty C T.

Theorem 7.1 Let a € A and (xq,...,xn) be a free base of a. Then the

following holds on the functional expression a®(x1,...,xn).

(1) If a = ar(ar,...,an,) with A € A/, then (x1,...,%n) is a free base of ax
for each k € {1,...,na} and the functional expressions a (x1,...,xn) (k =
1,...,ny) satisfy

a®wi, ..., wn) =wa(af (Wi, ..o, wn), ..o, ap (Wi, .., W)
for each (W1,...,Wn) € Way, X -+ X Wgy, .

(2) f a=ob with A € ANTx and x € X —{x1,...,%Xn}, then (x,x1,...,%n) is
a free base of b and the functional expression b®(x,x1,...,%n ) satisfies

acp(W])"’ vW‘I’L) :)\W(bCD(D)V\”?"')WTI))

for each (w1,...,Wn) € Wox, X+ - X Wy, where b® (0, w1,..., Wy ) is the
element of Wgyx — Wop which maps each w € Wy to b® (w, wr, ..., wn).

(3) If a = aab with A € ANTx; for some 1 € {1,...,n}, then (x1,...,xn) is a

free base of b and the functional expression b® (x1,...,xn) satisfies
@ @
a (W1 yroee »Wn) = AW(b (W1 yoeey Wi ,D,Wi+] yroee »Wn))
for each (W1,...,Wn) € Wex, X -+ X Wy, , where
b® (w1,...,wi_1,0,Wii1,...,Wn) is the element of Wyyx, — Wop, which
)

maps each W € Wgy, to b (Wi, ..., Wi, W, Wit1,...,Wn).
Lemma 7.1 Let x1,...,%Xm,X{,...,X, be distinct variables and assume that
(X1,...,%m) is a free base of an element a € A. Then, (x],...,X\,X1,...,Xm)
is also a free base of a, and so a®(x1,...,%m) and a®(x],..., X0, X1,...,Xm)

are defined. Denote them by G and H. Then,
G(wi,...,wm) =HW], ..., W/ ,wi,...,wp)

for each (W1,..., Wi, Wi,...,Wn) € Wy X oo X Woyr X Woyy X -+ X Wox .
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Proof Let v be an element of Vx w which satisfies vx; = w; (i=1,...,m)
and vxj =wj (j =1,...,n). Then

G(wi,...,wm) = (@ a)v=HWw1,..., W/, Wi,...,wn).

Proof of Theorem 7.1 (1) Since A € A/, S* = () by (3.1), and so X{¥_ C

free
Xpoo € {x1,...,%xn} by Lemma 2.2 for each k € {1,...,na}. Let v be an
X-denotation such that vxi = w; for i = 1,...,n. Then since ®* is a A-

homomorphism and the projection by v is a A’-homomorphism,

a®wi,...,wn) = (®*a)v = (O*(ar(ar,...,an,)))v
=wr((P*ar)v,..., (@ an,)v)
=wx(af wi,...,wn),...,ay (wi,...,wn)).
(2) Since (x,x1,...,%n) is also a free base of a, (2) is a consequence of (3)

together with Lemma 7.1.
(3) Since A € ANTxi, S* = {xi} by (3.1), and so X, C {x}UXg¢,. C

free free

{x1,...,xn} by Lemma 2.2. Since a = a\b with A € ANTX, we have ca =
Tx(ob) = A(ob) by our notational convention, so t = ob belongs to T, and
ca = At. Therefore Aw(Wox, = Wob) € Weq by (5.2). Let v be an X-
denotation such that vxi =wj fori=1,...,n. Then

((D*b)((XI/W)V) = bq) (W1 yor oy Wi, W, Wig1,... )Wﬂ)
for each w € Wy, and so
(q)*b)((xl/lj)v) = b(D (W1 yoeey Wi1, Dvwi+1 Yoo awn)

by (5.4) and the definition of the right-hand side. Therefore

O

a®(wr,...,wn) = (@*a)v = (O*(xab))v

= (Ba(@*b))v
= Mw ((@*0) ((xi/ON) ) (by (5.6))
:AW(b®(w1,...,Wiq,D,wiH,...,wn)).

