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Abstract

We give some fundamental results on the error constants for the piecewise constant inter-
polation function and the piecewise linear one over triangles. For the piecewise linear one, we
mainly analyze the conforming case, but the present results also appear to be available for the
non-conforming case. We obtain explicit relations for the upper bounds of the constants, and
analyze dependence of such constants on the geometric parameters of triangles. In particular,
we explicitly determine some special constants including the Bledbé\ziz constant, which
plays an essential role in the interpolation error estimation of the linear triangular finite ele-
ment. The obtained results are expected to be widely used for a priori and a posteriori error
estimations in adaptive computation and numerical verification of numerical solutions based
on the triangular finite elements. We also give some numerical results for the error constants
and for a posteriori estimates of some eigenvalues related to the error constants.
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1 Introduction

The finite element method (FEM) is now recognized as a powerful numerical method for
wide classes of partial differential equations. Furthermore, it also has sound mathematical
bases such as highly refined a priori and a posteriori error estimations. In the classical a
priori error analysis of FEM, the interpolation error analysis is essential to derive final error
estimates in various norms and/or semi-norms[10, 11, 21]. In this process, there appear a
number of positive constants besides the standard discretization (or mesh) paraeueder
norms (or seminorms), but it has been very difficult to evaluate such constants explicitly. For
guantitative purposes, however, it is indispensable to evaluate or bound them as accurately as
possible, because sharper estimates enable more efficient finite element computations. Thus
such evaluation has become progressively more important and has been attempted especially
for adaptive finite element calculations based on a posteriori error estimation as well as for
numerical verification by FEM[3, 6, 8, 10, 25]. In this paper, we will give some fundamental
results on various interpolation error constants of the most popular triangular finite elements.
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More specifically, we derive some fundamental estimates for the interpolation error con-
stants appearing in the popul&s (piecewise constant) anfl, (piecewise linear) triangular
finite elements. Inspired by the monumental paper of BehtAziz [5], we analyze the de-
pendence of several constants on the geometric parameters such as the maximum interior angle
and the minimum edge length of a triangle more quantitatively than works precedent to ours.
Among them, the optimal constarttin the present paper) appearing in féerror estimate
of the P, interpolation of 72 functions over the unit isosceles right triangle is essential and
frequently used, and it was explicitly evaluated firstly by Natterer [27]. On the other hand, this
constant was shown to be closely related to the Ghaer(this paper) presented and effectively
used by Babska and Aziz in conjunction with the maximum angle condition [5]. More pre-
cisely,C', gives an upper bound quite close to the optimal constajénd the relation between
C, and(C was further discussed in [25, 30]. Thus a precise estimation of these two constants
is very important, and a number of researchers have given bounds for these using various
approximation methods including numerical verification, see e.g.[4, 7, 22, 25, 26, 27, 30].
Furthermore, these constants can be also used to evaluate the interpolation error constants for
the non-conforming?, triangle, as was mentioned in [19].

For the above Baliika-Aziz constant, we already succeeded in obtaining a value which
is in a sense optimal [18]. That is, by analytically solving an eigenvalue problem for the
2D Laplacian over the above triangular domain, we showed that the constant can be easily
determined from a solution of the simple transcendental equatidr- tan(x~!) = 0. In this
process, we used the reflection (or symmetry) method [28]. In this paper, we will also give
some additional results for exact values or bounds of various error constants. Moreover, we
will present some explicit relations for the dependence of such constants on the geometry of
triangles. In particular, emphasis is put on the maximum angle condition presented in [5]. We
also give some analytical results based on asymptotic analysis with regards to the behaviors
when a right triangle becomes very thin or slender. Such behaviors can be important for
example in anisotropic triangulations, cf. [8].

Thus our results can be effectively used in the quantitative a priori and a posteriori error
estimations of the finite element solutions by thetriangular element and also those based
on the P, triangle. The former is of course the most classical and fundamental one, but still
in frequent use, while the latter appears in some mixed finite element methods and implicitly
on various occasions. Moreover, we also give some concrete a posteriori error estimates to
eigenvalues related to several error constants. Numerical results are also obtained for the error
constants and a posteriori estimates of some eigenvalues.

