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Abstract

Our end in mathematical psychology is to construct and analyze and
utilize a mathematical model of the human system of thinking, the outer
world which human cognizes, and the relationship between them, from
mechanists’ viewpoint. As the core of our mathematical model, we need
some good logical system, and MPCL is our present tentative one. We
will define it, give an account of its relationship with natural languages,
and prove a completeness theorem for it, based on a newly formulated
universal algebraic logic.
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1 Introduction

The purpose of this paper is to prove a completeness theorem for the logical
system MPCL which is designed for mathematical psychology. Our end is to
construct and analyze and utilize a mathematical model of the human system
of thinking, the outer world which human cognizes, and the relationship be-
tween them, from mechanists’ viewpoint. Therefore we have nothing to do
with old mathematical psychology which centers around statistical treatments
of experimental data. Our mathematical psychology is rather a close relative
of metamathematics, philosophy of logic, theoretical linguistics, and so on. In
particular, Richard Montague’s theory [9] of natural languages had a great in-
fluence on us at the outset, although mathematical psychology is not the theory
of natural languages.

As the core of our mathematical model, we need some good logical system.
At present we are in the process of trial and error in order to find out the
still unknown ideal logical system. This process may well be compared to the



one which past metamathematicians had experienced before they invented the
logical system PL of predicate logic [6]. Nevertheless we believe that our present
tentative logical system MPCL is of worth, which we will describe in §3.6.
“MPCL” is an abbreviation for monophasic case logic. The set K of
“cases” is one of the parameters of the formal language of MPCL. Roughly
speaking, cases are mathematical models of substances which are supposed to
exist in human brain, and some of which are supposed to be expressed by some
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of Japanese postpositional particles called teniwoha such as “ga,” “wa,” “wo,
“ni,” some of English prepositions, and so on.

Human thinks about various phases of the entities in the outer world such
as specific location, direction, time, the recipient of an action, and so on, while
for instance, one Japanese postpositional particle “ni” may be used to indicate
those various phases. Therefore one postpositional particle “ni” is considered
an expression of various substances in various phases in human brain, and so K
must be divided into various phases. However, a mathematical model with such
various phases seemed difficult to study in the first attempt, and thus we have
begun with the model MPCL with only one phase.

In fact, this paper is an abridged translation of an impermanent aspect of the
personal electronic publication Mathematical Psychology [3] by the first author,
where our work in progress has been shown for more than decade by frequent
revisions, and in particular, the logical system CL of the coming generation has
already been born with arbitrary number of phases.

The formal language of MPCL is quite different from that of PL as indicated
by the existence of the parameter K. It is also notably different from the PL
language in that it has plenty of quantifiers and that they are not accompanied
by variables but by cases, just as quantifiers in orthodox Japanese are accom-
panied by teniwoha. However, those are rather superficial linguistic differences.
As a logical system, MPCL is deeply different from PL in that consistent sets
of “closed predicates” do not necessarily possess models [8].

In spite of those differences, MPCL is an extension of PL in the sense that PL
is embedded in MPCL, just as we read and understand PL sentences translating
them into natural languages. For this and some other reasons, our strategy for
MPCL completeness is an extension of that for PL completeness, while tactics
not obtained from PL theory were supplied by the second author [7].

2 Definitions for stating the main result

Here we show definitions other than that of MPCL to the extent necessary for
stating the main result of this paper. We expect that the readers will have
a variety of backgrounds such as mathematical logic, philosophy, linguistics,
and so on. Although our mathematical psychology overlaps with them, it is
a new branch different from any one of them, and as such, free to use new
terminologies and formulations. Therefore, we will make this paper as self-
contained as tolerated. However, we expect that our set-theoretical notation
and terminology will be standard except that we denote the set of all mappings



of a set Yinto aset ZbyY — Z. Thus we write f € Y — Zinstead of f: Y — Z.

2.1 Sorted algebras

For each set A and each natural number n, an n-ary operation on A is a
mapping o of a subset D of A™ into A. The set D is called the domain of «
and denoted by Dom «, while the image «D is denoted by Im «. The number
n is called an arity of «, and so if D = (, every natural number is an arity of
«. We say that o is global if D = A™. A subset B of A is said to be closed
under the operation « if «(aj,...,an) € B for each (aj,...,a,) € B*ND. If
B is closed under «, the restriction x|gnnp of & to B is an operation on B.

An algebra is a set A equipped with a family (ax)aea of operations on
A, which we call the operation system or OS of the algebra A. We often
identify the operation «, with its index A. The algebra (A, (ax)aen) is said to
be global if «y is global for every A € A.

The algebra (A, (o )aca ) has two kinds of subalgebras. The first is an alge-
bra (A, (o )uem) obtained by reducing the OS of A from (o )aea to (xp)uem
for a subset M of A. Such an algebra will be called an operational subal-
gebra. Also, if a subset B of A is closed under o, for each A € A, then B
becomes an algebra equipped with the operation system (x)aea consisting of
restrictions B of o« to B. Such an algebra (B, (Ba)aca) is called a support
subalgebra.

Let (A, (axan)aen) be an algebra. Then the intersection of support subalge-
bras of A is also a support subalgebra of A, and A itself is a support subalgebra
of A. Therefore, for each subset S of A, the intersection of all support sub-
algebras of A which contain S is the smallest of the support subalgebras of
A which contain S. We denote it by [S] and call it the closure of S or the
support subalgebra generated by S. A support subalgebra B is said to be
finitely generated if B = [S] for some finite subset S of A. Define the subsets
Sh(m=0,1,...) of A inductively as follows. First So = S. Next for eachn > 1,
Sn is the set of all elements oy (a7,...,am) withA € A, (aj,...,am) € Dom «;,
and a; € S, (1 = 1,...,m) for some non-negative integers ly,..., Ll such
that n = 1 + ZT:] li. Then it is easy to show [S] = [J,,5oSn. We call
S. (m=0,1,...) the descendants of S. B

Two algebras A and B are said to be similar, if they have operation systems
(aa)aen and (Ba)aen indexed by the same set A, and x, and 3 have a common
arity for each A € A.

Let (A, (aa)aen) and (B, (Ba)aea) be similar algebras. Then a mapping f of
A into B is called a homomorphism if it satisfies the following two conditions
for all A € A, where n) denotes an arity common to «) and {3x.

e If (a1,...,an,) € Dom «y, then (fas,...,fan,) € Dom
and f(aa(ar,...,an,)) = Ba(far,...,fan,).

o If (a1,...,an,) € A™ and (fai,...,fan,) € Dom B,,
then (aj,...,an,) € Dom x;.



A bijective homomorphism is called an isomorphism. If both A and B are
global algebras, a mapping f of A into B is a homomorphism iff it satisfies the
following condition for all A € A and all (aj,...,an,) € A™:

f((X)\(Cl],...,(lnA)) = B)\(fa],...,f(ln)\).

A sorted algebra is an algebra A equipped with an algebra T similar to A
and a homomorphism o of A into T. We call T and o the type algebra and
the sort mapping of the sorted algebra A. For each subset S of A and each
t € T, we define the t-part S¢ of S to be the inverse image {a € S| ca =t} of t
in S by o.

Let (A, T, 0) and (B, T,T) be sorted algebras with the same type algebra T.
Then a mapping f of A into B is said to be sort-consistent, if it satisfies Tf = o,
or equivalently f(A¢) C Bt for all t € T.

A sorted algebra (A, T, o) is said to be universal or called a USA if A has
a subset S which satisfies the following two conditions, the latter being called
the universality.

e A=1S].

e If (A, T, o) is a sorted algebra and ¢ is a mapping of S into A’ satisfying
o’@ = ols, then there exists a sort-consistent homomorphism f of A into
A’ which extends @.

We call S as above the set of the primes of A. It is known that every sorted
algebra has at most one prime set and that f in the above condition is uniquely
determined by @.

The following theorem is known to hold.

Theorem 2.1 (Unique Existence of USA) Let S be a set, T be an algebra,
and T be a mapping of S into T. Then there exists a USA (A, T, 0,S) with ols = 1.
If (A/,T,07,S) is also a USA with ¢’|s = T, then there exists a sort-consistent
isomorphism of A onto A’ extending ids.

For a proof, we refer the reader to [3|[4]. In the course of the proof, it is
shown that if (A, T, 0,S) is a USA then A is the direct union of the descendants
Sh (n=0,1,...) of S. Therefore, for each element a of A, there exists a unique
non-negative integer n such that a € S;,. We call it the rank of a. It is also
shown that if a € S then a has no expression a = «x(ay, ..., ax) by an operation
o in the OS of A, while if a € A — S then a has a unique such expression and
ranka =1+ Y ¥ rank a;.

Let (A,T,0) be a sorted algebra and V be a non-empty set. Define AV =
Uier(V — Ay). Then we can construct a sorted algebra (AV,T p) as follows.
First define the sort mapping p of AY into T by pb =t for each b € V — A,
and each t € T. Then

pb = o(bv)



for each b € AY and each v € V. Let (x\)aca and (Ta)rea be the OS’s of A
and T respectively, and let n) be an arity of a) and T). For each A € A, define
the operation B on AV as follows. First define the domain of B to be

Da = {(b1,...,buy) € (AY)™ | (pbr,..., pbn,) € Dom }.

If (b1,...,bn,) € Dy, then (o(b1v),...,0(bn,v)) = (pb1,...,pbn,) € Dom Ty
so (b1v,...,bn,v) € Dom«x, for each v € V, and we can define the mapping
Ba(b1,...,bn,) of Vinto A by

(BA(b1,...,bny))v = aa(b1v, ..., by, V)
for each v € V. Furthermore
U(O(A(b]V, s vbT‘U\V)) =T (G(b]\)), LN O_(bn)\v)) = T)\(pb1 yerey prU\))

and t = TA(pb1,...,pbn,) is not varied by v € V, hence Ba(b1,...,bn,) €
V — Ay C AV. Thus By certainly is an operation on AY for each A € A, and
so (AVY, (Ba)aen) becomes an algebra. Furthermore

p(BA(b1,.. b)) = o ((Balbr, ..., bn,))V)
= G(OC)\(b1V,... ;bn;\v)) :T)\(pb1a'--ypbﬂ)\)

with any element v € V, and so p is a homomorphism of AY into T. Thus we
have constructed the sorted algebra (AY, T, p), which we call the power algebra
of A with exponent V. Furthermore, it follows from the above definition
that for each v € V the mapping b — bv of AY into A is a sort-consistent
homomorphism, which we call the projection by v.

Let (A, (oa)aea) be an algebra. If, for two elements a and b of A, there
exists an element A € A such that a = ax(...,b,...), then we write b < a.
If b < aorb=a, wewrite b < a. If there exists a sequence bg,...,b, of
elements of A such that bp = a, by =b and by < bi_; fori=1,...,n, then
we say that b occurs in a and call the sequence an occurrence of b in a.

In the rest of this subsection, let (A, T, 0,S) be a USA, (ax)aca and (Ta)aen
be the OS’s of A and T respectively, and assume that A is contained in the set
of all formal products of elements of I'ITS for some set I". More precisely, A is a
subset of the free semigroup over I'I1'S. For each element A of A, let S* denote
the set of the elements of S which occur in A.

Let a € A and s € S. Then an occurrence Sg,...,Sn of s in a is said
to be free, if {sg,...,sn)NImoy = 0 for each A € A such that s € S*. If
there exists a free occurrence of s in a, we write s < a or say that s occurs
free in a. For each subset X of S, we define X, = {x € X | x < a}. Let
b € A. Then the occurrence sg,...,sn of s in a is said to be free from b, if
{s0y.-+ysntNImoy = 0 for each A € A such that (SM)P . # 0. We say that s is
free from b in q, if every free occurrence of s in a is free from b.

Let s € S and c € A with os = oc. Then, for each element a of A, we can
define the element a(s/c) of A with o(a(s/c)) = oa by induction on the rank



T of a as follows. If r =0, then a € S, and so we define

c ifa=s
= ’ 2.1
a(s/c) {a if a #s, 2.1)
hence G(a(s/c)) = oa as desired. Suppose v > 1. Then a has a unique ex-
pression a = xx(ay,...,ax) and v is greater than the ranks of ay,..., ax, so
ai(s/c) has already been defined and satisfies G(ai(s/c)) =oaifori=1,...,k.
Since (0ay, ..., oax) belongs to Dom Ty, so does (o(ai(s/c)),...,o(ax(s/c))),
hence (a;(s/c),...,ax(s/c)) € Dom «,, and so we define
oa(ai(s/c),...,ax(s/c)) ifs¢SH
a(s/c) = 2.2
(s/c) {a if s € SN, (22)
Then even when a(s/c) # a, we have
o(a(s/c)) = o(aa(ai(s/c),..., ax(s/c)))
=ta(0(ai(s/c)),...,0(ax(s/c))) =Taloar,...,0a) = oa

as desired. The definition of a(s/c) by induction is complete. We call the trans-
formation a — a(s/c) on A the substitution of ¢ for s. Since o(a(s/c)) = oa,
the substitution is sort-consistent.

2.2 Formal languages

By definition of moderate generality, a formal language is a universal sorted
algebra (A, T, 0,S) equipped with subsets C and X # @ of S and a set T which
satisfy the following three conditions.

e The prime set S is the direct sum CII X of C and X.

e Let (Ta)aen be the OS of the type algebra T. Then its index set A is
contained in the direct sum I'IITX of T and I'X, where I'X is the set of all
formal products yx of y € I" and x € X.

e The arity of each operation T) with A € ANTX is equal to 1.

We call C and X the sets of the constants and variables respectively. Hence-
forth, we identify each index A € ANTX with the operation T,, call it a variable
operation, and denote its domain by Tj.

Let (A, T, 0,S,C,X,T) be a formal language. Define A’ = ANT and let T’ be
the operational subalgebra of T obtained by reducing the OS of T from (TA)aea
to (Ta)aeas. Then, a sorted algebra W is called a cognizable world for A, if
it satisfies the following two conditions.

e The type algebra of W is equal to T’.
e W, # () for each t € 0S.



Furthermore, an arbitrarily chosen non-empty collection W of cognizable worlds
for A is called the domain of the actual worlds for A.

For each actual world W € W for A, a C-denotation into W is a mapping
O of C into W which satisfies ®Cy C W, for each t € T. There is at least one
C-denotation. If C = (), then since ) — W = {(}} by the set-theoretical definition
of Y = Z, 0 is the unique C-denotation. Similarly, an X-denotation into W is a
mapping v of X into W which satisfies vX;y C W, for each t € T. We denote the
set of all X-denotations into W by Vx w, because denotations are alternatively
called valuations. Then Vx w # 0, and so we can construct the power algebra
(WVxw T’ p) of W with exponent Vx w as described in §2.1. Let (Ba)aca’ be
its OS.

Suppose that, for an actual world W € W for A and for each variable
operation A € A NTX and the variable x such that A € I'x, we are given a

mapping
Aw € (U (Woex —>Wt)> -~ W
teTx

which satisfies
AVV(VVEX ‘A\NQ) c VVXt

for each t € Ty. Then we can define the unary operation pa on WYxw for
each A € ANTX as follows, and extending the OS of WY*x.W from (fa)aea’ to
(Ba)aen, we can construct the sorted algebra (WVYx-w T p). First we define, for
each pair x,w of x € X and w € Wq,y, the transformation v — (x/w)v on Vx w
by

_Jvy when X3y #x,
(b/wiv)y = {w when y = x. (2:3)

We call the transformation (x/w) the redenotation for x by w. Next we define,
for each quadruple t, @,x,v consisting of t € T, ¢ € Vx w — Wy, x € X and
v € Vx,w, the mapping ¢ ((x/0)v) of Wy into W, by

(@ ((/TOW)) w = o ((x/w)v)

for each w € W4y. We finally define for each A € A N TX the unary operation
Bx on WVx.w as follows. Suppose A € I'x with x € X. First we define

Dom By = (Vxw — Wa).

teTy

Next for each t € Ty and each @ € Vx,w — W; we define 35 ¢ to be the element
of Vx,w — Wy such that

(Br@)v =Aw (@ ((x/O)v))



for each v € Vx,w. Since @((x/0)v) € Wox — Wi and Aw(Wex — Wy) C
Wi, certainly (a@)v € Wi, Since Vx,w — W, is the t-part of WVx.w for
each t € T, we have thus constructed the sorted algebra (WVxw T p). We call
the mapping Aw used above for A € ANTX an interpretation of A on W.

Now let @ be a C-denotation into W. Then we can construct the sort-
consistent homomorhism @®* of A into WVY*W as follows. First we define the
mapping ¢ of S into Vx,w — W so that

(pa)y = ®a when a € C,
¢ va when ae X

for each v € Vx,w. Then ¢Sy C Vx,w — W, for each t € T because ®Cy C Wy
and vX; € W4, and so @ maps S into WY*-W and satisfies pp = o|s. Therefore
by the universality of A, there exists a unique sort-consistent homomorphism of
A into WYX W which extends @. We call it the semantic mapping determined
by ® and denote it by @*. Since @* is an extension of @,

(@*a)y = ®a when a € C, (2.4)
" Jva whenaeX '

for each v € Vx w.

By definition, a logical system is a triple A, W, (Aw ), w of a formal lan-
guage (A,T,0,5,C,X,T), a domain W of actual worlds for A, and a family
(Aw)a,w of interpretations Ay of variable operations A € ANTX on W € W.

Suppose the logical system A, W, (Aw ) w satisfies the following condition.

e For an element ¢ € T, the ¢p-part Ay of A is non-empty, and the ¢-part
Wy, of each W € W is equal to T ={0, 1}.

Then we call ¢ a truth and call the elements of Ay the sentences.

Suppose A, W, (Aw)a,w is a logical system with a truth ¢. Then we can
construct a non-empty subset Fw of Ay — T as follows. Let W € W be
an actual world and ® be a C-denotation into W. Then since the semantic
mapping @* is sort-consistent and the ¢-part Vx w — Wy of WVx.w is equal
to Vx,w — T because Wy = T, we have ®*Ay C Vxw — T, and so for each
v € Vx,w, we obtain the mappping a — (@*a)v of Ay into T. We define Fyy
to be the set of all those mappings obtained from all possible triples W, ®,v of
actual worlds W € W and C-denotations @ into W and v € Vx w.

Thus we have seen above that each logical system A, W, (Aw)a w with a
truth ¢ yields the pair (Ag,Fw) of Ay and the subset Fyy # 0 of A, — T. We
call (A¢,JFw) the sentence logical space.

2.3 Completeness for logical spaces

The theory of completeness for sentence logical spaces may be remarkably gen-
eralized [3][5]. Let A be a set. A logic on A is a relation between A* and A,
where A* is the set of all sequences aj ---an of elements aj,...,a, of A of



arbitrary finite length n > 0. Logics on A are regarded as subsets of A* x A,
and so we can discuss their intersections, unions, and inclusion.
Let R be a logic on A. If a subset B of A satisfies the condition

bi,...,bhn €B, a€A, b;---bpRa = a € B,

then we call B an R-theory or say that B is closed under R. Similarly to
support subalgebras of algebras, the intersection of R-theories is an R-theory,
and A is an R-theory. Therefore, for each subset S of A, there exists the smallest
R-theory containing S, which we denote by [S]g and call the R-closure of S. It
is easy to show that [S]g is the union of the R-descendants S,, (n =0,1,...)
of S, where So = S and S;; (n > 1) is the inductively defined set of elements
a € A such that a; --- aym Ra for some elements a; € Sy, (i =1,...,m) with
n=1+ ZI‘;] l;. Also, an element a € A belongs to [S]g iff there exist elements
ai,...,an € A such that a,, = a and, for each 1 € {1,...,n}, either a; € S or
there exist numbers j1,...,jx €{1,...,1— 1} satisfying aj, --- aj, Raj.

A deduction pair on A is a pair (R,D) of a logic R on A and a subset D
of A. We call R and D the rule and basis of the deduction pair. For each
deduction pair (R,D) on A, we define the logic RP on A by

ar---anRPa & [ai,...,an}UDlr > a

for each (aj---an,a) € A* x A with ay,...,a, € A.

A logical space in a wider sense is a pair (A,F) of a non-empty set A and
a subset F of A — T. Since the power set PA of A is identified with A — T, a
pair (A,B) of A and a subset B of PA is also called a logical space.

Let (A,B) be a logical space with B C PA. A logic R on A is B-sound,
if every element of B is closed under R. The union of B-sound logics on A is
B-sound, and so there exists the greatest B-sound logic on A, which we denote
by Q for the time being. Then a deduction pair (R,D) on A is said to be
B-complete if RP = Q.

Let (A, F) be a logical space with F C A — T. Then F is identified with the
subset B ={@ 1| ¢ € F} of PA, so we say that a deduction pair (R,D) on A
is F-complete if it is B-complete. Furthermore we define

C=()B={acAlga=1foral ¢ €5} (2.5)
BeB

which we call the F-core. Elements and subsets of A are said to be F-sound
if they are contained in the F-core. An F-sound element is also called an F-
tautology.

The above definition of F-completeness is justified and amplified by the
following theorem [3][5].

Theorem 2.2 Let (A,JF) be a logical space with F C A — T and (R,D) be a

deduction pair on A. Then (R, D) is F-complete iff the following two conditions
are equivalent for each (aj---an,a) € A* x A.

10



e inf{paj,...,pan} < @aforall ¢ € F.
e {aj,...,an}UD]gr 3 a.

When n = 0, the above two conditions are identical with a € C and a € [D]g
respectively. Therefore, F-complete deduction pairs (R, D) have the property of
satisfying C = [D]g. We call it the F-core-completeness.

Now let A,'W, (Aw )a,w be a logical system with a truth ¢. Then it yields
the sentence logical space (Ag, Fw) as described in §2.2, and so we may discuss
the Fy-completeness of deduction pairs on Ag. As for this paper, the purpose
of a completeness theorem for A, W, (Aw ) w is to present an Fyy-complete
deduction pair on Ag.

3 Definition of MPCL

Here we define the logical system MPCL for which we will prove a completeness
theorem.

3.1 Quantities and measures

A quantitative system is a set PP equipped with a global binary associative
and commutative operation (x,y) — x +y with the identity element 0 and a
total order < which satisfy the following two conditions.

e If elements p,p’,q,q’ € Psatisfy p <p’and q < q’,thenp+q <p’+q’.
e 0 < p for every element p of P, that is to say, 0 = minP.

Naturally, the sets Z>o and R>o of non-negative integers and of non-negative
real numbers are typical quantitative systems.

Let S be a set and (P, +, 0, <) be a quantitative system. Then a P-measure
on S is a mapping X +— |X| of PS into P which satisfies the following three
conditions for all X|Y € PS.

e X#0 & [X >o0.
e XCY = [XI<Y]
o [XUY| <X +VI.

If S # () and #P > 1, there exists at least one P-measure on S.

3.2 MPC language

Here we define the formal language of MPCL. First we take arbitrary three sets
S, C, X satisfying the conditions

S=CIIX, X # 0.

11



Next we take an arbitrary set K equipped with a specific element 7. We call K
the set of cases and in particular call 1 the nominative case. Next we take
two arbitrary distinct symbols 6 and ¢ not contained in K, and define

T ={5, e} UPK.
Next we take a mapping T of S into T such that the inverse image
Xe ={xeX|tmx=¢}

of ¢ in X is not empty. Next we take an arbitrary quantitative system (PP, +, 0, <)
with #P > 1, and define B to be the set of the unions of a finite number of
intervals of P on the following list:

(P —=)=xeP[p<x}
(p,al ={xeP[p<x<q} where p,q € P.
(—dl={xeP[x<q}

Next we take a copy
“P={"plpeP
of the set P such that =B NP = (), and define
Q=-"PUP,

which we call the set of the quantifiers. Next we take an arbitrary symbol
0 ¢ 9. Finally we define the eight kinds of operations on T as follows.

1. The family of binary operations 6k (k € K).

Dom ok ={e} x {P € PK | k € P}, e 0kP =P —{k}.

2. The family of binary operations Ak ((A,k) € Q x K).

DomAk = {8, ¢} x {P € PK | k € P}, SAKP = e AkP =P — (k.