Remark 7.1 Let x1,...,xn be distinct variables of A and define

AX1,...,Xn) = {a € A | Xfreo g{x1,...,xn}},
W(x1,...yxn) = Wox, X -+ X Woy .
Then, A(x1,...,Xn) is a support subalgebra of A by Lemma 2.2, and Theorem

7.1 (1) implies that the mapping a — a®(x1,...,%xn) of A(x1,...,%n) into the
power algebra WW(x1,---Xn) is a A’-homomorphism.
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Corollary 7.1.1 If a = ax(x1,...,%n, ) with A € A" and x1,...,xn, are dis-

tinct variables, then (x1,...,%n, ) is a free base of a and the functional expres-
sion a®(x7,...,Xn, ) satisfies
@ _
a”(wi,. .., wn, ) = wa(wr, ..., wn, ).
for each (wi,..., Wy, ) € Way, X -+ X Wox,,, -

Proof This is a consequence of Theorem 7.1 (1) and Example 7.1.

Example 7.2 Assume as in Example 5.1 that a variable operation A € AN
Mx (x € X) satisfies T\ = {¢} and Adp = ¢ and that W satisfies Wy = T.
Interpret A by (5.9), denote it by Vx, and identify it with o) and . Then, for
each a € Ay, we have ¥xa € Ay, hence ®*a, ©*(Vxa) € Vx,w — T, and

(@*(vxa))v = (Vx(®*a))v = inf{(D*a)((x/W)v) | w € Wy }

by (5.10) for each v € Vx w. Assume that (x,x2,...,xn) is a free base of a.
Then (x2,...,%n) is a free base of Vxa by Lemma 2.2, and the above equation
shows that the functional expressions a® (x,x2, ..., %n) and (Vxa)®(x2,...,%n)
are both T-valued and satisfy

(vxa)® (wz,...,wn) =inf{a®(w,wz,...,wn) [W € Wqy }
for each (W2,...,Wn) € Wey, X --- X Woy, , that is, (Vxa)® (wz,...,wy) =1
iff a®(w,wy,...,wn) =1 for all w € W,.

Example 7.3 Assume as in Example 5.2 that a variable operation A € AN
'x (x € X) and W satisfy Wiy = Wsx — W, for each t € Ty. Interpret A by
(5.11), denote it by Qx, and identify it with o) and . Then, for each a € Ay,
we have @*a € Vx,w — Wi, @*(Qxa) € Vx,w — (Wox — W), and

(@*(Oxa))v)w = ((Qx (@*a))v)w = (®*a)((x/w)v)

by (5.12) for each v € Vx w and w € Wgy. Assume that (x,x2,...,%n) is a
free base of a. Then (x2,...,%xn) is a free base of Qx a by Lemma 2.2, and
the above equation shows that the functional expressions a®(x,xz,...,%n) and
(Oxa)®(x2,...,%n) are Wi-valued and (Wyx — W,y)-valued respectively, and
satisfy

(Qxa)(wz,...,wn))w =a®(w,wz,...,wn)
for each (W, w2,...,Wn) € Weyx X Way, X -+- X Wey, .
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7.3 Substitution-composition theorem

Theorem 7.2 Let a,cq,...,cm € A and let (x1,...,%xm) be a free base of a.
Assume oci = ox; for each 1 € {1,..., m} and define

X100, X

b=a ( 1) ) m) .

C1,...,Cm
Assume that (y1,...,yn) is a free base of each of ¢1,...,cm. Then (y1,...,yn)
is a free base of b. If furthermore x; is free from c; in a for each i € {1,..., m},
then b®(y1,...,yn) is equal to the composite function of a®(x1,...,xm) and

Clq)(y]v"')yﬂ))"')Cm®(y1)"')yn)7 tha‘t iS7

b (Wi, wi) = a® (1P (Wi Wa e @ (W W)

for each (w1,...,Wn) € Woy, X -+ x Wqy...

