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Abstract

As a discontinuous Galerkin FEM, we propose a formulation based on Tong’s hybrid dis-

placement method and the stabilization technique, and develop polygonal elements for

linear static plane stress problems. The basic ideas are the introduction of inter-element

displacements and the use of stabilization terms. Here we only present polygonal ele-

ments with polynomial approximation functions. That is, we employ discontinuous linear

polynomial fields for element displacements, while we adopt continuous piecewise linear

polynomial fields for inter-element displacements. By static condensation, we can also

obtain the usual element stiffness matrices and the element load vectors for nodal inter-

element edge displacements, so that our elements can be easily built into various existing

FEM codes and even mixed use with conventional elements is possible. We obtain some

numerical results to show the validity of our approach and also to see the influence of the

stabilization parameter size and the flexibility in element shape.

Key Words : FEM, Discontinuous Galerkin method, Hybrid displacement method, Polyg-
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1. INTRODUCTION

Recently, considerable attention has been drawn to the discontinuous Galerkin FEM or

DGFEM 1,2,3), whose root is reported to be in the neutron transport problems. In this approach,

the continuity of the approximate functions is not required before-hand, but is dealt with by the

Lagrange multiplier method and/or the penalty method. Compared with the classical FEM, a

merit of such an approach is that much wider class of approximate functions become available,

so that the usual Cartesian polynomials can be used for finite elements of more general shapes,

and various singularity functions can be also incorporated into the approximate functions to

capture singularities caused by e. g. cracks. On the other hand, depending on the methods

of dealing with the inter-element discontinuity, the sizes and band-widths of the arising linear

simultaneous equations may become much larger than those of the conventional FEM.

Actually, the root can be also traced to solid mechanics: the well-known non-conforming

and hybrid FEM’s use discontinuous functions as approximate displacement fields. Typical

examples are Pian’s hybrid stress method4) and Tong’s hybrid displacement one5), and they are

often called FEM’s with relaxed continuity requirements. One of the authors also developed

a variant of the hybrid displacement one and applied it to plate and shell problems6,7) with

numerical results. Unfortunately, our trial was only partial success because of lack of effective

stabilization techniques. However, this approach has the merit that we can obtain the element

stiffness matrices and element load vectors similar to those of the conventional FEM.

Stimulated by rapid development of DGFEM, the authors now try to propose a hybrid

displacement approach by stabilizing our old method. We will show the idea by using the

plane stress problem as a model problem, and then give some concrete finite element models of

polygonal shape. Moreover, some numerical results are given to show the effectiveness of the

proposed finite elements. A closely related but different approach is also proposed as HPM8).

2. LINEAR PLANE STRESS PROBLEM

We will summarize the linear static plane stress problem in the isotropic case9). Although we

can deal with more general three-dimensional cases, we consider the above restricted case for

simplicity. Let us introduce the orthogonal Cartesian coordinates into the space which contains

a thin plate-like elastic body, and denote the point by x = (xi), where i ranges from 1 to

3. However, in the plane stress problem, the independent variables are essentially x1 and x2

only, while x3 is used as a subsidiary coordinate component. We will often use (x, y) instead of

(x1, x2). The thickness of the plate-like body is denoted by t, which can be a function of (x, y).

First, for the two-dimensional displacement vector u = (ui)i=1,2 of the elastic body, the

(linearized) strain tensor εij = εij(u) is given by

εij(u) =
1

2
(∂ui/∂xj + ∂uj/∂xi) ; 1 ≤ i, j ≤ 2 . (1)
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Instead of the strain tensor, we will mainly use its engineering expression of vector form :

εεε = εεε(u) =




εx

εy

γxy


 =




ε11

ε22

2ε12


 . (2)

We also use the engineering stress components in vector expression :

σσσ =




σx

σy

τxy


 =




σ11

σ22

σ12 = σ21


 , (3)

where σ11 etc. denote the usual tensor expressions for the stresses.

To describe the isotropic linear elastic stress-strain relation, let us introduce the matrix D :

D =
E

1− ν2




1 ν 0

ν 1 0

0 0 1−ν
2


 , (4)

where E is Young’s modulus and ν Poisson’s ratio. Usually, we assume that E > 0 and

0 < ν < 1/2. Then the stress-strain relation is written by

σσσ = Dεεε . (5)

Furthermore, we assume that the distributed external body force f = (fi)i=1,2 is applied to

the elastic body. Here, f has the dimension of force per unit in-plane area, so that the factor t

is already multiplied to the corresponding volume force.

