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August 30, 2008

Abstract

We consider a 2×2 system of parabolic equations with first and zeroth coupling and establish

a Carleman estimate by extra data of only one component without data of initial values. Then we

apply the Carleman estimate to inverse problems of determining some or all of the coefficients

by observations in an arbitrary subdomain over a time interval of only one component and

data of two components at a fixed positive time θ over the whole spatial domain. The main

results are Lipschitz stability estimates for the inverse problems. For the Lipschitz stability,

we have to assume some non-degeneracy condition at θ for the two components and for it,

we can approximately control the two components of the 2 × 2 system by inputs to only one

component. Such approximate controllability is proved also by our new Carleman estimate.

Finally we establish a Carleman estimate for a 3×3 system for parabolic equations with coupling

of zeroth-order terms by one component to show the corresponding approximate controllability

with a control to one component.

1 Introduction and notations

This article is devoted to the question of the identification of coefficients for a reaction diffusion

convection system of two equations in a bounded domain, with the main particularity that we

observe only one component of the system. Let Ω ⊂ Rn be a bounded connected open set with

C2-boundary ∂Ω, and we set x = (x1, ..., xn) ∈ Rn, ∂j = ∂
∂xj

, 1 ≤ j ≤ n, ∂t = ∂
∂t , ∇ = (∂1, ..., ∂n),

∆ =
∑n

j=1 ∂2
j . For any fixed T > 0, we set ΩT = Ω× (0, T ), ΣT = ∂Ω× (0, T ) and we consider the
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following 2× 2 reaction-diffusion-convection system :




∂tU = ∆U + aU + bV + A · ∇U + B · ∇V + f in ΩT ,

∂tV = ∆V + cU + dV + C · ∇U + D · ∇V + g in ΩT ,

U = h1, V = h2 on ΣT ,

U(·, 0) = U0, V (·, 0) = V0 in Ω,

(1.1)

where a, b, c, d are scalar functions and A,B,C, D vectorial fields both defined on Ω. The boundary

condition hi as well as f, g shall be kept fixed. If we change the reaction coefficients b, c into b̃, c̃,

we let (Ũ , Ṽ ) be the solution of (1.1) associated to b̃, c̃ and (Ũ0, Ṽ0) for the initial condition. Let

ω ⊂ Ω be a non-empty subdomain and T > 0. We assume that we can measure both

U |ω×(0,T ) and (U, V )|Ω×{θ}.

at a time θ ∈ (0, T ).

We set ωT = ω × (0, T ). For m ∈ N, 1 ≤ p ≤ ∞, by Wm,p(Ω) and Lp(0, T ; X) we denote the

classical Sobolev space with the norm ‖ · ‖W m,p(Ω), and the space of X-valued p-Bochner integrable

functions respectively (e.g., [1]). As usual we write W 0,p(Ω) = Lp(Ω) and Hm(Ω) = Wm,2(Ω) for

m ∈ N. We define a Banach space

W
m, m

2
2 (ΩT ) = {u : Ω× (0, T ) → R; ∂α

x ∂
αn+1
t u ∈ L2(ΩT ), for |α|+ 2αn+1 ≤ m},

with the norm

‖u‖
W

m, m
2

2 (ΩT )
=

∑

|α|+2αn+1≤m

‖∂α
x ∂

αn+1
t u‖L2(ΩT ).

Here α = (α1, . . . , αn) is a multi-index, |α| = α1 + · · ·+αn, ∂α
x = ∂α1

1 · · · ∂αn
n , and the differentiation

is to be understood in the weak sense. Let M be an arbitrary positive constant. We denote by ν
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the outward unit normal to Ω and by BX(0, r) the closed ball of a metric space X centered on 0

of radius r.

We pose the following assumptions.

Assumption 1.1 (a) a, b, b̃, c, c̃, d ∈ BL∞(Ω)(0, M),

(b) A,B, C,D ∈ BL∞(Ω)n(0,M),

(c) ω ⊂ Ω satisfies ∂ω ∩ ∂Ω = γ and |γ| 6= 0, and ω is of class C2,

(d) |B(x) · ν(x)| 6= 0, x ∈ γ,

(e) B ∈ C2(ω)n, A ∈ C1(ω)n and b ∈ C2(ω),

(f) |Ũ(·, θ)|, |Ṽ (·, θ)| > δ0 on ΩT with some constant δ0 > 0,

(g) ‖Ũ‖C(ΩT ), ‖Ṽ ‖C(ΩT ) ≤ M ,

(h) ‖Ũ‖C3(ωT ), ‖Ṽ ‖C3(ωT ) ≤ M .

If the functions and the coefficients appearing in (1.1) satisfy sufficient smoothness and compati-

bility conditions, then Assumption 1.1 (g) and (h) are satisfied. By Ladyzenskaja, Solonnikov and

Ural’ceva [27] for example, we can describe such conditions, but we are interested mainly in the

inverse problem and we will not exploit these conditions.

Our first main result is the stability in determining the reaction coefficients b, c :

Theorem 1.2 Let θ ∈ (0, T ) be fixed. We suppose that Assumption 1.1 is satisfied and that

(U, V )(·, θ) = (Ũ , Ṽ )(·, θ) in Ω. Then there exists a constant κ > 0 such that

‖b− b̃‖L2(Ω) + ‖c− c̃‖L2(Ω) ≤ κ
(
‖∂t(U − Ũ)‖

W 2,1
2 (ωT )

+ ‖U − Ũ‖
W 2,1

2 (ωT )

)
(1.2)
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The key ingredient to these stability results is a global Carleman estimate for system (1.1).

Since the pioneer work of Bukhgeim-Klibanov [7], Carleman estimates have been successfully used

for the following problems:

(i) the uniqueness and the stability in determining coefficients: Especially for parabolic equations,

see Benabdallah, Dermenjian and Le Rousseau [5], Benabdallah, Gaitan and Le Rousseau [6],

Imanuvilov and Yamamoto [15], [17], Imanuvilov, Puel and Yamamoto [19], Isakov [21], Klibanov

[23], [24] Klibanov and Timonov [26], Yuan and Yamamoto [32] and the references therein. For

hyperbolic problems, among many works, we restrict ourselves to a few works such as Imanuvilov

and Yamamoto [16], Isakov [20], [21], Klibanov [23], Klibanov and Timonov [26] and see the refer-

ences also in Isakov [21] and Klibanov and Timonov [26].

(ii) observability inequalities and related estimates: see Fursikov and Imanuvilov [9], Imanuvilov

[14], Isakov [20], [21], Kazemi and Klibanov [22], Klibanov and Malinsky [25]. Furthermore the

exact controllability of linear systems is equivalent to the observability of the corresponding ad-

joint system and we can refer to [9], [14]. Imanuvilov and Yamamoto [17] discuss the global exact

zero controllability for a semilinear parabolic equation. Also see Ammar-Khodja, Benabdallah and

Dupaix [2], and Ammar-Khodja, Benabdallah, Dupaix and Kostine [3], [4], González-Burgos and

Pérez-Garćıa [12] for semilinear parabolic systems.

Apart from the last previous works quoted, the existing Carleman estimates require observations

of all the components when we will discuss inverse problems for a system such as (1.1). It is very

desirable to establish the stability for inverse problems for a 2 × 2 parabolic system by means of

only one component, because for a reaction-diffusion system and a prey-predator system, it may be

frequently difficult to observe the both components. There are not many papers devoted to such
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inverse problems for 2 × 2 parabolic systems, and we can refer, for instance, to Cristofol, Gaitan

and Ramoul [8].

The article is organized as follows. In Section 2 we derive a new Carleman estimate for system (1.1).

In Section 3 we prove the stability result. In Section 4 we will remove Assumption 1.1 (f) on

positivity of U, V at a time θ > 0. Section 5 is devoted to some comments and open problems. The

appendices provide technical proofs of lemmata stated in Sections 2 and 4. We want to point that

the Carleman estimate proved in Section 2 implies a new approximate controllability result for a

2×2 reaction-diffusion-convection system with one localized control . As it will be seen in Section 5,

this result can be extended to a 3× 3 reaction-diffusion system.

2 Carleman estimate

2.1 A Carleman estimate for a 2× 2 system by extra data of one compoment

Let (aij)1≤i,j≤2 ∈ L∞(ΩT ) and (Aij)1≤i,j≤2 ∈ L∞(ΩT )n. Let u0, v0 ∈ L2(Ω) and f, g ∈ L2(ΩT ).

Consider the following reaction-diffusion system with convection terms :




∂tu = ∆u + a11 u + a12 v + A11 · ∇u + A12 · ∇v + f in ΩT ,

∂tv = ∆v + a21 u + a22 v + A21 · ∇u + A22 · ∇v + g in ΩT ,

u = v = 0 on ΣT ,

u(·, 0) = u0, v(·, 0) = v0 in Ω.

(2.1)

Uniqueness existence and stability results in solving an initial value-boundary value problem (2.1)

can be proved by the semigroup theory for example (e.g., [27], Pazy [30], Tanabe [31]). In particular

it admits a unique solution (u, v) ∈ C([0, T ]; L2(Ω))2 ∩ L2(0, T ; H1
0 (Ω))2.
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Our main interest is to derive a Carleman estimate of (u, v) solution of (2.1) by solely observing u

in ω × (0, T ). We make the following main assumptions :

Assumption 2.1 (a) Let ω ⊂ Ω with ∂ω ∩ ∂Ω = γ and |γ| 6= 0.

(b) |A12(x, t) · ν(x)| 6= 0, (x, t) ∈ γT , with γT = γ × (0, T ),

(c) ‖A12‖(C2(ωT )n, ‖a12‖C2(ωT ), ‖A11‖(C1(ωT )n ≤ M , where M > 0 is an arbitrarily fixed constant.