Proof That (yi,...,yn) is a free base of b is an immediate consequence of
Lemma 2.4. If x; is free from c¢; in a for each i € {1,..., m}, then we can argue
as follows for each v € Vx w by using Theorem 6.2:

b®(vy1,...,vyn) = (®*b)v = ((D* <a (H))) v
. X1y eerenanns , Xm
= (@%a) (((CD*c] L *cm)v> v)

a®((D*cq)v,..., (@*cm)v)

= a® (11, VU)o (VU VYn))

The proof is complete.

Corollary 7.2.1 Let a € A and let (x1,...,Xn) be a free base of a. Assume
that yi,...,yn are distinct variables such that oy; = ox; for eachi € {1,...,n},

and define
b:a(x1,...,xn> .
y] Yyt )yn
Then (y1,...,Yyn) is a free base of b. If furthermore x; is free from y; in a for
eachie{1,...,n}, then b®(y1,...,yn) = a®(x1,...,xn).
Proof This is a consequence of Theorem 7.2 with m = n and c¢; = y; for each
ie{l1,...,n} together with Example 7.1.

8 Denotable functions

Throughout this section as in §6 and §7, we let (A, T,0,S,C,X,T") be a formal
language, W be its denotable world, and @ be a C-denotation into W. We also
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assume that WVYXW has been made into a sorted algebra with type algebra T
by some interpretation Ay on W of each variable operation A on T. We denote
the OS’s of A, WYX T and W by (o )aen, (Ba)aea, (Ta)aen, and (wi)rens
respectively, where A’ = ANT. Recall that, for each A € A NTX, we identify
Tx with A and denote its domain by Ty. Also, X’ is the set of the qualifying
variables.

In §7, we have seen that if (x1,...,%xn) is a free base of an element a € A,
then a®(x1,...,xn) is a function whose domain is equal to Wey, X -+ X Wy,
and whose image is contained in Wgq. In view of this fact, we make the following
definition.

Definition 8.1 A type function on W is a function whose domain is equal
to Wy, X -+ x Wy for some elements ty,...,tn € T (n > 0) and whose image
is contained in W, for some element t € T. The 0-ary type functions on W are
the elements of W. We denote by F the set of the type functions on W:

ff:]j( IT ><-~-><th—>Wt)>.
n=0

t1,..,tn, teT

Example 8.1 The constant function of domain Wg, x --- x Wy, and value
w € W belongs to F, which we denote by (t1,...,tqn — w).

The projection of Wy, x --- x Wy, (n > 1) onto Wy, belongs to ¥, which
we denote by (t1,...,tn | 1) foreach i € {1,...,n}.

If Wy, x -+ x Wy, € Dom wy, then the restriction of wy to Wy, x -+« x Wy,
is a type function whose image is contained in W, (¢,

Definition 8.2 An element F € JF is said to be ®-denoted by an element
acAif F=a®(xq,...,xn) for some free base (x1,...,%n) of a. Also, the F is
said to be ®-denotable by A if F is @-denoted by an element of A. We denote
by F the set of the ®-denotable functions in F.

The purpose of this section is to pin down the structure of F®. To that end,
we first list primitive ®-denotable functions.

Example 8.2 The functional expression of each element a € A under @ is
®@-denoted by a. As shown in Example 7.1, if xq,...,xy are distinct variables,
then for each element w € ®C, the constant function (ox1,...,o0xn — W) is O-
denoted by an element a € C such that w = ®a. Also, if n > 1, the projection
(ox1,...,0%xn | 1) is @-denoted by x; for each i € {1,...,n}.

In view of Example 8.2, we make the following definition.

Definition 8.3 The ®-primitive functions are the following two kinds of
functions made of the sequences (x1,...,xn ) of distinct variables.

e The constant functions (ox1,...,0xn — W) with w € ®C and n > 0.
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e The projections (0x7,...,0xn 1) withn>1andie{l,...,n}.
We denote by P® the set of the ®-primitive functions.