On the boundary Γ = ∂Ω of the two-dimensional domain Ω for the elastic body, we impose

the following geometric and kinetic boundary conditions in order :

u = g1 on Γ1 , s = g2 on Γ2 , (6)

where Γ1 and Γ2 are two disjoint parts dividing Γ, g1 = (g1i)i=1,2 and g2 = (g2i)i=1,2 are

vector-valued functions defined on Γ1 and Γ2, respectively, and s = (si)i=1,2 is the surface

traction force vector per unit length of the boundary. It holds for s = (si) and σσσ the relation :

si = t
∑2

j=1 σijnj, where n = (ni)i=1,2 is the unit outward normal vector on Γ.

Now the functional Π0[u] employed in the principle of minimum potential energy is given by

Π0[u] =

∫ ∫

Ω

(
t

2
εεε(u)T Dεεε(u)− uT f

)
dx dy −

∫

Γ2

uTg2 dγ , (7)

where “ T ” denotes the transpose operator, dγ the line element on Γ, and the independent

argument function is the displacement u only, which we require to satisfy the first boundary

condition in (6). Notice that the factor t comes from the integration in the x3-direction.
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Fig. 1 m-polygonal element K

3. VARIATIONAL FUNCTIONAL FOR DISCONTINUOUS GALERKIN FEM

Here we give statements for the plane stress problem. In the proposed discontinuous Galerkin

FEM of hybrid displacement type, we consider the case where Ω is a bounded polygonal domain

for the moment. Otherwise, we need to approximate the original domain by a polygonal one.

Then we introduce subdivision T h of Ω by a finite number of polygonal finite elements. Each

finite element K ∈ T h (or element in short) is an m polygonal domain (Fig. 1), where m ≥ 3

is an integer and can differ with K, but is bounded from above independently of T h. We also

assume that K is not too ‘thin’. Thus the boundary ∂K of a representative element K ∈ T h

consists of m edges, each of which is denoted by e (⊂ ∂K) with |e|= length of e. Moreover, we

assume that ∂K does not intersect with itself. The diameter and area of K is denoted by hK and

|K|, respectively, and we also define the discretization parameter h for T h by h := maxK∈T h hK

when we discuss the convergence of the finite element solutions by mesh refinement.

In Tong’s hybrid displacement method5), we use the interelement displacement field û and

the element boundary traction field s as the arguments besides the element-wise displacement

field u. We permit u of an element to be independent of those of other elements and to be

discontinuous across interelement boundaries, while û is defined on the interfaces of the elements

and is single-valued on each edge shared by two adjacent elements. On the other hand, s is

also defined on edges of elements but does not need to be common to two adjacent elements.

Then the original variational functional of Tong in the linear plane stress case is given by

Π1[u, û, s] =
∑

K∈T h

{∫∫

K

(
t

2
εεε(u)T Dεεε(u)− uT f

)
dx dy −

∫

Γ2

ûTg2 dγ +

∫

∂K

sT (û− u) dγ

}
, (8)

where we assume that

û = g1 on Γ1 . (9)

In the simplified hybrid method of Kikuchi-Ando6,7), s on ∂K is eliminated by using u of

the associated K as well as the relations σσσ = Dεεε(u) and si = t
∑2

j=1 σijnj (i = 1, 2), so that s

is no longer an independent argument of the functional. If necessary, such an s is denoted by

s(u).
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In the proposed discontinuous Galerkin method of hybrid displacement type, the above sim-

plified functional is augmented with stabilization (or penalization) terms as follows :

Π2[u, û] =
∑
K

{∫ ∫

K

(
t

2
εεε(u)T Dεεε(u)− uT f

)
dx dy −

∫

Γ2

gT
2 û dγ

+

∫

∂K

s(u)T (û− u) dγ +
∑

e⊂∂K

ηK,e

2hK,e

∫

e

(u− û)T (u− û)dγ

}
, (10)

where ηK,e > 0 is the stabilization parameter for each edge e ⊂ ∂K, and hK,e is the length

parameter for e such as the edge length |e| itself, |K|/|e| etc. Moreover, we impose the same

condition on û as in (9). The present variational principle is in general a stationary one, but

can become an minimum one under appropriate conditions on the stabilization parameters1).