In the sequel κ will denote a generic constant and their values may change from a line to others.

The dependence of κ on s will be specified.

In this section, we prove:

Theorem 2.2 Let τ ≥ 1 and ω ⊂ Ω be a subdomain such that ω ⊂ Ω. Under Assumption 2.1,

there exist αω ∈ C2(Ω) with αω > 0 on Ω and two positive constants s0 and κ which depend on

T,M,Ω, ω, τ and the L∞-norms of aij , Aij, such that there exist positive constants κ1(s, τ) and κ

such that the following Carleman estimate holds

∫

ΩT

(sρ)τ−1e−2sηω(|∂tu|2 + |∂tv|2 + |∆u|2 + |∆v|2 + (sρ)2|∇u|2 + (sρ)2|∇v|2 + (sρ)4|u|2 + (sρ)4|v|2)

≤ κ1(s, τ)(‖u‖2
W 2,1

2 (ωT )
+ ‖f‖2

L2(ωT )) + κ

∫

ΩT

(sρ)τe−2sηω(|f |2 + |g|2)

for all s ≥ s0 and any solution (u, v) to (2.1). Here we set

ηω(x, t) =
αω(x)

t(T − t)
, ρ(t) =

1
t(T − t)

. (2.2)

This is a Carleman estimate for a 2× 2 system with extra data in ωT of only one component. In

[2] and [8], it is assumed that A11 = A12 = 0. In that case, the proof can be completed by directly

substituting v by means of u in ωT . By the first-order coupling, we extra need Assumption 2.1 (a)

and (b).
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Proof of Theorem 2.2 First we prove

Lemma 2.3 Let ω ⊂ Ω be a subdomain and ∂ω ∩ ∂Ω = γ. We consider

n∑

j=1

pj(x, t)∂ju(x, t) + q(x, t)u(x, t) = f(x, t), x ∈ ω ⊂ Ω, 0 < t < T. (2.3)

Here pj , q ∈ L∞(0, T ; C1(Ω)) for 1 ≤ j ≤ n. We set p = (p1, ..., pn) and let ν(x) = (ν1(x), ..., νn(x))

be the unit outward normal vector to ∂ω at x. We assume that

|p(x, t) · ν(x)| 6= 0, x ∈ γ, 0 ≤ t ≤ T. (2.4)

Let u = u(x, t) satisfy (2.3) and u|γ×(0,T ) = 0. Then there exist a subdomain ω′ ⊂ ω and a constant

κ > 0, which is dependent on p and q and independent of f , such that

‖u‖L2(ω′T ) ≤ κ‖f‖L2(ω′T ).

Proof of Lemma 2.3. We set x = (x1, ..., xn) = (x′, xn) and y = (y1, ..., yn) = (y′, yn). Without

loss of generality, we can assume that

ω = {(x′, xn); h(x′) < xn < h1(x′), |x′| < ρ}

and γ = {(x′, xn); xn = h1(x′), |x′| < ρ}. Here ρ > 0 is sufficiently small and h, h1 ∈ C2({|x′| ≤ ρ})

satisfy h = h1 on {|x′| = ρ}. We change independent variables y′ = x′ and yn = xn − h(x′). Then

ω is transformed to

ω̃ = {(y′, yn); 0 < yn < (h1 − h)(x′), |y′| < ρ}.

Set ũ(y, t) = u(x, t), p̃(y, t) = p(x, t), q̃(y, t) = q(x, t), f̃(y, t) = f(x, t), Γ̃1 = {(y′, 0); |y′| < ρ} and

Γ̃2 = {(y′, yn); yn = (h1 − h)(y′), |y′| < ρ}. Then ∂ω̃ = Γ̃1 ∪ Γ̃2,

(P̃ ũ)(y, t) =
n−1∑

j=1

p̃j(y, t)
∂ũ

∂yj
(y, t)
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+r̃(y, t)
∂ũ

∂yn
(y, t) + q̃(y, t)ũ(y, t) = f̃(y, t), y ∈ ω̃, 0 < t < T (2.5)

where

r̃(y, t) = p̃n(y, t)−
n−1∑

j=1

p̃j(y, t)
∂h

∂yj
(y, t),

and

ũ(y′, yn, t) = 0, yn = (h1 − h)(y′), |y′| < ρ, 0 < t < T. (2.6)

Moerover ν(x) is parallel to (∂1h(x′), ...., ∂n−1h(x′),−1) on {(x′, xn); xn = h(x′), |x′| < ρ}. There-

fore, in terms of (2.4), without loss of generality, we can assume that there exists a constant δ > 0

such that r̃(y′, 0, t) > 2δ for |y′| < ρ and 0 < t < T . We choose ρ > 0 sufficiently small, so that

r̃(y, t) > δ, y ∈ ω̃, 0 < t < T. (2.7)

Let ν̃(y) = (ν̃1(y), ..., ν̃n(y)) be the unit outward normal vector to ∂ω̃ at y. Then ν̃(y) is parallel

to (0, ..., 0,−1) for y ∈ Γ̃1 and to
(
−∂(h1−h)

∂y1
(y′), ...,−∂(h1−h)

∂yn−1
(y′), 1

)
for y ∈ Γ̃2.

Hence, by choosing h1, h such that ‖h1− h‖C1({|y′|≤ρ}) is sufficiently small if necessary, by (2.7) we

have

Γ̃1 ⊂
{
y ∈ ∂ω̃;

∑n−1
j=1 p̃j(y, t)ν̃j(y) + r̃(y, t)ν̃n(y) ≤ 0

}
(2.8)

and

ũ(·, t) = 0 on Γ̃2, Γ̃2 ⊂


y ∈ ∂ω̃;

n−1∑

j=1

p̃j(y, t)ν̃j(y) + r̃(y, t)ν̃n(y) > 0



 . (2.9)

For the proof of the lemma, it suffices to prove a Carleman estimate for (2.3), whose proof is similar

for example to Lemma 3.2 in [18]. We set

P̃0ũ = P̃ ũ− q̃ũ =
n−1∑

j=1

p̃j(y, t)
∂ũ

∂yj
(y, t) + r̃(y, t)

∂ũ

∂yn
(y, t),
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w = w(·, t) = ũ(·, t)esyn and Qw = esynP̃0(e−synw). Then

Qw = P̃0w − sr̃(y, t)w.

We arbitrarily fix t ∈ [0, T ]. Hence by integration by parts and (2.6) - (2.9) we obtain

∫

ω̃
|P̃0ũ|2e2syndy =

∫

ω̃
|Qw|2dy

= ‖P̃0w‖2
L2(ω̃)

+ s2‖r̃(·, t)w‖2
L2(ω̃)

− 2s

∫

ω̃




n−1∑

j=1

p̃j
∂w

∂yj
(y, t) + r̃

∂w

∂yn


 r̃wdy

≥ s2
∫

ω̃
r̃2w2dy − s

∫

ω̃




n−1∑

j=1

p̃j r̃
∂w2

∂yj
+ r̃2 ∂w2

∂yn


 dy

≥ s2δ

∫

ω̃
w2dy + s

∫

ω̃




n−1∑

j=1

∂(p̃j r̃)
∂yj

+
∂r̃2

∂yn


 w2dy − s

(∫

Γ̃1

+
∫

Γ̃2

)
r̃




n−1∑

j=1

p̃j ν̃j + r̃ν̃n


 w2dS

≥ s2
∫

ω̃

(
δ − κ1

s

)
w2dy.

Henceforth κj > 0 depends on max1≤j≤n ‖pj‖C1(ΩT ) and ω. Hence we have

s2
∫

ω̃
|ũ|2e2syndy ≤ κ2

∫

ω̃
|P̃0ũ|2e2syndy

for all large s > 0. Since

∫

ω̃
|P̃0ũ|2e2syndy ≤ 2

∫

ω̃
|P̃ ũ|2e2syndy + 2

∫

ω̃
|q̃ũ|2e2syndy

≤ 2
∫

ω̃
|f̃ |2e2syndy + 2‖q‖2

C(ΩT )

∫

ω̃
|ũ|2e2syndy,

by choosing s large such that s2

κ2
− 2‖q‖2

C(ΩT )
≥ s2

2 , we have

s2
∫

ω̃
|ũ|2e2syndy ≤ κ3

∫

ω̃
|f̃ |2e2syndy

for all large s > 0. Since 1 ≤ e2syn ≤ e2sκ4 for y ∈ ω̃ where κ4 = ‖h1 − h‖C({|y′|≤ρ}), for all

large s > 0, we fix s > 0 large and we have ‖ũ(·, t)‖L2(ω̃) ≤ κ5‖f̃(·, t)‖L2(ω̃). By integrating over

t ∈ (0, T ), the proof of Lemma 2.3 is completed.
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By (2.1), we have

A14 · ∇v + a12v = ∂tu−∆u + a11 u + A13 .∇u + f in ωT

and

v = 0 on ∂Ω× (0, T ).