The plan of this paper is as follows. Section 1 is the present one on some historical re-
marks and overview of our analysis. Section 2 gives necessary notations and concepts, and
also introduces various error constants to be analyzed. Section 3 deals with estimation of var-
ious interpolation error constants, and Section 4 analyzes asymptotic behaviors of the error
constants when the triangle is a thin right one. Section 5 gives application of our results to
a posteriori estimation of some error constants by usingihEEM. Section 6 is the one
for numerical results, and Section 7 gives some concluding remarks and acknowledgements.
Appendix is also attached to give some additional theoretical and numerical results related to
Section 4.



2 Preliminaries: error constants

Let h, o andd be positive constants such that
h>0,0<oz§1,(gg)cos_1%§0<7r. Q)

Then we can define the triangdlg 4 ;, by AOAB with three vertice$)(0,0), A(h,0) and
B(ahcos, ahsin#). From (1),AB turns out to be the edge of maximum length, i3 >

h > ah with h = OA andah = OB being the medium and the minimum edge lengths,
respectively. It is to be noted here that the notatiaa mostly used as the largest edge length
in standard textbooks such as [11], but our usagk @ the medium one may be convenient
for the present purposes. A point on the closuré&of , is denoted by: = {z;, z,}, and the
three edges,, e; ande; of 7, ¢, are defined as

612014, GQZOB, 63:AB. (2)

We can configure any triangle @s ¢ ;, with somex, 6 andh, by using an appropriate congruent
transformation inR?. As the usage in [5], we will use abbreviated notatidns = 7,01,
Ty = Tor2 andT =T (Fig. 1).

B(ah cos 8, ahsin ) B(acosf, asinf)

To.6.n Tao=Tuo1
ah 9
S h ~ A(h,0) = — ~ A(1,0)
B(0,1)
B(0, )
To = Ta,% T I'="1
[ Al L H Al
; (1,0 ; (1,0

Figure 1: Notations for trianglesE, g = To 91, T = To 5/2, T = 11

We will use the popular Hilbert spade(7,,,), and denote its norm by ||z, , ., where
the subscript’, ¢ 5, is often omitted if there is no fear of confusion. When we need to use the
L, space and its norm for other domains suckawe will use notations liké.»(£2) and|| - ||¢-



Let us define the following closed linear spaces for functions dygr, :

@M:wemwwmﬂwwmm:m, 3)
Vi ={ve H' (Tags) | / vds =0} (i=1,2,3), @)
Vi = {v € H:(Tog )| 0(0) = v(A) = v(B) = 0}, 5)

where H' (T, 4,) and H*(T,, o) are respectively the first- and second-order Sobolev spaces
for real square integrable functions ovEy,  [2], andds is the line element. For other do-
mains like€2, we will also use spaces such Hé( ) andHQ(Q) later. For the above spaces,
we will again use abbreviated notatiovis, = V;, |, Vi =V /2 andV' =V} (0 <1i < 4).

«

Let us consider the usué, interpolation operatofl), , , and P, onell,, , , for functions
onT,y,[10, 11, 21]:11° af.nV forVv € H (T, ;) is a constant function well-defined by

(M p0)) = [ @// (¥ € Toa) ©

while IT}, , ,v for Vo € H*(T, ) is an at most linear polynomial function such that
(I} g p0)(x) = v(x) for 2 =0, A, B. (7)

To give error estimates for these interpolation operators, it is natural to evaluate the positive
constants defined by

Ci(a,0,h) = sup ol (1=0,1,2,3), (8)
veVi, ,\{0} It

04(06, 87 h) = sSup m ’ (9)
veVd, ,\{0} V]2

C'5(@7 07 h) = sSup M ) (10)

evi, \{o} |U|2

wherelv|; = (37, |0v/0x;|)Y?, and|v]y = (327, |0*v/0x;0x,]|*)"/2. When we need
to specify a domain liké! for the above semi-norms|; and| - |, we will use|- |, o and|- |2,
respectively. The existence of these positive constants follows from the Rellich compactness
theorem. Due to the properties to become clear soon, such constants together with some related
ones are often calledhterpolation error constantsWe will again use abbreviated notations
Ci(a,0) = Ci(a,0,1), Ci(a) = Ci(a, m/2) andC; = Cy(1) for 0 < i < 5.