4. POLYGONAL LINEAR ELEMENT

Using the variational functional Π2, let us develop a finite element for the linear plane stress

problems. For simplicity, we assume that the material corresponding to each element is isotropic

and homogeneous, and the element thickness is also constant. That is, E, ν and t of each K are

constant functions of (x, y). As approximations to the two displacement fields u and û, we not

only can use polynomial functions of various degrees, but also more general analytic functions.

For simplicity, we here show the use of piecewise linear polynomials only as a concrete example.

On the other hand, we consider general m-polygonal sub-domains as finite elements.

4.1 Approximate displacements

First, the approximation uh of u in element K is chosen to be linear and is completely

independent of those in other elements. Thus such a uh is a discontinuous piecewise linear

polynomial over the finite element subdivision T h. For a triangular element, it is possible to

express uh by the interpolation form with the vertices or midpoints of K taken as nodes. But

even in this case, the continuity of uh at nodes shared with other elements is never imposed

unlike the conventional finite elements. For elements of other shapes, it is impossible to employ

whole vertices as nodes. Thus it is natural to express uh in the node-free form for each K :

uh(x, y) =

(
u1h(x, y)

u2h(x, y)

)
=

(
α1 + α2x + α3y

α4 + α5x + α6y

)
= N1(x, y)ααα , (11)

ααα = (α1, ..., α6)
T (α1, ..., α6 are coefficients) , N1(x, y) =

[
1 x y 0 0 0

0 0 0 1 x y

]
. (12)

Of course we can introduce translations and scalings to (x, y). Using the linear coordinate ξ on

e ⊂ ∂K and a 2× 6 matrix function N2(ξ) derived from N1(x, y), uh on e can be expressed as

uh(ξ) = N2(ξ)ααα ; 0 ≤ ξ ≤ |e| . (13)
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Secondly, the approximate function ûh for û is assumed to be linear on each edge e of finite

elements and is common to any two adjacent elements sharing e. On the ends of e, i.e., at the

vertices of elements, we can either impose or disregard the continuity on ûh, but we will only

consider the continuous case to reduce the number of unknowns. Thus ûh can be expressed

as a continuous piecewise linear polynomial over the graph composed of vertices and edges in

T h, and also as a interpolation function in terms of vertex values of ûh. Then the vertices play

the role of nodes as in the classical FEM. We also assume that ûh takes the value of g1 at the

vertices on Γ1 to approximate (9). Using ξ on e ⊂ ∂K, we can express ûh as

ûh(ξ) =

(
û1h(ξ)

û2h(ξ)

)
=

(
β1 + β2ξ

β3 + β4ξ

)
(β1, ..., β4 are coefficients) . (14)

The above ûh(ξ) can be also expressed in terms of the 2m-dimensional vector U composed of

its values at all m vertices :

ûh(ξ) = N3(ξ)U ; 0 ≤ ξ ≤ |e| , (15)

where N3(ξ) is a 2× 2m matrix function of ξ usually with many zero entries.

4.2 Derivation of element matrices and vectors

Using (1), (2) and (11), the approximate strain vector εεεh = εεε(uh) in each K is given by

εεεh =




εxh

εyh

γxyh


 = M1ααα ; M1 =




0 1 0 0 0 0

0 0 0 0 0 1

0 0 1 0 1 0


 . (16)

Then the element strain energy for the assumed uh is calculated as

∫ ∫

K

t

2
εεε(uh)

T Dεεε(uh) dx dy =
t|K|

2
αααT MT

1 DM1ααα , (17)

where |K|, the area of K, is concretely calculated as follows by using vertices (xi, yi)1≤i≤m of

K arranged in the anti-clockwise order :

|K| = 1

2

m∑
i=1

(xiyi+1 − xi+1yi) with (xm+1, ym+1) = (x1, y1) . (18)

For integrations of general polynomials in K, the use of the Stokes formula is effective4,9).