3. The three binary operations AV, =.

DomA =DomV =Dom= = (PK)2, PAQ=PVQ=P=Q=PUQ.

4. The unary operation ¢.

Dom ¢ = PK, P =P

5. The unary operation A.

Dom A ={b, ¢}, N = e\ ={m}.
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6. The two binary operations M, LI.

Dom M = DomU = {8, ¢)?, EMm=¢&Un =25 for (&,1) €{5,¢}.

7. The unary operation O.

Dom O = {8, ¢}, 5" =¢” =0.

8. The family of unary operations QOx (x € X;).
Dom Qx = {0}, hOx =6.

We let T be the algebra equipped with the above eight kinds of operations.
Thus we have chosen a set S, an algebra T, and a mapping T of S into T.
Therefore by Theorem 2.1, there exists the USA (A, T, 0,S) with o|s = 7, which
is unique up to sort-consistent isomorphism. The OS’s of T and A are both
indexed by the set

A:{}\ka/\»vyﬁaoaAal_lal—l)DaQX‘Ae{é}ug) keK» XEXE})
and so if we define
r:{)\k»/\vvaé»ovAvl_l»l—laD»Q‘}\E{é}uﬂx kEK}v

then A CTUTX with ANTX ={Qx | x € X.}. Therefore (A,T,0,S,C,X,TI") is
a formal language, which we call the MPC language. Its variable operations
Qx (x € X¢) are called the nominalizers.

Since (A, T, 0) is a sorted algebra, A is divided into its t-parts Ay (t € T),
and since T = {6, ¢} U PK, we have

A=AsUA. U (] Ap,
PePK

so we define

G=AsUA,, H= U Ap.
PePK

We call G the set of the nominals and call H the set of the predicates. For
each f € H, we denote by K¢ the element P € PK satisfying f € Ap and call it
the range of f.

Since (A, T, ¢) is a sorted algebra, the following also holds on the domains
and images of the operations in the operation system A of A.

(1) Domok = Ac X Uxcpepk AP-
If a e A; and f € Ap with k € P € PK, then adkf € Ap_g.

(2) DomAk = G X Uycpepk Ap-
If a € G and f € Ap with k € P € PK, then aAkf € Ap_p.
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(3) Dom A =DomV = Dom = = H?.
If f € Ap and g € Ag with P,Q € PK, then fAg, fVg, f=9g¢€ Apug.

(4) Dom ¢ = H.
If f € Ap with P € PK, then f° € Ap.

5) DomA =G, ImA C Appy.

7

(5)
(6) Dom MM =DomU = G2, ImM C A, ImLJ C As.
(7) DomO =G, ImOd C As.

(8)

8) Dom Ox = Ay, ImQx C As.
Consequently, the following also holds:

(9) Let a1,...,an € G, f€H, A7,...,Aq €{0}ULQ, and kq,...,kn be distinct
cases in K¢. Assume a; € A; for all i € {1,...,n} with A; = 6. Then
ar Aky (a2 Azkz (--- (an Ankn f)---)) belongs to Ap_gi, . k.1

(10) H and Ap (P € PK) are closed under the operations A,V,=,{, whose
restrictions to H and Ap are global.

(11) G and Ajs are closed under the operations M, U, 0, whose restrictions to G
and Ag are global.

(12) As — S is non-empty and consists of nominals in one of the shapes b Mc,
blUc, bY, and fQx.

(13) A = Ss 7é 0.

(14) H — S is non-empty and consists of predicates in one of the shapes aokf,
arkf, fAg Vg, f=g, 0, and aA.

15) Ay — S is non-empty and consists of sentences in one of the shapes a okf,
{]
alkf, fAg, fVg, f= g, and f°.

For instance, in order to prove A, = S, in (13) by contradiction, suppose
a € A —S. Then, since A is a union of the descendants Sp,S1,... of S and
So =S, a belongs to Sy, for some n > 1, and so a is an image of some operation
in A. This contradicts the facts (1) - (8).

We will use the following abbreviation for quantifiers:

p = —(pl, P=(p—), for each p € P,
V=0, 3=0, for 0 = min P.
We will use the symbols V and 3 for certain other notions, but hopefully there

will be no confusion. For each X € PP, we denote by X° the complement P — X.
Then B is closed under the three set-theoretical operations N, U, o on PP.
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3.3 MPC worlds

Let (A, T, 0,S,C,X,TI") be the MPC language defined in §3.2. Here we define the
domain W of the actual worlds for A. Define
AN =ANT={AKAV,=,0, AU, O0[Ae{6lUu, k € K],

and let T’ be the operational subalgebra of T obtained by reducing the OS of T
from A to A’.

First we take an arbitrary non-empty set S, and define
W=(s—-Tusu |J (P—=9S)—T),
PePK

where () = S) — T =T for § € PK, because @ — S = {()} by the set-theoretical
definition of Y — Z and {)} — T = T by convention. We call S the base of W.
Next we define the sort mapping p of W into T’ = {6, ¢} U PK so that the
t-parts Wy (t € T') satisfy
Ws =S — T, W, =S, Wp=P—=>S5) T

for each P € PK. In particular Wy = T.

Next we define a family of operations on W indexed by A’. The definition
depends on two parameters. The one is an arbitrary P-measure X — |X| on
S. The other is an arbitrary reflexive relation 3 on S, which we call the basic
relation of W. In order to define the operations, we first extend 3 to the
relation between (S — T)US and S by

adb & ab=1 (3.1)

for each a € S — T and each b € S. It is unnecessary to furthermore extend 3
to a relation on (S — T)US. Next, when s € S and k € P € PK, we define for
each 8 € (P —{k}) — S the element (k/s)0 € P — S by

0l when L€ P —{kl,

((e/s)0)1 = {s when 1 = k. (32)

Next we define
—(—p)=p

for each p € PB. Thus, if A € P then —A € =P, while if A € =P then —A € .
Finally we define the seven kinds of operations on W as follows.

1. The family of binary operations 6k (k € K).

Domok=Sx |J ((P—=S)—=T).
kePePK

For each s € S and each f € (P — S) — T with k € P € PK, we define s ok f to
be the element of ((P —{k}) — S) — T such that

(sokf)o :f((k/s)G)
for each 6 € (P —{k}) — S.
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2. The family of binary operations Ak ((7\,k) €0 x K).

DomAk = ((S = T)uS)x [ J ((P—S)—=T).
kePcPK

For each a € (S —» T)US and each f € (P — S) — T with k € P € PK, we
define aAkf to be the element of ((P —{k}) — S) — T such that

[{s€Sla3s, f((k/s)6) =0}| € "X when A € =P,

(aAkf)f =1 & {‘{S€S|0357 f((k/s)ﬂ):1}‘ €N when A eP

for each 6 € (P —{k}) — S. Notice f((k/s)e) = (sokf)0.

3. The three binary operations AV, =.

2
Dom A = DomV = Dom = = ( U ((P—>S)—>T)> .
PePK

For each f € (P — S) — T and each g € (Q — S) — T with P,Q € PK, we
define fA g, fV g, f= g to be the elements of ((P uQ) — S) — T such that

(fAg)o =f(Blp) Ag(Blq),
(fVg)o =1(8lp)Vg(Bla),
(f=9)8 =1(8lp) = g(6lq)

for each 0 € (PUQ) — S, where /\,V, = on the right-hand sides of the equations
are the meet, join, and implication on the Boolean lattice T defined by

a/Ab =inf{a, b}, aVb =sup{a,b}, a=b=sup{l —a,b}
for all a,b € T.

4. The unary operation ¢.

Dom¢ = | J (P—S)—T).
PePK

For each f € (P — S) — T with P € PK, we define f® to be the element of
(P — S) — T such that

()0 = (f0)°

for each 8 € P — S, where { on the right-hand side of the equation is the
complement on the Boolean lattice T defined by

a®=1-a

for all a € T.
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5. The unary operation A.
DomA = (S — T)uUS.

For each a € (S — T)U S, we define aA to be the element of ({t} —» S) — T
such that

(a0 =1 & ad 07

for each 0 € {mt} — S.

6. The two binary operations I, L.
Dom M =DomLl = ((S — T)u S)Z.

For each (a,b) € ((S - T)u S)z, we define aMb and a b to be the elements
of S — T such that

albds < adsandbds,
allbds & adsorbds

for each s € S.

7. The unary operation O.
DomO = (S — T)US.
For each a € (S — T) US, we define a” to be the element of S — T such that
a”3s & afs

for each s € S.

We let W be the algebra equipped with the above seven kinds of operations.
Then (W, T’ p) becomes a sorted algebra and satisfies Wy # () for all t € T'.
Therefore, W is a cognizable world for A.

We call the sorted algebras constructed as above the MPC worlds congiz-
able by the MPC language (A, T, 0,S,C,X,I") and denote by W the set of all
such worlds. We choose W as the domain of the actual worlds for A.

3.4 Interpretations of the nominalizers

Let (A, T,0,S,C,X,T) be the MPC language defined in §3.2, and let W be the
domain of the actual worlds for A defined in §3.3. Following §2.2, here we define
the interpretations Ay of the variable operations A € ANT'X on the MPC worlds
W € W, and thereby complete the definition of MPCL.

Since ANTX consists of the nominalizers, A = Qx for some x € X¢, and so the
domain Ty of A on T is equal to {(}} and A} = 6. Moreover W5 =S — T = Wy —
Wy. Thus, Aw is a mapping of Ws, — Wy into itself, and so we define Ay to
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be the identity mapping of Wgx — Wy. Then the domain of the operation (3
on WVew corresponding to the index A is equal to Vx w — Wy = Vxw — T,
and for each ¢ € Vx w — T, we have frp € Vxw = Ws = Vxw — (S = T)
with (Ba@)v = @((x/0)v) for each v € Vx w, hence ((Br@)v)s = @((x/s)v)
for each s € S.

Since A = Ox (x € X;) and we will denote Ba@ by @ Qx, we conclude that
the domain of the nominalizer Qx on WVY%W is equal to Vx,w — T, the image
@ Ox of @ € Vxw — T belongs to Vx w — (S —= T), so (¢ Qx)v € S = T for
each v € Vx w, and the following holds for each s € S:

(9 Ox)v)s = @((x/s)V). (3.3)
This may be expressed as follows by using (3.1):
(e Ox)v) Is <= o((x/s)v) =1. (3.4)

This completes the definition of the logical system MPCL.

3.5 Predicate logical space

Let A,W, (Aw )a,w be the logical system MPCL defined above. Then, () € PK C
T, Ay # 0 by §3.2 (15), and Wy = T for each W € W. Therefore, A, W, (Aw A w
is a logical system with a truth ), so it yields the sentence logical space (Ag, Fw),
and we have announced at the end of §2.3 that the purpose of a completeness
theorem for A, W, (Aw)a,w is to present an Fyy-complete deduction pair on Ay.
However as for MPCL, another larger logical space on the set H = (Jpcpx Ap
of the predicates of A is more worth studying.

Let W be an MPC world in W, @ be a C-denotation into W, and v be an
X-denotation into W. Then the semantic mapping ®* € A — WV%W ig sort-
consistent, and the projection by v is a sort-consistent mapping of WY%W into
W. Therefore if f € H, then (®*f)v belongs to Wx, = (Kf - W,) — T, and
so if furthermore 8 € K — W, then ((CD*f)v)(G\Kf) belongs to T. Thus the
quadruple W, @, v, 0 yields the mapping f — ((CD*f)v)(Gle) of H into T. Let
S denote the set of those mappings obtained from all possible such quadruples.
Then (H, Gw) is a logical space, which we call the predicate logical space. It
is an extension of the sentence logical space (Ag, Fw) in the sense that Ay C H
and Fyw = {@|a, | ¢ € Sw} hold.

3.6 Design concept for MPCL

As mentioned in the introduction, our mathematical model is not that of natural
languages, but the MCL language A is a model of substances which are supposed
to exist in human brain, and the MCL worlds W congizable by A are models
of the real worlds which human cognizes. However some of the substances in
the human brain are supposed to be expressed by natural languages. Therefore,
the OS’s of A and W are designed so that plenty of elements of A and W
translate verbatim into expressions of Japanese language, and probably into
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other languages as well under some transformations on the OS’s of A and W.
Such a design is of vital importance from the viewpoint of our mathematical
psychology. Therefore it may be in order to compare A and W here to natural
languages, particularly to Japanese.

First, constant nominals in CN G = Cs U C, translate into nouns, and con-
stant predicates in CNH = (Jp, <ok Cp translate into verbs, predicate adjectives,
and predicate nominal adjectives, while variables in X translate into nothing.
Members of the OS

A={AAV, =, 0,A, MU 00x|Ae{ojuQ, keK, xeX,}

of A also have their translations unless variables occur in their arguments. The
cases k in ok (k € K) translate into postpositions called teniwoha, such as the
case markers “ga” (nominative), “wo” (accusative), and “ni” (dative). In par-
ticular, the nominative case 7t translates into “ga,” “wa” (topic marker), and
so on. The operations Ak with A € 9 translate into combinations of Japanese
quantifiers and teniwoha. Recall that the set £ of the quantifiers is divided
into =B and ‘B, and P is the set of the unions of a finite number of intervals
of IP in one of the shapes (p —), (p, q], and (« g]. For instance, the quantifiers
P = (p —) translate into words meaning “more than p,” and V = —(+, 0] trans-
lates into words meaning “all.” The operations /A, V, =, { translate into words
meaning “and,” “or,” “then,” “not” respectively, and the operation A trans-
lates into the copulas “dearu,” “da,” or “desu” meaning “be.” The operation IM
translates into nothing or into the particle “no” which joins appositional nomi-
nals as in “gaka no Gogh” meaning “painter Gogh.” The operation U translates
into words meaning “or” used in listing parallel nominals. A translation of
the operation O is illustrated below. The nominalizers Qx (x € X;) translate
into the relative pronoun “that,” the conjunction “that,” and so on, although
those corresponding to the relative pronoun “that” have poor translations into
Japanese. The translation of an element a € A — S is verbatim with a few
exceptions in the sense that it is usually obtained by replacing the primes and
operations occurring in a by their above-mentioned counterparts in Japanese.
By way of illustration, if we translate a,b € C, into “peta” (Peter, a proper
nown) and “usagi” (rabbit), then, since 7t translates into the topic marker “wa”
(no English equivalent) and A translates into the copula “desu” (is), a 0tbA
translates verbatim into “peta wa usagi desu” [Peter wa rabbit is] (Peter is a
rabbit). Hereafter, counterparts written by English words but in Japanese word
order will be shown in square brackets, with verbs and nouns in singular forms
and without articles, because Japanese uses no plural forms or articles. Also,
Japanese particles which have no English equivalents will be printed in italics.
If furthermore we translate ¢ € C into “mame” (bean), w € K—{mt} into the ac-
cusative case marker “wo” (no English equivalent), f € C, .} into “taberu”
(eat), and retranslate 7t into the nominative case marker “ga” (no English equiv-
alent), then a o7t (cow f) translates verbatim into “peta ga mame wo taberu”
[Peter ga bean wo eat] (Peter eats a bean), while a 67t (¢ Vw f) translates verba-
tim into “péta ga mame subete wo taberu” [Peter ga bean all wo eat] (Peter eats

19



all beans). If furthermore we translate d € C, into “yasai” (vegetable), then
(a oTt(x ow f))Qx M d translates verbatim into “peta ga taberu yasai” [Peter
ga eat vegetable](vegetables that Peter eats), while ((aom(xowf))Qx)” Md
translates verbatim into “peta ga taberu igai no yasai” [Peter ga eat other than
no vegetable] (vegetables other than that Peter eats), where x 6w and Qx trans-
late into nothing and M translates into “no” following before-mentioned rules.
On the other hand, (a omt(cow f))Qx translates verbatim into “peta ga mame
wo taberu koto” [Peter ga bean wo eat that] (that Peter eats a bean). All the
above Japanese translations are grammatical.

If « is a binary operation of an algebra, we are free to denote its images
by «(a,b), aab, (a,b)x, and so on. Therefore, we could design our MPC
language so that aAn(bowf) was denoted by mA(a,f wd b) instead. Under
such a design, if we translate a,b, and f into “boy,” “Mary,” and “love(s),”
then 7v(a,f wé b) and 73(a, f wo b) translate verbatim into “Every boy loves
Mary” and “A boy loves Mary,” because m and w have no English counter-
parts. If we translate a into “John,” then 7t6(a, f wo b) translates verbatim into
“John loves Mary.” The reader might compare these with their PL counterparts
vx(boy(x) = love(x, Mary)), 3x(boy(x) A love(x,Mary)), love(John, Mary),
which hardly translate verbatim into English unless we ignore the operations =
and A. Thus, under some transformations on its OS, the MPC language may
translate verbatim into English as well as into Japanese.

Suppose we know that there are at most ten boys in the class and that more
than eight boys love Mary. Then we certainly think and say that almost all boys
love Mary. Thus the sentence “Almost all boys love Mary” may be considered an
elliptical expression of the knowledge “There are at most ten boys in the class,
and at least eight boys love Mary” or something like that. For this reason, we
do not think that logical systems need to be furnished with quantifiers meaning
“almost all” or other words which show ratios between quantities. Recall here
that MPC language A is not a model of natural languages but a model of the
human brain system of describing human notions. Since expressions of natural
languages are always incomplete and deformed expressions of human notions,
and since we human do not express all our notions by natural languages, not
all expressions of natural languages should be translated verbatim into formal
languages, and vice versa. As for quantifiers, we only need to design a logical
system by which we can express and analyze notions like “More than eight boys
love Mary” and “There are at most ten boys.” In MPCL, these notions are
expressed by the predicates a (8 —)mbdow f and a (+ 10]toneA respectively,
where one is an abbreviation for (x 6txA)Qx with x € X.. Every predicate
aAmtoneA with A € {0} U £ translates into existential sentences, which implies
that oneA = ((x 6xA)Qx) A in aAMroneA exceptionally translates into words
“aru” (exist), “iru” (be), and so on.

For human beings, even extent or degree is an entity in the outer world, so
A is supposed to have a specific case p which marks extent or degree just as 7t is
a subjective marker and w is an accusative marker. We also suppose that every
constant predicate f € CNH has p in its range K¢. However, u is often silent in
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the sense that p itself and some of its arguments do not always translate into
natural languages. By way of illustration, if we translate a € C. into “péta”
(Peter) and f € Cyy . . into the predicate nominal adjective “wanpaku-da”
(be naughty), then aém(bopf) with b € C, translates into “peta wa wanpaku-
da” [Peter wa naughty] (Peter is naughty) with translations of b and p missing.

However, if we translate ¢ € C; into “saru” (monkey), then the predicate
aom (((com(xouf)) Qx) Vuf)

obtained from aom(bouf) by replacing b by (c 67T(X6|,Lf)) Qx and ou by
Vu translates into “péta wa saru noyouni wanpaku-da”’ [Peter wa monkey as
naughty| (Peter is as naughty as a monkey), which implies that the nominal
(c 67t(x6uf)) Qx translates into “saru no wanpaku-sa” [monkey of naughti-
ness| (naughtiness of a monkey) and Vp translates into “noyouni” (as), which
in turn implies that the nominalizer Qx in this expression translates into the
suffix “-sa” (-ness). We often say “péta wa totemo wanpaku-da” [Peter wa very
naughty] (Peter is very naughty), which may be regarded as an elliptical ex-
pression of various notions such as “Peter is as naughty as a monkey,” “Peter
is as naughty as a puppy,” “Peter is as naughty as a kitten,” and so on. Thus,
the adverb “very” may be regarded as an incomplete and deformed expression
of notions (d o7t (xéuf)) Qx) Yu with d varying through C.. For this reason,
logical systems need not be furnished with a specific category of elements which
translate verbatim into adverbs of extent or degree. For certain reasons which
we will not show here, the same remark applies to other kind of adverbs.

The above account of elements and operations of A except the nominalizers
Qx also applies to W. In fact, the existence of verbatim translations of elements
and operations of W into Japanese is far more surprising than that of A, because
the definition of the MPC world

W=(s=T)usu |J (P—=95) —T)
PePK

is entirely mathematical and has no obvious connection with natural languages.
First, the base S is a mere set although equipped with a reflexive relation 3 and
a P-measure X — [X|. Next, S — T is identified with the power set PS. Finally,
if P € PK consists of n elements, then P — S is identified with S™, and so
(P — S) — T is identified with S™ — T, which is the set of the n-ary relations
on S. Thus, the MPC world W may be identified with the entirety of a set S,
its subsets, and the multiary relations on S, which are all purely mathematical
notions. Therefore there are no obvious reasons why we may/should expect that
elements of W will translate verbatim into natural languages.

Nevertheless plenty of elements of W translate verbatim into Japanese. Such
translations are made possible by several simple mathematical devices, the first
of which is based on the following theorem.
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Theorem 3.1 Let Aq,...,A,,B be sets and define

F:(Al X"'XAn)_)Ba
F* = Ay 5 (A2 = (- — (Ag = B) ).

Then for each f € F, there exists a unique element f* € F* which satisfies
flar,...,an) = (---((f*a7)az)--- )an for each (ay,...,an) € Ay X .-+ X An,
and the mapping f — f* is a bijection of F onto F*.

This theorem implies that n-ary functions f are decomposed into the series f*,
f*ay, (fYaj)az, ..., (- ((f*a1)az) -+ )an of n+ 1 functions, all of which are
unary except the last one which is a constant. It is said that this technique of
decomposing functions was invented by logicians Moses Schonfinkel and Gottlob
Frege and computer scientists call it currying after Haskell Curry. However,
we call it linearization.

The second device is reversing the notation for functions. Since modern
mathematics has been built by Europeans, mathematical notation follows the
word order of Indo-European languages. In Japanese word order, functions
f(aq,..., an) should be denoted by (a, ..., an)f, Theorem 3.1 should be stated
on the bijection between the sets

B« (A1 X+ X An),
(- (Be=Ag)-e) = A1) & Ay,

and f should be decomposed into the series
5, anf’, (an—1(anf?)), ..., arfaz(--- (anf)---))

of n + 1 functions. For instance, binary functions (a,b)f are decomposed into
the series f*, bf*, a(bf*) of three functions.

The third device is accompanying a; with the number 1 to indicate that a;
is the i-th argument of the function (aj,..., an)f. For instance, the functions
bf* and a(bf*) above are denoted by b2f*, and al(b2f*). However, we need
not use the numbers 1,2. We may use any symbols instead. Moreover, we need
not use Roman letters a,b,f*. We may use any symbols instead. So let us
replace 1 and 2 by Japanese particles “ga” and “wo,” and replace a, b, and f*
by Japanese words “peta” (Peter), “mame” (bean), and “taberu” (eat). Then
the functions f*, b2f*, and al(b2f*) are also denoted by the following three
Japanese predicates:

taberu [eat] (eats) ,
mame wo taberu [bean wo eat] (eats a bean),
peta ga mame wo taberu [Peter ga bean wo eat] (Peter eats a bean).

Thus these predicates may be regarded as alternative expressions of the func-
tion values *, b2f*, and al(b2f*) respectively, which tallies with the fact that
Japanese counterparts of “eats” and “eats a bean” above are grammatical el-
liptical sentences. It seems now reasonable to believe that every elementary
Japanese predicate is a linearized expression of a function in the real world.
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However, we have to half abandon linearization. This is because Japanese
word order is loose except for rigid constraint that verbs, predicate adjectives,
and predicate nominal adjectives which are main in a predicate must occur in the
final position of the predicate. For instance, “péta ga mame wo taberu” [Peter
ga bean wo eat] and “mame wo péta ga taberu” [bean wo Peter ga eat] are both
grammatical and have the same truth value, although emphasis is different. In
other words, in Japanese people’s brain, the function al(b2f*) above has an
alternative expression b2(alf*). Rigid linearization does not work well for such
looseness.