By a simple scale change, we find th@t(«,0,h) = hC;i(«,0) (i = 0,1,2,3,4) and
Cs(a, 0, h) = h*Cs(a, ). These relations and constants are used to derive popular interpola-



tion error estimates fdil!, , , (i = 0, 1) applied to functions off, 4, [10, 11, 21]:

v — Hg,e,hUH < Co(a, 0)h|v]; Vv e H (Thon), (11)
v — H}xﬂ,h“’l < Cy(a, 0)h|v|y Yo € HQ(TQ,M), (12)
lv =TI, g poll < Cs(a, 0)R2[vly ;Yo € H*(Tapn), (13)

where we have used the facts that 110 , ,v € V), , forv € H' (T, 4,) andv — 11} 5 v €
Moreover, for the partial derivativ@v/dx, of v € H*(T,4.4), We have

ov

1

(v — Hé,e,hv)
3x1

’ < C’1 (Oé, Q)h

sinced(v — TI} ,,v)/0x1 € V,,,. On the other hand, to obtain an estimate in terms of
Cy(a, 0), we introduce rotation of the;-z, plane around the origi® by angled — = /2

so that the edg® B becomes the ordinate. Then the coordinate transformatien®y(x)
between the original variable= {z;, x»} and the new ong¢ = {z,, 2, } is given by, together
with the associated transformation= v o ®,"' for v € H2(T,4),

Ty =x18in0 — x9c086, To=1x1C080 + T98infh, (15)

0(2) = v(z) = v(Z; sinf + To cos b, —T1 cos O + Tosinb) . (16)
Based on essentially the same arguments a8dfgbx,, we can show fodv/0z, that

00
09

00 — 11} )

<
8[%2 ~ CQ(O(,&)h

: (17)

1

Whereﬂ}lm is II;, 4 ,, for the rotatedr’, 5. The above two estimates (14) and (17) are in a
sense sharper than (12) as noted in [21]. Similar relation also holds fax 0).

Remark 1. Refining the above arguments, we can obtain varieusotropic error esti-
mateg8] such as

2

o =104 g ol < by [ ) e

ij=1

2

0%v
8xixj

wherec;;'s (1 < i,j < 2) are constants similar t@(«, 0)’s (0 < k < 5) and can take
unequal values. We do not make such a refinement here, though it can be an interesting subject.

Thus we can give quantitative interpolation estimates, provided that we succeed in evaluat-
ing or bounding the constantg(«, 6)'s explicitly. So we will try to bound these constants by
fairly simple functions ofxr andfd. Notice here that each of such constants can be characterized
by minimization of a kind of Rayleigh quotient. Then it is equivalent to finding the minimum
eigenvalue of a certain eigenvalue problem expressed by a weak formulation, which is further
expressed by a partial differential equation with some auxiliary conditions.
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More specifically, we can characterize the constéahts, ¢)'s by minimization of Rayleigh’s
quotientstj’)a’s :

2
C2(a,0)= inf RY(w); RY (v _ i i=0,1,2,3), 18
i ( ) UEVC;L;,Q\{O} a,@( ) 0470( ) ||UH2 ( ) ( )
2
Cr%a,0) = inf RY (v ; RY (v :ﬂ, 19
4 ( ) vGVD‘f,e\{O} a,@( ) 04,9( ) ’UE ( )
2
C:?*(a,0) = inf R® (v ; R®) (v) = ﬂ, (20)
5 ( ) veVﬁ’g\{O} a,9( ) a,G( ) HUHQ

where all notations and functions are fy,.

By the standard compactness arguments, each infimum above is actually a minimum, and is
the smallest eigenvalue of a certain eigenvalue problem. For example, the eigenvalue problem
associated witly(«, #) is tofind A € R andu € V), \{0} that satisfy

(Vu, Vo)r, , = Mu,v)r,, (Yo e V). (21)

Here,(-, )1, , denotes the inner products of badth(7. ») andLy (T, ¢)*, andV is the gradient
operator. When we consider the corresponding inner products for domaing, like will
use notations such ds ). The present eigenvalue problem is also expressed by a partial
differential equation, a linear constraint fb’f,e and a boundary condition [25, 26]:

ou

—Au=Muin T,y, / wx)de =0, — =0 on 01,y, (22)
T on

«,f

whereZ denotes the outward normal derivative on edges gdng does the boundary &f, 4.