Example 8.2 shows that the @-primitive functions are ®-denotable, that is,
PP C FP. It will be shown in Theorems 8.1 and 8.2 that every ®-denotable
function is generated from ®-primitive functions by certain operations. In or-
der to state the results, we make J into the algebra whose OS consists of the
following five families of operations.

(0) The family of permutations p (p € [[,_; &) Here &, is the sym-
metric group on the letters 1,...,n. The permutation p € &, transforms
each n-ary type function G € Wy, x --- x Wy, — W, into the type function
PG e Wy, x--- x Wy = — W, defined by

(DG)(WP],... »an) =G(wr,...,wn).

(1) The family of compositions o, (m = 1,2,...) The composition o,
transforms each (m + 1)-tuple (G,Hy,...,Hn) of type functions G € W,,, x
x Wy, = Wiand Hi e Wy, x - x W, — W,, (1i=1,...,m) into the
type function Go (Hy,...,Hyn) € Wy, x -+ x Wy, — W, defined by
(Go(Hi,...,Hm))(wi,...,wn)
=G(Hi(wi,...,wn),...,Hi(wi,...,wn)).

(2) The family of operations A (A € A/, Domwy, # @) Let ny be the arity

of wy. Then the operation A transforms each nj-tuple (Gy,...,Gn,) of type
functions Gx € Wy, x -+ x Wy — Wy, (k= 1,...,m)\) with Wy, x -+ x
Wiy, € Domwj into the type function A(G1,...,Gn,) € Wi, X -+ x Wy —

W (wi et ) defined by

()\(61)"')GTU\))(Wl"-')WTl)

= (l)A(G](W],.--,Wn),-.',an(W],.u,Wn)).

(3) The family of operations by ; (A€ ANTX, i=1,2,...) The operation
bai with A € ANTx (x € X) transforms each type function G € Wy, x -+ X
Wy, — Wi with t € Ty, 1 < n, and ox = t; into the type function by ;G €
Wi, X X W) X Wi, X - x Wy, — Wy defined by

(b)\,iG)(W1)"')W’L—1)Wi+1»~")wﬂ)
:}\W(G(W],...,Wif],D,WiJr],...,Wn)),
where G(wq,...,wi_1,00,Wit1,...,Wn) is the element of Ws, — W, which
maps each element w € Wy = Wy, to G(wr, ..., Wi_1,W,Wit1,...,Wy) €

W,. This definition makes sense because Aw (Wsx — W) C Wiy by (5.2).
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(4) The family of operations fii; (t € T, X{ # 0, i = 1,2,...) The
operation fi ; transforms each type function G € Wy, x --- x Wy — W, such
that i—1 < n and u € ImA for some A € ANTX{ into the type function
Be1G € Wy, X oo X Wy x Wy X Wy, X - X Wy, — W, defined by

(Ht,iG)(w1)--- ,Wif],W,Wi,...,Wn) = G(W1,...,Wn).

Definition 8.4 [P®] denotes, as usual, the closure of P? in the algebra F, while
(P®) denotes the closure of P? in the operational subalgebra of F obtained by
deleting the permutations and the compositions from the OS of J.

Theorem 8.1 F* C (P?).

Lemma 8.1 If A € A’ and a1,...,an, € A, then the following conditions are
equivalent, and Dom wy # @ under these conditions.

(1) (a1,...,an,) € Dom xj.

(2) Wgq, X -+ X Woa,, € Domwy.

Proof Let p be the sorting of W, and assume (1). Then (caj,...,0an,) €
Dom T) because o is a homomorphism. Let (w1,..., W) € Wgq, X+ -chanA.
Then (pw1,...,pwa) = (0a1,...,00n,) € DomTy,, and so (wy,...,wy) €

Dom wy because p is a homomorphism. Thus (2) holds.

Conversely assume (2). Since ®* and the projections by X-denotations are
sort-consistent, it follows that Wy # @) for each t € cA. Therefore, there exists
an element (wi,..., W) € Wgq, X -+ X Wsa,, » and (w1,...,wx) € Dom wy
by (2). Hence (cai,...,can,) = (pw1,...,pwr) € DomT) because p is a
homomorphism. Thus (1) holds because ¢ is a homomorphism.