In terms of Assumption 2.1 (b), we apply Lemma 2.3 so that we can choose a subdomain ω′ ⊂ Ω

such that

‖v‖L2(ω′T ) ≤ κ‖u‖
W 2,1

2 (ω′T )
+ ‖f‖L2(ω′T ). (2.10)

By [9] and [14], for ω′, there exist βω′ ∈ C2(Ω) with βω′ > 0 on Ω and two positive constants s0

and κ, which depend on T, Ω, ω′, τ and L∞ norms of aij , Aij , such that for all s ≥ s0, there exist

positive constants κ1(s, τ) and κ such that

∫

ΩT

(sρ)τ−1e−2sη̃ω′ (|∂tu|2 + |∆u|2 + (sρ)2|∇u|2 + (sρ)4|u|2)

≤ κ

∫

ΩT

(sρ)τe−2sη̃ω′ |a12v + A12 · ∇v + f |2 + κ

∫

ω′T
(sρ)τ+3e−2sη̃ω′ |u|2

and
∫

ΩT

(sρ)τ−1e−2sη̃ω′ (|∂tv|2 + |∆v|2 + (sρ)2|∇v|2 + (sρ)4|v|2)

≤ κ

∫

ΩT

(sρ)τe−2sη̃ω′ |a21u + A21 · ∇u + g|2 + κ

∫

ω′T
(sρ)τ+3e−2sη̃ω′ |v|2

for all large s > 0. Here and henceforth we set η̃ω′(x, t) = βω′ (x)
t(T−t) . Adding them and choosing s > 0

sufficiently large to absorb the terms of u, v,∇u,∇v on the right hand side into the left hand side.

Hence

∫

ΩT

(sρ)τ−1e−2sη̃ω′ (|∂tu|2 + |∂tv|2 + |∆u|2 + |∆v|2 + (sρ)2|∇u|2 + (sρ)2|∇v|2 + (sρ)4|u|2 + (sρ)4|v|2)
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≤ κ

∫

ΩT

(sρ)τe−2sη̃ω′ (|f |2 + |g|2) + κ

∫

ω′T
(sρ)τ+3e−2sη̃ω′ (|u|2 + |v|2)

for all large s > 0. Moreover we have |(sρ)τ+3e−2sη̃ω′ | ≤ κ2(s, τ) on ΩT by βω′ > 0 on Ω. Hence

∫

ω′T
(sρ)τ+3e−2sη̃ω′ (|u|2 + |v|2) ≤ κ2(s, τ)(‖u‖2

L2(ω′T ) + ‖v‖2
L2(ω′T )).

Apply Lemma 2.3, set αω = βω′ and note by ω′ ⊂ ω that ‖u‖2
W 2,1

2 (ω′T )
≤ ‖u‖2

W 2,1
2 (ωT )

. Then the

proof of Theorem 2.2 is completed.

3 Proof of Theorem 1.2

Let us recall that (U, V ) satisfies (1.1) and (Ũ , Ṽ ) satisfies system (1.1) where b, c, U0, V0 are replaced

by b̃, c̃, Ũ0, Ṽ0 respectively.

We set

u = U − Ũ , v = V − Ṽ .

Then (u, v) satisfies

∂tu = ∆u + au + bv + A · ∇u + B · ∇v + (b− b̃)Ṽ ,

∂tv = ∆v + cu + dv + C · ∇u + D · ∇v + (c− c̃)Ũ in ΩT ,

u = v = 0 on ΣT

and

u(·, θ) = v(·, θ) = 0 in Ω.

By Assumption 1.1, we can assume that |Ũ(x, t)|, |Ṽ (x, t)| 6= 0 for all (x, t) ∈ ΩT by taking T > 0

sufficiently small if necessary. Moreover we can assume that θ = T
2 . Because we take small δ > 0
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such that 0 ≤ θ− δ < θ < θ + δ ≤ T and we can replace ω × (0, T ) by ω × (θ− δ, θ + δ). Shifting t

by t− (θ − δ), we can set θ = δ and T = 2δ.

Setting

ũ =
u

Ṽ
, ṽ =

v

Ũ
, f = b− b̃, g = c− c̃,

we have

∂tũ = ∆ũ + a11ũ + a12ṽ + A13 · ∇ũ + A14 · ∇ṽ + f in ΩT , (3.1)

∂tṽ = ∆ṽ + a21ũ + a22ṽ + A23 · ∇ũ + A24 · ∇ṽ + g in ΩT , (3.2)

where

a11 = a− ∂tṼ

Ṽ
+

∆Ṽ

Ṽ
+ A · ∇Ṽ

Ṽ
, a12 = b

Ũ

Ṽ
+ B · ∇Ũ

Ṽ
,

A13 = A +
2∇Ṽ

Ṽ
,

A14(x, t) = B
Ũ

Ṽ
≡ B(x)W (x, t),

a21 = c
Ṽ

Ũ
+ C

∇Ṽ

Ũ
, a22 = d− ∂tŨ

Ũ
+

∆Ũ

Ũ
+ D · ∇Ũ

Ũ

and

A23 = C
Ṽ

Ũ
, A24 = D +

2∇Ũ

Ũ
.

Let

y = ∂tũ, z = ∂tṽ.

Since b, c, b̃, c̃ are independent of t, we obtain

∂ty = ∆y + a11y + a12z + A13 · ∇y + A14 · ∇z

+(∂ta11)ũ + (∂ta12)ṽ + (∂tA13) · ∇ũ + (∂tA14) · ∇ṽ, (3.3)
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∂tz = ∆z + a21y + a22z + A23 · ∇y + A24 · ∇z

+(∂ta21)ũ + (∂ta22)ṽ + (∂tA23) · ∇ũ + (∂tA24) · ∇ṽ (3.4)

y = z = 0 on ΣT .

First Step. In terms of y, we estimate an L2-norm of z in a subdomain of Ω. Since ũ(x, t) =

∫ t
θ y(x, ξ)dξ and ṽ(x, t) =

∫ t
θ z(x, ξ)dξ by ũ(·, θ) = ṽ(·, θ) = 0, we rewrite (3.3) as

B(x) · ∇z(x, t) + b1(x)z(x, t) + W1(x, t)B(x) ·
∫ t

θ
∇z(x, ξ)dξ + b2(x, t)

∫ t

θ
z(x, ξ)dξ

=
1

W (x, t)

(
∂ty(x, t)−∆y(x, t)− a11y(x, t)−A13 · ∇y − (∂ta11)

∫ t

θ
y(x, ξ)dξ − (∂tA13) ·

∫ t

θ
∇y(x, ξ)dξ

)

≡ Q(y)(x, t) x ∈ ω, 0 < t < T. (3.5)

Here we set

b1(x, t) =
a12(x, t)
W (x, t)

, b2(x, t) =
∂ta12(x, t)
W (x, t)

, W1(x, t) =
∂tW (x, t)
W (x, t)

.

We will estimate z in a subdomain ω′ of ω by means of (3.5), and the argument is similar to

Lemma 2.3 but we need a special weight function for treating the integral terms
∫ t
θ ∇z(x, ξ)dξ and

∫ t
θ z(x, ξ)dξ. First we show

Lemma 3.1 Let T = 2θ and let ϕ̃ ∈ C1[0, T 2] and let us assume that there exists a constant κ0 > 0

such that dϕ̃
dt (t) ≤ −κ0 for t ∈ [0, T 2]. Then

∫ T

0

∣∣∣∣
∫ t

θ
g(ξ)dξ

∣∣∣∣
2

e2sϕ̃((t−θ)2)dt ≤ 1
4sκ0

∫ T

0
|g(t)|2e2sϕ̃((t−θ)2)dt.

The proof is given by Klibanov and Timonov p.78, [26].
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Henceforth we choose ϕ̃(t) = −t and we set ϕ1(t) = ϕ̃((t− θ)2) = −(t− θ)2. Then the conclusion

of Lemma 3.1 holds true.

We set

w(x, t) = z(x, t) + W1(x, t)
∫ t

θ
z(x, ξ)dξ, x ∈ Ω, 0 < t < T. (3.6)

Then direct calculations yield

B(x) · ∇w(x, t) = Q(y)(x, t)− b1z − b2

∫ t

θ
z(x, ξ)dξ + (B · ∇W1)

∫ t

θ
z(x, ξ)dξ in ωT . (3.7)

Henceforth κj > 0 denote generic constants which are dependent on M, δ0 in Assumption 1.1 and

independent of s > 0. In terms of Assumption 1.1 (d), we can apply Lemma 2.3 to obtain

s2
∫

ω′
|w(x, t)|2e2sϕ0(x)dx ≤ κ1

∫

ω′
|Q(y)(x, t)|2e2sϕ0(x)dx

+ κ1

∫

ω′
|z(x, t)|2e2sϕ0(x)dx + κ1

∫

ω′

∣∣∣∣
∫ t

θ
z(x, ξ)dξ

∣∣∣∣
2

e2sϕ0(x)dx

for all large s > 0. Here and henceforth we set ϕ0(x) = xn − γ(x′).

Hence by Lemma 3.1, we have

s2
∫ T

0

∫

ω′
|w(x, t)|2e2s(ϕ0(x)+ϕ1(t))dxdt ≤ κ1

∫ T

0

∫

ω′
|Q(y)(x, t)|2e2s(ϕ0(x)+ϕ1(t))dxdt

+ κ1

∫ T

0

∫

ω′
|z(x, t)|2e2s(ϕ0(x)+ϕ1(t))dxdt + κ1

∫

ω′

(∫ T

0

∣∣∣∣
∫ t

θ
z(x, ξ)dξ

∣∣∣∣
2

e2sϕ1(t)dt

)
e2sϕ0(x)dx

≤ κ1

∫

ω′T
|Q(y)(x, t)|2e2s(ϕ0(x)+ϕ1(t))dxdt + κ1

∫

ω′T
|z(x, t)|2e2s(ϕ0(x)+ϕ1(t))dxdt

+
κ1

s

∫

ω′T
|z(x, t)|2e2s(ϕ0(x)+ϕ1(t))dxdt.