The above boundary condition is the homogeneous Neumann one, and the desired minimum

eigenvalue is the second (and positive) one for the same problem without the linear constraint.
For C4(a, 0), it is characterized in essentially the same fashion as (21), if the associated

spacevo?ﬂ Is replaced With\/alﬁ. On the other hand, the equations corresponding to (22) be-

come more complicated [25, 26]:

(23)

! 0 onedges)B andAB
—Au= X in T,y, / u(z1,0)dzy =0, 8u_{ 9 ’
0

on ¢ onedgeDA,

wherec denotes an unknown constant to be decided simultaneouslywétid \. See also
Section 5.3 of this paper.

The other constants are characterized similarly. For example, the eigenvalue problem as-
sociated taCy(a, 6) is tofind A € R andu € V,},\{0} that satisfy

2

Z (0%u/0x;0x;, 0°v/0x;:0x))1, , = A(Vu, Vo)1, , (Vv € Viy). (24)

4,7=1
But the partial differential equation related to the above and also th@&i(te, #) are of fourth
order ones with special linear constraints and boundary conditions, and are more difficult to
deal with than the second order equations as in (22) and (23), cf. [4, 7]. Binds a triangle,
it is difficult to solve such eigenvalue problems explicitly even in the case of second-order
equations, except in some rare cases to be shown later.
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3 Estimation of interpolation error constants

It is in general difficult to obtain exact values of the error constéite, ¢)’'s except for very

rare cases. In this section, we will first give some formulas to bound them in terms of their
special values such & = Cj(1, 7, 1)’s. Such formula can be useful for various purposes,
provided that the selected special values are evaluated with sufficient accuracy. So, we will
also perform exact evaluation of some special constants.

3.1 Reconsideration of Natterer’s results

Natterer [27] derived an upper bound formula fdy(«, 0) in terms ofCy = Cy(1, 3, 1),
andf. He also gave an upper bound 0%, so that his formula has been effectively used
in quantitative error estimates of finite element solutions including numerical verifications of
various differential equations [25, 26]. Here we begin by applying his techniques to bound the
error constants introduced in Section 2.

To this end, let us introduce the following simple affine transformagioa ¥, ¢(x) be-

tweenz = {x1, 29} € Thpand§ = {1, & € T =Ty x4

50
Sr=o1— x2‘cos , §o = —96.2 ;=& +abycosl, x9 = aysinf. (25)
sin 6 asin 6

By eigenvalue analysis of matrices resulting from the above transformation in the Rayleigh
guotients from (18) through (20), we obtain the following results.

Theorem 1. For « €]0, +o00[ andf €]0, 7|, C;(«, 0)’s are bounded as
Yi(a, 0)C; < Ci(a,0) < ¢i(, 0)C; - (0 <1 <5), (26)

whereC; = C;(1,%) (0 <i < 5),

v (a,0) :  v_(a,0) ~ v_(a,0)
%‘(049) - 9 (O <1< 3)7 @/J4(O./,9) - ma 77/}5(01,9) - 92 ) (27)
(0 0) = vy(a, ) ; 0 f) = vy(a, ) 0 f) = vi(a, )
¢1( 79) - 9 (0 <1< 3) ) ¢4( 70) \/m ) ¢5( 79) 2 (28)
with

v_(a,0) =1+ a*~vV14+2a2cos20 + a4, vy(a,0) =14 ®+V1 + 202 cos 20 + a* . (29)

Remark 2. In general, the upper bounds are more important than the lower ones, but the
latter may be meaningful in evaluating the accuracy or efficiency of the boundings. The above
estimates should be used essentially in the rahgea < 1 andg < cos™! 5 <0 <mal

though they may be meaningful for general triangles without restrictiofs)jrand the upper
bounds except far= 4 are uniformly bounded there. This fact means that these constants are
robust to deformation of the triangl&, . On the other hand, the upper bound 0 («, 0)

is not so, and hence, to assure such uniform boundedness, we need the so-called minimum