Thus, in designing the MPC world W, we first identified S™ with {1,...,n} —
S, next replaced the ordered set {1,...,n} by an arbitrary unordered set P with
#P = n, thereby replacing the set S™ — T of the n-ary relations on S by
(P — S) — T. This is the way we have reached the substructure

U (P—S)—T)

PePK

of W. Linearization is hidden alive here. Let P = {kq,...,kn} € PK, and for
each f € S™ — T, define f* € (P - S) — T by

0 = f(0k1, ..., 0kn)

for each 8 € P — S. Then Theorem 9.3 implies that

f(s1,...,8n) = Sp1 0Kp1 (sz 6kp2 (--- (spn O0kpn f*)---))
holds for each (s1,...,sn) € S™ and each p € &, where &, is the symmetric
group on the letters 1,...,n. In this sense, every element of S™ — T with

n < #K is loosely linearized by the operations 6k (k € K).

Our design of the quantifiers is a simple one. Let (x,y)f be a binary relation
on S written in Japanese word order. Suppose a € S is “Peter,” ¢ € S is
“bean,” and (x,y)f = 1 means that y eats x [x wo y ga eat]. Linearize (x,y)f
into x 0w (y omtf) and denote admf by g. Then ask yourself when you can
assert that Peter eats all beans. Of course, you can assert so, only when the
number of beans s € S satisfying s 6w g = 0 is less than 0. Next ask when you
can assert that Peter eats some beans. Of course, you can assert so, only when
the number of beans s € S satisfying sow g = 1 is greater than 0. Next ask
when you can assert that Peter eats at most p beans. Of course, you can assert
so, only when the number of beans s € S satisfying sow g = 1 is less than or
equal to p. Finally ask how you can count the number of beans s € S satisfying
sowg = 1. Of course you need first judge, for each element s € S, whether
s is a bean or not, because there are many kinds of beans such as soya beans,
French beans, and so on. In order that you can judge so, there must exist a
relation 3 on S such that ¢ 3 s holds iff s is a bean. Moreover, in order that you
can count the number of elements of S, you need some quantitative system P
and some P-measure X — |X| on S. Conversely, if such a relation and a measure
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exist, then you can certainly define as follows:

[bean all wo péta ga eat]

(Peter eats all beans) } & [{seSlc3s, sdwg=0}| <0,

[bean some wo péta ga eat]

(Peter eats some beans) } & [{seSlcIs, sowg =1} >0,

[bean p at most wo péta ga eat]

0 = <
(Peter eats at most p beans) } = HSGS|CHS’ sowg 1}‘ Sp

It now seems reasonable to define operations —(+ Olw, (0 =)w, (+ plw by
c=(+0wg=1 < |{seS|cTs, séwg=0}| € (+ 0],
c(0=)wg=1 = [{seS|cTs, sowg=1}| € (0—),
c(plwg=1 & [{seS|cTs, sowg=1}| € (« ],

and denote —(+ 0] and (0 —) by V and 3. This is the way we have reached
the definition of the operations Ak (A € Q) on W. Thus, MPCL has plenty of
quantifiers, all of which accompany themselves with cases and exist not only in
the OS of the language A but also in that of the world W. This is in contrast to
PL, which has only two quantifiers V and 3 which accompany themselves with
variables and exist only in the OS of the language. Recall here again that MPC
language A is not a model of natural languages but a model of the human brain
system of describing human notions. As such, A may well have a seemingly
unconventional set Q of quantifiers.

Now the substructure (S — T) U S of the MPC world W is identified with
PS U S and is designed to be a model of the entirety E of the entities in the
real world. A few remarks are also in order about how we have reached this
design. Let X be a set, for instance, the set of all living beings. Then we human
can think about the set PX of the subsets of X, such as the set of multicellular
organisms, of vertebrates, and so on. We can furthermore think about the set
P2X of the subsets of PX, such as the set of birds, of fishes, and so on. We can
furthermore think about P3X, P*X,.... Therefore, if S is subset of a model E’
of E, it seems that E’ must contain | J,,~, P™S, whereas our model contains only
PSUS. This is because the base of MPC worlds may vary. If S is the base of an
MPC world W, then there exists an MPC world W7 whose base S; is equal to
PSUS and whose basic relation 3; is an extension of the extended relation (3.1)
between (S — T)US and S. In particular, W; contains P?SUPS US. Therefore
for each n > 1, there exists an MPC world W;, which contains Urkl:; PkS. Thus,
(S — T)US is enough for a model of E.

For further account of this sort, we refer the reader to Chapters 1, 2, 7 of
[3], in particular Chapter 7, Case Language and Japanese Language.

4 Statement of the main result

Let (A, T,0,S,C,X,T), W, (Aw )a,w be the logical system MPCL defined in §3.1-
§3.4 and (H,Gw) be the predicate logical space defined by A, W, (Aw)r w in
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§3.5. Here we present a deduction pair (p,V) on H which will be proved G-
complete under certain reasonable additional conditions on the sets K,S, X of
cases, primes, and variables of A. A similar Fyy-complete deduction pair on Ay
has been obtained, but we will not present it here.

The presentation of the deduction rule g is simple. It is the familiar modus
ponens defined by the fractional expression

f f=
ot =0
g

where f, g € H. This means that, if f1,...,f,,g € H, thenf;---fLpgiffi n=2
and f, is equal to f1 = ¢g. Meanings of other fractional expressions below and
in §11.1 are similar.

On the other hand, the presentation of the deduction basis V is hard. First
we take an arbitrary variable xo € X; and define

, (4.1)

omne = (xo 07txo A) Qxp. (4.2)

Next we define four more logics on H also by fractional expressions as follows:

f g
&= —2 f H
N (f,g € H),
L:; (feH, ae A, keKy),
aokf
ok f
T:XOf (feH, xeX,, keKs, x &f),
.f

V= ——— feA Xe).
one Vv (f Qx)A (f€ Ao, x € Xe)

Next we present a subset 0 of H in order to define V by

V = [0l pu&uiuTuv- (4.3)

This implies that V is the union of the pU&U L UT UV-descendants 9¢, 01, ...
of 0, which are inductively defined as follows. First 99 = 0, and forn > 1, 9,
is the set of all elements on the following list.

g (g € Hand f=g € 0y, for some f € 9,,, withny +ny =n—1),
fAg (f€0n,, g€, M +n2=n-—1),
aokf (fedn_1, ae A, keKy),
f (feHandxokf € 0,1 for some x € X, and k € K¢ with x &« f),
one V7 (f Qx)A (fedm_1NAy xeX,).

In other words, an element h € H belongs to V if and only if there exist elements

hi,...,hny € H such that h,, = h and, for each i € {1,...,n}, either h;y € 0 or
hy satisfies one of the following five conditions.

e hj =hy=hy for some j,ke{l,...,i— 1k
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e hiy =hj Ahy for some j, k€ {1,...,i—1}L

e hi = aokh; for some a € A¢,j€{l,...,1— 1} and k € Ky,;.

e hj =x0kh; for somej €{1,...,i—1}, x € X, and k € Ky, with x & h;.
e hy =oneVm(hy Qx)A for somej € {1,...,i—1}, and x € X, with h; € Ay.

The set 0 consists of the following twenty five kinds of elements, the first of
which is a familiar one:

OV,
(fAg)=f,

(fAg)=g9,
f=(fVg),

9=(fVg), (Boolean elem.)
(f°Vg)=(f=g),
(f=hAlg=n))=((fVg)=h),
(h=1)Ah=g))=(h=(fAg)),
(h=HA(h=(f=g))) =(h=g),
where f, g,h € H. The remaining elements of 9 are characteristic of MPCL:
aomal, (= elem.)
where a € A..
(asomoneA)?, (0 elem.)
where a € G and oo is the maximum of P in case it exists.
aAk(bolf) & bol(aAikf), (9,0 elem.)
where a € G, be A, feH, k,1eK¢, k#£1, and A € {6}UQ. Also a € A,

in case A = 0. The two-way arrow & is a device to show a predicate g=h and
its reverse h= g together. We will continue using this device.

19), (A elem.)
..... g), (V elem.)

(ai 0ki)i=1,..1(f=9) & ((a Oki)i:1,“.,mf:>(ai Oki)i:n+1,.“,lg)»
(= elem.)

‘‘‘‘‘‘‘‘‘‘

.....

where aj,...,a1 € A, f,g € H, and kq,...,k; are distinct cases such that
ki,...,kn € K¢ —Kg, knt1,..., km € KN Ky, and kmy1,..., k1 € Kg —
Ke (0 <n <m < 1). Also, (aj0ki)iz1,...1(f/Ag) is an abbreviation for
aj 0kq (a2 oka (- (ay 0ky (fAQ))---)), and similarly for analogous expressions.

((aq 6ki)i:1,‘..,n(fo)) & (o 6ki)i:1,...,nf)<>, (O elem.)
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where a1,...,an € Ae, f € H, and kq,...,k, are distinct cases in K.

a—pkf & apkf®,
apkf & (apkf)?,

where a € G, f € H, k € K¢, and p € .

a(pngkf & (apkfAagkf),
a(pUg)kf & (apkfVagkf),

where a € G, f € H, k € K¢, and p,q € L.
apkf & apm((xokf) Qx)A,
where a € G, f e H, x € X¢, Kf ={k}, p € P, and x « f.
apntbA & (amlb)pronel,
where a,b € G, and p € P.
(onevr ((f=g) Qx)A) =(f = oneVr (g Qx)A),
where f,g € Ap, x € X, and x £ f.
(onevn (((xomad)=(xokf)) QxA)) = avkf,
where x € X¢, a € G, f € H, K¢ ={k}, and x ¥ a,f.
(aVAbA A apkf)= bpkf,
where a,b € G, f e H, k€ K¢, and p € P.
(aUb)p +gkf=(apkfVbqkf),
where a,b € G, f € H, k € K¢, and p,q € P.
(one® pkf)?,
where f € H, k € K¢, and p € P.
boma/A = admonel,
where a € G and b € A..

(aMb)A & (aANADA),
(aUb)A & (aAVDA),

(a?)A & (an)?,
where a,b € G.

aom (fOx)A & f(x/a),
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(o elem.)

(N elem.)
(U elem.)

(B elem.)

(A elem.)

(V,= elem.)

(V elem.)

(7, elem.)

(U, + elem.)

(one® elem.)

(3 elem.)

(M elem.)
(U elem.)

(O elem.)

(Q elem.)



where a € A, f € Ay, x € X, and x is free from a in f. The (x/a) on the
right-hand side of & denotes the substitution of a for x.

oneVr (f Ox)A = f, (V— elem.)

where f € Ay and x € X,.
This completes the presentation of the deduction pair (p, V). Under all the
definitions given so far, we can now state our main result.

Theorem 4.1 Assume that the range K¢ is a finite set for each f € H and that
both S; and X; are enumerable sets. Then the deduction pair (p, V) on H is
Gw-complete.

We prove this theorem in §11.
Corollary 4.1.1 The set V is equal to the set of the Gy-tautologies on H.

Proof Theorem 4.1 implies that (p,V) is Gw-core-complete, while (4.3) im-
plies that V is closed under g, hence the above result.

5 Related results and open problems

Theorem 4.1 is a consequence of another kind of completeness theorem on the
sequents. Its proof is based on a method of the second author [7] for sequents
in an antecedent of MPCL, with errors in [7] corrected in this paper. The second
author also proved a cut elimination theorem for the sequents.

We may extend the set Q of the quantifiers of MPCL. Recall that Q is
divided into — and ‘B, and P is the set of the unions of a finite number of
intervals of IP in one of the shapes (p —), (p, q], and (+ q]. This restriction to
intervals appears unnatural. It appears natural to extend B to the set B’ of the
finite unions of all kinds of intervals. In fact in [3], MPCL with 3 replaced by
B’ has been investigated as well. However, no completeness theorem has been
obtained as yet for B’ unless P = PB’, which seems to be deeply related with
the fundamental question of how human cognizes quantities in the outer world.
We note that P8 =’ if each element p € P—{0} has an immediate predecessor,
for instance if P = Z>o.

As mentioned in the introduction, MPCL should be extended also to CL
with arbitrary number of phases. We have posed a design for CL in [3], but
have yet to investigate it.

The logical spaces in the most general sense are put into three classes in view
of a certain property related to completeness, models, and consistency. Both
the sentence logical space (Ag, Fw) and the predicate logical space (H, Gw) of
MPCL belong to the 3rd class, which means that consistent subsets of Ay nor H
do not necessarily possess models. Takaoka [8] has shown that even consistent
sets of closed elements of Ay do not necessarily possess models. The relationship
of this phenomenon with Kurt Godel’s celebrated work on incompleteness [1]
should be investigated.
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6 Rudiments of formal languages

Here we state rudiments of formal languages and sorted algebras to the extent
necessary for the proof of Theorem 4.1. For omitted proofs and further results,
we refer the reader to [2][3][4].

Theorem 6.1 Let (A, T, 0,S,C,X,T') be a formal language, a € A, W be an
actual world for A, ® be a C-denotation into W, and v,v’ be X-denotations
into W. Assume that vx = v/x for each variable x which occurs free in a. Then
(P*a)v = (D*a)v'.

This is called a denotation theorem. The following is a special case of the
substitution-redenotation theorem.

Theorem 6.2 Let (A, T,0,5,C,X,T") be a formal language, a,c € A, x € X,
W be an actual world for A, and @ be a C-denotation into W. Assume that x
is free from ¢ in a and oc = ox. Then (®*(a(x/c)))v = (O*a)((x/(@*c)v)v)
for every X-denotation v into W, where (x/c) is the substitution of ¢ for x and
(x/(®*c)v) is the redenotation for x by (®*c)v.

Theorem 6.3 Let (A, T,0,S) be a USA, (ax)aen be the OS of A, and ny
be an arity of xp for each A € A. For each subset B of A and a € A, let
B9 denote the set of the elements of B which occur in a. Furthermore define
AL ={Ae Al (Imoyp)® # 0} (if A € A%, then we say that A occurs in a). Then
the following holds.

e For each a € A, S® and A® are finite sets.

a_J0 when a € S,
AN UUR, A when a = a(ar, ..., any ).
e Ifa=ax(ar,...,an,) € A, then Sg., = Up2; Sak, — S™.

e If a,b € A and Sf,, NUrcpna S* = 0, then every element s € S is free
from b in a.

e Let a,b,c € A, s € S and assume b = a(s/c), where (s/c) denotes the
substitution of ¢ for s. Then SP?_ C S¢_ U (Sgee —{s}) and A® C ACUAS,

free = “free

while if s &« a then AP C AQ,

Lemma 6.1 Let (A, T,0,S) be a USA, (ax)aca be the OS of A, ny be an arity
of ay for each A € A, and ¢ be a mapping of AIIS into an additive semigroup
M. Then there exists a mapping F of A into M which satisfies the following
conditions:

Fs = ols, F(‘X?\(a]w-wan;\)):(P)\‘|'F(11+~~'-|—Fan7\.

Proof By a remark following Theorem 2.1, we can define Fa € M for each
a € A by induction on rank a so that the above conditions are satisfied.
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7 Rudiments of logical spaces

Here we state rudiments of logical spaces to the extent necessary for the proof
of Theorem 4.1. For omitted proofs and further results, we refer the reader to
[3][5]-

Throughout this section, we let A be a set, and denote elements of A by
xX,Y,..., while elements of A* by «,f3,..., both with or without numerical
subscripts. When o = x1 - - xn € A*, we will denote the subset {x1,...,xn} of
A also by «. This sequence convention will be used throughout the remainder
of this paper.

7.1 Fundamental theorem of completeness
Let (A,J) be a logical space with ¥ C A — T. We define
A=A" x A*
and define the relation < on A* by
x=xpB & inf px <sup @f for all ¢ € F,

where the infimum and supremum are taken with respect to the usual order <
on T. We call < the validity relation of (A,JF) or the F-validity relation.
It is easy to show that < satisfies the following five familiar laws:

X < X, (repetition law)

x<p = xa< B, } (weakening law)

x=p = xoiz B,

xx B = xx<B,
xa = = xa = B,
axyP v = oyxP <,
axyP =y = oyxP =,
o< XY,
xB <o

(contraction law)
(exchange law)

} = aff < &y. (strong cut law)

Consequently, x satisfies the following law:

X=X Xy = af <, }

aEx, xBEy = af =v. (cut law)

Furthermore, we define
C={(o,p) € Al o< Bl
Then the F-core C defined by (2.5) satisfies
C={xeAle=<gx}

where ¢ is the element of A* of length O.
Let (R,D) be a deduction pair on A. We say that (R,D) is F-sound if it
satisfies the following two conditions:
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o (,x) EA* XA, aRx = a=<x
e D is F-sound, that is, D C C.

The former condition is called the F-soundness of R. It is easily shown by the
cut law that if R is F-sound then C is closed under R. Furthermore, we define
the deduction relation <z p on A* by

a<grp B < [aUDJg 2 () Hy}U Dl
yep
and then define
Arp ={(a,B) € A | <x,p B (7.1)
Under the above definitions, the following theorem holds.
Theorem 7.1 Let (R, D) be an F-sound deduction pair on A, and let (ﬁ, 13) be
a deduction pair on A. Assume that the following two conditions are satisfied:
« CC[Dg,
eDC /XR p and /XR‘D is closed under R.

Then (R,D) is F-complete.

7.2 Boolean relations

Here we assume that A is a set, that /A, V, and = are global binary operations
on A, and that ¢ is a global unary operation on A.

A relation < on A* is said to be Boolean, if it satisfies the repetition law,
weakening law, contraction law, exchange law, strong cut law, and the following
four laws:

xA\y<x, xA\y<vy, xy=<xAvy, (conjunction law)
xVy=x, xVy=y, xy=xVuy, (disjunction law)
X <xx=y, ysx=y, x=y=<x°y, (implication law)
xx <e, xx9 = e. (negation law)

Also, a relation < on A* is said to be weakly Boolean, if it satisfies the
repetition law, weakening law, contraction law, exchange law, and the following
four laws:
as B = xAy,a<p,
xxxp, axyp = axxAvy,p,
<B, yaxp = xVy,a<B,
oc-<xy[5 — a<xVy,p,
XB yax B = x=y,axp,
SYB = x<xx=y,B,
x<xp = x%x< B,
axp = a=<xp.

(strong conjunction law)
(strong disjunction law)
(strong implication law)

(strong negation law)
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Obviously, the largest relation on A* is Boolean and weakly Boolean. We call
it the trivial relation.

Theorem 7.2 Let < be a relation on A*. Then the following two conditions
are equivalent.

e The < is Boolean with respect to A, V, =, .

e The < is weakly Boolean with respect to /\,V, =, { and satisfies the cut
law.

If R is a relation on a set X, the symmetric core of R is defined to be the
intersection RN R* of R and its dual R* regarded as subsets of X x X. If R is a
preorder, then RN R* is an equivalence relation.

Theorem 7.3 Let < be a Boolean relation on A* with respect to A\, V,=, 0.
Then the following holds for < and its symmetric core =x:

axyP Xy = o, xAy,B <,
axyp =y = o«,xVy,p =,
X1 A Axy X (o (X Ax2) A ) Axn,
X1V Vxn < (- (x1Vx2) V- )V xn,

irrespective of the order of applying the operations /\ and V on the left-hand
side of =,

x1 <X Y1, } {X1/\Xz <y1Avyz,
X2 < Y2 x1 Vx2 < y1 Vo,
XAy &= axx=>y,
{oc<><f5 = x%a < B,
x=xp = x%a =B,
x=<pB = a<xxAx’,p = xVx° axp

Theorem 7.4 Let (A,JF) be a logical space wit F C A — T, and assume that
every member of F is a homomorphism with respect to A\, V, =, { (such a logical
space is said to be Boolean with respect to A,V,=,¢). Then the following
holds.

e The validity relation of (A,JF) is Boolean with respect to A,V,=, 0. It is
non-trivial unless F = (.

X X=y X

e The two logics p = and & = Y on A are F-sound.
x Ay

e The Boolean elements of A with respect to A, V, =, are F-sound.

e The deduction pair (g, C) consisting of  and the F-core C is F-complete.
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Theorem 7.5 Let (R,D) be a deduction pair on A with R = p U &. Assume
that [D]r contains all Boolean elements of A with respect to A, V, =, . Then
the deduction relation <z p is Boolean with respect to A,V,=, .

8 Rudiments of quantities and measures

Here we prove rudiments of quantitative systems and measures to the extent
necessary for the proof of Theorem 4.1. For further results, we refer the reader
to [3]

Theorem 8.1 Let (P,+,0,<) be a quantitative system and Q be a finitely
generated support subalgebra of (P,4). Then Q is well-ordered with respect to
<.

Proof Since (Q U {0},+,0,<) is a quantitative system, we may assume P =
Q>0. Then P = [{q1,...,qxl with g1 > q2 > -+ > qx = 0. If k = 1,
P is equal to {0} and so well-ordered. Therefore we assume k > 1 and argue
by induction on k. Let P’ = [{qz,...,dx}]]. Then P’ is well-ordered by the
induction hypothesis. We only need to show that every downward closed interval
(¢« 7] of P is well-ordered. There are elements ny,...,ng € Zso such that
T =mn1q1 + -+ +nkqkx. Define ng = ny +--- +ng. Then v < npqy. Take
an arbitrary element p € (« rt|. Then p = nqg; + p’ for some n € Z>o
and p’ € P’. We may take the n so that n < ng, because if np < n, then
r<mnoqi <ngi <ngi +p' =p,s0p=r=n1q7 +--- +nrqgx and n; < no.
Therefore, defining P, = {ngq; +p’ | p’ € P’} for n = 0,...,n9, we have
(11 CUr2, P} Since the mapping p’ — nqq+p’ of P’ onto P}, is increasing,
P/ is well-ordered for n =0,...,ng. Therefore (« 7] is well-ordered.

Theorem 8.2 Let S be a non-empty set, (P,+,0, <) be a quantitative system,
0 < 6 € P, and R be a relation between PS and P. Assume that R satisfies the
following three conditions for all X,Y € PS and all p,q € P:

e X=0 & XRO,
e XCYand YRp = XRp,
e XRpand YRq = (XUY)R(p+q).

Assume furthermore that, for each X € PS; there exists the minimum of the
subset {p € P | XRp} U {3} of P, and let |X| denote the minimum. Then the
mapping X — |X]| is a P-measure on S.

Proof Since @ RO, we have )] = 0. Conversely if |X| = 0, then since 0 < 6, we
have XRO0 and so X = (.

Assume X C Y and let p = |Y|. If YRp, then XRp and so |X| <p. If p =9,
then |X| < p also.
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Let p = [X] and g = |Y|. If XRp and YRq, then (XUY)R(p + ¢q) and
so [ XUY <p+4q. If p =2, then XUY| <p <p+gq. If g =0, then
XuYl<qg<p+q.

9 Structure of the MPC World

Here we analyze the structure of the MPC world
W=(s—=T)usu | (P—=9S)—T)
PePK

defined in §3.3 to the extent necessary for the proof of Theorem 4.1. For further
results, we refer the reader to [3].
We define

E=Ws;UW.,=(S—=T)US,
which we call the set of the entities. We also define

F=J we={J (P=5S)—T),

PePK PePK

which we call the set of the affairs. For each f € F, we denote by K the element
P € PK satisfying f € Wp and call it the frame of f.

9.1 Boolean structure

The results here will often be used without notices.
The set W5 =S — T is identified with the power set PS, and so is a Boolean
lattice with respect to the order C defined by

alCb &< as <bs foreachs e S.

The least element 0 and the greatest element 1 of W are characterized by the
properties that 0s = 0 and 1s = 1 for each s € S. The sets E and W5 are
closed under the operations M, L), 0, and their restrictions to W are equal to
the meet, join, and complement on the Boolean lattice Ws. The order C on W
is extended to the preorder C on E defined by

aCb & IfadseSthenbIs, (9.1)

sothat 0C aand aC 1 for all a € E.
Similarly as above for each P € PK, Wp = (P — S) — T is a Boolean lattice
with respect to the order < defined by

f<g & f0<g0foreach® cP —S.