Proof of Theorem 8.1 We only need to show that F = a®(x1,...,xn) be-
longs to (P?) for each a € A. We argue by induction on the rank r of a.
Assumer =0. Thena € S = CUX. If a € C, then F = (0x1,...,0x, — ®a)
by Example 7.1. If a € X, then F = (ox7,...,0%xn | 1) for some i € {1,...,n}
by Example 7.1. In either case, F € P? C (P?P).
Therefore we assume r > 1. Then there are three cases discussed in Theorem
71. Let oxi =t (i=1,...,n).

First assume a = ax(a,...,an,) with A € A’. Then by Theorem 7.1,
(x1,...,xn) is a free base of ax for each k € {1,...,n)}, and defining Gx =
af (x1,...,xn), we have Gx € Wy, x - -+ x Wy, — Wgq, and

Fwr,...,wn) = a®(wi,...,wn)
=wxr(afwi,...,wn),...,ap (Wi,...,wn))
=wr(G1(Wr,...,wn), ..o, Gny (Wi, ..., wh))
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for each (wy,...,wn) € Wy, X - x Wy . Furthermore, Wgq, X -+ X WcmnA C
Dom wy # @ by Lemma 8.1. Thus F = A(Gy...,Gy,). Since Gy € (P?®) for
each k € {1,...,n} by the induction hypothesis, F € (P?) as desired.

Next assume a = o b with A € ANPx and x € X—{x1,...,xn}. Then by The-
orem 7.1, (x,X1,...,Xn) is a free base of b, and defining G = b® (x,x1,...,%n)
and t = ob, we have G € Wiy X Wy, X - x Wy, = Wy, t €Ty, and
®(

Fwi,...,wn)=a®(w1,...,wn)

:)\W(b®(D)W1»"-aWn))
:)\W(G(D,W‘h...,wn))
= (ba,1G) (w1, ..., wn),
for each (w1,...,wn) € Wy, X - x Wy, . Thus F =b, 1G. Since G € (P®) by
the induction hypothesis, we have F € (P?) as desired.
Finally assume a = axb with A € ANTx; for some 1 € {1,...,n}. Then by

Theorem 7.1, (X1,...,%n) is a free base of b, and defining G = b®(x1,...,%n)
and t = ob, we have G € Wy, x -+ x Wy, — Wi, t € Ty, and

Fowr,...,wn) =a®(wr, ..., wn)
=Aw (6T (w1, ..., wis1, O, wit1,...,wn))
=Aw (Gwr,...,wi—1,0,wit1,...,wn))
= (baiG) (Wi, .o, Wi, Wity ..., Wn)
for each (w1,...,wn) € Wy, x -+ x Wy . Since ba1G € Wy, X -+ X Wy, | X

Wi,y X oo x Wy, — Wi and xq € X{,, we furthermore have

briG) W1y, Wis 1, Wi1, ..o, wn) = (Be,10A,:G)) (Wi, ..., wn).
Thus F = (#¢,,1(bx,:G)). Since G € (P®) by the induction hypothesis, we
conclude that F € (P?) as desired.
Theorem 8.2 F® = (P?) = [P®] holds under the following three conditions.
(1) For each t € T, X{ is either empty or enumerable.
(2) For each t € T, there exists a subset It of I' which satisfies A N TX¢ = e X{.

(3) If variable operations A and A’ are similar in the sense that there exist an
element V € I and variables x,x’ € X’ which satisfy A = vx, A’ = vx/, and
ox = ox’, then Ty = Ty, and the interpretations Aw and Ay,, of A and A" on
W are equal.

The Lemmas 8.2, 8.3, and 8.4 hold without the conditions (1) (2) (3) of
Theorem 8.2.