7



angle conditiorj11] : the minimum angle df,, 4 is bounded from below by a certain positive
constant. This may be seen by using the identityy, §)v, («, §) = 4a?sin? § and rewriting
the upper bound inequality as

Cila,0) < —& (’4(0"8))3. (30)

asind 2

Namely, we can see that the right-hand side diverges-4o as « — +0 for each fixed
6 €]0,[. On the other hand, the minimum edge lengtbf 7,, , cannot approach t6 under
the minimum angle condition. It is also to be noted that the above inequality/fer, 0)

is exactly the same as obtained by Natt¢?gi, although our notations are different from
his. Actually,Cy(«, #) is uniformly bounded under the maximum angle condition of Bladu
Aziz[5], which requires the maximum interior angle’tif  to be away fromr by a positive
constant and hence is weaker than the usual minimum anglgLthelt is also known that
this weaker condition is essential and cannot be relaxed any fapre

Proof. We will use the coordinate transformation (25) betwé&gp and7. By simple calcu-
lations, we have fob (&, &) = v(zy, 22),1.€.,0 =vo \11;719 under the present transformation :

22: ov 2_ 1 @ 2C08981}6U+i @2

i1 al'l N SiIl2 0 851 « 851 852 a2 852 ’
wherev andv are assumed to be sufficiently smooth. The two eigenvalues associated to the
quadratic form fowv/0¢; (i = 1,2) in [ - | above are two solutions of the characteristic equa-

tionp?—a 2(14+a?)p+a~2sin®§ = 0, and are given by_(«, 0)/(2a2) andv (a, ) /(2a2).
Thus we can easily derive

v_(a,0) 205\ v\’ vi(a,0) VA
Sl ot gV < < I\
202 sin” 6 ; (5’&) - Z Ox;) ~ 2a%sin®0 ; 0¢;

Moreover, the Jacobian of the present transformation is evaluat@@rasr,)/0(&1,&) =
asin 6. From these estimates and the identity«, 6)v, (a, 0) = 4a? sin? 6, we have

2asin 0 2asin 6
2 . ~ 112 ~12 2
= osin @ —_— < —_— 1
HUHTaﬂ S1 HUHT7 y ( 79>’U|1,T_ ‘U‘l,Ta,Q > ( 9)’ ’1T> (a )

where| - |1 1, ,, for example, denotes |, for T, 4. The results foi = 0,1, 2, 3 are now easy
to obtain by using the above and the definitions of the constayits 0)’s, since the present
transformation yields a bijection betwegf, andV".

Similarly, we obtain

i 1 P 2+i > 2+2(1+60826) 920 \?
by 81‘181'] ~sinld &3 at \ 0¢2 a? 06,0&5

2COS29@@ B 4cosh O*0 0*0 B 4cosh 0*0 0*D
a? 35% 3§§ Q 8512 06108 al 35% 08108




Let us consider the following real symmetric matrix related to the quadratic for?foio¢?,
9% /0€2 and/2 9% /0€,0€, in [ -] of the right-hand side above :

cos?d B V2cos @

1
o? o
cos?# 1 V2 cos b
o? at R
V2 cos b V2cosf 1+ cos?f

a ad o?
The associated characteristic equation is
i —a 14 (14 cos® 0)a® + a*}p® 4+ a sin? {1 + (1 + cos? 0)a® + o'}y — a % sin® 0
= (p—a?sin?0){p® —a (1 +2a%cos’ 0+ a*)pu + a *sin* 0} =0,

which has three eigenvalues (o, 0)/(4a*) < a?sin*60 < v2(a,0)/(4a*) with v_(a, 0)
andv, («, 0) defined by (29). Now we have the estimates

2 2 2~ 2 2 2 2 2 2 2~ 2
I/_(Oj/,i) Z 0°v < Z 0%v < 1/+(Of,i) Z 0% 7
4ot sin® 0 0&,0¢; O0x;0x; 4ot sin® 0 0&0¢;