We also need the approximate sh for s on e ⊂ ∂K, which is derived from σσσh = Dεεεh as

sh = M2ααα ; M2 = t

[
n1 0 n2

0 n2 n1

]
DM1 , (19)

where n = (n1, n2)
T is the outward unit normal on e. Since ∂K is a polygon, n is a constant

vector on each e. Then the line integration
∫

∂K
s(u)T (û− u) dγ in (10) with s(u) = sh, u = uh
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and û = ûh can be performed easily by the mid-point rule on each e. That is, by using the

value ξ∗ of ξ at the mid-point of e as well as the edge length |e|, we have

∫

∂K

sT
h ûh dγ =

∑

e⊂∂K

|e|αααT MT
2 N3(ξ

∗)U ,

∫

∂K

sT
huh dγ =

∑

e⊂∂K

|e|αααT MT
2 N2(ξ

∗)ααα . (20)

Similarly, for the last term in (10), we obtain

∑

e⊂∂K

ηK,e

2hK,e

∫

e

(uh − ûh)
T (uh − ûh)dγ =

∑

e⊂∂K

ηK,e

2hK,e

[
αααT

∫ |e|

0

NT
2 (ξ)N2(ξ) dξ ααα

−2αααT

∫ |e|

0

NT
2 (ξ)N3(ξ) dξ U + UT

∫ |e|

0

NT
3 (ξ)N3(ξ) dξ U

]
, (21)

where the integrals can be performed by the Simpson formula or the two-point Gauss one4).

We should also consider the integrals related to f and g2. For each element K, we have
∫ ∫

K

uT
h f dx dy = αααT

∫ ∫

K

NT
1 (x, y) f(x, y) dx dy . (22)

If K has at least one edge contained to Γ2, we must consider the following line integral :

∑

e⊂∂K∩Γ2

∫

e

ûT
h g2 dγ = UT

∑

e⊂∂K∩Γ2

∫ |e|

0

NT
3 (ξ)g2(ξ) dξ . (23)

Now the quantities in Π2(uh, ûh) related to K can be written as

1

2
αααT A11ααα + αααT A12U +

1

2
UT A22U−αααTF1 −UTF2 , (24)

where A11 and A22 are symmetric matrices, and the matrices and vectors are given by

A11 = t|K|MT
1 DM1 −

∑

e⊂∂K

|e|[MT
2 N2(ξ

∗) + NT
2 (ξ∗)M2] +

∑

e⊂∂K

ηK,e

hK,e

∫ |e|

0

NT
2 (ξ)N2(ξ) dξ,

A12 =
∑

e⊂∂K

|e|MT
2 N3(ξ

∗)−
∑

e⊂∂K

ηK,e

hK,e

∫ |e|

0

NT
2 (ξ)N3(ξ) dξ, A22 =

∑

e⊂∂K

ηK,e

hK,e

∫ |e|

0

NT
3 (ξ)N3(ξ) dξ,

F1 =

∫ ∫

K

NT
1 (x, y) f(x, y) dx dy , F2 =

∑

e⊂∂K∩Γ2

∫ |e|

0

NT
3 (ξ)g2(ξ) dξ . (25)

Since ααα is independent of quantities related to all elements other than K, we can take variation

(or derivative) of (24) with respect to ααα, and then equate the variation to zero. Then we find

A11ααα + A12U− F1 = 0 , (26)

so that, if A11 is regular, we have ααα = −A−1
11 A12U + A−1

11 F1. Substituting this into (24), i.e.,

using a kind of static condensation process4), we obtain the expression in terms of U only :
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1

2
UT AU−UTF− 1

2
FT

1 A−1
11 F1 ; A = A22 − AT

12A
−1
11 A12, F = F2 − AT

12A
−1
11 F1 . (27)

From the above, we can find that A and F correspond to the element stiffness matrix and the

element load vector associated to the element nodal displacement vector U for ûh. Thus we

can use A and F in completely the same fashion as in the conventional FEM, so that even the

mixed use of the conventional elements and the present ones is available. Moreover, the use of

m-polygonal elements with m > 4 and even non-convex elements is possible to a certain extent.

Of course, too large m may yield loss of accuracy due to unbalanced approximation capabilities

of uh and ûh. It is also to be noted that A and F for the present triangular element coincide

with those of the conventional linear triangular one. However, the internal displacement uh

does not necessarily coincide with that of the conventional linear triangle, unless F1 = 0.

4.3 Stabilization parameter

The choice of the stabilization parameter ηK,e > 0 as well as the length parameter hK,e for

e ⊂ ∂K is essential to obtain reasonable numerical solutions. In the present isotropic case, we

specify a common positive constant η0 and choose them as follows :

ηK,e = η0Et , hK,e = |e| . (28)

We numerically tested various values of η0, and the range 2 ≤ η0 ≤ 10 appears to be appropriate

in many cases. For coarse meshes, smaller values of η0 in this range may be preferable so long

as the numerical stability is assured. On the other hand, the choice η0 < 2 may cause numerical

instability, and the one η0 > 10 may give too stiff results. Especially, combination of large m

and η0 yields very poor results, although improvement can be still achieved by mesh refinement.