Lemma 8.2 Let (x1,...,xn) be a free base of an element a € A and p €
Sn. Then, (xp1,...,%pn) is also a free base of a, and so a®(x1,...,xn) and
a®(xp1,-..,%pn) are defined. Denote them by G and H. Then H = pG.
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Proof Let (wi,...,wyn) € Woy, X --- X Wey, and let v be a X-denotation
such that vx; =w; fori=1,... ,n. Then vx,; =wp; fori=1,...,n, hence

H(th--- prn) =(®"a)v=G(wy,...,wn) = (PG)(th--- »an)-

Therefore H = pG.

Lemma 8.3 Let G be a type function on W and assume that by ;G is defined
for some i > 1. Then, bx,1(pG) is also defined for some permutation p, and
b)\‘iG = b)\y1 (pG) holds.

Proof Let p be the cycle (i,...,2,1). Then, since G € Wy, x --- x Wy, — Wy
for some t1,...,tn,t € T with i <n, we have

‘pGGWti XWt1 ><"'><V\/t171 XWti+1 X~'~><th—)Wt_

Since furthermore t € Ty and A € ANTx for some x € X with ox = tj, bx,1(pG)
is also defined, and both bx iG and b 1(pG) belong to Wy, x -+ x Wy, | x
Wi, x-- x Wy — Wiy Since

(PG) (Wi, w1, ., Wi, Wig1,...,Wn) = G(wr,...,Wq)
for each (w1,...,Wn) € Wy, X -+« x Wy,
(pG)(D,W],...,Wi,],Wi+],...,Wn) = G(W],...,Wi,],D,W-’L_Q_],...,Wn)

for each (Wi,..., Wi—1, Wit1,...,Wn) € W, X+ X W X Wy X x Wy .
Hence the following, which proves by 1G =ba 1(pG):

(a1 (PG)) (W1, .y Wi 1, Wig1, ..., Wn)

:Aw((pG)(D,W],...,Wi,],WiJr],...,Wn))

:)\W(G(w1,...,wi_1,D,wi+1,...,wn))

= (A1) (W1 W1, Wit1 e W),

Lemma 8.4 Let G be a type function on W and assume that fi¢ ;G is defined
for some i > 1. Then #,1G is also defined and there exists a permutation p
which satisfies #t 1G = p(#,1G).

Proof Let us denotet also by to. Then G € Wy, x---x Wy — W, i—1<n,
u € ImA for some A € ANTX{, and #t1G € Wy, X --- X Wy, | X Wi, x Wy, X
-+ X Wy, — W,y Therefore, f¢,1G is also defined and belongs to Wy, x Wy, x
<o X Wy, = Wy, Since 0 <1—1 < n, we can define the permutation p on the
letters 0,1,...,n by p=(0,1,...,1— 1), and we have

(B,iG)(wr, .o, Wi1, Wo, Wi, ..., W) = G(wr, ..., wy)
= (8,1G) (Wo, W1,...,wn) = (P(fe,1G)) (W1, ..., wi1,Wo, Wi, ..., Wn)
for each (W1,...,Wi_1,Wo,Wi,...,Wn) € Wy, X -+ x Wy, | X Wi, X Wy, x

e X Wt“. Thus ﬂt,iG = P(ﬁt,] G)
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Lemma 8.5 Let aj,...,am € A, B C A, and assume that (yi,...,yn) is a
free base of every element of B. Then there exist distinct variables x1,...,%n
which satisfy the following conditions.

e oxy = oy foreachie{1,...,n}

Y1,...,Yn

e FEach element of S is free from b(
X1y.0yXn

) in a,...,an, for each

element b € B.
Proof Let A € A and b € B. Then (SME., € XR.. € {y1,...,yn)} by (3.1)
and our assumption. For each t € T with {y1,...,yn}t N S # 0, we have
X't =S¢ NSN#£0 by (3.2), and so S¢ NS is enumerable by the condition (1)
of Theorem 8.2. Now we can apply Lemma 2.5.