Consequently

s2
∫

ω′T
|w(x, t)|2e2s(ϕ0(x)+ϕ1(t))dxdt ≤ κ2e

2sκ3‖y‖2
W 2,1

2 (ω′T )

+κ2

∫

ω′T
|z(x, t)|2e2s(ϕ0(x)+ϕ1(t))dxdt (3.8)
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for all large s > 0. On the other hand, (3.6) and Lemma 3.1 yield

∫

ω′T
|z(x, t)|2e2s(ϕ0(x)+ϕ1(t))dxdt =

∫

ω′T

∣∣∣∣w(x, t)−W1(x, t)
∫ t

θ
z(x, t)dξ

∣∣∣∣
2

e2s(ϕ0(x)+ϕ1(t))dxdt

≤ κ4

∫

ω′T
|w(x, t)|2e2s(ϕ0(x)+ϕ1(t))dxdt + κ4

∫

ω′T

∣∣∣∣
∫ t

θ
z(x, t)dξ

∣∣∣∣
2

e2s(ϕ0(x)+ϕ1(t))dxdt

≤ κ5

∫

ω′T
|w(x, t)|2e2s(ϕ0(x)+ϕ1(t))dxdt +

κ5

s

∫

ω′T
|z(x, t)|2e2s(ϕ0(x)+ϕ1(t))dxdt

for all large s > 0. Hence choosing s > 0 sufficiently large, we have

∫

ω′T
|z(x, t)|2e2s(ϕ0(x)+ϕ1(t))dxdt ≤ κ6

∫

ω′T
|w(x, t)|2e2s(ϕ0(x)+ϕ1(t))dxdt (3.9)

for all large s > 0. Substituting (3.9) into (3.8) and fixing s > 0 sufficiently large, we obtain

‖w‖L2(ω′T ) ≤ κ7e
κ7s‖y‖

W 2,1
2 (ω′T )

.

Hence by (3.9) we have

‖z‖L2(ω′T ) ≤ κ8e
κ7s‖y‖

W 2,1
2 (ω′T )

. (3.10)

Second Step. We will estimate ‖∇z‖L2(ω1×(δ,T−δ)) where ω1 ⊂ ω and δ > 0. For it, we use the

interior regularity estimate for a heat equation (3.4) in z. Let us recall that ρ(t) = 1
t(T−t) . Setting

z̃(x, t) = e−ρ(t)z(x, t), we rewrite (3.4) as

∂tz̃(x, t) = ∆z̃(x, t)− ρ′(t)z̃(x, t) + a22z̃ + A24 · ∇z̃

+(∂ta22)
∫ t

θ
eρ(ξ)−ρ(t)z̃(x, ξ)dξ + (∂tA24) ·

∫ t

θ
eρ(ξ)−ρ(t)∇z̃(x, ξ)dξ

+e−ρ(t)
(

a21y + A23 · ∇y + (∂ta21)
∫ t

θ
y(x, ξ)dξ + (∂tA23) ·

∫ t

θ
∇y(x, ξ)dξ

)
. (3.11)
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We choose subdomains ω1, ω2 of C∞ class such that ω1 ⊂ ω1 ⊂ ω2 ⊂ ω2 ⊂ ω′ and choose χ ∈ C1(ω′),

≥ 0 such that

χ(x) =





1, x ∈ ω1,

0, x ∈ ω′ \ ω2.

Moreover we can take χ satisfying

|∇χ(x)|2
χ(x)

≤ κ9 x ∈ ω′ (3.12)

(e.g., p.414 in Lions [29]). Multiplying (3.11) with χz̃ and integrating over ω′ × (0, T ), we have

1
2

∫ T

0

∫

ω′
χ(x)∂t(z̃2)dxdt = −

∫ T

0

∫

ω′
χ|∇z̃|2dxdt−

∫ T

0

∫

ω′
∇χ · z̃∇z̃dxdt−

∫ T

0

∫

ω′
χρ′(t)e−2ρ(t)|z|2dxdt

+
∫ T

0

∫

ω′
(a22|z̃|2χ + A24 · ∇z̃χz̃)dxdt +

∫ T

0

∫

ω′
(∂ta22)χz̃

(∫ t

θ
eρ(ξ)−ρ(t)z̃(x, ξ)dξ

)
dxdt

+
∫ T

0

∫

ω′
(∂tA24) · χz̃

(∫ t

θ
eρ(ξ)−ρ(t)∇z̃(x, ξ)dξ

)
dxdt

+
∫ T

0

∫

ω′
e−ρ(t)χz̃

(
a21y + A23∇y + (∂ta21)

∫ t

θ
y(x, ξ)dξ + (∂tA23) ·

∫ t

θ
∇y(x, ξ)dξ

)
dxdt.

By the Cauchy-Schwarz inequality and (3.12), we have

|∇χ · z̃∇z̃| =
∣∣∣∣∣
∇χ√

χ
z̃ · √χ∇z̃

∣∣∣∣∣ ≤
1
8
χ|∇z̃|2 +

2|∇χ|2
χ

|z̃|2

and

|A24 · χz̃∇z̃| = |√χ∇z̃ ·A24
√

χz̃| ≤ 1
8
χ|∇z̃|2 + 2|A24|2χ|z̃|2.

Hence, since z̃(·, 0) = z̃(·, T ) = 0,

sup
0≤t≤T

|ρ′(t)e−2ρ(t)| < ∞

and ρ(ξ)− ρ(t) ≤ 0 if ξ is between θ and t, we have

∫ T

0

∫

ω′
χ|∇z̃|2dxdt ≤ 1

4

∫ T

0

∫

ω′
χ|∇z̃|2dxdt
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+ κ10

∫ T

0

∫

ω′
(|z̃|2 + |z|2)dxdt + κ10

∫ T

0

∫

ω′
|z̃|

∣∣∣∣
∫ t

θ
z̃(x, ξ)dξ

∣∣∣∣ dxdt

+ κ10

∫ T

0

∫

ω′
χ|z̃|

∣∣∣∣
∫ t

θ
∇z̃(x, ξ)dξ

∣∣∣∣ dxdt

+ κ10

∫ T

0

∫

ω′

{
|z̃|(|y|+ |∇y|) + |z̃|

(∣∣∣∣
∫ t

θ
y(x, ξ)dξ

∣∣∣∣ +
∣∣∣∣
∫ t

θ
∇y(x, ξ)dξ

∣∣∣∣
)}

dxdt.

Moreover the Cauchy-Schwarz inequality yields

∫ T

0

∫

ω′
χ|z̃(x, t)|

∣∣∣∣
∫ t

θ
∇z̃(x, ξ)dξ

∣∣∣∣ dxdt

≤
∫ T

0

∫

ω′

√
χ|z̃(x, t)|

(∫ T

0

√
χ(x)|∇z̃(x, ξ)|dξ

)
dxdt

≤
∫ T

0

∫

ω′


 1

8T 2

∣∣∣∣∣
∫ T

0

√
χ|∇z̃(x, ξ)|dξ

∣∣∣∣∣
2

+ 2T 2χ|z̃(x, ξ)|2

 dxdt

≤ 2T 2
∫ T

0

∫

ω′
|z̃(x, t)|2dxdt +

∫ T

0

∫

ω′

1
8T

∫ T

0
χ|∇z̃(x, ξ)|2dξdxdt

≤ 2T 2
∫ T

0

∫

ω′
|z̃(x, t)|2dxdt +

1
8

∫ T

0

∫

ω′
χ|∇z̃(x, t)|2dxdt.

Hence

5
8

∫ T

0

∫

ω′
χ|∇z̃(x, t)|2dxdt

≤ κ11

∫ T

0

∫

ω′
(|z̃|2 + |z|2)dxdt + κ11

∫ T

0

∫

ω′
(|y|2 + |∇y|2)dxdt.

Let δ > 0 be fixed sufficiently small. Then |∇z̃(x, t)| ≥ κ12(δ)|∇z(x, t)| for δ ≤ t ≤ T − δ. Since

χ = 1 in ω1, we have

∫ T−δ

δ

∫

ω1

|∇z|2dxdt ≤ κ13(δ)(‖z‖2
L2(ω′T ) + ‖y‖2

L2(0,T ;H1(ω′))).

By means of (3.10), we obtain

‖z‖L2(δ,T−δ;H1(ω1)) ≤ κ14(δ)‖y‖W 2,1
2 (ω′T )

. (3.13)

Third Step. We apply Theorem 2.2 to (3.3) and (3.4) for ω′ ⊂ Ω and (δ, T − δ). We set

η(x, t) =
αω′(x)

(t− δ)(T − δ − t)
.
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Using also (3.13), we obtain that there exist two positive constants s0 and κ such that for all s ≥ s0,

one has

∫ T−δ

δ

∫

Ω
(sρ)−1e−2sη(|∂ty|2+|∂tz|2+|∆y|2+|∆z|2+(sρ)2|∇y|2+(sρ)2|∇z|2+(sρ)4|y|2+(sρ)4|z|2)dxdt

≤ κ15

∫ T−δ

δ

∫

Ω
|(∂ta11)ũ + (∂ta12)ṽ + (∂tA13) · ∇ũ + (∂tA14) · ∇ṽ|2e−2sηdxdt

+κ15

∫ T−δ

δ

∫

Ω
|(∂ta21)ũ + (∂ta22)ṽ + (∂tA23) · ∇ũ + (∂tA24) · ∇ṽ|2)e−2sηdxdt

+κ16(s)‖y‖2
W 2,1

2 (ω′×(δ,T−δ))

+κ16(s)

∥∥∥∥∥(∂ta11)
∫ t

θ
y(x, ξ)dξ + (∂ta12)

∫ t

θ
z(x, ξ)dξ + (∂tA13) ·

∫ t

θ
∇y(x, ξ)dξ

+(∂tA14) ·
∫ t

θ
∇z(x, ξ)dξ

∥∥∥∥∥
2

L2(ω′×(δ,T−δ))

+κ16(s)

∥∥∥∥∥(∂ta21)
∫ t

θ
y(x, ξ)dξ + (∂ta22)

∫ t

θ
z(x, ξ)dξ + (∂tA23) ·

∫ t

θ
∇y(x, ξ)dξ

+(∂tA24) ·
∫ t

θ
∇z(x, ξ)dξ

∥∥∥∥∥
2

L2(ω′×(δ,T−δ))

≤ κ15

∫ T−δ

δ

∫

Ω
|(∂ta11)ũ + (∂ta12)ṽ + (∂tA13) · ∇ũ + (∂tA14) · ∇ṽ|2e−2sηdxdt

+κ15

∫ T−δ

δ

∫

Ω
|(∂ta21)ũ + (∂ta22)ṽ + (∂tA23) · ∇ũ + (∂tA24) · ∇ṽ|2)e−2sηdxdt

+κ16(s)‖y‖2
W 2,1

2 (ωT )
. (3.14)

for all large s > 0. In order to improve inequality (3.14), we use the following lemma. ([24] ,

Lemma 3.1.1 in [26]).