1,j=1 1,7=1 i,j=1

which gives, aga.1),

dasin € | _ dasin € | _
Vi(—a’9>|U’§,T < ’U‘g,Ta’@ = MM;T' (a.2)
From(a.1) and(a.2), we obtain the results far= 4, 5. O

As a corollary of the preceding theorem, we can bound €3¢h, 0) in terms ofC;(«a)
andd. Such estimates can be effective when the dependence of the congigeredn « is
known as we will see later. The bounding can be achieved by introducing the following affine
transformation between = {z, 22} € T,,p and{ = {&1,&} € T, :

& =x1 —x9c080/sinf, & = xy/sinb, (32)

which is a bit different from that used by Batka and Aziz [5]. But essentially the same can be
attained by simply applying the results of Theorem 1dct 1, as may be seen by comparing
(31) with (25).

Corollary 1. For a €]0, +oo[ andf €]0, 7], C;(«, 0)'s are bounded as
Vi(0)Ci(a) < Ci(a,0) < ¢i(0)Ci(ar) (0 <i<5), (32)
wherey () = ¥(1,0) and¢(6) = ¢(1,0) for 0 < i < 5. More specifically,

©i(0) = /1 —]cosl] (0<i<3), 1#4(9)—\}%, Ys(0) =1—|cosb|, (33)

6i(0) = I+ cos] (0<i<3), ¢4<e>=%, 65(0) = 1 + | cost]. (34)



Remark 3. The function form of,(0) associated t@',(«, #) is consistent with the maximum
angle condition in[5], since¢,(0) is bounded orjg, 7 — ¢| for each sufficiently small fixed

5 > 0. Thus,Cy(a, 0) is uniformly bounded fof < o« < 1 and T <60 <m—4,if we can

show thatCy(«) is uniformly bounded for such. Notice here that,(«) < C; = C, for
a < 1, as will be seen in the subsequent section.

3.2 Estimation of Cy(«, 0) by C(«, ) and Cy(, 6)
We can also give an upper bound fdf(«, ) in terms ofC («, §) andCy(a, 6).

Theorem 2. For V a €]0, +oo[ andV 6 €]0, 7|, C4(a, 0) is bounded as

1 1+ |cosf| [vy(a,b)
<
V2 sin@y(a’e) =G sin 6 2 ’

wherev, («, 6) is defined by(29), andv(«, 0) by

(35)

C4<Oé, 6) <

v(a, ) = [Cf(a, 8) + C2(a,0) + 2 Oy (a, §)Ca(a, 8) cos? 8

1/2
+ (Ci(a, 0) + Ca(a, 0)) \/Clz(oz, 0) + C3(,0) 4+ 2 Cy(cv, 0)Cs (v, 0) cos 2«9] . (36)

In particular, the maximum angle condition applies to the present esti(Babecf.[5, 21].

Remark 4. Itis also possible to bound,(«, #) by C; («, 8) andCs(a, 0) in a similar manner,
although we omit the explicit expressions. It may be meaningful to compare two es{(ia@gtes
and(35) for Cy(a, 0):

Cala,0) < — (Mo"e)f = 71(a,0),

asinf 2
1+ |cosf| [vi(a,6)
< =: .
Cy(a,0) < Cy e~ 5 Yo, 0)

Noting the relationQca| cos 8] < /1 + 2a2cos 20 + a* < 1+ o? and2a < 1 + o2, we find

(1 + [cosd]) Cy < 72(a, 6) 20(1 + | cos b)) Ci - Ci
1+ a2 Cy “mla,0) 1+a2++vV1+2a2cos20+a*Cy — Cy

It is known thatC, ~ 0.489 by numerical computations without verificatigh 22, 30] On
the other hand, it is theoretically shown th@t is an upper bound of’;, but is quite close
to C, as shown by numerically verified boundifg92 < C; < 0.493[25, 26, 18, 19] cf.
also Theorems 3 and 4 later. Thus the above estimate show§3tats practically better
than(30) for almost all values ofr andf. As a practical upper bound far',, Siganevich30]
recommended.5.
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Proof. From the definition, we have