Lemma 8.6 Let ay,...,am € A and y1,...,yn be distinct variables. Then,
there exist distinct variables x1,...,xn which satisfy the following conditions.
e oxi = oy; for each i €{1,... ,n}
e Each element of S is free from x1,...,Xxn in ay,...,am.
Proof This is a consequence of Lemma 8.5 with B ={y1,...,yn}.

Proof of Theorem 8.2 Since P® C F® C (P®) C [P?] by Example 8.2
and Theorem 8.1, we only need to show that F® is closed under the five kinds
of operations in the OS of F. Lemma 8.2 shows that F® is closed under the
permutations. In view of this together with Lemma 8.3 and Lemma 8.4, we only
need to show F € F® in each of the following four cases.

(1) F=Go(Hy,...,Hy) and G,Hy,... ,H;, € TP,
(2) F=A(G1,...,Gn,) and G, ...,Gn, € F°.
(3) F=bx,1G and G € F®.
(4) F=1¢1G and G € F°®.

(1)HereG€Wu1 ><---><Wum—>Wt,Hi€Wt1 ><~--><th—>Wu,i (1:
1,...,m), FE Wy, x--- x Wy, — W, and

Fiwi,...,wn) =G(Hi(wi,...,wn),...,Hm(wi,...,wn))

for each (wy,...,wn) € Wy, x---xW,_ . Also, there exist an element a € A and
its free base (x1,...,%m) such that G = a®(x1,...,%Xm), hence ox; = u; (i =
1,...,m). Also, for each i € {1,..., m}, there exist an element ai € A and its
free base (x},...,x}) such that H; = a®(x},...,x}), hence ox; = t; for each
je{l,...,n}L

Lemma 8.6 applied to ai,...,am and x} yenn ,xll shows that there exist dis-
tinct variables y1,...,yn which satisfy the following conditions.

30



e oy; =tj for each j €{1,...,n}.

° X} is free from yj in a; for each i € {1,...,m} and each j € {1,...,n}.
xboooxd

Therefore, for each i € {1,...,m}, we may define b; = q; <M),
Yt,.- -y YUn

and Corollary 7.2.1 shows that (yi,...,yYn) is a free base of by and H; =

al(xi, ... xL) =bP(y1,...,yn), hence oy; = t; for each j € {1,...,n}.

By using Lemma 8.5 for a,by,...,byn and B ={by,...,bm,y1,...,Yn}, we
have that there exist distinct variables z7,...,z, which satisfy the following
conditions.

e 0z; =t foreachj € {1,...,nk

e Each element of S is free from b; (M) and z; in a,by,..., by

Z1y.e oy Zn
for each i€ {1,...,m} and each j € {1,...,n}.

Define ¢; = b; <M) for each i € {1,...,m}. Then Corollary 7.2.1 shows

Z1,yeveyZn

that (z1,...,zn) is a free base of ¢; and Hi = b®(y1,...,yn) =c®(z1,...,2n),
hence oci = u; = oxq for each i € {1,..., m}. Define b = a(%)
Ty.-+»ytm
Then Theorem 7.2 shows that (z1,...,zn) is a free base of b and b®(z7,...,2zn)
satisfies
b(D(W1»~'-)WTl):a(D(C1ED(W1v"-)Wﬂ)v"'>cm®(w1v"-)wﬂ))

=G(Hi(wi,...,wn),...,Hm(wi,...,wn))

for each (wi,...,wn) € Wy, x --- x Wy . Thus F = b®(zq,...,2,) € F® as
desired.
(2) Here A € A/, G € Wy, X - x Wy, = Wy, (k=1,...,m), Wy, x