Lemma 3.2 Let θ = T
2 . There exists a positive constant κ17 such that

∫ T−δ

δ

∫

Ω

∣∣∣∣
∫ t

θ
q(x, ξ)dξ

∣∣∣∣
2

e−2sηdxdt ≤ κ17

s

∫ T−δ

δ

∫

Ω
|q(x, t)|2e−2sηdxdt
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for s > 0.

Proof of Lemma 3.2 The proof is similar to [24], Lemma 3.1.1 in [26]. We have

∫ T−δ

δ

∫

Ω

∣∣∣∣
∫ t

θ
q(x, ξ)dξ

∣∣∣∣
2

e−2sηdxdt

=
∫

Ω

∫ θ

δ

∣∣∣∣∣
∫ θ

t
q(x, ξ)dξ

∣∣∣∣∣
2

e−2sηdxdt +
∫

Ω

∫ T−δ

θ

∣∣∣∣
∫ t

θ
q(x, ξ)dξ

∣∣∣∣
2

e−2sηdxdt.

It is sufficient to estimate the second term because the estimation of the first term is similar. By

the Cauchy-Schwarz inequality, we obtain

∫

Ω

∫ T−δ

θ

∣∣∣∣
∫ t

θ
q(x, ξ)dξ

∣∣∣∣
2

e−2sηdxdt ≤
∫

Ω

∫ T−δ

θ
(t− θ)

(∫ t

θ
|q(x, ξ)|2dξ

)
e−2sηdxdt

≤
∫

Ω

∫ T−δ

θ

(t− δ)2(T − δ − t)2

2αω′(x)
∂tη(x, t)

(∫ t

θ
|q(x, ξ)|2dξ

)
e−2sηdxdt.

Here we used

∂tη(x, t) =
2(t− θ)αω′(x)

(t− δ)2(T − δ − t)2
.

Noting that αω′(x) > 0 and ∂tη(x, t) ≥ 0 for x ∈ Ω and θ ≤ t ≤ T − δ, we have

∫

Ω

∫ T−δ

θ

(∫ t

θ
|q(x, ξ)|2dξ

)
e−2sηdxdt ≤ κ′17

∫

Ω

∫ T−δ

θ

(∫ t

θ
|q(x, ξ)|2dξ

)
(∂tη(x, t))e−2sη(x,t)dxdt

= −κ′17

2s

∫

Ω

∫ T−δ

θ

(∫ t

θ
|q(x, ξ)|2dξ

)
∂t(e−2sη(x,t))dxdt.

By noting that e−2sη(x,T−δ) = 0, the integration by parts implies that the right hand side is equal

to

κ′17

2s

∫

Ω

∫ T−δ

θ
|q(x, t)|2∂t(e−2sη(x,t))dxdt.

Thus the proof of Lemma 3.2 is completed.
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Since ũ(x, t) =
∫ t
θ y(x, ξ)dξ and ṽ(x, t) =

∫ t
θ z(x, ξ)dξ, by a direct application of this lemma, the

first integral on the right hand side of (3.14) can be absorbed into the left hand side. Hence

∫ T−δ

δ

∫

Ω

{
1
sρ

(|∂ty|2 + |∂tz|2 + |∆y|2 + |∆z|2) + sρ(|∇y|2 + |∇z|2) + s3ρ3(|y|2 + |z|2)
}

e−2sηdxdt

≤ κ16(s)(‖∂t(U − Ũ)‖2
W 2,1

2 (ωT )
+ ‖U − Ũ‖2

W 2,1
2 (ωT )

)

for all large s > 0. We choose t0 > 0 sufficiently small such that δ < t0 < θ < T − t0 < T − δ, so

that

∫ T−t0

t0

∫

Ω

{
1
sρ

(|∂ty|2 + |∂tz|2 + |∆y|2 + |∆z|2) + sρ(|∇y|2 + |∇z|2) + s3ρ3(|y|2 + |z|2)
}

e−2sηdxdt

≤ κ16(s)(‖∂t(U − Ũ)‖2
W 2,1

2 (ωT )
+ ‖U − Ũ‖2

W 2,1
2 (ωT )

).

Since 1
ρe−2sη, ρe−2sη ≥ κ0(t0, s) on Ω× [t0, T − t0], we fix s > 0 sufficiently large, so that

‖ũ‖2
H1(t0,T−t0;H2(Ω)) + ‖ũ‖2

H2(t0,T−t0;L2(Ω)) + ‖ṽ‖2
H1(t0,T−t0;H2(Ω)) + ‖ṽ‖2

H2(t0,T−t0;L2(Ω))

≤ κ16(s)(‖∂t(U − Ũ)‖2
W 2,1

2 (ωT )
+ ‖U − Ũ‖2

W 2,1
2 (ωT )

).

By the trace theorem, we have

‖∂tũ(·, θ)‖2
L2(Ω) + ‖∂tṽ(·, θ)‖2

L2(Ω) + ‖ũ(·, θ)‖2
H2(Ω) + ‖ṽ(·, θ)‖2

H2(Ω)

≤ κ16(s)(‖∂t(U − Ũ)‖2
W 2,1

2 (ωT )
+ ‖U − Ũ‖2

W 2,1
2 (ωT )

).

Since f and g satisfy (3.1) and (3.2) at t = θ, we see that

‖b− b̃‖2
L2(Ω) + ‖c− c̃‖2

L2(Ω) ≤ κ(‖∂t(U − Ũ)‖2
W 2,1

2 (ωT )
+ ‖U − Ũ‖2

W 2,1
2 (ωT )

).

Thus the proof of Theorem 1.2 is completed.
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4 Removing the positivity assumption

For the stability in our inverse problem, the non-vanishing condition Assumption 1.1 (f) is crucial

and does not hold automatically. We are going to prove that one can realize this assumption by a

suitable control.

Let m ∈ N be fixed such that

m

4
> n. (4.1)

We assume that

a, b̃, c̃, d, A, B, C,D ∈ W 2m−2,∞(Ω). (4.2)

We set

L(u, v) = L(a, b̃, c̃, d, A, B, C,D)(u, v) =




L1(u, v)

L2(u, v)




= −




∆u + au + b̃v + A · ∇u + B · ∇v

∆v + c̃u + dv + C · ∇v + D · ∇v


 (4.3)

and

D(L) =
(
H2(Ω) ∩H1

0 (Ω)
)2

.

For h ∈ L2(ωT ), let (Ũ , Ṽ ) := (Ũ(Ũ0, Ṽ0, h)(·, ·), Ṽ (Ũ0, Ṽ0, h)(·, ·)) satisfy

∂t(Ũ , Ṽ ) = −L(a, b̃, c̃, d, A, B, C,D)(Ũ , Ṽ ) + (χωh, 0) in ΩT ,

(Ũ , Ṽ ) = (0, 0) on ΣT , (Ũ , Ṽ )(·, 0) = (Ũ0, Ṽ0) in Ω. (4.4)

By (U, V ) we denote the solution to (4.4) with b, c replacing b̃, c̃. Our main result in this section is

the following :
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Theorem 4.1 Suppose Assumption 1.1 except for (f). Let ω1 be a neighbourhood of ∂Ω such that

ω ⊂ ω1 and let b = b̃ and c = c̃ in ω1. Let (U, V )(·, θ) = (Ũ , Ṽ )(·, θ). Then there exists h ∈ L2(ωT )

depending on a, b̃, c̃, d, A, B, C,D, Ũ0, Ṽ0 and ω, such that there exists a constant κ > 0 such that

‖b− b̃‖L2(Ω) + ‖c− c̃‖L2(Ω) ≤ κ(‖∂t(U − Ũ)‖
W 2,1

2 (ωT )
+ ‖U − Ũ‖

W 2,1
2 (ωT )

) (4.5)

for arbitrary b, c, U, V satisfying Assumption 1.1 (a), (e), (h).

The rest of this section is devoted to the proof of Theorem 4.1.

First Step. First we prove

Lemma 4.2 Let Assumption 1.1 except for (f) hold and let b = b̃, c = c̃ in ω1. Then there exists

h ∈ L2(ωT ) such that

|Ũ(·, θ)|, |Ṽ (·, θ)| 6= 0 on Ω \ ω1. (4.6)

In this step, we will give the proof of Lemma 4.2, which is based on the approximate controllability

and our Carleman estimate Theorem 2.2.