The least element 0 and the greatest element 1 of Wp are characterized by the
properties that 00 = 0 and 180 =1 for each 6 € P — S. The sets F and Wp (P €
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PK) are closed under the operations /\,V,=, ¢, and their restrictions to Wp
are equal to the meet, join, implication, complement on the Boolean lattice
Wp, and f= g = f®V g for each (f,g) € F>. Moreover, for each ® € P — S,
the projection f +— f0 of Wp into T is a homomorphism with respect to the
operations A, V, =, .

Theorem 9.1 The following holds for all a,b € E:
(aMb)A =aAAbA, (aUb)A=aAVDbA, (a”)A=(ar)’.

This theorem is important, but its proof is easy and omitted.
All the orders < on Wp (P € PK) are extended to a single relation < on F
defined by

f<g & f(6lx,) < g(Olx,) for each 6 € (Kf UK4) = S,
which satisfies the following:
f<g < f(0lx,) < g(Olk,) for each @ € K— S.
Therefore < is a preorder. We denote its symmetric core by =, namely,
f=g & f(0lx,) = 9(0l,) for each @ € K — S.

Then = is an equivalence relation, and its restriction to Wp is the equality =.
For each element f € F, we define the element f# € Wy by

10 = f(0lx,)
for each ® € K — S, and call the mapping f — f* the inflation. Then
fa<g & f<g f=g & ff=¢,
and so we may extended the preorder < on F to the relation < on F* by
fioofm<g1- - gn

e inf{ff,.. ) <suplgl,..., gb) (9.2)

= inf{f%G,...,f%G}g sup{gge,...,ggﬁ} foreach 8 e K— S
for all f1---f, g1 gn € F* with f1,...,fm,91,...,9n € F. Let P1,...,Pm,
Q1,...,Qn be the frames of f1---fin, g1 -+ gn, and let R be their union. Then

f1fm <91 gn

— lnf{f1 (e|P1 )) cee »fm(e‘Pm)} S Sup{g] (e|Q1 )a LR} gn(e|Qn)}
foreach® € R — S. (9.3)

It also follows that the inflation § € F — Wy is a homomorphism with respect
to the operations A\, V,=,{. Consequently, the relation = is consistent with
the operations. If 8 € K — S, then since the projection by 6 is also a homomor-
phism of Wk into T with respect to the operations, the mapping f — 8 is a
homomorphism of F into T with respect to the operations. Therefore, Theorem
7.4 shows that the following holds.
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Theorem 9.2 The relation < on F* is Boolean with respect to the operations
AV, = 0.

9.2 Repetition of the operations ok

Let s1,...,sn € S and kq,...,kn be distinct cases in P € PK. Then it fol-
lows from the definition of the operations ok; (i = 1,...,n) that, for each
f € Whp, the element s; 0kq (s2 0kz (- (s Ok f) -+ )) exists and belongs to
Whe_ix, ... x.}- We sometimes abbreviate it by (s;0ki)i—1,.. nf or (sioki)if.
Let 6 € (P —{k1,...,kn}) = S. Then, generalizing (3.2), we define the element

(M) 0 of P — S as follows:
S1,...,8n

((k1,...,kn>e>k_ Ok when k € P—{k1,...,kn},
S1y...4,Sn N Si Whenk:ki(i:L...,H).
Ki,...,kn

S1,...,8n

We sometimes abbreviate < ) by (ki/si)i=1,...n or (ki/si)i.

Lemma 9.1 Let kq,...,ky, bedistinct casesin P € PK, P C Q € PK, kn1,...,
km be distinct cases in Q — P, 0 € (Q —{k1,...,km}) — S, and s1,...,sm € S.
Then P —{k1,...,kn} € Q —{k1,...,km} and the following holds:

ki,...,k ki,...,k
((m> e) - (n) e‘Pi{k1 ..... kn}.
S1y.-+4ySm P S1,...,8n

The proof is easy and omitted.
Theorem 9.3 Let sq1,...,sn € S, kq,...,kn be distinct cases in P € PK, and
f € Wp. Then the following holds for each 8 € (P —{ky,...,kn}) = S:

(51 6Ky (52 6Kz (- -« (53 Sk £)+--1))0 = f ((u) e) .

S1,...,8n

Proof We may assume nn > 1 and argue by induction on n. Define Q = P—{k;,}
and g = snO0knf. Then g € Wg and 6 € (Q — {k1,...,kn_1}) — S, so

ki, kno
0/ — <"7’“1> 0 belongs to Q — S and g0’ = f((kn/s4)8’). Obviously

STy.++ySn—1
(kn/sn)0’ = u) 0. Thus we may complete the proof as follows:
STy..+)Sn

(s10kq (s2 0k (-« (sn Okn f)---)))0
= (s1 0k (s20k2 (- (Sn—1 0kn—19)---)))0

N7 S A o (K K
_g((s1,...,sn_1)e>_ge = f((kn/sn)0") =1 S1y-++)5n °)

where the second equality holds by the induction hypothesis.
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Corollary 9.3.1 Let sq,...,8n € S, kq,...,kn be distinct cases in P € PK,
and f € Wp. Then the following holds for every p € &;,, where G, is the
symmetric group on the letters 1,...,mn:

1 0kq (52 0ka (- (sn Okn ) --+)) = 501 0kp1 (5p2 0kp2 (- (Spn Okpn f) -+ ).

Proof Theorem 9.3 yields the following for each 8 € (P —{k1,...,kn}) — S,
hence the above result:

(s16ky (52 0k (-« ($n Okn f)--+)))0 =1 (<u) 9>

S1y.+.,5n

Kot,---, Kon } ) ]
=f <(P‘P> 6) = (501 0Kp1 (592 0Kp2 (-~ (Spn Okpn ) -+ )))6.
Sply-++sSpn

Corollary 9.3.2 Let k1,...,k, be distinct cases in P € PK and f € Wp. Then
the following holds for each 6 € P — S:

0 = ((0k1) Sk ((0ka) Sk (+-- ((Bkn) Okn ) --)))0lp (s -

Proof This is a consequence of Theorem 9.3 because 0kq,...,0k, € S and
0= ki kn 0
T\ 0ky,...,0ky ) PlRne kel

Corollary 9.3.3 Let s1,...,sn € S, kq,...,kn be distinct cases in P € PK,
and f € Wp. Then (Si 6ki)i:]yn_,n(fo) = ((Si 6ki)i:1

.....

Proof Theorem 9.3 and the definition of the operation ¢ yield the following
for each 6 € (P —{kq,...,kn}) — S, hence the above result:

((s1 6ki)i(f9))0 = £ ((ki/s1):0) = (f((ki/s1)i0))® = (((si 6k¢)if)0)?
= ((Si 6k1)1f)06

Lemma 9.2 Let ki,...,k, be distinct cases in P € PK, kn+1,...,km be dis-
tinct cases in K— P, s1,...,5;m € S, and f € Wp. Then the following holds:

510Kk1 (520Kk2 (- (S Ok F4) -+ )) = 57 6k1 (s20Kka (++- (50 Ok ) -+ ).

Proof Theorem 9.3, Lemma 9.1, and remarks in §9.1 yield the following for
each 8 € (K—{kq,...,km}) — S, hence the above result:

(51 6kq (52 8Ka (- (Sm Gk 1) -+ )))0 = ft ((k"’km> e>

S1,...,Sm
ki,...,km ki,...,kn
:f(<(17) e) ) :f ((17) e|P7{k] ..... kn})
S1y,...4,Sm P S1y,...,8n

= (51 0Kkq (s20k2 (- - (sn Okn f)---)))Blp_qx,
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Lemma 9.3 Let sy,...,sn € S, kq,...,ky be distinct cases in P € PK, and
f,g € Wp. Then the following holds:

(s10ki)i(fAg) = (si 0ki)if Alsi 0ki)ig,
(s10ki)i(fV g) = (si 0ki)if V(si 0ki)ig,
(51 0ki)i(f=g) = (si 0ki)if =(si Oki)ig.

Proof Let x be any one of A\,V,=, and 6 € (P —{kq,...,kn}) — S. Then
Theorem 9.3 and the definition of the operation * yield the following, hence the
above results:

((si0ki)i(f*g))0 = (f*g)((ki/si)i0) = f((ki/s1)i0) = g((ki/si):0)
= ((s16k1)if)0 * ((s16ki)i9)0 = ((si Oki)if * (s 0ki)1g).

Theorem 9.4 Let s1,...,51 € S, f,g € F, and kq,...,k; be distinct cases such
that kq,...,kn € Kf—Kg,kn+1,...,km € KfﬂKg, and Kyn41,...,KL € Kg—Kf
(0 <mn <m<1). Then the following holds :

(siOki)i=1

yeresy =1,...

(si0ki)i=1,..1(fV g) = (si O0ki)i=1,...,

(51 0ki)iz1

.....

Proof Let x be any one of A,V,=. Then Lemmas 9.2, 9.3, and remarks in
89.1 yield the following, hence the above result:

(si0ki)iet, 1(f*g) = (siOki)ie1, 1(f*g)* = (si0ki)iz1, . 1(f x g¥)

= (si0ki)iz1, 1" * (51 0ki)i=1,.. 10"

.....

= (s 0Ki)i=1,...,mT * (51 OKi)i=n+1,...10.

Lemma 9.4 Let ki,..., ks be distinct cases in P € PK and f,g € Wp. Then
f<giff

10k (s20kz (- (s Okn f)--+)) < s70kq (s20kz (- (sn Okng)---))
for any elements s1,...,sn, € S.

Proof Iff<gandsi,...,sn €S, then Theorem 9.3 yields
ki,...,k
(810K (s28Kka (- (S Okn f)---)))0 = f ((M) 6)

S1y.v.ySn

<g ((k‘k“> e> — (51 6K1 526Kz (- (sn Ok g) - )8
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for each © € (P —{kq,...,kn}) — S, hence (s; 6ki)if < (si0ki)ig. Conversely
if (si0ki)if < (si0ki)ig for any elements sq,...,sn € S, then Corollary 9.3.2
yields the following for each 8 € P — S, hence f < g:
0 = ((6k1) ok ((6kz) Ok (- ((Bkn) Okn T)-+)))Olp_x;,... kn)
< ((8k1) 6kq ((8k2) 6k (++- ((Okn) Okn g) -+ )))Olp—(k;,... kn} = 6.
Theorem 9.5 Let f,g € F and ki,...,k; be distinct cases with kq,...,ky €

Kf—Kg, knt1,.-., km € KiNKg, and kmy1,..., k1 € Kg—K¢ (0 <n <m < 1).
Then f < g iff

(si0ki)i=1
for any elements si,...,s1 € S.

Proof This is derived from Lemmas 9.4, 9.2, Corollary 9.3.1, and remarks in
§9.1. First, f < g iff f# < gf. Second, f# < g® iff (s; 6k{)if? < (si0ki)ig? for any

elements s1,...,s1 € S, where (s; 0ki); is an abbreviation for (si 0ki)i=1,... 1.
Third, (si 5ki)ifﬁ < (s 6ki)ig” iff (s éki)ifﬁ < (si 5ki)igu. Finally,
(si 0ki)if* = (si 0ki)i=1, . mf, (si 6ki)ig® = (si0ki)ien+1....10-

Thus this theorem holds.

Theorem 9.6 Let fy,...,fm,d1,...,dn € F, &, € F*, and k € K. Assume
that k belongs to the frames of f1,...,fm, d1,..., gn but does not belong to the
frames of the affairs which occur in « or 3. Then

fiofmoa<gr- - gnP
iff the following holds for all s € S:

sokfy, - ,sokfn,x<sokgr, -+ ,sokgn, .

Proof Suppose « =fj---f/,, B =97 - -9y, with f],... /., 97,...,9, €
F. Let s € S and define h = s 0tsA. Then k does not belong to the frames of
hAR® or hVh. Therefore by Theorems 9.2 and 7.3, we may assume m’ #
0 #n’. Define
f=(f1 A Af)AFTA-- AT,
g=(91V---Vgn)V(giV---Vgp),
where the orders of applying the operations /\,V within parentheses are arbi-
trary. Then if m # 0 # n, we may argue as follows by using Theorems 7.3, 9.2,
9.4, and 9.5:
& sokf<sdkg for any s € S,
sokf<sokg < (sokfi A---AsOkfm) A(f; A~ AT )
<(s6kg1V---Vsokgn) V(g V---Vgh)
& sokfy, -+ ,s0kfm,x<<sokgi, - - ,s0kgn,p.
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This completes the proof in case m # 0 # n. If m = 0 # n, argue similarly by
replacing s ok f by f. If m # 0 =n, replace sokg by g. If m =n =0, there is
nothing to prove.

9.3 Operations Ak and A
Theorem 9.7 Let a,b € E. Then the following holds.

e Let a € S. Then, aotbA =1 iff b 3 a. Therefore adma =1, and if
b € W5, then aomtbA = ba.

o aVaibA =1if aC b.
e aptbA = (alb)prlA for all p € P.

eIf p € P, then apmlA = 1iff [{s € S| a 3 s}| > p. Therefore,
acom 1A =0 for the maximum oo of P in case it exists.

e adnlA =1 iff there exists an element s € S such that somaA = 1.

Proof Since aomtbA = (bA)(mr/a) by the definition of the operation o7, it
follows from the definition of the operation A that aomtbA =1 iff b 3 a. The
second assertion is proved by the following reasoning using the definition of the
operations V7, A\, and M on W:
avVrmbA =1

& |{seSlaTs, (bA)(n/s) =0} <0

& |seSlads, bFs}| <0

& {se€S|ads, bAs}=0

& ifadseSthenbds

& aCb (by (9.1)).

The third assertion is proved by the following reasoning:

aprtbA =1

& [{seSlads, (bA)(n/s)=1}|>p
& |{seS|lads, bIs}|>p

— |{seSlanbIs}|>p

— [{seSlanb3s, 13s}[>p
e (anb)priA =1,

The fourth assertion is also proved by this reasoning, because 1 3 s for all s € S.
The fifth assertion is a consequence of the fourth and the first.
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9.4 Operations Ak and the relation <

Theorem 9.8 Let a € E, k € P € PK, f € Wp, and p € B. Then the following
holds:

a—pkf=apkf®, ap®kf = (apkf)®.
Proof Let 0 € (P—{k}) — S. Then the following holds, hence the above result:
(a—pkfl0 =1 & [{seS[aTs, f((k/s)8) =0} €p
& |[{seSlas, fO((k/s)0) =1} €p
— (apkf®)o =1,
(ap°kf)B =1 < |{seS|aTs, f((k/s)0) =1}| €p°
& (apkf)o =0
— (apkf)®0=1.

Theorem 9.9 Let a € E, k € P € PK, f € Wp, and p,q € B. Then the
following holds:

a(png)kf=apkfAaqkf, a(pugkf=apkfVagkf.
Proof Let 8 € (P—{k}) — S. Then the following holds, hence the first result:
(alpnqkf)o=1 & |{se€S|ads, f((k/s)8) =1} €pngq

{y{sesmas f((k/s)0) = 1}| € p,
[{seS|ads, f((k/s)8) =1} €q
< (apkf)0 = (agkf)o =1

& (apkf)OA(agkf)d =1

& (apkfAagkf)d=1.

The rest of the proof is omitted.

Theorem 9.10 Let a,b € E, k € P € PK, f € Wp, and p € P. Then the
following holds:

aVbA, apkf < bpkf.

Proof Let 8 € (P —{k}) —» S and assume aVntbA = (apkf)0 = 1. Then
a C b by Theorem 9.7 and |[{s € S| a 3, ((k/s)8) = 1}| > p, and so since
the P-measure is increasing, we have |{s €S|b s, f((k/s)e) = 1}‘ > P,
which means (bpkf)0 = 1. Therefore aVnbA, apkf < bpkf by (9.3).

Theorem 9.11 Let a,b € E, k € P € PK, f € Wp, and p,q € P. Then the
following holds:

(aUb)p + gkf < apkf, bgkf.

41



Proof Let 0 € (P—{k}) = S. Then

{seSlaubIs, f((k/s)8) =1}
={seSlads, f((k/s)8) =1} U{seS|bIs, f((k/s)8) =1}.

Therefore, if (apkf)0 = (bqkf)0 =0, then
[{seSla3Ts, f((k/s)8) =1} <p, [{seS|bIs, f((k/s)8) =1} <q,

so [{se€S|laubIs, f((k/s)0) =1} <p+q, hence ((aLb)p+qkf)6 =
Therefore (alUb)p + gk f < apkf, bgkf by (9.3).

Theorem 9.12 Let a € E, b € S, k,1 € P € PK, k #1, f € Wp, and
Ae{o}u. Let a € S in case A = §. Then the following holds:

aAk (bolf) = bdl(arkf).

Proof When A = ¢, this holds by Corollary 9.3.1. Let p € . Then the
following holds for each 8 € (P —{k,1}) — S:

(a—pk(bolf)e =1 < [{seS|aTs, (bolf)((k/s)0) =0} cp
— [{seSlaTs, f((l/b)(k/s 0) =0}| €p,
(bol(a—pkf))0 =1 & (a—pkf)((1/b)0) =
& |{seSlaTs, f((k/s)(l/b 0) =0}| €p.

These conditions are equivalent because (1/b)(k/s)0 = (k/s)(1/b)0. Hence the
above result in case A € —=3. The rest of the proof is omitted.

10 Structure of the predicate logical space

Let (A, T,0,S,C, X, T), W, (Aw )a,w be the logical system MPCL defined in §3.1-
§3.4. Here we analyze the structure of the predicate logical space (H, Gw) de-
fined by A, W, (Aw)a,w in §3.5 to the extent necessary for the proof of Theorem
4.1. For further results, we refer the reader to [3].

As in §7.1, we will denote elements of H by f, g, ..., while elements of H* by
«, B, ..., both with or without numerical subscripts. When o« = fy---f;;, € H*,
we will denote the subset {f7,...,fn} of H also by «. The element of H* of
length O will be denoted by a blank.

Our attention will be focused on the validity relation < of (H, Gyw) defined
as in §7.1 by

a<xpP & inf pax <sup@fp for all ¢ € Sy (10.1)

and the symmetric core < of the restriction of < to H x H.
First of all, as was notice in §3.2, H is closed under the operations A\, V, =, O,
whose restrictions to H is global.
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Theorem 10.1 The predicate logical space (H, Gy) is Boolean with respect to
the operations A, V, =, on H.

Proof G is non-empty and consists of the mappings f — ((CD*f)v)(@IKf) =

(((D*f)v)ﬁe of H into T determined by the quadruples W, ®,v,0 of an MPC
world W € W, a C-denotation @ into W, an X-denotation v into W, and
0 € K — W,. Since the semantic mapping ®*, the projection by v, the inflation
g, and the projection by 6 are all homomorphisms with respect to A,V,=, O,
so is the members of Gw.

Lemma 10.1 Let fq,...,fm,9g1,...,9n € H. Then f;---fi, < g1---gn iff
(O*f1)v- - (O*f i )v < (D*gq)v--- (DP*gn )V for each triple W, D, v of an MPC
world W € W, a C-denotation @ into W, and an X-denotation v into W.

Proof This is a consequence of (9.2).

Theorem 10.2 Let f1,...,fm,91,...,9n € H, &, € H*, and k € K. Assume
that k belongs to the ranges of fy,...,fm,d1,...,gn but does not belong to
those of the predicates in « U 3. Then the following holds for all a € A:

f1fmoc<g1gnﬁ

. 5 . . (gen. case+ law)
= aokfy, - ,a0kfn,x < adkg, -+ ,aokgn,p.

Assume furthermore that a variable x € X, does not occur free in the predicates
in{f1,...,fm,91,...,9ntUaUB. Then the following holds:

xokfy, -+, x0kfn,x <xo0kgr, -+ ,x0kgn,

(gen. case— law)
= fifma g1 gnp.

Proof The gen. case+ law is an immediate consequence of Theorem 9.6 and
Lemma 10.1. In order to prove the gen. case— law, let o« = f]---f/ ,, f =
g1 9gn, with f1,... f; ,,97,...,9;, € H. Let W be an MPC world in W and
@ be a C-denotation into W. Then the premise of the gen. case— law implies
that the following holds for every v € Vx w, because ®* and the projection by
v are homomorphisms with respect to the operation 6k:

(@ x)v ok (O*f1)v, -+, (O*x)v Ok (@ f1y v, (O*f)v, -, (O, )v
< (@*x)v Bk (D*g1)v, -+, (@ x)V Sk (D gn )V, (P g1 )V, , (D" g/ )v.

Take an arbitrary element s € W, and define v/ = (x/s)v. Then the above holds
with v replaced by v/, and so (2.4), (2.3), and Theorem 6.1 yield the following;:

sOk (O*f1)v, -, s 0k (@ fy)v, (O*f)v, -+, (O*f] v
<s0k(@*gy)v, - ,s0k (@ gn)v, (D*g7)v, -, (D g/ )Vv.
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Since s is arbitrary, Theorem 9.6 shows that

(@1 )v, - (@ F )y, (@ F)v, - (D )y
< ((D*g1 )V, R ((D*gTL)V) ((D*g]/ )Va Tty (CD*g;L’)V

holds. Since W, ®@,v are arbitrary, Lemma 10.1 shows that the conclusion of
gen. case— law holds.

Theorem 10.3 Let a € G, f € H, x € X, K¢ = {k}, and p € P. Assume
x & f. Then apkf < apm((xokf) Qx)A.

Proof In view of Lemma 10.1, we need to show
(@*(apkf))v = (O (apm ((xokf) Qx)A))v

for each triple W, @, v of an MPC world W € W, a C-denotation ® into W, and
an X-denotation v into W. Since ®* is a homomorphism with respect to the
operations pm, A\, Qx, and 0k, and since the projections by X-denotations are
homomorphisms with respect to pm, A\, and 0k, we have

(@ (apm ((x6kf) Qx)A))v =1
= (O*a)vpr (((O*x) 6k (D*f)) Qx)vA =1
= |{seW: | (@ a)vIs, som(((@*x) ok (D*f)) Qx)vA =1}| > p,

where
s o (((@*x) ok (@*f)) Qx)vA
= ((((®*x) ok (@*f)) Qx)v)s (by Theorem 9.7)
= (( *x) ok (D*f) )( x/s)v) (by (3.3))
= (@*x)((x/s)v) ok (D*f)((x/s)Vv)
=50k (D*f)v (by (2.4), (2.3), and Theorem 6.1).
Therefore

(@*(apm ((x6kf) Qx)A))v =1
— |[{seW.|(®*a)vTs, sck(P*flv=T1}>p
— (O*a)vpk(D*f)v =1
& (O*(apkf))v=1,

because both ®* and the projection by v are homomorphisms with respect to
pk. This completes the proof.

Theorem 10.4 Let a € G, f,g € Ay, and x € X.. Assume x & f. Then
favr ((f=g) Qx) A < aVm (g Qx)A.
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Proof In view of Lemma 10.1, we need to show
(@ f)v = (0" (aVr ((f=g) x)A))v=1 = (O*(aVr(gQx)A))v =1

for each triple W, @, v of an MPC world W € W, a C-denotation ® into W, and
an X-denotation v into W. Since ®@* is a homomorphism with respect to the
operations V7, A, Qx, and = and the projection by v is a homomorphism with
respect to Vmr and A,

(@*(avr ((f=g)Qx)A))v = (d*a)v
(@ (aVm(gQx)A))v = (0¥ a)v
and so we have
(@ (avVr((f=g)Ox)A))v=1 & (0 a)vC ((O*f= 0*g) Qx)v,
(CD*(aVTt(ng)A))v:1 — (O*a)v ((CD*g)Qx)v
by Theorem 9.7. Therefore assume (O*f)v = (CD*((IVTI((f:} g)Qx)A))v =1

N (((D*f:> D*g) QX)VA,
v ((@*g) Qx)vA,

-
-

and (®*a)v Is € W,. Then (®*f)((x/s)v) =1 by Theorem 6.1, and
= (((o*f= @~ g)Qx) )s (by (9.1))
= (O*f= 0*g)((x/s)v) (by (3.3))
= (@*F)((x/s)v) =(D*g)((x/s)v)
= (@*f)((x/s)v) =(((®*g) Ox)v)s (by (3.3)),

where the third equality holds because the projection by (x/s)v is a homomor-
phism with respect to =. Thus (((®*g) Qx)v)s =1, that is, ((®*g) Qx)v I s.
This completes the proof.