~ox Wy CDomwy, Fe€ Wy x-o x Wy, — Wn(uu..‘.un;\)» and
F(Wh-” »WT‘L) - w?\(G1(W1)-”»WT‘L))”')GT‘L)\(WMH')WTI))
for each (w1,...,wn) € Wy, x -+ x W, . Also, for each k € {1,...,mp\},
there exist an element ax € A and its free base (x¥,...,xX) such that Gy =
af (xk,...,xX), hence oxf =t; for each i € {1,...,n}.
Lemma 8.6 applied to aj,...,an, and x},...,x:l shows that there exist
distinct variables x1,...,xn which satisfy the following conditions.
e ox; =ti foreachie{l,...,n}
e xK is free from x; in ay for each k € {1,...,n\} and each i € {1,...,n}.
xK, ... xKk
Therefore, for each k € {1,...,n)}, we may define by = ax <1”“>7
X1y eenyXn
and Corollary 7.2.1 shows that (xi1,...,Xn) is a free base of by and Gx =
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af (xk, ..., xK) =bP(x1,...,%xn), hence oby = uy. Consequently Wep, X - -+ X

ch” C Domw,, and so (by,...,bn,) € Domay by Lemma 8.1. Define
a=axr(br,...,bn,). Then, (x1,...,xn) is a free base of a by Lemma 2.2, and
Theorem 7.1 shows that the functional expression a®(x1,...,%n) satisfies
a®wi, .o, wn) = wa (b (Wi, .o, W), B (wr, L wn)
:w?\(G1(W1v"')Wn))"')GTLA(W'I»"'vWH))
=AGr1,...,Gn )W, ..., wn)
for each (wy,...,wn) € Wy, x --- x Wy . Thus F = a®(x1,...,xn) € T as

desired.
(B) Here A\=vx (VeET xeX'),GeWp x Wy, x---x W, — Wi teT,,
O-X:t,,FEWt] ><~~'><thHW)\t,and

F(Wla--wwﬂ) = }\W(G(D)W'l) )Wﬂ))

for each (Wr,...,wn) € Wy, x -+ x Wy, . Also, there exist an element b € A
and its free base (y,x1,...,%n) such that G = b®(y,x1,...,%n), hence ob =
t, oy =1t’, and ox; =t; foreach i €{1,...,n}

Since x € X{,, X{, is enumerable by the condition (1) of Theorem 8.2.
Therefore, it follows from Lemma 2.1 and (3.1) that there exists an element
x" € X{, — (Uue/\b SH U{x1,...,xn}). Since oy = t’ = ox’, we may define
c=b (‘{"‘7"“) Since Sk, = {x'}, it follows that (S*)X.. = 0 for

X X1, .0y Xn
each u € AP. Therefore y is free from x’ in b by Lemma 2.2. Also, for each
ie{l,...,n}, xi is free from x; in b. Furthermore, x’,x1,...,xn are distinct.
Therefore, (x’,X1,...,%n) is a free base of ¢ and G = b®(y,x1,...,Xn) =
c®(x/,x1,...,xn) by Corollary 7.2.1.

Since A = Vx € ANTXy and ANTXy: = T X{, by the condition (2) of
Theorem 8.2, A’ = Vx' is also a variable operation, which is similar to A because
ox = t’ = ox’. Therefore, by the condition (3) of Theorem 8.2, Ty = Ty+ and
the interpretations Aw and Ay, of A and A’ on W are equal. Since oc =t €
Tn = T+, we have ¢ € Dom «). Define a = ax/c. Then Lemma 2.2 shows that
(x1,...,xn) is a free base of a. Therefore by Theorem 7.1,

il

a®wi, ..., wn) =My (c®(@wr, ..., wn))

=Aw (G(O,wr,...,wn)) =F(wi,...,wn)

for each (wW1,...,Wn) € Wy, x --- x W,,. Thus F € F® as desired.
(4) Here t e T, X{ #0, G € Wy, x -+ x Wy, — Wy, and

F(W,W],...’Wn) :G(W1"")Wn)
for each (w,w1,...,wn) € Wy x Wy, x -+ x Wy . Also, there exist an el-
ement a € A and its free base (x1,...,%n) such that G = a®(x1,...,xn).
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Furthermore, by the condition (1) of Theorem 8.2, there exists an element
ye€X{ —{x1,...,xn}. Define H=a®(y,x1,...,xn). Then by Lemma 7.1,

Gwi,...,wn) =HWwW,wi,...,wn)

for each (W, w1,...,Wn) € Wy x Wy, x---xW;, . Thus F = H € % as desired.
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