Taking M > 0 for a, b̃, c̃, d, A, B, C,D, and setting U1 = e−MtŨ and V1 = e−MtṼ , we have

∂tU1 = ∆U1 + (a−M)U1 + b̃V1 + A · ∇U1 + B · ∇V1 + e−Mtχωh

and

∂tV1 = ∆V1 + c̃U1 + (d−M)V1 + C · ∇U1 + D · ∇V1.

Consequently, by choosing M > 0 sufficiently large, the integration by parts yields

((L + MI)(u, v), (u, v))(L2(Ω))2 ≥ κ1‖(u, v)‖2
(H1(Ω))2 , (u, v) ∈ D(L).
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Therefore with fear of confusion, we may denote a−M and d−M by a and d respectively. Then

‖(u, v)‖(H1(Ω))2 ≤ κ1‖L(u, v)‖(L2(Ω))2 , (u, v) ∈ D(L). (4.7)

Here and henceforth κj > 0 denote generic constants which depend on Ω, M , ‖a‖W 2m−2,∞(Ω),

‖b̃‖W 2m−2,∞(Ω), ‖c̃‖W 2m−2,∞(Ω), ‖d‖W 2m−2,∞(Ω), ‖A‖(W 2m−2,∞(Ω))n , ‖B‖(W 2m−2,∞(Ω))n , ‖C‖(W 2m−2,∞(Ω))n ,

‖D‖(W 2m−2,∞(Ω))n . We can prove

Lemma 4.3 Under assumption (4.2), there exists a constant κ2 > 0 such that

‖(u, v)‖(H2m(Ω))2 ≤ κ2‖Lm(u, v)‖(L2(Ω))2 , (u, v) ∈ D(Lm).

Proof of Lemma 4.3 The proof is done by the classical regularity property for the Dirichlet

problem for the Poisson equation (e.g., Theorem 8.13 in Gilbarg and Trudinger [10]) and given

here for completeness.

We recall (4.3) and we set Q(u, v) = (Q1(u, v), Q2(u, v)), Q1(u, v) = au + b̃v + A · ∇u + B · ∇v and

Q2(u, v) = c̃u+ dv +C ·∇u+D ·∇v. Let (u, v) ∈ D(Lm). By the elliptic regularity (e.g., Theorem

8.13 in [10]) in the Dirichlet problem for ∆u = f , we have

‖u‖H2(Ω) ≤ κ1‖(−L1 −Q1)(u, v)‖L2(Ω),

and

‖v‖H2(Ω) ≤ κ1‖(−L2 −Q2)(u, v)‖L2(Ω),

so that

‖(u, v)‖(H2(Ω))2 ≤ κ2‖L(u, v)‖(L2(Ω))2 + κ2‖(u, v)‖(H1(Ω))2 .

Hence by (4.7), we have

‖(u, v)‖(H2(Ω))2 ≤ κ3‖L(u, v)‖(L2(Ω))2 . (4.8)
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Again the elliptic regularity yields

‖(u, v)‖(H3(Ω))2 ≤ κ1‖(∆u,∆v)‖(H1(Ω))2 + κ1‖(u, v)‖(L2(Ω))2

≤ κ1‖(−L−Q)(u, v)‖(H1(Ω))2 + κ1‖(u, v)‖(L2(Ω))2

≤ κ1‖L(u, v)‖(H1(Ω))2 + κ1‖(u, v)‖(H2(Ω))2 . (4.9)

On the other hand, we have L(u, v) ∈ D(L) and apply (4.7) to L(u, v) to have

‖L(u, v)‖(H1(Ω))2 ≤ κ1‖L2(u, v)‖(L2(Ω))2 .

Applying this and (4.8) to (4.9), we obtain

‖(u, v)‖(H3(Ω))2 ≤ κ4‖L2(u, v)‖(L2(Ω))2 .

Repeating these arguments, we can complete the proof of Lemma 4.3.

Moreover by [30] and [31] for example, we see:

Lemma 4.4 The operator −L generates an analytic semigroup in (L2(Ω))2.

There are no general result on the approximate controllabilty for parabolic systems with controls

of a restricted number of components and see e.g., [2] and [28] as related works. For controllability

for systems, see [2] - [4], [11] - [13]. Next we will prove the approximate controllability with control

χωh to only one component. This is the approximate controllability for a 2× 2 system by only one

component control.

Lemma 4.5 For any ε > 0, (Ũ0, Ṽ0) ∈ (L2(Ω))2, (Ũ1, Ṽ1) ∈ (L2(Ω))2, and any t0 ∈ (0, δ), there

exists hε ∈ L2(ωT ) such that

‖Ũ(Ũ0, Ṽ0, h)(·, t0)− Ũ1‖L2(Ω) + ‖Ṽ (Ũ0, Ṽ0, h)(·, t0)− Ṽ1‖L2(Ω) < ε.
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Proof. Consider the following reaction-diffusion-convection system :

∂tu = ∆u + au + b̃v −∇ · (Au)−∇ · (Bv) in ΩT ,

∂tv = ∆v + c̃u + dv −∇ · (Cu)−∇ · (Dv) in ΩT ,

u = v = 0 on ΣT . (4.10)

The approximate controllability is equivalent to the uniqueness: Let u, v satisfy (4.10). Then u = 0

in ωT implies u = v = 0 in ΩT (e.g., Zabczyk [33]). This uniqueness follows from Theorem 2.2 by

replacing the coefficients in (2.1) suitably and verifying Assumption 1.1 (d).

Now we will complete

Proof of Lemma 4.2 The proof is be done in three steps. Henceforth for fixed (Ũ0, Ṽ0), by

(Ũ , Ṽ )(h) we denote (Ũ , Ṽ )(Ũ0, Ṽ0, h).

Existence of a control in L2(ωT )

Let us arbitrarily fix (Ũ1, Ṽ1) ∈ (H2m+2
0 (Ω))2 satisfying |Ũ1|, |Ṽ1| 6= 0 on Ω \ ω1. Then for any ε > 0

and any T1 ∈ (0, θ), there exists hε ∈ L2(ωT1) such that

‖(Ũ , Ṽ )(hε)(·, T1)− (Ũ1, Ṽ1)‖(L2(Ω))2 ≤ ε. (4.11)

A more regular control

By the density of C∞(ωT1) in L2(ωT1), for any δ > 0, there exists hε,δ ∈ C∞(ωT1) such that

‖hε − hε,δ‖L2(ωT1
) ≤ δ. (4.12)
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Therefore

‖(Ũ , Ṽ )(hε)(·, T1)− (Ũ , Ṽ )(hε,δ)(·, T1)‖(L2(Ω))2 =

∥∥∥∥∥
∫ T1

0
e−(T1−s)Lχω(hε − hε,δ)(s)ds

∥∥∥∥∥
(L2(Ω))2

≤ κ5δ.

Use of the time regularizing effect

By (4.11) and (4.12), we obtain

‖(Ũ , Ṽ )(hε,δ)(·, T1)− (Ũ1, Ṽ1)‖(L2(Ω))2 ≤ ε + κ5δ. (4.13)

Since −L generates an analytic semigroup in (L2(Ω))2, by e.g., [30], [31], we see that

e−(θ−T1)L(Ũ , Ṽ )(hε,δ)(·, T1) ∈ D(Lm)

and

‖Lm[e−(θ−T1)L(Ũ , Ṽ )(hε,δ)(·, T1)− e−(θ−T1)L(Ũ1, Ṽ1)]‖(L2(Ω))2

≤ κ6(θ − T1)−m‖(Ũ , Ṽ )(hε,δ)(·, T1)− (Ũ1, Ṽ1)‖(L2(Ω))2 ≤ κ6(θ − T1)−m(ε + κ5δ).

Extending hε,δ(·, t) = 0 for t > T1, we have

e−(θ−T1)L(Ũ , Ṽ )(hε,δ)(·, T1) = (Ũ , Ṽ )(hε,δ)(·, θ),

and so

‖Lm[(Ũ , Ṽ )(hε,δ)(·, θ)− e−(θ−T1)L(Ũ1, Ṽ1)]‖(L2(Ω))2 ≤ κ6(θ − T1)−m(ε + κ5δ). (4.14)

Moreover as (Ũ1, Ṽ1) ∈ D(Lm+1), we have

‖Lm[e−(θ−T1)L(Ũ1, Ṽ1)− (Ũ1, Ṽ1)]‖(L2(Ω))2 ≤ κ6‖(e−(θ−T1)L − I)Lm(Ũ1, Ṽ1)‖(L2(Ω))2

≤ κ6

∥∥∥∥∥
∫ θ−T1

0

d

dη
(e−ηL)Lm(Ũ1, Ṽ1)dη

∥∥∥∥∥
(L2(Ω))2

≤ κ6

∥∥∥∥∥
∫ θ−T1

0
e−ηLLm+1(Ũ1, Ṽ1)dη

∥∥∥∥∥
(L2(Ω))2

≤ κ6(θ − T1)‖Lm+1(Ũ1, Ṽ1)‖(L2(Ω))2 .

27



In terms of (4.14), we obtain

‖Lm[(Ũ , Ṽ )(hε,δ)(·, θ)− (Ũ1, Ṽ1)]‖(L2(Ω))2 ≤ κ6(θ − T1)−m(ε + κ5δ)

+κ6(θ − T1)‖Lm+1(Ũ1, Ṽ1)‖(L2(Ω))2 . (4.15)

For any ε1 > 0 and (Ũ1, Ṽ1) ∈ D(Lm+1), we choose T1 ∈ (0, θ) such that

κ6(θ − T1)‖Lm+1(Ũ1, Ṽ1)‖(L2(Ω))2 <
ε1

3
.

Then, with this T1, we choose ε > 0 such that

κ6(θ − T1)−mε <
ε1

3
.