Theorem 10.5 Let a € A, f € Ay, and x € X,. Assume that x is free from
ain f. Then aom (f Qx)A =< f(x/a), where (x/a) denotes the substitution of a
for x.

Proof Since the substitution (x/a) is sort-consistent, both a o7t (f Qx)A and
f(x/a) belong to Ay. Therefore, in view of Lemma 10.1, we need to show

(@*(adm(fQx)A))v = (O*(f(x/a)))v

for each triple W, @, v of an MPC world W € W, a C-denotation ® into W, and
an X-denotation v into W. This is accomplished by the following calculation:

(@ (a6m(FOX)A))v = (@7 a)vom (((@7F) Ox)v)A
(((CD* ) )((CD* )v) (by Theorem 9.7)
= (©*f)((x/(@*a)v)v) (by (3.3))
= (0*(f(x/a)))v (by Theorem 6.2).
The first equality holds because @* is a homomorphism with respect to the

operations o7, /A, and Qx and the projection by v is a homomorphism with
respect to 67t and A.
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The following four theorems center around the definition (4.2).

Theorem 10.6 For any C-denotation ® into any MPC world W € W and any
X-denotation v into W, (®*one)v is equal to the greatest element 1 of W5,
while (d)*(oneu))v is equal to the least element 0 of Ws5.

Proof Since (®*(one™))v = ((®*one)v)", we only need to prove (P*one)v =
1, which is accomplished by the following calculation for each s € W,:

—~

(@*one)v)s

= ((CD ((xo 0Ttxo ) on))v)s (by (4.2))

= ((((d*x0) 67 (D*x0)A) Qx0)V)s

= ((@*x0) 67 (@*xo) )((xo/s v) (by (3.3))

= (@*x0) ((x0/s)Vv) 67 ((D*x0) ((x0/5)V)) A

sOTsA (by (2.4) and (2.3))
1 (by Theorem 9.7).

The second equality holds because ®@* is a homomorphism with respect to the
operations Qxg, 07, and A. The fourth equality holds because the projection
by (xo/s)v is a homomorphism with respect to 67t and A.

Theorem 10.7 Let f € Ay and x € X,. Then oneVn (fQx)A < f.

Proof We need to show
(@* (oneVr (fOx)A))v=1 = (O*fjv=1

for each triple W, @, v of an MPC world W € W, a C-denotation ® into W, and
an X-denotation v into W, which is accomplished by the following reasoning:
(0" (oneVm (fOx)A))v =1
— 1Vn (((D*f) QX)VA =1 (by Theorem 10.6)
— 1C ((CD*f)_O_x)v (by Theorem 9.7)
= (0" ) Ox)v=1
— (((D*f)Qx)v)s =1 for all s € W,
= (O*f)((x/s)v) =1 for all s € W, (by (3.3))
= (0

flv=1 (since (x/vx)v =v).
Theorem 10.8 Let f € Ay and x € X,. Then < oneVm(fQx)A iff < f.
Proof The validity relation < satisfies the cut law as noticed in §7.1 (cf. The-

orems 10.1 and 7.4), and oneVT[(fQ.x)A < f by Theorem 10.7. Therefore if
< oneVm (fQx)A, then < f by the cut law. Conversely assume =< f. Then
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(D*f) ((x/s)v) =1 for each quadruple W, @, v, s of an MPC world W € W, a C-
denotation @ into W, and an X-denotation v into W, and s € W,. Therefore, by
the reasoning in the proof of Theorem 10.7, we have (®* (one Vrt (f Qx)A))v = 1
for all triples W, @, v, hence =< oneVr (f Qx)A.

Theorem 10.9 Let x € X, a € G, f € H, and K¢ = {k}. Assume x ¥ q,f.
Then oneVr (((x6mal) = (xokf)) Qx)A < aVkf.

Proof Let W,®,v be an arbitrary triple of an MPC world W € W, a C-
denotation @ into W, and an X-denotation v into W. Then

(@*(oneVvr (((xomad)=(x0kf)) Qx)A))v =1

— (0*((x6mal)=(x06kf)))((x/s)v) =1 for all s € W,
by the reasoning in the proof of Theorem 10.7. Both ®* and the projection by
(x/s)v are homomorphisms with respect to the operations =, 07, A, and ok.
Also (CD*X)((X/S)\)) = s by (2.4) and (2.3). Also (CD*a)((x/s)v) = (®*a)v and
((D*f)((x/s)v) = (®*f)v by Theorem 6.1. Therefore,

(O*((xomaA)=(x6kf)))((x/s)v) =1 for all s € W,
(som(@*a)vA) =(s ok (@*f)v) =1 for all s € W,
if s € W, and s ot (®*a)vA =1 then s ok (®*f)v =1
if (®*a)v I s € W, then (( f)v)(k/s) =1
{se W, [ (D" a)vIs, ((O*f)v)(k/s)=0} =10
{s e W | (@*a)vTs, ((@*F)v)(k/s) =0} <0
(d*a)vVk (O*f)lv =1
(O (aVkf))v=1.

N A A

This completes the proof.

11 Proof of the main result

Let (A, T, 0,S,C,X,T"), W, (Aw)a,w be the logical system MPCL defined in §3.1-
§3.4. Here we prove Theorem 4.1 on the predicate logical space (H, Gw) defined
by A,W, ()\W))\,W in §3.5.

As in §10, we will denote elements of H by f, g, ..., while elements of H* by
&, B,..., both with or without numerical subscripts. When « = fy---f,, € H*,
we will denote the subset {fy,...,fn} of H also by «. The element of H* of
length O will be denoted by a blank.

11.1 A sequent deduction pair

Our proof of Theorem 4.1 is based on Theorem 7.1 and so, extending the nota-
tion of §7.1, we define

H=H* x H*

47



and denote the elements («, 3) of H by « — 3 or B « «. We call elements of

H so denoted the sequents. In particular, a sequent consisting of sentences is
called a sentence sequent. Let < be the validity relation (10.1) of (H,SGw)
and define

GZ{OCHBE?H(X% B}
Then the Gy-core C satisfies
C={feH| <fl={feH| »feC).

In view of Theorem 7.1, here we present a deduction pair (ﬁ,ﬁ) on H for

which we will prove C= []3]]3 in §11.3. In the course of the presentation, we
will prove the following.

Lemma 11.1 C is closed under R and D - C. Therefore [13]]3 - C.

First, the deduction rule R is the union of the nineteen logics on H defined by
fractional expressions as follows (cf. (4.1)). The first sixteen logics are familiar
ones and in one to one correspondence with the weakening law, contraction law,
exchange law, cut law, strong conjunction law, strong disjunction law, strong
implication law, and strong negation law.

a— P x— P .
-+ k
ot B (weakening)
ffa—p ’ Hae B , (contraction)
fa — B fa B
«fgp =y ofg v (exchange)
agfp — v’ ogfp v’
x—f oy aef Bey (cut)
By ap ey
_fgau B P gp (conjunction)
fAg ax—p’ a—fAg,B
fa=pf ga—p _x—foB (disjunction)
fVga—p ' x—fVg,p’
x—=fp ga—p _fa—9B (implication)
f=gx—p x—f=g,p’
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o — fao— B

m, m . (negation)

The remaining three logics are in one to one correspondence with the logics
1, T,V on H used in §4 to define V by (4.3).

7_)f ( +)
S askf case
where a € A and k € Ks.
_ D xOkf (case—)
—f
where x € X, k € K¢, and x £ f.
— f
(V+)

— oneVm (f Ox)A’

where f € Ay, x € X, and one was defined by (4.2).

This completes the presentation of the nineteen constituents of the deduction
rule R. Since the validity relation < is Boolean with respect to A\, V,=,{ by
Theorems 10.1 and 7.4, it follows from Theorem 7.2 that C is closed under the
first sixteen logics, weakening to negation. Also, it follows from Theorems 10.2
and 10.8 that C is closed under the remaining three logics case+, case—, and
V4. Thus C is closed under R.

Next, the deduction basis D is the set of the following twenty five kinds of
sequents, the first of which is a familiar one:

f—f, (repetition seq.)

where f € H. These belong to C because < satisfies the repetition law. The
remaining twenty four kinds of sequents are in one to one correspondence with
the twenty four kinds of elements of 0 presented in §4 other than the Boolean
elements, that is, the = elements to V— elements.

— aomal, (= seq.)
where a € A;. Theorem 9.7 and Lemma 10.1 show that these belong to C.
acomoneA — (5 seq.)

where a € G and oo is the maximum of P in case it exists. Thegrem 9.7, Lemma
10.1, and Theorem 10.6 show that the 50 sequents belong to C.

aAk (bolf) = bol (arkf), (9,8 seq.)
where a € G, be A, TeH, k1leKs k#1 A e{6jUuQ. Alsoa € A in

case A = 0. The two-way arrow = is a device to show a sequent &« — {3 and its
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reverse « ¢ [3 together. We will continue using this device. Theorem 9.12 and
Lemma 10.1 show that the 9,6 sequents belong to C.

..... mfA(aioki)i=nt1,..19,  (Aseq.)
fVg) = (ai0ki)iz1,... ,mfV(ai0ki)i=nt1,...10, (V seq.)
mf=(ai 0Ki)i—n+1,..19, (= seq.)

,,,,
.....

=, =7 Y) ¥ \M VM i=1,...,

where aj,...,a1 € A¢, f,g € H, and kq,...,k; are distinct cases such that
k1,...,kn € K¢ —Kg, Kn+1y...,km € K¢ ﬂKg, and kymy1,...,k € Kg — K¢
(0 <n<m<1). Theorem 9.4 and Lemma 10.1 show that these three kinds of
sequents belong to C.

(al 6ki)1:1 ..... n(fo) = ((ai 6ki)i:1,...,nf)<>a (<> 56(1')
where ay,...,an € Ag, f € H, and k1,...,k, are distinct cases in K¢. The ¢
sequents belong to C by Corollary 9.3.3 and Lemma 10.1.

a—pkf = apkf®, (— seq.)
ap°kf= (apkf)?, (o seq.)

where a € G, f € H, k € K¢, and p € P. These two kinds of sequents belong
to C by Theorem 9.8 and Lemma 10.1.

a(pngkf=apkfAagkf, (N seq.)
a(pUg)kf = apkfVagkf, (U seq.)

where a € G, f € H, k € K¢, and p,q € P. These two kinds of sequents belong
to C by Theorem 9.9 and Lemma 10.1.

apkf = apr((xokf) Qx)A, (B seq.)

where a € G, f € H, x € X, K¢ ={k}, p € P, and x « f. These belong to C
by Theorem 10.3.

apntbA 2 (aMb)pronel, (A seq.)

where a,b € G, and p € P. These belong to C by Theorem 9.7, Lemma 10.1,
and Theorem 10.6.

f, onevrn ((f=g) Ox)A — oneVm (g Qx)A, (¥, = seq.)
where f,g € Ay, x € X, and x €« f. These belong to C by Theorem 10.4.
one VvV (((xc“maA) =(x 6kf)) QX)A — aVkf, (V seq.)

where x € X¢, a € G, f € H, K¢ = {k}, and x « a,f. These belong to ¢ by
Theorem 10.9.

avVrnbA,apkf — bpkf, (¥, seq.)
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where a,b € G, f € H, k € K¢, and p € P. These belong to C by Theorem 9.10
and Lemma 10.1.

(aUb)p + gkf — apkf,bqgkf, (U, + seq.)

where a,b € G, f € H, k € K¢, and p,q € P. These belong to C by Theorem
9.11 and Lemma 10.1.

one” pkf — | (omne® seq.)

where f € H, k € K¢, and p € P. These belong to C by Theorem 10.6, Lemma
10.1, and the definition of the operation pk on the MPC worlds.

bomalA — admonel, (3 seq.)

where a € G and b € A.. These belong to ¢ by Theorem 9.7 and Lemma 10.1,
and Theorem 10.6.

(aMb)A = aAADA, (M seq.)
(aUb)A =2 aAV DA, (U seq.)
(a”)A = (al), (O seq.)

where a,b € G. These belong to ¢ by Theorem 9.1 and Lemma 10.1.
aom (fQx)A 2 f(x/a), (Q seq.)

where a € A, f € Ay, x € X¢, and x is free from a in f. These belong to c by
Theorem 10.5.

oneVr (f Qx)A — f, (V— seq.)

where f € Ay and x € X,. These belong to c by Theorem 10.7.

This completes the presentation of the deduction pair (ﬁ, 13) on H and the
proof of Lemma 11.1.

We also obtain the following result on the predicate logical space (H, Gw)
and the deduction pair (g, V) and the logic & on H presented in §4.

Lemma 11.2 The deduction pair (p U &, V) on H is Gy-sound.

Proof We have shown in Theorem 10.1 that the logical space (H,SGw) is
Boolean with respect to /\,V,=,{. Therefore by Theorem 7.4, the validity
relation < of (H,Gw) is Boolean, R = p U & is Gw-sound, and the Boolean
elements of H are Gy-sound. Consequently, the Gy-core C is closed under R.
Since C is closed under the logics case+, case—, and V+ on }_{7 it follows that
C is also closed under the logics L, T, and V on H. Therefore, in view of (4.3),
it remains to show that the elements of 0 other than the Boolean elements also
belong to C. However, it is almost equivalent to the proved fact DcC.
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For instance, since the = sequents — a 0wa/ belong to é, the = elements
aoma/\ belong to C. Also, since the 30 sequents adomoneA — belong to 6,
we have asomoneA <, hence < (asomoneA)® by Theorem 7.3. Thus the 56
elements belong to C. The same argument applies to the one™ elements.

Furthermore, since the 9,06 sequents aAk (bolf) = bol(aAkf) belong to
(_f, we have aAk (bolf) < bol(aAkf) and aAk (bolf) = bol(aAkf), hence

< aAk(bolf) = bsl(arkf), < b3dl(arkf)= ark (bslf)

by Theorem 7.3. Thus the 9,0 elements belong to C. The same argument

applies to the remaining elements of 0 other than the V, = elements, the V3

elements, and the LI, + elements, which are shown to belong to C as follows.
Since the V, = sequents f, oneVmn ((fé g) QX)A — one V(g Qx)A belong

to 6, we have f, oneVn((f:> g)Qx)A < oneVm (g Qx)A, hence
< (onevr ((f=g) Qx)A) = (f = oneVr (g Qx)A)

by Theorem 7.3. Thus the V,=> elements belong to C.

Since the V,B sequents aVnbA,apkf — bpkf belong to 6, we have
aVrbA,apkf < bpkf, hence < (aVnbAA apkf)=bpkf by Theorem 7.3.
Thus the V, P elements belong to C.

Since the LI, + sequents (allb)p + gk — aPkf, bqkf belong to C, we have
(aUb)p F gkf < apkf,bqkf belong to C, hence

< (aUb)p+gkf=(apkfVbqkf)
by Theorem 7.3. Thus the U, + elements belong to C.

Remark 11.1 Logics L, T, and V on H are not in general Gw-sound, although
the Gw-core is closed under them.

11.2 Laws derived from the sequent deduction pair

Let (R, D) be the deduction pair on H defined in §11.1. Then [6}]3 is a subset
of H=H* x H* and so is regarded as a relation on H*. Let <, denote it and
let =<, be the symmetric core of the restriction of <, to H x H. Then since [13]]3
is closed under R and contains ]j, it first follows that <, satisfies the repetition
law, weakening law, contraction law, exchange law, cut law, strong conjunction
law, strong disjunction law, strong implication law, and strong negation law.
Therefore <, is a Boolean relation by Theorem 7.2, and consequently =, is an
equivalence relation. Since DcC [13],3, it also follows that <, and =<, satisfy the
following twenty seven laws.

<. T = <, aokf, (case+ law)
where a € A and k € K.

<, x0kf = <, f, (case— law)
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where x € X¢, k € K¢, and x £ f.
<. T = =<, oneVn(fQx)A, (V+ law)
where f € Ay and x € X,.
<. a0mal, (= law)
where a € A;.
asomoneA <, , (o law)
where a € G and oo is the maximum of P in case it exists.
aAk(bolf) <, bol(aAkf), (9,0 law)

where a € G, be A, feH, k1K, k#1,and A € {6}UQ. Also a € A; in
case A = 0.

..... mfA(ai 0ki)i=ny1,..19,  (Alaw)
(ai 0Kki)i=1,... 1(fV @) =i (@i 0Kki)i=1,.. mfV(ai 6ki)i=n+1,...19, (V law)

Uf=9) =y (a; 0ki)i=1,. mT=(ai 0ki)i—n+1,..19, (= law)

=l,...,

.....

where aj,...,a; € Ag, f,g € H, and kq,...,k; are distinct cases such that
ki,...,kn € Kf—Kg, Kntty..., km € KfﬂKg, and km+1,---,kl € Kg—Kf
0<n<m<l).

(ai 6ki)izt,.. n(fO) =4 ((ai Oki)izt,.. nf)?, (0 law)
where a7,...,an € Ae, f € H, and kq,...,ky, are distinct cases in K.
a—pkf =, apkf?, (— law)
ap°kf =, (apkf)?, (o law)
where a € G, f € H, k € K¢, and p € L.
a(png)kf =<, apkfAaqgkf, (N law)
a(pUg)kf =<, apkfVaqgkf, (U law)
where a € G, f € H, k € K¢, and p,q € L.
apkf =, apr((xokf) Qx)A, (B law)

where a € G, fe H, x € X¢, Kf={k}, p € P, and x « f.
apnbA =, (amnb)pmronel, (A law)
where a,b € G, and p € P.

f, oneVr ((f= g) Qx) A <. oneVm (g Qx)A, (¥, = law)
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where f,g € Ap, x € X, and x £ f.
oneVr (((x6mad)=(x0kf)) Qx)A <, aVkf, (V law)
where x € X, a € G, f e H, K¢ ={k}, and x « a,f.
aVrnbA,apkf <, bpkf, (V, B law)
where a,b € G, f e H, k€ K¢, and p € P.
(aUb)p +gkf <, apkf, bgkf, (U, + law)
where a,b € G, f € H, k € K¢, and p,q € P.
one” pkf <, , (one” law)

where f € H, k € K¢, and p € P.

bomaA <, admoneA, (3 law)
where a € G and b € A..
(aMb)A =, aAADA, (M law)
(aUb)A x4, aAV DA, (U law)
(a)A =, (a))?, (O law)
where a,b € G.
aom (fQx)A =, f(x/a), (Q law)

where a € A, f € Ay, x € X¢, and x is free from a in f.
oneVm (f Qx)A <, T, (V— law)

where f € Ay and x € X,.

This completes the verbatim translations of the presentation of the sequent
deduction pair (ﬁ,ﬁ) into the laws which <, = [ﬁ]ﬁ satisfies, from which we
will derive more useful laws in the following lemmas.

Lemma 11.3 Let ay,...,an € A¢, f1,...,fm € H, and kq,...,ky be distinct
cases in K¢, N--- N K¢, . Then the following holds irrespective of the order of
applying the operations /\,V:

(ai 0ki)i=1,.. . n(f1 A Afm) =i (@i 0ki)i=1,... nT1 A Alag 0Ki)i=1,... nTm,
(gen. A law)

(ai 0ki)iz1,.. ., n(f1V Vim) =« (ai 0ki)iz1,. ., nf1V V(ai 0ki)iz1,.., nfm
(gen. V law)
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Proof We may assume m > 1 and argue by induction on m. As for the gener-
alized V law, suppose V has been applied in such an order that f; V...V, =
(f1V--- V)V (fj41 V- Vfn) holds. Then

(ay 0ki)i(f1 V- V) = (@i 0ki)i(f1 V- V15) V(a; 0ki)i(fj41 V-V in)

by the V law, where (a; 0ki); is an abbreviation for (ai 0ki)i=1

.....

(ai 0ki)i(f1 V-V 1) <, (ai 0ki)if1 V- - V(a;i 0ki)ifj,
(ai 0ki)i(fj41 V- V) =i (ai 0ki)ifj1 V- V(ag 0ki)ifm
by the induction hypothesis. Applying Theorem 7.3 to the above three displayed

=, relations, we see that the generalized V law holds. The generalized A law
may be proved similarly.

Lemma 11.4 Let a € G, f € H, k € K¢, and p1,...,pn € B. Then the
following holds irrespective of the order of applying the operations A\, V:

a(pr N Npu)kf =, aprkfA---Aapnkf, (gen. N law)
a(prU---Upn)kf =, aprkfV---Vapnkf. (gen. U law)

Proof We may assume n > 1 and argue by induction on n. As for the gen. U
law, a(pr U---Upn)kf =<, a(pr U---Upn_1)kfV appkf by the U law, and
a(prU---Upn)kf =<, apikfV---Vapy_1kf by the induction hypothesis.
Applying Theorem 7.3 to these =, relations, we see that the gen. U law holds.
The gen. N law may be proved similarly.

Lemma 11.5 Let aq,...,an, € G, f € H, k € K¢, and p1,...,pn € P. Then
the following holds irrespective of the order of applying the operation LI

(arU---Uan)p1 + - Fpakf <, a1 P1kf, -+, an Ppnkf. (gen. U, + law)

Proof We may assume n > 1 and argue by induction on n. Suppose LI has
been applied in such an order that ajU---Ua, = (ajU---Uag) U (a1 U---Uan)
holds, then

(@ U---Uan)pr +--- +pnkf
<o (@1 U U e FTF TRk, (i Us U an) Py F o pak f

by the U, + law, and

(agU---Uay)pr + - +pikf <, a1 prkf, ---, ai pikf,
(aip1 U--Uan)pis1 + - +pakf <, aip1 Pipakf, -, anpnkf

by the induction hypothesis. Applying the cut law twice to the above three
displayed <, relations, we see that the gen. U, + law holds.
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Lemma 11.6 The following holds for ay,...,an € G, irrespective of the order
of applying the operations M, U, A\, V:

(a1 M- Man)A <, a1 AN Aand, (gen. M law)

(U - Uan)A =<, a1 AV ---VanA. (gen. U law)
Proof We may assume n > 1 and argue by induction on n. As to the gen. L
law, suppose LI has been applied in such an order that a;U- - -Ua, = (ajU---Uay)
U (aiy1 U---Uan) holds. Then

(e U - Uan)A =, (aj U---Uay)) AV(ager U---Uan)A,
(ag U - Ua)A =, a1AV---Vaid,
(i U Uapn)A =, a1 1AV ---Van A

by the U law and the induction hypothesis. Applying Theorem 7.3 to the above

displayed =, relations, we see that the gen. LI law holds. The gen. N law may
be proved similarly.

Lemma 11.7 Let f1,...,fm,d1,...,9n € H, &, € H*, a € A, and k € K.
Assume that k belongs to the ranges of f1,...,fm,d1,...,gn but does not be-
long to those of the predicates in «U . Then the following holds (cf. Theorems
10.2):

fro  fma<, g1 gnB

. . . . (gen. case+ law)
= aokfy, - - ,a0kfm,« <, adkgr, - ,ao0kgn,p.

Proof We may assume that either m > 1 orn > 1. Let o« = f}---f] ,,
B = gi- -9, with f1,...,f/ ., g7,...,9, € H. Notice here that we may
assume m’ # 0 # n’ as in the proof of Theorem 9.6 by Theorem 7.3. Define

h=(fiA-Afm)Alg1 V- Vgn)®,
h = (fj A AfL)%V(g] V-Vl

where the orders of applying the operations /\,V within parentheses are arbi-
trary. Then Theorem 7.3 shows that the premise of the gen. case+ law implies

<+ h=h', and so <, aok(h="h’') by the caset+ law. Furthermore, since
k € Kn — Kn/, adk (h="h') <, adkh=h' by the = law. Thus

adkh=<,h’
by the cut law and Theorem 7.3. Furthermore,

(aok(fi A= Afn)) Aladk (g1 V-V gn))?
=, (adk(fiA--Afm)) A(adk(gr V-V gn)®) =, adkh

by the ¢ law, Theorem 7.3 and the A law. Thus
ack(fiA---Afpn) <. aok(grV---Vgn), h'
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by the cut law and Theorem 7.3. Furthermore,

aokfi A---Aadkfy <, aok(fi A---Afn),
aok(g1V---Vgn) <« adkgiV---Vadkgn

by the gen. A law and gen. V law. Applying the cut law to the above three dis-
played relations, we have adkf; A---Aadkfy, <. adkg;V---Vaodkgn, h/,
hence the conclusion of the gen. case+ law by Theorem 7.3.