5. NUMERICAL RESULTS

We give some numerical results obtained by the present linear discontinuous Galerkin FEM.

We omit the results for the triangular element, which gives the same results as the conventional

linear triangular element at least for the problems below.

50.0

10.010.0

24.25

9.0

Fig. 2 Meshes and deformed shapes for the cantilever beam problems
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5.1 Cantilever problems

Two types of cantilever beams of thin rectangular plate shape subjected to uniform vertical

tip loading is analyzed by our approach with polygonal elements of variable m. As is well

known, the present problems exhibit severe shear locking phenomena4), so that they may be

effective to see the performance of various finite element models.

The first case is the use of square cells composed of pairs of convex and non-convex quadri-

lateral elements, while the second is the mixed use of quadrilateral, pentagonal and hexagonal

elements. Examples of coarse meshes with calculated deformed shapes are shown in Fig. 2

for η0 = 2, E = 10000.0, ν = 0.3 and t = 1.0. In addition, the planar plate sizes are :

(width, length) = (10, 50), (9.0, 24.25) for the first and second cases, respectively.

For the first problem, we tested meshes with 1 × 5, 4 × 20 and 10 × 50 square cells for

η0 = 2, 5, 10. The mesh in Fig. 2 corresponds to the coarse one (1 × 5), while the deformed

meshes for the moderate (4× 20) and fine (10× 50) cases are shown in Fig. 3. Table 1 for the

first case shows the calculated vertical tip displacements normalized by the Timoshenko beam

theory9) with the shear correction factor 5/6. Each tip displacement is the one averaged in

the vertical (y) direction. We can see that the results depend strongly on η0 when the mesh is

coarse, but they can be improved and converge to the exact value as the mesh is refined.

In the second case, we also tested various η0 and meshes. The results are, however, more or

less similar to those of the first case, so we only show the calculated vertical tip displacements

for several η0 in Table 1 as the second case for the mesh in the right-hand side of Fig. 2.

5.2 Square plate with a circular hole

We also consider a square plate with a central circular hole subjected to uniform end loading

in x-direction, see Fig. 4. The dimensions and material properties are : L = 400.0, r = 25.0,

E = 21000.0, ν = 0.3, t = 1.0, where L is the side length and r the hole radius.

We tested two meshes shown in Fig. 5, and the obtained deformed shape for η0 = 2 are

illustrated in Fig. 6. For these meshes, we also tested several values of η0 in the range 2 ≤ η0 ≤
10, but the results are essentially the same in the graphical level and are omitted here.

Moreover, the normal stress σx along the y-axis is calculated for the fine mesh and compared

with the corresponding analytical solution for the infinite plate10). Fig. 7 shows the results for

η0 = 2 together with those based on the above analytical solution. We also tested the classical

bilinear quadrilateral element4) for the same meshes, but the results are almost the same as

the present ones in the graph. The coincidence appears to be generally good, and the present

linear quadrilateral element can give results comparable to the classical bilinear element.

6. CONCLUDING REMARKS

We have proposed a discontinuous Galerkin FEM of two-field hybrid displacement type for

linear plane stress problems, and presented a formulation for polygonal finite elements with

linear approximate displacement fields. Furthermore, we gave numerical results to show the

9



Table 1: Calculated tip displacements normalized by the Timoshenko beam solutions

case first second

mesh coarse moderate fine coarse only

η0 = 2 0.474 0.936 0.997 0.933

η0 = 5 0.328 0.885 0.987 0.788

η0 = 10 0.204 0.789 0.965 0.635

validity of our approach. In particular, it turned out that even non-convex elements and m-

polygonal ones with m ≥ 5 are available, if the stabilization parameter is carefully chosen. At

present, we consider only the linear polygonal elements, since our modest concern is to see

the validity of our idea. However, we will test higher order polynomial approximations and

three-dimensional problems to demonstrate practical effectiveness of our approach. Theoretical

analysis based on functional analysis is also important and to be performed in future works.

This work is partially supported by JSPS, Grant-in Aid for Scientific Research (C) 19540115.
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Fig. 6 Calculated deformed forms of the square plate with a hole
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