Finally with this hε, we choose δ > 0 sufficiently small such that

κ6δ ≤ ε1

3
.

Therefore (4.15) yields

‖Lm[(Ũ , Ṽ )(hε,δ)(·, θ)− (Ũ1, Ṽ1)]‖L2(Ω)2 ≤ ε1. (4.16)

In terms of Lemma 4.3 and (4.1), by choosing ε > 0 sufficiently small for infx∈Ω\ω1
|Ũ1(x)| and

infx∈Ω\ω1
|Ṽ1(x)|, the proof of Lemma 4.2 is completed.

Second Step We will complete the proof of Theorem 4.1. Let h ∈ L2(ωT ) be chosen in Lemma

4.2. We set

u = U − Ũ , v = V − Ṽ .

Then (u, v) satisfies

∂tu = ∆u + au + bv + A · ∇u + B · ∇v + fṼ ,
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∂tv = ∆v + cu + dv + C · ∇u + D · ∇v + gŨ in ΩT ,

u = v = 0 on ΣT , (4.17)

where

f = b− b̃, g = c− c̃.

We consider the time derivative of system (4.17). Setting y = ∂tu and z = ∂tv, we obtain

∂ty = ∆y + a(x)y + b(x)z + A · ∇y + B · ∇z + f∂tṼ in ΩT ,

∂tz = ∆z + c(x)y + d(x)z + C · ∇y + D · ∇z + g∂tŨ in ΩT ,

y = z = 0 on ΣT . (4.18)

Applying the Carleman estimate Theorem 2.2 to system (4.17) and using f = 0 in ω1, we have

∫

ΩT

(sρ)−1e−2sηω(|∂ty|2 + |∂tz|2 + |∆y|2 + |∆z|2

+(sρ)2|∇y|2 + (sρ)2|∇z|2 + (sρ)4|y|2 + (sρ)4|z|2)dxdt

≤ κ7(s)‖y‖2
W 2,1

2 (ωT )
+ κ

∫∫

ΩT

e−2sηω(|f∂tṼ |2 + |g∂tŨ |2)dxdt. (4.19)

Furthermore, for large s > 0, we can prove that

∫

ΩT

|f(x)|2e−2sηω(x,t)dxdt ≤ o(1)
∫

Ω
|f(x)|2e−2sηω(x,θ)dx as s →∞. (4.20)

In fact, we can prove similarly to [15]. Recall that T = 2θ. Setting `(t) = t(T − t), by (2.2) we

have ∂(−ηω)
∂t (x, θ) = 0, x ∈ Ω and

∂2(−ηω)
∂t2

(x, t) = −αω(x)
2`′(t)2 − `(t)`′′(t)

`(t)3
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and

∂3(−ηω)
∂t3

(x, t) = −αω(x)
6`′(t)(`(t)`′′(t)− `′(t)2)

`(t)4
, (x, t) ∈ ΩT .

Therefore

∂2(−ηω)
∂t2

(x, t) ≤ − κ8

`(t)3
, (x, t) ∈ ΩT

with a positive constant κ8 and

∂3(−ηω)
∂t3

(x, t) ≥ 0, 0 ≤ t ≤ θ, x ∈ Ω,

∂3(−ηω)
∂t3

(x, t) ≤ 0, θ ≤ t ≤ T, x ∈ Ω.

Consequently by the mean value theorem, we can take t1 such that t1 is between t and θ and

−ηω(x, t) = −ηω(x, θ) +
1
2

∂2(−ηω)
∂t2

(x, t)(t− θ)2 +
1
6

∂3(−ηω)
∂t3

(x, t1)(t− θ)3

≤ −ηω(x, θ)− κ8

2t3(T − t)3
(t− θ)2, (x, t) ∈ ΩT .

Hence, noting that κ8 > 0 and − 1
t(T−t) ≤ − 4

T 2 , we obtain

∫ T

0
e−2sηω(x,t)dt ≤ e−2sηω(x,θ)

∫ T

0
exp

(
− sκ8

t3(T − t)3
(t− θ)2

)
dt

≤ e−2sηω(x,θ)
∫ T

0
exp

(
−sκ9

T 2
(t− θ)2

)
dt.

The Lebesgue theorem yields (4.20).

We have

∫

Ω
(|y(x, θ)|2 + |z(x, θ)|2)e−2sηω(x,θ)dx =

∫

Ω

∂

∂t

∫ θ

0
(|y(x, t)|2 + |z(x, t)|2)e−2sηω(x,t)dtdx

=
∫

Ω

∫ θ

0
{2sαω(x)ρ(t)2(T − 2t)(|y(x, t)|2 + |z(x, t)|2) + 2(y∂ty + z∂tz)}e−2sηω(x,t)dtdx

≤ κ10

∫

ΩT

{(sρ)3(|y(x, t)|2 + |z(x, t)|2) + (sρ)−1(|∂ty(x, t)|2 + |∂tz(x, t)|2)}e−2sηω(x,t)dtdx.
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At the last inequality, we used

|y∂ty| = |(sρ)−
1
2 ∂ty(sρ)

1
2 y|

≤ 1
2
(sρ)−1|∂ty|2 +

1
2
(sρ)|y|2 ≤ 1

2
(sρ)−1|∂ty|2 + κ′10(sρ)3|y|2.

Hence, by (4.19) and (4.20), noting that f = g = 0 in ω1, we have

∫

Ω
(|y(x, θ)|2 + |z(x, θ)|2)e−2sηω(x,θ)dx ≤ κ7(s)‖y‖2

W 2,1
2 (ωT )

+o(1)
∫

Ω\ω1

(|f(x)|2 + |g(x)|2)e−2sηω(x,θ)dx

(4.21)

for all large s > 0.

On the other hand, since u(·, θ) = v(·, θ) = 0, we have y(x, θ) = f(x)Ṽ (x, θ) and z(x, θ) =

g(x)Ũ(x, θ) for x ∈ Ω. Therefore, by (4.6) and (4.21) we obtain

κ11

∫

Ω
(|f(x)|2 + |g(x)|2)e−2sηω(x,θ)dx ≤ κ7(s)‖y‖2

W 2,1
2 (ωT )

+ o(1)
∫

Ω\ω1

(|f(x)|2 + |g(x)|2)e−2sηω(x,θ)dx

as s −→ ∞. Taking s > 0 large and fixing, we absorb the second term on the right hand side into

the left hand side and the proof of Theorem 4.1 is completed.

5 Some generalization and comments

5.1 Identification of all the coefficients

Indeed we can determine all the coefficients of (1.1). For it, we need repeats of measurements by

choosing suitable interior controls. We choose m ∈ N such that

m >
n

4
+

1
2
.

We recall that (Ũ , Ṽ ) = (Ũ(h)(·, ·), Ṽ (h)(·, ·)) satisfies (4.3) and that (U, V ) = (U(h)(·, ·), V (h)(·, ·))

satisfies (4.3) where ã, b̃, c̃, d̃, Ã, B̃, C̃, D̃ are replaced by a, b, c, d, A, B, C,D respectively. Then, with
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m > n
4 + 1

2 , under assumption (4.2) we can prove (4.16). Moreover, noting that H2m(Ω) ⊂ C1(Ω)

by m > n
4 + 1

2 , we can see that for any ε > 0 and (Ũ1, Ṽ1) ∈ (H2m+2
0 (Ω))2, there exists h ∈ L2(ωT )

such that

‖(Ũ(h), Ṽ (h))(·, θ)− (Ũ1, Ṽ1)‖(C1(Ω))2 ≤ ε. (5.1)

Therefore

Theorem 5.1 Let ω, a, ã, b, b̃, c, c̃, d, d̃, A, Ã, B, B̃, C, C̃, D, D̃ satisfy Assumption 1.1 and ã, b̃, c̃, d̃, Ã, B̃, C̃, D̃ ∈

W 2m,∞(Ω). Let ω1 be a neighbourhood of ∂Ω such that ω ⊂ ω1 and let the coefficients (a, b, c, d, A,B,C, D)

and (ã, b̃, c̃, d̃, Ã, B̃, C̃, D̃) coincide in ω1. Then there exist h1, h2, ..., h2n+2 ∈ L2(ωT ) such that

det




Ũ(h1) Ṽ (h1) 0 0 ∇Ũ(h1) ∇Ṽ (h1) 0 0

0 0 Ũ(h1) Ṽ (h1) 0 0 ∇Ũ(h1) ∇Ṽ (h1)

Ũ(h2) Ṽ (h2) 0 0 ∇Ũ(h2) ∇Ṽ (h2) 0 0

0 0 Ũ(h2) Ṽ (h2) 0 0 ∇Ũ(h2) ∇Ṽ (h2)

...
...

...
...

...
...

...
...

Ũ(h2n+2) Ṽ (h2n+2) 0 0 ∇Ũ(h2n+2) ∇Ṽ (h2n+2) 0 0

0 0 Ũ(h2n+2) Ṽ (h2n+2) 0 0 ∇Ũ(h2n+2) ∇Ṽ (h2n+2)




6= 0 x ∈ Ω \ ω1, t = θ (5.2)

and we choose a constant κ > 0 depending on M, m, γ, s,Ω, ω, T and h1, ..., h2n+2 such that

‖a− ã‖L2(Ω) + ‖b− b̃‖L2(Ω) + ‖c− c̃‖L2(Ω) + ‖d− d̃‖L2(Ω)

+ ‖A− Ã‖(L2(Ω))n + ‖B − B̃‖(L2(Ω))n + ‖C − C̃‖(L2(Ω))n + ‖D − D̃‖(L2(Ω))n

≤ κ
∑2n+2

j=1 (‖∂t(U(hj)− Ũ(hj))‖W 2,1
2 (ωT )

+ ‖U(hj)− Ũ(hj)‖W 2,1
2 (ωT )

)

for all (a, b, c, d, A, B,C, D) satisfying Assumption 1.1.