Lemma 11.8 Let fy,...,fm,91,...,9n € H, &, € H*, x € X, and k € K.
Assume that k belongs to the ranges of f1,...,fm, g1,...,9n but does not
belong to those of the predicates in o« U 3 and that x does not occur free in
the predicates in {f1,...,fm, g1,...,gn} U aUB. Then the following holds (cf.
Theorems 10.2):

xokfy, -+, x0kfm,x <, x0kgr, - ,x0kgn,

(gen. case— law)
= f1 fma <, g1 gnB.

Proof We may assume that either m > 1 orn > 1. Let « = f}---f/
B = g7 -9y, with fj,... f//, gi,...,9/, € H. Define e = oneVmoneA.
Then k does not belong to the range of e Ae® nor of eV e?, and x does not
occur free in e Ae® nor in eV e®. Therefore by Theorem 7.3, we may assume
m’ # 0 # n'/. Define h' = (f{ A---Af, )0 V (g]V---Vgl,), where the
orders of applying the operations A,V within parentheses are arbitrary. Then
by Theorem 7.3 the premise of the gen. case— law implies

x0kfi A+ Axokfn <, x0kgiV---Vxdkgn, h'.
Furthermore,
x 0k (f1 A Afm) <4 x0kfi A~ Ax 0k T,
x0kgr V- -Vxokgn <. x0k(g1V---Vgn)

by the gen. A law and the gen. V law. Applying the cut law to the above three
displayed relations and using Theorem 7.3, we have

(x 8k (fi A+~ Afm)) A(x0k (g1 V-V gn))® <. R

Define h = (fi A---Afm) A (g1 V-V gn)?, where the orders of applying the
operations /\,V within parentheses are arbitrary. Then
x8kh =, (xok (fi A+ Afm)) A(xok(g1 V-V gn)?)
< (xOk (f1 A Afm)) A(x k(g1 V- Vgn))?
by the A law, { law, and Theorem 7.3. Therefore x 6kh <, h’ by the cut law,
hence =<, x6kh=h’. Furthermore, x6kh=h’ <, x0k (h="h’) by the =

law. Therefore <, x 0k (h=-h') by the cut law, and since x « h=h', we have
<+« h="h' by the case— law, hence the conclusion of the gen. case— law.
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Lemma 11.9 Let x € X, a,by,...,bn € G, «,p € (Ap)*, f € H, k € Ky,
P,d1,...,dn € P, and assume that x does not occur free in the elements of
{a,b1,...,bn} Ux U P and that p > Y ' g; holds, where if n = 0 then
>, di =0 by definition. Then the following holds:

Xx0Tmal, o 5, XOTb1 A, .-+ ,x0mb A, B

. hole brincinl
. aPkf.a <. by TkE, - by Tk f, B (pigeonhole principle)

Proof First assumen =0. Let b =one” and q =0. Then x € b, p > g, and
the premise x 0ma\, x <, B of the pigeonhole principle yields x 0ma, & <,
x01tbA, 3 by the weakening law. If we show apkf, « <, bqkf, 3, then since
bgkf <, by the one” law, we have apkf, a <, B as desired by the cut law.

Therefore, we may assume n > 1. Let « = g7---g1, B = hy---hy, with
g1y.-+,01, hi,...,hm € Ay. We may assume 1 # 0 # m by Theorem 7.3 as in
the proof of Lemma 11.8. Define

e=(g1 A~ Ag)A(hy V- Vhy)®,

where the orders of applying the operations /\,V within parentheses are arbi-
trary. Then e € Ap, and the premise of the pigeonhole principle implies

xomal,e <, xomb1 AV ---Vxonmb, A,
and x0mtb1 AV - Vx06mba A =, x0m (b1 AV ---Vb,A) by the gen. V law.
Furthermore, since biAV --- Vb, A =<, (by U--- Ubn)A by the gen. U law,
X0 (b1 AV - Vb A) <, x0m (b U---Uby)A by the gen. case+ law. There-

fore, for b = by U --- U by, the premise of the pigeonhole principle implies
<« e=>((xomaA)=(xo6mbA)), and applying the V+ law, we have

<, oneVm ((e=((x6mal)=(x6mbA))) Ox)A.
Furthermore, since x <« e, we have

e, oneVr ((e=((x6mald) = (x6mbA))) Qx) A
<. oneVm (((x6mald) = (x6mbA)) Qx) A

by the V,= law, and since x does not occur free in a nor in bA, we have
oneVr (((x6mad)=(x6mbA)) Ox)A <, aVrbA
by the V law, and we have
aVrtbA, apkf <, bpkf

by the V, 3 law, and since p C 1 + - - - + qn by the assumption p > q1+- - -+qn,
we have

bpkf <, bqr+ -+ qnkf

a8



by the N law and the conjunction law, and we have
bgr £+ qnkf <. by ke, bn Gukf

by the gen. U,+ law. Applying the cut law to the above six displayed <,
relations, we finally obtain

e, apkf <, by qikf,--- by qnkf,
hence the conclusion of the pigeonhole principle.

Lemma 11.10 Let aq,...,an € A, f € H, and kq,...,kn be distinct cases
in K¢. Then the following holds for every p € G,,, where &,, is the symmetric
group on the letters 1,...,n:

(ai Oki)i=1,... nf =i (api Okpi)iz1

e yeon

nf. (permutation law)

Proof We only need to consider the case where p is a transposition, in which
case, the result follows from the 3,0 law and the gen. case+ law.

11.3 Core-completeness of the sequent deduction pair

We have proved [13}]3 - C in Lemma 11.1. Here we conversely prove ¢ - [13]]3
or equivalently that if @ < 3 then « <, . In order to prove it by contradiction,
we assume that there exists a sequent o« — 3 such that « < f and « £, 3. We
call such a sequent a counter sequent. Also, a sequent o« — 3 is singular if

x £ B
Lemma 11.11 There exists a sentence counter sequent.

Proof We are assuming by way of contradiction that a counter sequent exists.
Let f1---fine — g1---gnP be a counter sequent and assume that a case k
belongs to the ranges of f1,...,fm,d1,...,9n but does not belong to those
of the predicates in o« U . Since we are assuming that X, is enumerable,
Theorem 6.3 shows that there exists a variable x € X, which does not occur

free in the predicates in {f1,...,fm}U{g1,...,gn} U a U B. Since < satisfies
the gen. case+ law by Theorem 10.2 and <, satisfies the gen. case— law by
Lemma 11.8, it follows that x 6k fy,--- ,x 0k fi,, ¢ — x 6k gy, - ,x0Kkgn, B is

a counter sequent. Since we are assuming that the ranges of predicates are finite
sets, we conclude that there exists a sentence counter sequent.

Lemma 11.12 There exists a sentence counter sequent xo — (3o which satisfies
the following condition G.

G : If Qx occurs in a sentence in «p U 3o for some x € X, then the x does
not occur free in the sentences in oo U o. Also Qxp in (4.2) occurs in a
sentence in &g U 3o.
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Proof There exists a sentence counter sequent &« — 3 by Lemma 11.11. Since
« < 3 but < is a non-trivial Boolean relation by Theorems 10.1 and 7.4, either
o or {3 is non-empty. Let « =f1---f,,, p = g1 - gn, and define

h=(fiA - Afm)® V(g1 V- Vgn).

Then h is a sentence. Since <, is also a Boolean relation by the discussions in
§11.2, Theorem 7.3 shows that — h is a counter sequent.

For each f € Ay and x € X, let Vxf denote the sentence one Vv (f Qx)A
for the time being. If f € Ay satisfies < f, then we have < Vxf for all x € X,
by Theorem 10.8. Conversely, if f € Ay and x € X, satisfy =<, Vxf, then since
Vxf <, f by the V— law, we have <, f by the cut law. Therefore, if — fis a
sentence counter sequent, so is — Vxf for all x € X.. Furthermore, Theorem
6.3 shows that X7 = X[ __ —{x} for each f € Ay and x € X,.

There exists a non-empty subset {xi,...,xx} of X¢ which contains every
element of X which occurs free in h. By the above, — Vxy ---Vx1his a
sentence counter sequent, and no element of X, occurs free in Vxy ---Vxq h.
Therefore, if we let — Vxy ---Vx1 h be g — o, then it obviously satisfies G.

In a long series of lemmas, we will prove xo £ Bo, which conclude the proof
of C C [D]g by contradiction.

Lemma 11.13 There exist subsets X! and X! of X, which satisfy the following
five conditions.

o X, =X/ IIX/.

e If x € X/, then Qx does not occur in the sentences in oo U Bo.
e Elements of X! do not occur free in the sentences in oo U fo.
e X! is an enumerable set, while X” is a finite set.

e The variable xo € X, in (4.2) belongs to X/

Proof Let X! be the set of the variables x € X, such that Qx occurs in a
sentence in oo U Bo, and define X, = X, — X/. Then X/ is a finite set by
Theorem 6.3. Since &g — [ satisfies the condition G and we are assuming
that X, is an enumerable set, X! and X! satisfy the five conditions.

Now we define
S =C.UX] =S, —X/.

Then since X! is a finite set by the above lemma and we are assuming that S,
is an enumerable set, it follows that S/ is also enumerable.

We will say that an element a € A is good if it satisfies the following two
conditions.

o If x € X/, then Qx does not occur in a.
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e Elements of X! do not occur free in a.

Furthermore, we say that a sequent is good if it consists of good predicates.
Then elements of oy U 3o are good sentences, and op — Bo is a good sentence
counter sequent.

From now on, “SS,” “GSS,” and “GSSS” are abbreviations for “Singular
Sequent,” “Good Singular Sequent,” and “Good Sentence Singular Sequent”
respectively. Thus «p — o is a GSSS.

Lemma 11.14 The following holds.

e Let A be an n-ary operation in the OS of A (hence n < 2) other than the
nominalizers, and let (aj,...,an) € DomA. Then A(aj,...,a,) is good
iff ay,...,a, are good.

o Let ae A, fe€ Ay, x € X, and assume that a 67 (f Qx)A is good. Then
f(x/a) is also good and x is free from a in f.

Proof Theorem 6.3 implies that Qx occurs in A(ay,...,an) iff it occurs in
some of aj,...,an. It also implies that x € X; occurs free in A(ay,...,an) iff
it occurs free in some of aj,..., a,. Therefore the first assertion holds.

The second assertion is also proved by Theorem 6.3. Suppose a o7 (f Qx)A
is good. Then a and f Qx are also good by the above. Hence ify € X!, then Qy
does not occur in f Qx, and so it does not occur in f either. Since A, = S, no
operations occur in a. Therefore, Qy does not occur in f(x/a). Next, elements
of X/ do not occur free in a, and elements of X! other than x do not occur
free in f. Therefore, elements of X!’ do not occur free in f(x/a). Thus, f(x/a)
is good. If a variable y € X, occurs free in a, then y € X/, and so Qy does not
occur in f. Therefore, x is free from a in f.

Lemma 11.15 Let o — 3 be an SS. Then the following holds.
e aNp =0
o If f € «, then fax — 3 is an SS. If g € 3, then & — gf3 is an SS.

o If « = fy---fi, p = g1---gm and elements f{,...f{,g,...,9/, of H
satisfy fi <. f{ (i=1,...,) and g{ <. g; (G =1,...,m), then f]---f{ —

1

g7+ 95 is an SS.

Also the following holds for n = 1,2, ..., irrespective of the order of applying
the operations A\, V.

e If fyA---Afy € «, then f7 -+ - froc — P is an SS.
o If fyA---Afy € B, then o« — fi is an SS for some i € {1,...,n}.
e If f1V---Vf, € «, then fix — B is an SS for some i € {1,...,n}.

e Iff1V---Vf, €p, then o« — fy--- 3 is an SS.
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Also the following holds.
o If f= g € «, then either &« — ff or g« —  is an SS.
o If f= g€ f3, then fao — gf3 is an SS.
o If f® € «, then « — ff is an SS.

o If f* € B, then fox — P is an SS.

Proof If « NP # 0, then & <, B by the repetition law, weakening law, and
exchange law. Therefore N B = (.

If f €  and fx <, B, then a <, B by the exchange law and contraction
law. Therefore if f € , then fax — 3 is an SS.

As for the third assertion, if ] ---f{ <. g1 --- g/, then & <, B by the cut
law and exchange law. Therefore f---f{ — g} --- g/, is an SS.

Suppose f1 A---Af, € . Then f1/A---Af,, 6 — B is an SS as shown
above. If f1---fh <, B, then f1 A---Af,, &« <, B by the strong conjunction
law. Therefore, fy---foo0 — 3 is an SS.

The rest of the proof is similar and omitted.

Lemma 11.16 Let « —  be a GSS and f € H. Also, let a;,...,a, € Ag,
k1,...,kn be distinct cases in K¢, and p € &,,. Then the following holds.

o If (a; 0ki)i—1

.....

o If (a; 0ki)i—1,...nf € B, then & — (api Okpi)i=1,...,

Proof The sequents in question are good by Lemma 11.14. Since (a; 6kq)if <*
(api 0kpi)if by the permutation law, the sequents in question are singular by
Lemma 11.15.

Lemma 11.17 Let « — 3 be a GSS and f,g € H. Also, let aj,...,a; € A,
and ki, ...,k be distinct cases such that kq,...,kn € K¢ —Kg, kny1,..., km €
K¢ N Kg, and km41,...,kt € Kg = K¢ (0 <m < m < 1). Then the following
holds.

o If (0.1', 6ki)i:1,...,l(f/\ g) € «, then
(ai 0ki)i=1,...mf, (@i OKi)i=n+1,...10, 00 = P is a GSS.

.....

.....

.....

,,,,, 1(f\/g) € B, then
a — (ai 0Ki)iz1,...mf, (ai Oki)i=n+1,...19, B is a GSS.
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.....

either o« — (ay 0ki)i=1,... . mf, P or (ai Oki)i=n+1,...19, ¢ — P is a GSS.

o If (a; 0ki)i—1,...1(f=g) € B, then

(ai 0ki)iz1, .. mf, & = (ai 0Ki)i=n+1,...10, P is a GSS.

..........

Proof The sequents in question are good by Lemma 11.14, and singular by
the A law, V law, = law, and Lemma 11.15.

Lemma 11.18 Let « —  a GSS and f € H. Also, let a;,...,a, € A¢ and
k1,...,kn be distinct cases in K¢. Then the following holds.

o If ((11 éki)i:1 nf, B is a GSS.

..........

o If (ai 6](,1)1;]1“.’“(1:0) S ﬁ, then ((11'L 6ki)i:1‘m‘nf,oc — [3 is a GSS.

Proof The sequents in question are good by Lemma 11.14 and singular by the
¢ law and Lemma 11.15.

Lemma 11.19 Let ¢« —  be a GSS, a € G, f € H, k € K¢, and p € L.
Also, let aq,...,a, € A¢ and kq,...,kn, be distinct cases of K¢ —{k}. Then the
following holds.

o If (ay 0ki)iz1,... n(a—pkf) € «, then
(ai 0ki)iz1 n(apkfo),oc — B is a GSS.

.....

n(a—pkf) € B, then
w(apkf®), B is a GSS.

.....

.....

Proof The sequents in question are good by Lemma 11.14, and singular by
Lemma 11.15, because (a; 6ki)i(a—pkf) =, (a; 6ki)i(apkf®) by the — law and
the gen. case+ law.

Lemma 11.20 Let x —  be a GSS, a € G, f € H, k € K¢, and p1,...,pm €
PB. Also, let ay,...,an € Ac and kq,...,Kk, be distinct cases in K¢ —{k}. Then
the following holds.

o If (ai Oki)i=1,. .n(a(piU---Upm)kf) € «, then
(ai 6ki)i=1,... n(ap;kf),c — P is a GSS for some j € {1,...,m}

.....

n(a(prU---Upm)kf) € B, then
nlapikf), -+, (ai0ki)i=1, .. n(apmkf),p is a GSS.

.....

.....

Proof The sequents in question are good by Lemma 11.14 and singular by the
gen. U law, gen. case+ law, gen. V law, and Lemma 11.15.

Lemma 11.21 Let « — 3 be a GSS, a € G, f € H, k € K¢, and p,q € ‘L.
Also, let ay,...,a, € A¢ and kq,...,ky, be distinct cases of K¢ —{k}. Then the
following holds.
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.....

=l,...,n\BPil], {1 VM 1=1,...,

o If (a; 0ki)i=1,...n(a(p Ng)kf) € B, then
either o« — (aj 0ki)i=1,... n(apkf),p or & — (a; 6ki)i=1,...n(agkf),p is
a GSS.

Proof The sequents in question are good by Lemma 11.14 and singular by the
N law, gen. case+ law, /\ law, and Lemma 11.15.

Lemma 11.22 Let ¢« —  be a GSS, a € G, f € H, k € K¢, and p € L.
Also, let a7,...,a, € A¢ and k1,...,kn be distinct cases in K¢ —{k}. Then the
following holds.

n(ap®kf) € «, then
nlapkf), B is a GSS.

.....

.....

o If (Cli 6ki)i:1w)n(ap°kf) S f), then
(ai cu)ki)iﬂ,“.,n(apkf),oc — [3 is a GSS.

Proof The sequents in question are good by Lemma 11.14 and singular by the
o law, gen. case+ law, ¢ law, and Lemma 11.15.

Lemma 11.23 Let «x — 3 be a GSS, a € G, f € H, k € K¢, and p € P. Also,
let ai,...,an € A¢ and k1,...,kn be the set of distinct cases in Ky —{k}. Then
the following holds.

.....

.....

o If (Cli éki)i:h,_,n(aﬁkf) € 3, then
x — (an(x ok (a; 6ki)i=1,...,nf) Qx) proneA, B is a GSS for all x € X/’

Proof That the sequents in question are good is derived from Lemma 11.14
and Theorem 6.3 as follows. First, aj,...,an,a,f are all good, and therefore
so is (ay 0ki)iz1,.. nf. Although x € X occurs free in x 6k (a; 0ki)i=1,. .. nf,
(x ok (aj oki)i=1,..., nf) Qx is good. Also one = (xo 07txpA) Qxp is good. Thus
(am (x6k(ai 0ki)i=1,...nf) Qx) ProneA is good.

In order to show that the sequents in question are singular, define g =
(aj 0ki)i=1.... nf. Then, as in the proof of the permutation law, it follows from

.....

.....

..... n((l]:_)kf) =x a]:_)kg

holds. Also, since Kq = {k} and x does not occur free in g, we have

apkg =, apm((xSkg) Qx)A
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by the P law. Also we have
aprn((xokg) Ox)A =, (am (xokg)Qx)proneA
by the A law. Combining the above three =<, equations, we have

(ai 6ki)iz1,... n(apkf) <. (am (x 0k (a; 0ki)iz1,...

nf) Qx) proneA.
Thus, the sequents in question are singular by Lemma 11.15.

Lemma 11.24 Let « — 3 be a GSSS, a,by,...,b, € G, and p,q1,..., gn €
P. Assume apmonel € «, by gimonel,...,b, qnroneA € B, and p >
> ', di, where if n =0 then ) :" ; qi = 0 by definition. Then x6mal, ox —
XOTtb1 A, -+ ,x0mbn A, B is a GSSS for all x € X! which do not occur free in
the sentences in ocU f3.

Proof The sequent in question is good by Lemma 11.14 and singular by
the pigeonhole principle and Lemma 11.15 because x does not occur free in
a,by,...,by by Theorem 6.3.

Lemma 11.25 Let ¢« — 3 be a GSS and a € G. Assume admoneA € f3.
Then o« — bomad, B is a GSS for all b € S/.

Proof The sequent in question is good by Lemma 11.14 and singular by the
3 law and Lemma 11.15.

Lemma 11.26 Let o« — 3 be a GSS, a,b € G, and ¢ € A,. Then the following
holds.

e If com(aMb)A € «, then comad), combA,x — B is a GSS.

e If com(aMb)A € B, then either « — comaA,p or « — cOTbA,B is a
GSS.

e If com(alUb)A € «, then either comaA, & — B or combA, ¢ — B is a
GSS.

e If com(alUb)A € B, then « — comad), combA, B is a GSS.

Proof The sequents in question are good by Lemma 11.14 and singular by the
M law, L law, gen. case+ law, /A law, V law, and Lemma 11.15.

Lemma 11.27 Let « — 3 be a GSS a € G, and b € A;. Then the following
holds.

e If bom(a”)A € «, then o« — bomaA, B is a GSS.
e If bom(a”)A € B, then bomal, x — B is a GSS.
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Proof The sequents in question are good by Lemma 11.14 and singular by the
O law, gen. case+ law, ¢ law, and Lemma 11.15.

Lemma 11.28 Let « — 3 be a GSS, a € A, f € Ay, and x € X.. Then the
following holds.

e If aom (fOQx)A € «, then f(x/a),x — p is a GSS.
o If adm(fQx)A € B, then o« — f(x/a), B is a GSS.

Proof The sequents in question are good and x is free from a in f by Lemma
11.14. Therefore, they are singular by the Q law and Lemma 11.15.

Let p € 3. Then p is the direct sum of its connected components p1, ..., pn,
which are intervals of P in one of the shapes (p, ql, (<« p], and (p —) or equal
to P. We call —pq,...,pn the connected components of —p € =, and call the
end(s) of p; the end(s) of —p; also. We say that an element p € P occurs in an
element f € H, if p is equal to an end of a connected component of A € 9 such
that the operation Ak occurs in f for some k € K. Furthermore, we say that p
occurs in a subset X of H, if p occurs in a predicate f € X.

Lemma 11.29 There exists a series (otn — Pn)n=1,2,.. of GSSS’s which sat-
isfies the following thirty three conditions, where “n = 1’ is an abbrevia-
tion for “n = 1 mod 32” for i € {1,...,32}. For the condition 24, we let

S! ={ai1,az,...}, because S! is an enumerable set.

(0) an—1 € an and Pn—1 C Py hold, and if an element of P — {0} occurs in
on U Bn, then it also occurs in a1 UPn_1 (n=1,2,...).

(1) f n=1 and (a; 0ki)i—1
p € G

of € o, for all

..........

(2) If n =2 and (ai 0ki)iz1
pEG.

1f € Bn_1, then ((191'L 5kpi)i:1‘m)1f € By, for all

.....

(3) If n =3, (ai 0ki)iz1,... 1(fAg) € xn_1, and the range condition

.....

Kf_Kg :{k1v"-)k’v})
Kf ng :{kvar]»---»km}) (111)
Kg_Kf:{km+1)-")k1}

is satisfied, then (a; 6ki)1:1‘m)mf, (ag 6ki)i:v+1,,,,‘1g € n.-

(4) In=4, (a;0ki)i=1,.. 1(fANg) € Bn_1, and (11.1) is satisfied, then
(ai 0ki)i=1, .. mf € Pn or (ai 0ki)i=v+1,...19 € Pn.

(5) Ifn= 5, (Cli 6ki)i:]
(ai 6ki)i=1

,,,,, (fVg) € an_1, and (11.1) is satisfied, then
mf € an or (ai 0ki)i—v1

.........
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(6) If n =6, (a; 6ki)iz1,. .,
(ai Oki)i=1,...,mf, (@i O0ki)i=v i1

(7) fn=7, (a1 6ki)i=1,..1(f=9) € an_1, and (11.1) is satisfied, then
(ai 0ki)i=1,... mf € Pn or (ai 0Ki)i=v+1,..,10 € &n.