Example for Theorem 5.1:
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Let n = 1 and let p1, p2, q1, q2, q3 be constants such that p1q2 − p2q1 6= 0 and p3(x1), q4(x1) satisfy

(∂1p3)(x1) 6= 0 and ∂1q4(x1) 6= 0 for x1 ∈ Ω \ ω1, and let q3 be an arbitrarily smooth function.

Then for x = x1 ∈ Ω \ ω1, we can verify that

det




p1 q1 0 0 ∂1p1 ∂1q1 0 0

0 0 p1 q1 0 0 ∂1p1 ∂1q1

p2 q2 0 0 ∂1p2 ∂1q2 0 0

0 0 p2 q2 0 0 ∂1p2 ∂1q2

...
...

...
...

...
...

...
...

p4 q4 0 0 ∂1p4 ∂1q4 0 0

0 0 p4 q4 0 0 ∂1p4 ∂1q4




(x) = |∂1p3(x1)|2|∂1q4(x1)|2(p1q2 − p2q1)2 6= 0.

Therefore in (5.1), we can choose (Ũ1, Ṽ1) = (pj , qj), 1 ≤ j ≤ 4 to construct h1, h2, h3, h4 satisfying

(5.2).

5.2 Carleman estimate for a 3×3 reaction-diffusion system with one observation

We consider now a 3× 3 reaction-diffusion system

∂tu(x, t) = ∆u(x, t) + a11(x, t)u(x, t) + a12(x, t)v(x, t) + a13(x, t)w(x, t) + f(x, t) in ΩT ,

∂tv(x, t) = ∆v(x, t) + a21(x, t)u(x, t) + a22(x, t)v(x, t) + a23(x, t)w(x, t) + g(x, t) in ΩT ,

∂tw(x, t) = ∆w(x, t) + a31(x, t)u(x, t) + a32(x, t)v(x, t) + a33(x, t)w(x, t) + h(x, t) in ΩT ,

u = v = w = 0 on ΣT . (5.3)

We will assume

Assumption 5.2
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(a) (aij)i,j=1,3 ∈ W 2,∞(ΩT ), ‖aij‖W 2,∞(ΩT ) ≤ M .

(b) ω of class C2, ∂ω ∩ ∂Ω = γ and |γ| 6= 0.

(c)
∣∣∣(∇a12 − a12

a13
∇a13) · ν

∣∣∣ 6= 0 on γ × (0, T ).

(d) a12, a13 ∈ W 3,∞(ωT ), ‖a12‖W 3,∞(ωT ), ‖a13‖W 3,∞(ωT ) ≤ M .

(e) a13 6= 0 on ΩT .

We show a Carleman estimate with extra data of one component.

Theorem 5.3 Under Assumption 5.2, there exist αω ∈ C2(Ω) with αω > 0 on Ω and a constant

s0 > 0 which depends on T, M,Ω, ω, τ and the L∞(Ω)-norms of aij, 1 ≤ i, j ≤ 3 such that we can

choose positive constants κ1(s) and κ satisfying:

∫

ΩT

(sρ)−1e−2sηω(|∂tu|2 + |∂tv|2 + |∂tw|2 + |∆u|2 + |∆v|2 + |∆w|2

+(sρ)2|∇u|2 + (sρ)2|∇v|2 + (sρ)2|∇w|2 + (sρ)4u2 + (sρ)4v2 + (sρ)4w2)dxdt

≤ κ1(s)(‖u‖2
W 4,2

2 (ωT )
+ ‖f‖2

W 2,1
2 (ωT )

+ ‖g‖2
L2(ωT ) + ‖h‖2

L2(ωT ))

+κ

∫

ΩT

(|f2|+ |g|2 + |h|2)e−2sηωdxdt

for all s ≥ s0 and (u, v, w) satisfying (5.3). Here we set

ηω(x, t) =
αω(x)

t(T − t)
.

Proof Setting z = a12v + a13w, we rewrite (5.3) as

∂tu = ∆u + a11u + z + f in ΩT ,

∂tz = ∆z + A · ∇z + az + eu + B · ∇v + bv + G in ΩT ,
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∂tv = ∆v + a21u + dv + cz + g in ΩT ,

u = v = z = 0 on ΣT , (5.4)

where

A = −2
∇a13

a13
, B = −2∇a12 + 2

a12

a13
∇a13,

a = 2
|∇a13|2

a2
13

+ a33 +
a12a23 + ∂ta13 −∆a13

a13
,

b = a12a22 + a13a32 + ∂ta12 −∆a12 + 2∇a13 · ∇
(

a12

a13

)

−a12

a13
(a12a23 + a13a33 + ∂ta13 −∆a13),

c =
a23

a13
, d = a22 − a12a23

a13
, e = a21a12 + a31a13

and

G = a12g + a13h.

By [9], [14] and the proof of Theorem 2.2, we see that there exist a subdomain ω′ ⊂ ω and

βω′ ∈ C2(Ω) with βω′ > 0 on Ω such that

∫

ΩT

(sρ)−1e−2sη̃ω′ (|∂tu|2 + |∂tz|2 + |∆u|2 + |∆z|2

+(sρ)2|∇u|2 + (sρ)2|∇z|2 + (sρ)4u2 + (sρ)4z2)dxdt

≤ κ2

∫

ΩT

(z2 + |eu|2)e−2sη̃ω′dxdt + κ2

∫

ΩT

(f2 + G2)e−2sη̃ω′dxdt

+κ2

∫

ΩT

|B · ∇b + bv|2e−2sη̃ω′dxdt + κ2

∫

ω′T
(sρ)−1(u2 + z2)e−2sη̃ω′dxdt (5.5)

and
∫

ΩT

(sρ)−1e−2sη̃ω′ (|∂tz|2 + |∂tv|2 + |∆z|2 + |∆v|2

+(sρ)2|∇z|2 + (sρ)2|∇v|2 + (sρ)4z2 + (sρ)4v2)dxdt
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≤ κ3(s)(‖z‖2
W 2,1

2 (ω′T )
+ ‖eu + G‖2

L2(ω′T )) + κ2

∫

ΩT

(|eu + G|2 + |a21u + g|2)e−2sη̃ω′dxdt (5.6)

for all s ≥ s0, where we set η̃ω′(x, t) = βω′ (x)
t(T−t) . Here (5.5) is obtained by applying the Carleman

estimate in [9] or [14] to the first and the second equations in (5.4), while (5.6) is seen by applying

Theorem 2.2 to the second and the third equations in (5.4) and noting Assumption 5.2 (c). We

further notice that the weight function η̃ω′ can be taken the same, which can be seen from the proof

of Theorem 2.2. By (5.5) and (5.6), in terms of Assumption 5.2 (a), (d) and (e), we have

∫

ΩT

(sρ)−1e−2sη̃ω′ (|∂tu|2 + |∂tz|2 + |∂tv|2 + |∆u|2 + |∆z|2 + |∆v|2

+(sρ)2|∇u|2 + (sρ)2|∇z|2 + (sρ)2|∇v|2 + (sρ)4u2 + (sρ)4z2 + (sρ)4v2)dxdt

≤ κ2

∫

ΩT

(z2 + u2 + v2 + |∇v|2)e−2sη̃ω′dxdt + κ2

∫

ΩT

(f2 + g2 + h2)e−2sη̃ω′dxdt

+κ3(s)(‖z‖2
W 2,1

2 (ω′T )
+ ‖u‖2

L2(ω′T ) + ‖g‖2
L2(ω′T ) + ‖h‖2

L2(ω′T )) (5.7)

for all large s > 0. We can absorb the first terms on the right hand side into the left hand side by

choosing s > 0 large, and we use z = ∂tu −∆u − a11u − f by the first equation in (5.4), so that

the proof of Theorem 5.3 is completed.

The approximate controllability is a direct consequence of Theorem 5.3. That is, we consider

∂tu = ∆u + a11(x)u + a21(x)v + a31(x)w + χωf in ΩT ,

∂tv = ∆v + a12(x)u + a22(x)v + a32(x)w in ΩT ,

∂tw = ∆w + a13(x)u + a23(x)v + a33(x)w in ΩT ,

u = v = w = 0 on ΣT ,

u(·, 0) = u0, v(·, 0) = v0, w(·, 0) = w0 in Ω. (5.8)
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Here we assume that all the coefficients are independent of t.

Then

Theorem 5.4 Under Assumption 5.2, for all ε > 0, T > 0, (u0, v0, w0) ∈ (L2(Ω))3 and (u1, v1, w1) ∈

(L2(Ω))3, there exists f ∈ L2(ωT ) such that the corresponding solution of (5.8) satisfies

‖(u, v, w)(·, T )− (u1, v1, w1)‖(L2(Ω))3 ≤ ε.

Similary to section 4, we can apply the Carleman estimate of Theorem 5.3 for determining the nine

coefficients aij , 1 ≤ i, j ≤ 3 by suitably repeated observations of only one component u and we will

here omit further details.
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vol.1, Masson, Paris, 1988.

40



[30] A.Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations,

Springer-Verlag, Berlin, 1983.

[31] H. Tanabe, Equations of Evolution, Pitman, London, 1979.

[32] G. Yuan and M. Yamamoto, Lipshitz stability in the determination of the principal parts

of a parabolic equation by boundary measurements, to appear in ESAIM Control Optim.

Calc. Var.

[33] J. Zabczyk , Mathematical Control Theory: An Introduction, Birkhäuser, Boston, 1992.
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