(8) Ifn =8, (a; 0ki)i=1,...1(f=9) € Pn_1, and (11.1) is satisfied, then
(ai Oki)i=1,...mf € an, (aiOki)i=v11,...,19 € Pn.

‘‘‘‘‘

.....

(12) Ifn=12 and (a; éki)i:h,,,l(aﬂpkf) € Pn_1 with p € L,
then (a; 6ki)i=1,. 1(apkf®) € Bn.

(13) If n = 13 and (aj 0ki)iz1,.. 1(apkf) € an_1 with p € P having the con-
nected components p1,...,pm (M > 2), then (a; 0ki)i=1,. 1(apjkf) € an
for some j € {1,...,m}.

.....

(14) If n =14 and (ay 0ki)i=1,. .,
nected components p1,...,pm (M > 2), then (a; 0ki)i=1
forallje{1,...,m}

.....

.....

(16) If n =16 and (a; 0ki)i—1

.....

.....

.....

(17) Ifn=17 and (Cli Cu)ki)i:]

‘‘‘‘‘

.....

.....

(18) If n =18 and (ai 6ki)i:1

.....

.....

.....

(19) In=19 and (ay 0ki)i=1,...1(a (< plkf) € xn_1, then

.y

(ai 0ki)iz1,...1(apkf) € Bn.

(20) If n =20 and (ai 6ki)i:1
(ai 6ki)i=1

.....

.....

(21) In=21, (a4 Oki)i=1,... 1(apkf) € an_1, and x € X, then
(am (x0k(ai 0ki)iz1,..1f) Qx) prroneA € an.

.....

(22) Ifn= 22, ((li 6k1)1:1
(a M (x ok (a; 0ki)i=1

,,,,, 1(apkf) € Bn_1, and x € X/, then
1f) Qx) prioneA € Bn.

.....
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(23) If n = 23, aproneA € on_1, by qrmrone,..., by gmmtoneA € Bn_1,
and p > Y ™ qi, then x6maA € an and xOmb1 A, ..., x6mbm A € By
for some x € X/..

(24) If n =24 and aInoneA € Bn_1, then a; 6maA € By forallie{l,...,n},
where S! ={aj,az,...}.

25) If n=25and com(alMb)A € a1, then coma,combA € a,.

26) If n=26and com(aMb)A € B_1, then coma € B, or cOTLA € By.
27) Ifn=27 and com(alUb)A € o, 1, then comaA € oy or cOTBA € oyy.

28) If n=28 and com(alb)A € Bn_1, then comad,combA € By

30) If n =30 and bom(a”)A € Br_1, then bémaA € .

31

(25)

(26)

(27)

(28)

(29) If n =29 and bomn(a”)A € an_1, then bomaA € f.
(30)

(31) If n =31 and aom (f Qx)A € an—_1, then f(x/a) € an.
(32)

32) If n =32 and adm(f Qx)A € Bn_1, then f(x/a) € Bn.

Proof We inductively define GSSS’s o, — Bn (n = 1,2,...) starting from
the GSSS o — Po. Suppose n > 1 and the GSSS on_1 — Pn_1 has been
defined. Then we enlarge n_1 — Pn_1 to a GSSS an, — Pn by extending
Xn—1 Or Bpn—1 or both with good sentences.

If n = 1, extend onn—1 with all the sentences (aj 0ki)iz1,..,
(api 0Kpi)iz1,...1f € an—1 for some p € G1. Then the resulting sequent o, —
[Bn satisfies the conditions 0, 1 and is a GSSS by Lemma 11.16.

If n = 2, extend Bn_1 with all the sentences (aj 0ki)i=1,..,
(api 0Kpi)iz1,...1f € Bn_1 for some p € &1. Then the resulting sequent o, —
[Bn satisfies the conditions 0, 2 and is a GSSS by Lemma 11.16.

If n = 3, extend &7 with the paired sentences (a; 6ki)i—1
(aj 0Ki)i=v+1,...,19 made of all the sentences (a; 0ki)i=1,...,
isfying (11.1). Then the resulting sequent o, — B, satisfies the conditions 0, 3
and is a GSSS by Lemma 11.17.

If a sentence (a;i O0ki)i—1,... 1(f/Ag) satisfies (11.1), we call it a /\-sentence,
,,,,, mf and (aj O0ki)i=v41,...,10 its constituents.

Ifn =4, let {hy,..., hx} be the set of the /A-sentences which belong to fn_1,
and inductively make GSSS’s an i — Bni (1 =0,1,...,k) as follows, and let
On — Pn = &nx = Pnk. First, let an,0 = Pn,o = xn—1 — Pn—1. Next for
1> 1, there is a constituent h{ of h; such that &n i—1 — h{Bn i—1 is a GSSS by
Lemma 11.17, so let it be a&n i — Pn,i- Then oy — Brn is a GSSS and satisfies
the conditions 0, 4.

If n = 6, extend Pn_1 with the paired sentences (aj 6ki)i=1, . mf and
(ai 6ki)i=v+1,...19 made of all the sentences (a; 0ki)i=1,...1(fV g) € Pn_1 sat-
isfying (11.1). Then the resulting sequent o, — B, satisfies the conditions 0, 6
and is a GSSS by Lemma 11.17.

.....

.....
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1(fV g) satisfies (11.1), we call it a V-sentence,
..... mf and (a;i 0ki)i—v+1....19 its constituents.

If n =5, let {hq,...,hy} be the set of the V-sentences contained in a1,
and inductively make GSSS’s an i — Bni (1 =0,1,...,k) as follows, and let
On — Pn = &nx — Pnk- First, let an,o0 — Pn,o = &n—1 — PBn_1. Next for
1> 1, there is a constituent h/ of h; such that hian i1 — Bn,i—1 is a GSS by
Lemma 11.17, so let it be &tn, i — Pn,i- Then oy — Br is a GSSS and satisfies
the conditions 0, 5.

If n = 8, for each sentence (a;i 6ki)i=1,... 1(f=g) € fn_1 satisfying (11.1),
add (a; 0ki)i=1,.., mT to an_1 and add (ay 0Ki)i—v1 19 to fn—1. Let &y, —
Bn be the resulting sequent. Then it satisfies the conditions 0, 8 and is a GSSS
by Lemma 11.17.

If a sentence (aj 6ki)i=1,.. 1(f= g) satisfies (11.1), we call it a =-sentence,
and call sentences (a; 6ki)i—1,... mf and (aj 0ki)i—v,1,...,19 its constituents.

Ifn =7, let {hi,..., hy} be the set of the =-sentences which belong to a1,
and inductively make GSSS’s on i — Pni (1 =0,1,...,k) as follows, and let
n — Bn = &nkx — Pn,k. First, let an o0 — Pn,o = dtn—1 — Pn—1. Next for
i>1, let h{,h{ be the constituents of hi. Then either &y ;1 — h{Bn i—1 or
h{’atn i1 — Pn,i—1 is a GSSS by Lemma 11.17, so let &n i — Pn,i be the one
which is a GSSS. Then o, — B is a GSSS and satisfies the conditions 0, 7.

If n = 9, extend Bn_1 with all the sentences (aj 0ki)i=1,...1f such that
(ai éki)i:h,_,l(foj € &n_1. Then the resulting sequent «, — [, satisfies the
conditions 0, 9 and is a GSSS by Lemma 11.18.

.....

.....

.....

.....

.....

conditions 0, 10 and is a GSSS by Lemma 11.18.

If n =11, extend 1 with all the sentences (aj 0ki)i—1
that p € P and ((li oki)i=1,...
&n — P satisfies the conditions 0, 11 and is a GSSS by Lemma 11.19.

If n = 12, extend Bn_1 with all the sentences (a; 6ki)i—1... 1(apkf®) such
that p € P and (a; 0ki)i=1,..,
&n — PBn satisfies the conditions 0, 12 and is a GSSS by Lemma 11.19.

If n = 14, extend Pn—1 with all the sentences (a; 0ki)i=1,...1(agkf) such
that q is a connected component of a disconnected element p € P such that
(ai 0Ki)i=1,...1(apkf) € Pn_1. Then the resulting sequent &, — Pn satisfies
the conditions 0, 14 and is a GSSS by Lemma 11.20.

A sentence (a; 0ki)i=1,... 1(apkf) with p € B disconnected will be called a
disconnected sentence, and for each connected component q of p, the sentence
(ai Oki)i=1,...1(agkf) will be called a constituent of (a; 6ki)i=1,... 1(apkf).

Ifn =13, let {hy,..., hn} be the set of the disconnected sentences contained
in otn—1, inductively make GSSS’s an i — Bn,i (1=0,1,...,m) as follows, and
let ¢n = Bn = &n,m — Pn,m. First, let otn 0 = Pn,o = tn—1 — Pn—1. Next
for i > 1, there is a constituent h{ of h; such that hion i1 — Pn,i—1 is a
GSSS by Lemma 11.20, so let it be ot i — PBn,i. Then oy — Bn is a GSSS and
satisfies the conditions 0, 13.

.....

.....

69



If n =16, extend Bn_1 with all the paired sentences (ai 0k;)i—1
and ((11 0ki)i=1,..., 1((1 (« O]kf) such that ((11 0ki)i=1
the resulting sequent oy, — 3, satisfies the conditions 0, 16 and is a GSSS by
Lemma 11.20.

.....

.....

(ai 6ki)iz1,..., 1(a (« Olkf) its constituents.

If n =15, let {hy,...,hn} be the set of the P-sentences contained in &, _1,
inductively make GSSS’s ani — Bni (1 = 0,1,...,m) as follows, and let
On = Pn = tn,m — Pn,m- First, let an, o0 — Pn,o = tn-1 — Pn_1. Next for
1> 1, there is a constituent h/ of h; such that h{an i1 — Bn,i—1 is a GSSS by
Lemma 11.20, so let it be atr, i — Pn,i- Then oy — Br is a GSSS and satisfies
the conditions 0, 15.

If n =17, extend an—71 with all the paired sentences (aj 6ki)i=1,... 1(apkf)
and (a; 6ki)i=1,...1(a(+ qlkf) such that (a;oki)i=1,... 1(a(p,qlkf) € on_1.
Then the resulting sequent ou — B, satisfies the conditions 0, 17 and is a GSSS
by Lemma 11.21.

We call a sentence (a; 6ki)i=1,...1(a(p, qlkf) a proper sentence, and call sen-
tences (a;j 0ki)i—1,...1(apkf) and (ai 6ki)i=1,... 1(a(« qlkf) its constituents.

If n =18, let {hq,...,hm} be the set of the proper sentences contained in
Brn—1, and inductively make GSSS’s an i — Pni (i =0,1,...,m) as follows,
and let otn = PBrn = Xn,m — Bn,m. First, let o0 = Pno = xn-1 — Pn-1.
Next for 1 > 1, there is a constituent h{ of hy such that otn -1 — h{Bn i1 is
a GSSS by Lemma 11.21, so let it be an i — Bn,i. Then on — Prn is a GSSS
and satisfies the conditions 0, 18.

If n = 19, extend ,,—7 with all the sentences (aj 0ki)i(aPkf) such that
(ai 0ki)i(a(+ plkf) € an_1. Then the resulting sequent o, — P, satisfies
the conditions 0, 19 and is a GSSS by Lemma 11.22.

If n = 20, extend o7 with all the sentences (a; 0ki)i(apkf) such that
(ai 0ki)i(a(+ plkf) € Bn_1. Then the resulting sequent o, — P, satisfies
the conditions 0, 20 and is a GSSS by Lemma 11.22.

If n = 21, extend &, 1 with all the sentences

1f) Qx) proneA

.....

((l [ (X ok (ai oki)i=1,...,
such that (a; 0ki)i=1, . 1(apkf) € an_1 and x € X! (such an extension is
possible because #X/ < 00). Then the resulting sequent o, — Bn satisfies the
condition 0, 21 and is a GSSS by Lemma 11.23.
tences (ar (x 6k (a; Oki)i—1,...,
If n = 22, extend 3r,—1 with all the one-representations of the upper sen-
tences contained in fn_7. Then the resulting sequent o, — [ satisfies the
condition 0, 22 and is a GSSS by Lemma 11.23.
If n=23,let M ={uy,..., 1} be the set of all tuples

(apmtoneA, by qimoneA, ..., by qmmtoneA)

of a sentence apmone € on_1 and distinct sentences by qimmoneA,...,
bm GmmoneA € Bn_1 such that p > > ™, qi. The number of such tuples
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is certainly finite, because by qymmoneA, ..., by, gmmtoneA are distinct. Induc-

tively make GSSS’s an i — Bni (1=0,1,...,1) as follows, and let an — Pn =
On,1 = Pn,1. First, let ano = PBn,o = xn—1 — Pn_1. Next for i > 1, sup-
pose W is a tuple of apmmoneA € x1 and by qymmoneA, ..., by gmroneA €

Bn_1, and take a variable x € X! which does not occur free in the sentences in
®n,i—1 U Pn,i—1 (such a variable exists because X/ is enumerable). Then

X0mald, dn i1 — XOTb1 A, -+ | XOTbm A, P i1

is a GSSS by Lemma 11.24, so let it be oty i — Bn,i. Then o, — Brn is a GSSS
and satisfies the conditions 0, 23.

If n = 24, extend Pn_7 with all the n-tupled sentences a; ormad, ...,
an 07taA such that admoneA € fn_1. Then the resulting sequent ot — Pn
satisfies the conditions 0, 24 and is a GSSS by Lemma 11.25.

If n = 25, then extend ay_1 with all the paired sentences coma/\ and
c07tbA such that com(amMb)A € &, 1. Then the resulting sequent o, — Bn
satisfies the conditions 0, 25 and is a GSSS by Lemma 11.26.

We call a sentence com(aMb)A a M-sentence, and call sentences ¢ owah
and combA its constituents.

If n =26, let {hy,...,hn} be the set of the M-sentences contained in Bn_1,
and inductively make GSSS’s an i — Pn,i (1=0,1,...,m) as follows, and let
On = Pn = n,m — Pn,m- First, let an,o0 — Pn,o = tn-1 — Pn_1. Next for
1> 1, there is a constituent h/ of h; such that &n -1 — h{Bn i—1 is a GSSS by
Lemma 11.26, so let it be atn, i — Pn,i- Then oy — Br is a GSSS and satisfies
the conditions 0, 26.

If n = 28, extend [3,,—1 with all the paired sentences c 0mma/\ and combA
such that com(a Ub) € Br_1. Then the resulting sequent o, — P, satisfies
the conditions 0, 28 and is a GSSS by Lemma 11.26.

We call a sentence c o7 (a LI b)A a Ll-sentence, and call sentences ¢ 0ma\
and c0mmbA its constituents.

If n =27, let {hy,...,hm} be the set of the LI-sentences contained in &n_1,
and inductively make GSSS’s o i — Bni (1=0,1,...,m) as follows, and let
On = PBn = Xn,m — Pn,m. First, let atn 0 = Pn,o = tn—1 — Pn—1. Next for
i > 1, since there is a constituent h{ of h; such that hion i—1 — Bni_1 is a
GSSS by Lemma 11.26, let it be o i — PBn,i. Then an — B is a GSSS and
satisfies the conditions 0, 27.

If n = 29, extend Bn_7 with all the sentences b 67t a/\ such that b7 (a”)A
€ an—1. Then the resulting sequent &,, — P, satisfies the conditions 0, 29 and
is a GSSS by Lemma 11.27.

If n = 30, extend «,_7 with all the sentences b 7t a/\ such that b7 (a”)A
€ Bn—1. Then the resulting sequent o, — P, satisfies the conditions 0, 30 and
is a GSSS by Lemma 11.27.

If n = 31, extend o, 1 with all the sentences f(x/a) such that a o7 (f Qx)A
€ on—1. Then the resulting sequent «,, — (3, satisfies the conditions 0, 31 and
is a GSSS by Lemma 11.28.
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If n = 32, extend B,,—1 with all the sentences f(x/a) such that a o7 (f Qx)A
€ Bn—1.- Then the resulting sequent «,, — (3, satisfies the conditions 0, 32 and
is a GSSS by Lemma 11.28.

This completes the inductive definition of the series (otn — Pn)n=12,... of
GSSS’s which satisfy the above thirty three conditions.

Lemma 11.30 Let P = [J,,~; on and Q = [J,,> Bn. Then P U Q consists of
good sentences, P N Q = (), and the following thirty five conditions hold.

(0) If an element of P — {0} occurs in P U Q, then it also occurs in oo U Bo.
If (O.i 6ki)i:1,...,lf € P, then (api (v)kpi)i:]w”lf € P for all pEG.

(1)
(2) If (a; 0ki)i=1,...1f € Q, then (api (v)kpi)izhmylf € Q for all p € 6;.
(3)

.....

.....

..........

,,,,, (fAg) € Q satisfies (11.1), then
—1,..,mT € Qor (a; 6ki)i—v11,...19 € Q.

(5) If (a3 0ki)iz1,....1(fV g) € P satisfies (11.1), then
either (ai 6ki)i:1 mf € Por (Cli (v)ki)i:\,_,_],”_‘[g e P.
(6) If (ai 0ki)iz1,.. 1(fV g) € Q satisfies (11.1), then
(ai 0ki)i=1,...mf, (ai 0ki)i—v+1,...19 € Q.
(7) If (ai 0ki)iz1,... 1(f=g) € P satisfies (11.1), then

either (a; 6ki)i=1,....mf € Q or (a; 6ki)i=—v+1

(8) If (aj Oki)i—1
(ai 0ki)i=1

.....

..........

.....

.....

(9) If (ai 0ki)izr,..., 1(f9) € P, then (a; 6ki)i—1,.. 1f€Q
(10) If (ai 6ki)i=1,.. 1(f®) € Q, then (a; 6ki)i—1, . 1f € P.
(11) If (ai OKki)iz1,..., (aﬂpkf)ePwithpE‘B,

then (aj 0ki)i=1,..., Wapkf®) e P.

(12) If (a; okl)1 1...1(a=pkf) € Q with p € B,

Wapk Q) € Q.

.....

‘‘‘‘‘

(13) If (ai Oki)i=1,. .,
nents p1,...,pm (M > 2), then (a; 0ki)i=1

{1,...,m}.
(14) If (Cli 6](1)1:]

.....

.....

.....

(15) If (Cli 6ki)i:1w)1(a]P’kf)7€ P, then
either (a; oki)i=1,...1(a0kf) € P or (ai O6ki)i=1 .. 1(a(e Okf) € P
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..... 1(aPkf) € Q, then
(ai 0ki)i=1,..1(a0kf), (ai 0ki)i=1, . 1(a(+ Okf) € Q.

(17) If (aj 0ki)iz1,..., a (p, qlkf) € P, then
(ai 0ki)i=1,...1(apkf), (ai Oki)i=1

(18) If (ai 0ki)i=1,...,1(a(p,qlkf) € Q, then
either (ai 0ki)i—1 (apkf) € Q or (a; 0ki)i—1

.....

(20) If (ai 0ki)i=1,...1(a (¢ plkf) € Q, then (a; 0ki)i—1,... 1(apkf) € P.

(21) If (ai 0ki)iz1,... 1(aPpkf) € P and x € X!, then

1f) Qx) prroneA € P.

.....

=1,...,

(22) If (a; 0Ki)i=1,...1(apkf) € Q and x € Xé/, then
(am (x0k(a; 0ki)i=1,...1f) Qx) prroneA € Q.

(23) If aprtoneA € P, by imoned, ..., by GmmoneA € Q,and p > Y [, qi,
then xorta/ € P and xonb1A, . xonb A € Q for some x € X/.

24) If admoneA € Q, then bomaA € Q for all elements b € S..

25) If com(amMb)A € P, then comal, combA € P.

26) If com(amb)A € Q, then either coma € Q or combA € Q.

27) If com(alUb)A € P, then either comma/ € P or combA € P.

28) If com(alUb)A € Q, then comal, combA € Q.

30) If bort(a”)A € Q, then bomaA € P.

31) If aom(f Qx)A € P, then f(x/a) € P.

32) If aomt (fQx)A € Q, then f(x/a) € Q.

33) If a € A¢, then aomaA ¢ Q.

(24)
(25)
(26)
(27)
(28)
(29) I bdm(a”)A € P, then bémaA € Q.
(30)
(31)
(32)
(33)
(34)

If a € G, then acomoneA ¢ P.

Proof If fePand g€ Q and i€ {1,...,32}, then since (xn — Pnln=1.2,..
is increasing, there exist infinitely many positive integers n such that f € oy,
g € Bn, and n =1 mod 32. Therefore, by Lemmas 11.15 and 11.29, we see
that P U Q consists of good sentences, PN Q = @, and the first thirty three
conditions hold with special attention to (24). As for (33) if a € A,, then
<« aoma/ by the = law, and so since <, satisfies the weakening law and
exchange law and &, — [, is singular, we have aomaA ¢ B, forn=1,2,...,
hence aomaA ¢ Q. (34) is similarly proved by the o law.
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Using the sets P, Q in Lemma 11.30 of sentences, we construct an MPC world

W=(s-T)usu [J (0= —T)
OePK

congizable by A as follows. First, since S! is enumerable and in particular
non-empty, we may choose S. as the base S of W:

S=S.=C.uX,=S,-X/. (11.2)
Then, we may define the basic relation 3 on S by
bda & aonmbA ¢Q (11.3)

for a,b € S. The 3 is certainly reflexive by Lemma 11.30 (33).

In order to define a P-measure X — |X| on S, first let P’ be the set of the
elements of P which occur in PUQ. Then P’ is a finite set by Lemma 11.30 (0).
Let p be the supremum of P’ in P. If P/ = (), then p = 0 by definition. Next,
we define an element 6 of P as follows. If p is not equal to the maximum oo of
P, we let 6 be an arbitrary element of P such that p < 6. If p = oo, we define
6 = 0o. Since #P > 1, we have 0 < 6 in either case. Next, for each a € G, we
may define

S*={seS|soma ¢ Q} (11.4)

by virtue of (11.2). In particular for a € S/, S ={s € S| a I s} by (11.2)(11.3).
Next if, for an element X € PS and an element p € P, there exist elements
b1,...,bm € G and elements q1,...,qm € P which satisfy the conditions

(a) X C UL, 8P,
(b) p=32, ai,
(c) bigimoneA € Q (i=1,...,m),

then we write XRp. When m =0, [J{*; S®* =@ and Y ", g; = O by definition,
and the condition (c) is vacant. The relation R between PS and P thus defined
satisfies the following conditions:

(1) X=0 < XR0,
(2) XCYand YRp = XRp,
(3) XRp and YRq => (XUY)R(p+q).

That R satisfies (2)(3) and RO is an immediate consequence of the definition of
R and the above remark on (a)(b)(c) with m = 0. In order to complete the proof
of (1), suppose XRO0. Then either X = () or there exist elements by,..., by, € G
and elements q1,...,qm € P which satisfy X C |Ji%; S®*, 0 = >, qi, and
bigimoneA € Q (1 = 1,...,m), where m > 0. In the latter case, we have
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gi =0, so b; ImoneA € Q, and Lemma 11.30 (24) yields that s 6b; A € Q for
all elements s € S =S, hence S®* = (i=1,...,m) and thus X = () as desired.
Furthermore, for each element X € PS and the element 6 € P defined above,
the subset {p € P | XRp} U {8} of P has its minimum, because {p € P | XRp} is
contained in the closure [P’ U{0}] of P’ U{0} in P and so, by Theorem 8.1, has
its minimum unless it is empty. Therefore by Theorem 8.2, we may define the
P-measure X — |X| on S by

IX| = min({p € P| XRp}U{d}). (11.5)

We have thus defined the basic relation and the P-measure on S. Using
these, we may now let W be an MPC world congizable by A equipped with the
OS and the sort mapping p € W — T’ described in §3.3.

Next, we define a C-denotation @ and an X-denotation v into W. The
definition of @ is as follows:

(@1) For each a € Cs, @a is the element of S — T such that
(Pa)s=1 & seSs°
for each s € S.
(®2) For each a € Cg, since C, C S by (11.2), we define ®a = a.

(®3) For each f € CN H, Of is the element of (K¢ — S) — T such that, if
K¢ ={k1,...,kn} with k1,..., k, distinct, then

(@) =1 &= ((0ki)oki),_,  F¢Q

for each 8 € K¢ — S. Since 8ki € A by (11.2), this definition makes
sense. By virtue of Lemma 11.30 (2), this definition does not depend on
the numbering k1, ..., k, of elements of K.

Then @ is certainly a C-denotation into W. The definition of the X-denotation
v is similar to that of @ as follows but with similar remarks omitted:

(v1) For each x € X5, vx is the element of S — T such that
(W)s=1 & s e 8§
for each s € S.

(v2) For each x € X/, we define vx = x. For each x € X/, we let vx be an
arbitrary element of S.

(v3) For each f € X N H, vf is the element of (K¢ — S) — T such that, if
K¢ ={kq,...,kn} with kq,...,k;, distinct, then

(vile =1 & ((8ki)oks),_, F¢Q

for each 8 € Ky — S.
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Then v is certainly an X-denotation into W.

Lemma 11.31 If a € S/, then (®*a)v =a. If a € S US. and s € S, then
(®d*a)v Isiff s € S°.

Proof The former part is a consequence of (2.4)(®2)(v2). The latter part for
a € S/ is a consequence of the former part and the remark following (11.4). The
latter part for a € Ss is a consequence of (2.4)(3.1)(D1)(vl).

Lemma 11.32 Let A be the index set of the OS of A:
A={A,AV,=,0,A,M,U,00x | Ae{ojuQ, keK, xe X}

Then there exists a mapping I of ALl A into Z>o which satisfies the following
conditions.

(1) If w € A and (ar,...,an) € Domuy, then I(u(ar,...,an)) = In+Ia; +

R (¢
2) If a e {0k, A | k € K}IIS, then I(a) =0.
3) fae{AV,=,0,nU,00x|x e X}, then Ia =1.

5

(2)

(3)

(4) If p € P, then I(pk) =4 for each k € K.

(5) If p € P, then I((+ plk) =5 for each k € K.
(6)

6) If p is a connected quantifier in 3 other than those in the shapes p and

(¢« pl, then I(pk) = 6 for each k € K.
(7) If p is a disconnected quantifier in B, then I(pk) =7 for each k € K.
(8) If A is a quantifier in =3, then I(Ak) = 9 for each k € K.

Proof Since p # (« q] for p,q € P, we can define I € AIIS — Z>¢ so that
the conditions (2) - (8) hold. By Lemma 6.1, we can extend I to an element of
AL A — Z>o so that the condition (1) also holds.

Using Lemma 11.32, we define the mapping ] of AIL A into Z>¢ by

(11.6)

b = Ia+1 if b=apmoneA for some a € G and p € P,
) Ib otherwise.

This is well-defined by a remark following Theorem 2.1. We call the non-negative
integer Jb thus defined for each b € A the index of b.

Lemma 11.33 If b € A, then Ib > Jb. If a€ A, x € X, and b € A, then
I(a(x/b)) =Ia.
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Proof Since one = (xo 67txoA) Oxp, we have I(one) = I(xo)+I(071) +I(x0)+
IA+1(Qxp) =1, and so [(aptoneA) = Ila+ [(pn) + [(one) + IA =Ta+5 >
Ia+1=](apmoneA), hence the former part of the lemma.

The latter part is proved by induction on the rank r of a. If r = 0, then
a €S, and so a(x/b) € S by (2.1) and §3.2 (13), hence I(a(x/b)) = 0 = Ia.
Suppose v > 0. Then a = p(aj,...,a,) for some u € A and aj,...,a, € A.
If u = Qx, then a(x/b) = a by (2.2), so there is nothing to prove. Suppose
n # Ox. Then a(x/b) = u(ai(x/b),...,an(x/b)) by (2.2), so I(a(x/b)) =
In+ (a1 (x/b)) + - + I(an(x/b)). Since I(ai(x/b)) =Ia; (i=1,...,n) by
the induction hypothesis, we have I(a(x/b)) = In+ Ia; + -+ + lan = la.

Lemma 11.34 If h € P, then (®*h)v =1, while if h € Q, then(®*h)v = 0.

The proof is long. Before beginning it, we notice that Lemma 11.34 conclude
the proof of C C [D]g by contradiction, because «p < Bo by Lemma 11.12,
whereas Lemmas 11.34, 10.1, and (9.3) imply that & £ Bo to the contrary.

Proof Let h € PUQ. Then, by a remark following Theorem 2.1, there are
elements aj,...,a; € A. (1 > 0), distinct elements kq,...,k; € Ky, and an
element h’' € H which satisfy the conditions

R h' & Uyek Im ok, (11.7)

.....

and such a tuple aj,...,ar, kK1,...,k;, h' is uniquely determined by h. Since
h is good by Lemma 11.30 and A = S, by §3.2 (13),

ar,...,ap €8S/, (11.8)
by Lemma 11.14. Since h is a sentence by Lemma 11.30,
K ={k1,..., k). (11.9)
Since h' ¢ J, cx Im 0k, either h’ € SN H or h' is in one of the shapes
arkf AeQ), fAg, Vg, f=g, f°  cA, (11.10)
by §3.2 (14), where either c € SN G =S5 U S, or c is in one of the shapes
anb, alb, a”, fOx (11.11)

by §3.2 (12) (13). If c € S,, then ¢ € S by Lemma 11.14 because h is good.
We first consider the following two special cases.
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The case where h' € SN H. By (11.9), (11.8), and (11.2), we may define
0Ky = Shbybki=qa; (i=1,...,1), and we have

(@*h)v = (®*((a; 6ki)ih'))v (by (11.7))
= ((®*ai)voki), (@ h')v
= (ay 8ky)i(®*h/)v (by (11.8) and Lemma 11.31)
= ((le) oky ) (O*h/)v (by the definition of 0)
= ((@*h')v)6 (by Corollary 9.3.2)

_{(CDh’)G if h' € CNH, by (2.0),

(V)0 ifh/ € XNH

where the second equality holds because ®@* and the projection by v is a homo-

morphism with respect to the operations ok; (i=1,...,1). Hence
(d*h)v =1
= ((oky) ok ) R/ ez Q (by (©3)(v3))
&= (ai0ki)h (by the definition of 0)
— héQ (by (11.7)).

Therefore, if h € Q then (®*h)v = 0, while if h € P then (®*h)v = 1, because
PN Q =0 by Lemma 11.30.

The case where h' = ¢/ for some ¢ € SN G. In this case, we have 1 = 1
and k1 = by (11.9), a1 € S, = S by (11.8) and (11.2), h = a; 6mtcA by (11.7),
and ¢ € Ss US/. Therefore,

(O*h)v = (®*aj)vom (®*c)vA = a; 6t (D*c)vA

by Lemma 11.31, hence

(@*hpv=1 & (P*c)vd a4 (by Theorem 9.7)
& a; €8¢ (by Lemma 11.31)
& aromeN ¢ Q (by (11.4))
— h¢Q.

Therefore, if h € Q then (®*h)v =0, while if h € P then (®*h)v = 1.

The general case. We argue by induction on the index Jh of h.

If JTh = 0, then by (11.6), Lemma 11.32, and the discussion on the shapes
of h/, either h’ € SN H or h/ = ¢A for some ¢ € SN G, and in either case,
Lemma 11.34 has been proved above. Therefore, we assume Jh > 1, h/ ¢ SNH,
and h' # cA for any ¢ € SN G. Then h' is in one of the shapes (11.10) and if
h/ = cA, c is in one of the shapes (11.11). We will consider those cases one by
one, redividing them into twelve cases.
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We first consider the case where h' is equal to aAkf (A € Q) on the list
(11.10), and further divide it into the three subcases where A € —3, where
A € B but A is disconnected, and where A € B and A is connected. In the last
case, A is an interval in one of the four shapes P, (p,q], (<« pl, and p = (p —).

We will often use the following argument. Recalling that PN Q = () by
Lemma 11.30, we say that two elements f,g of P U Q is equivalent or write
f ~ g, if either f, gEPorf g€ Q. Then1fh h and (@*h)v = (®*h)v and
Jh > Jh, or if h = h and (®*h)v # (O*h)v and Jh > Jh, then by the induction
hypothesis, Lemma 11.34 holds for the h.

Case 1: h/ = a—pkf (p € PB). Here h = (a; 6ki)i(a—pkf) by (11.7), and
h ~h = (a; oki)i(apkf®) by Lemma 11.30 (11) (12). Also, (®*h)v = (®* h)v
by Theorem 9.8. Furthermore,
Jh=Th=I(a—pkf) =la+ I(—pk) + If =la+ 2+ If
>la+8+If=Ta+74 (If +1) =Ia+ 7+ (%)

> Ta+ I(pk) + I(f°) = I(apkf®) = Th=Jh
by (11.6) and Lemma 11.32. Therefore, Lemma 11.34 holds in this case.
Case 2: h/ = apkf (p € PB,disconnected). Here h = (a; 0ki)i(apkf). Let

P1,...,Ppm be the connected components of p, and define h; = (a; 0ki)i(apjkf)
(j=1,...,m). Then

(O*h)yv = (" )vV - - V(D" hy, v

by Theorem 9.9 and Lemma 9.3, where the order of applying the operation V
on T on the right-hand side is arbitrary because it is associative. Furthermore,

Jh=Th=I(apkf) = Ia+ I(pk) + If = la + 7 + If
>Tla+6+If > Ta+I(p;k) + If = I(ap;kf) = Th; > Jh;

for each j € {1,...,m} by (11.6), Lemmas 11.32, and 11.33. By Lemma 11.30
(13) (14), if h € P then h; € P for some j € {1,..., m}, while if h € Q then
h; € Q for all j € {1,..., m}. Therefore, Lemma 11.34 holds in this case.

Case 3: h'/ = aPkf and co = maxP does not exist. In this case, h =
((li 6ki)i(aIP’kf)._ Define ]’L] = ((11 éki)i(aOkf), h.z = (Cli 6ki)i(a(<— O]kf)
Then, since P = 0 U (+ 0],

(O*h)v = (O*hy )vV(DP*hy)v
by Theorem 9.9 and Lemma 9.3. Since P # P and P # (« p] for all p € P,
Jh=Th =I(aPkf) =Ia+I(Pk) + If =la+6+If

la+4+If =Ia+1(0 )+If—1(a0kf) Ihy > Jha,
la+5+If = Ia+I((« Olk) + If = I(a (¢ O]k f) = [hy = Jh,
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by (11.6), Lemmas 11.32, and 11.33. By Lemma 11.30 (15) (16), if h € P then
either hy or h; belongs to P, while if h € Q then hy, h, € Q. Therefore, Lemma
11.34 holds in this case.

Case 4: h! = a(p,qlkf (p,q € P, q # oo). Here h = (a; oki)i(a(p,qlkf).
Define hy = (a; 0ki)i(apkf), ho = (a; 0ki)i(a (« qlkf). Then since (p,q] =
pN(«dl,

(O*h)v = (O*hy )JWvA(D*hy)v

by Theorem 9.9 and Lemma 9.3. Since (p,q] # T and (p,q] # (« 7] for all
rekP,

Jh=Th=1I(a(p,qlkf) =Ia+I((p,qlk) + If =Ia+6+If
la+4+If =Ia+I(0k) + If = I(apkf) = Ihy > Jhy,
la+5+1If =Ia+I((+ 0k) + If = I(a(+ qlkf) =Ih, = Jh,

by (11.6), Lemmas 11.32, and 11.33. By Lemma 11.30 (17) (18), if h € P then
hi,hy € P, while if h € Q then either hy or h; belongs to Q. Therefore, Lemma
11.34 holds in this case.

Case 5: h/ = a(« plkf (p € P). This case includes the case where h'/ =
aPkf and co = maxP exists, which was excluded from the case (3). Here
h = (0.1'_ (V)ki)i(a(H ‘p]kf) g ]:L = (ai 6k1)1(aﬁkf) by Lemma 11.30 (19) (20)
Also, (O*h)v # (@*h)v by Theorem 9.8 and Corollary 9.3.3. Furthermore,

Jh=Th=1I(a(« plkf) =la+ I((« plk) + If =Ia+5+If
>Tla+4+If =la+I(pk) 4+ If = I(apkf) =h > Jh

by (11.6), Lemmas 11.32, and 11.33. Therefore, Lemma 11.34 holds in this case.

Case 6: h/ = apkf # apmoneA (p € P). If co = maxP exists, then
P = (p,o0]. Therefore the case h' = a(p,ocolkf excluded from the case 4 is
included in this case 6 unless h' = a (p,oco]moneA. Here h = (a; 0ki)i(apkf).
Recall X! # () and define

h= (ar (x 8k (a; 0ki)if) Qx) prone

for x € X”. Then h ~ h by Lemma 11.30 (21) (22). We can prove h =< h
similarly to Lemma 11.23 as follows. Define g = (a; 0k;)if. Then Kq = {k}, and

h =< apkg
by Theorem 9.12 and Lemma 10.1. Also, since x « g by Lemma 11.14,

apkg = apm((xSkg) Qx)A
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by Theorem 10.3. Also,
apr ((xokg) Qx) A < (ar (xok g) Qx) pronel

by Theorem 9.7, Lemma 10.1, and Theorem 10.6. Thus h =< ﬁ, hence (O*h)v =
(®*h)v by Lemma 10.1. Furthermore,

Jh=Th=Ia+I(pk)+If=Ila+4+If=Ia+4+1g
>la+3+Ig=Ila+IM+Ig+1(Qx) +1=1(amn(x6kg)Qx) +1=Th
by (11.6) and Lemma 11.32. Therefore, Lemma 11.34 holds in this case.

Case 7: h/ = apnioneA (p € P). If co = maxP exists, then P = (p, o0].
Therefore, the case h' = a(p,oco]moneA excluded from the cases 4 and 6 is
included in this case 7, where h = h’ = apmoneA. Define

X={seS|(d*a)v Is}.
Then
(O hv=1 < p <X

by Theorems 10.6 and 9.7.

First, we consider the case where h = aprroneA € P, and in order to prove
(®*h)v =1 by contradiction, we assume p > |X|. Then p # oo by Lemma 11.30
(34). Also p € P/, and so p < supP’ = p. Since we have chosen 6 so that
either p < 6 or 6 = oo, it follows that p < é holds. Therefore [X| # 6, and so
the definition (11.5) of |X| shows that there exist elements by,..., by € G and
elements q1,...,qm € P which satisfy the conditions

(1) X g Ul‘n:] Sbia
(i) p > X ai,
(iii) bi GimroneA € Q (i=1,...,m),

where m > 0. Therefore by Lemma 11.30 (23), there exists an element x € X/
such that xomaA € P and xomtb1A,--- ;xomb A € Q. Furthermore, Jh =
Ia+1>Ia=I(x6mad) =J(x6maA) by (11.6) and Lemma 11.32. Therefore
((D*(xéﬂaA))v = 1 by the induction hypothesis. Since ((D*(XénaA))v =
(d*x)vort (O*a)vA = xom(®*a)vA by Lemma 11.31, Theorem 9.7 yields
(®*a)v 3 x, hence x € X. On the other hand, since x0tb;A € Q, the def-
inition (11.4) of S® yields x ¢ S®t for i =1,..., m. This contradicts (i).

Next, we consider the case where h = apmone/A € Q. Suppose s € S —S¢.
Then somaA € Q by (11.4). Also Jh=Ia+1>Ia=1(somal) =J(somal)
by (11.6) and Lemma 11.32. Therefore ((D*(s 0T aA))v = 0 by the induction
hypothesis, and so (®*a)v 7 s by Lemma 11.31 and Theorem 9.7, that is,
s € S—X. Thus X C §¢, and so |X| < p by (11.5). Therefore (O0*h)v = 0.

This completes consideration of the case where h' is equal to aAkf (A € Q)
in (11.10).
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Case 8: h' =fAgor fVgor f=g. Letx*denote any one of the operations
A,V,=. Then h = (a;0ki)i=1,...1(f * g). Let p € & and define h, =
(api 0Kpi)iz1,...1(f * g). Then h ~ h, by Lemma 11.30 (1) (2), Jh = Jh, by
(11.6) and Lemmas 11.32, and (®*h)v = (®*h,)v by Corollary 9.3.1. Therefore,
we may assume that (11.1) is satisfied. Define hy = (a;i 0ki)i=1
hg = (a; 0Ki)i—v 1

.....

(O*h)v = (P*he)v * (P hg)v
by Theorem 9.4. Also, the following holds by Lemma 11.30 (3) - (8).

e When *is A, if h € P then h¢, hg € P, while if h € Q then either hf € Q
or hy € Q.

e When * is V, if h € P then either hy € P or hy € P, while if h € Q then
h¢,hg € Q.

o When * is =, if h € P then either hf € Q or hy € P, while if h € Q then
hf € Pand hg € Q.

Furthermore,

If =Thf > Jhy,

h=Th=If+L++Ig=If+1+1g >
J g 9 {Ig:Ihg>Ihg

by (11.6), Lemmas 11.32, and 11.33. Therefore, Lemma 11.34 holds in this case.

Case 9: h/ = 9. Here h = (a; 8ki)i(f®), and h = h = (a; 8k); f by Lemma
11.30 (9) (10). Also, (®*h)v # (O*h)v by Corollary 9.3.3. Furthermore, Jh =
Th=1If+10 =If+1 > If = [h > Jh by (11.6), Lemmas 11.32, and 11.33.
Therefore, Lemma 11.34 holds in this case.

It now remains to consider the case where h’/ = cA and c is in one of the
shapes (11.11).

Case 10: h/ = (alb)A or (aUb)A. Let*denoteMorl. Thenl=1, k; =,
and h = aj 0mt(a * b)A. Define hy = a; 6mal, hy, = a; 6mbA. Then the
following holds by Theorems 9.1, 9.4, and Lemma 11.30 (25) - (28).

e When * is M, (0*h)v = (O*hg )vA(DP*hp )v, and if h € P then hq, hy € P,
while if h € Q then either hy € Q or hy, € Q.

e When % is U, (O*h)v = (O*hg)vV(DP*hp)v, and if h € P then either
hq € P or hy € P, while if h € Q then hq,hp € Q.

Furthermore,

Ia = The = Jha,

h=Ih=Ia+Ix+Ib=Ia+1+1Ib>
J a+ I+ a+1+ {Ib_lhb_]hb

by (11.6) and Lemma 11.32. Therefore, Lemma 11.34 holds in this case.
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Case 11: h' = a”A. Herel =1, k; =7, h = ajoma”A, and h = h =
aj 6maA by Lemma 11.30 (29) (30). Also, (®*h)v # (®*h)v by Theorem 9.1
and Corollary 9.3.3. Furthermore,

Jh=Th=Ia+I0=Ia+1>la=Ih=Jh
by (11.6) and Lemma 11.32. Therefore, Lemma 11.34 holds in this case.
Case 12: h/ = (fOx)A. Herel =1, k; = 7, h = a;om(fQx)A, and
h~h =f(x/a;) by Lemma 11.30 (31) (32). Also,
(@ h)v = (@*a; )vom ((O*f) Qx)vA = a1 o7 ((O*f) Qx)vA
by Lemma 11.31, so
(@ hv=1 & (0 x)vIa; & (P*f)((x/ar1)v) =1
by Theorem 9.7 and (3.4). Since x is free from a; in f by Lemma 11.14,
(CD*f)((X/a] )v) = (CD*f)((x/((D*m )v)v) = ((D*f(x/a1 ))v = (d)*h)v
by Lemma 11.31 and Theorem 6.2. Thus (®*h)v = (®*h)v. Furthermore,
Jh=Th=TIf + [(Qx) = If + 1 > If = [(f(x/a;)) = Th > Jh
by (11.6), Lemmas 11.32, and 11.33. Therefore, Lemma 11.34 holds in this case.

This completes the proof of Lemma 11.34. Thus we have proved C C [13}]3.
Therefore C = []3]]3.

11.4 Proof of the completeness theorem for MPCL
Here we prove the Main Theorem 4.1 of this paper.

Lemma 11.35 Let (R,D) be a Gw-sound deduction pair on H, and assume
that the deduction relation <z p is Boolean with respect to the operations
A, V,=,0 on H and satisfies the twenty seven laws, the case+ law to the V—
law, listed in §11.2. Then (R, D) is Gyw-complete.

Proof Define lj[R D = {oc - p e H « <gr,p P} following (7.1). Let (R, 6)
be the deduction pair on H presented in §11.1. Then the assumption on g p
and Theorem 7.2 imply that HR b is closed under R and contains D. We have
shown C = [ﬂ]ﬁ in §11.3. Therefore (R,D) is Gyw-complete by Theorem 7.1.

Remark 11.2 The equality C = [13]]3 means that the validity relation < of
the predicate logical space (H, G ) is the smallest of the relations on H* which
are Boolean with respect to /\,V, =, { and satisfy the twenty seven laws listed
in §11.2. Lemma 11.35 may be proved by this fact, but we preferred to use

Theorem 7.1.
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Proof of Theorem 4.1 Define R = pU&. Then the deduction pair (R, V) on
H is Gyw-sound by Lemma 11.2 and the deduction relation <y v is Boolean with
respect to the operations A,V, =, by Theorem 7.5. Also, since V is closed
under RU L U T UV and contains 0 by (4.3), it follows that < v satisfies the
twenty seven laws listed in §11.2.

For instance as for the case+ law, assume =<gy f. Then f € [V]g =V,
and so since V is closed under 1, we have aokf € V = [V]g for all a € A,
and k € K¢, hence <p v aokf. Thus g v satisfies the case+ law. The same
argument applies to the case— law and the V+ law as well.

Since aomaA € 9 C V C [V]g for all a € A, we have =gy aomaA.
Thus <g,v satisfies the = law.

Suppose the maximum oo of P exists. Then, since (asomoneA)® € d CV C
[VIg for all a € G, we have <py (ac0omoneA)?, hence asomoneA <y by
Theorem 7.3. Thus <r v satisfies the 50 law. The same argument applies to
the one” law as well.

Asfor the Q,6 law,leta € G, be A, fe H, k,1€ K¢, k#1, and A € {6}U
0. Also, let a € A, in case A = 6. Then, since aAk (bolf)=bol(aAkf) € 0 C
V C [Vlg, we have <g v aAk(bolf)=Dbol(aAkf), hence aAk (bolf) s v
bol(aAkf) by Theorem 7.3. Similarly we have bol(aAkf) <g v aAk(bolf),
and thus < v satisfies the 9,6 law. The same argument applies to the remain-
ing laws other than the V, = law, the V,*3 law, and the LI, + law.

As for the V,= law, let f,g € Ay, x € X¢, and assume x < f. Then, since

(oneVr ((f=g) Ox)A) =(f= oneVm(gQx)A) € d C V C [V,
we have < v (oneVm ((f=g) Qx)A)=(f=oneVr(gQx)A), hence
oneVn ((f=g) Ox)A < v f= onevm (g Qx)A,
f,oneVn ((f=> Q)QX)A <r,v oneVm (g Qx)A.

by Theorem 7.3. Thus < v satisfies the V, = law.
As for the V, P law, let a,b € G, f € H, k € K¢, and p € P. Then, since

(aVAbA A apkf)=bpkfed CV C [Vlg,
we have <g v (aVTDAA apkf)=Dbpkf, hence

aVTbAN Cl‘r)kf <R,V b‘r)kf,
aVﬂbA,aﬁkf #R,V bﬁkf

by Theorem 7.3. Thus < v satisfies the V, ‘P law.
As for the U, + law, let a,b € G, f € H, k € K¢, and p,q € P. Then, since

(aUb)p +qgkf=(apkfVbagkf) €0 CV C [V]g,
we have g v (aUb)p + gkf=(apkfVbqkf), hence

(aUb)p T akf <g.v aPkfVbakf,
(al_lb)p + qkf <R,V O.‘T)kf, bqkf
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by Theorem 7.3. Thus < v satisfies the LI, + law.

Therefore R,V is Gyw-complete by Lemma 11.35. Consequently C = [V]g =

V, and so (g, V) is also Gw-complete by Theorem 7.4.
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