2 2 9
CZ(O{, 9) = sup ﬂ — ||3v/8x1|| + ||3v/c9x2||

- . (b.1)
veVA \{0} |v]3 VeV )\ {0} |0v/02: |3 + [Ov/ 02|}

Recall here the transformation rules (15) and (16). Then, for the preserit;;, \ {0} and
the associated = v o @, ', we can show as (14) and (17) that

180/021|| < Cila, 0)|0v/011]1,  [|00/02s| < Caler, 0)|05 /0|1, (b.2)

whereov /0ty = cosf Ov/0xy + sinf Ov/0xs atx = {1, 22} € Top andz = {21,722} =
®y(x). Thendv/Oxs = (0002 — cosf Jv/dxy)/ sin 6 can be evaluated as

1

sin® 6

|0v/0z,||* < [||81§/8i2|]2 + 2| cos 8|-]|00 /05| - ||Ov/ 0z || + cos® O ||8v/8x1||2} )
By (b.2) and the present inequality, we can boujad /0z,||> + ||0v/dx,||? from above as
|00/ 0e1||* + [|0v/ D ||?

[10v/ 011 + 2| cos 0] | 0v/ Oy || -[|00/ Do || + (| 00/ 0 |?]

<
~ sin%6
1

<
~ sin%6

[C(a,0)|0v/0z1; + 2 Ci (e, 0)Co(x, 0)| cos 8] -|0v /D |1 - |00/ Os 4
+ C2(a,0)|00/05]7] . (b.3)

To evaluatedo/0z, |, above, we again use the relati@®dy 0z, = cos 8 Ov/0x1+sin 6 Ov/0xs.
Then we find

|00/0%5|1 < |cosb| - |0v/Dz1|1 + sin b |0v/0xs|; .
Substituting the above into the right-hand sid€o8), we obtain
100/ 0A|[* + [|0v/ O |
1
e~ [{CT (e, 0) + 2 C (e, 0)Co(e, 0) cos® 6 + C3(ax, 8) cos® 0} [0v /D]
+2C(a, 0){C1(a, 0) + Ca(cx,0)} sin 0| cos 0|-|0v /D1 |1 - |Ov/Ox4 |4
+ C3(a, ) sin® 0 |0v /0,7

<

By eigenvalue analysis of the quadratic form aboveder/0z, |, and|0v/0z,|,, we have, by
usingv(a, ) in (36),
v (a, 0)

90 /02 + 190/ 0| < -2

[|8U/8:1:1ﬁ + |8v/8x2|ﬂ ,

which gives the former part of (35) ky.1).
To derive the latter part of (35), we should Usga, ) < ¢;(«,0)C; (i = 1,2) in (26) and

the identitiess (., 0) = éo(a, ) = 1/ “2 angey = ¢, O
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3.3 Determination of some constants

Theorem 1 tells us that we can obtain upper bounds of the consignts)) (0 < i < 5), if

correct values of’; = C;(1, 7, 1) are known. The upper bounds thus evaluated may be rough
but anyway correct, so that they can be used for various theoretical purposes. According to
some preceding works[18, 19, 25, 26], such exact evaluation is possible at leagtdod

C, = Cy. We will quote the results below, together with an additional resulCfor

Theorem 3. It holds forC; = C;(1, 3,1) (0 <7 < 3) that
1)i=0:Cy= l
s
2) i =1,2: C, = (Cy, and is given as the maximum positive solution of the transcendental
equation fory :
l—f—ta,nl:(). (37)
I I
The concrete value a@f; can be obtained numerically with verification. For example,
we have the estimation
0.49282 < C < 0.49293. (38)
3)i=3: C3= G ,  0.34847 < C5 < 0.34856 .
V2
Remark 5. i) Numerical computation without verification give§ = 0.49291245--- and
C3 = 0.34854173 - - - . The present transcendental equation can be commonly seen in vibration
analysis of strings with special boundary conditi¢®8]. The constant’; plays an important
role in various situations and is called the Baa-Aziz constant ifiL8, 19]
i) At present, exact values 6f, and C; are not known to the best of the authors’ knowledge.
Fortunately,C; (= () is a nice upper bound af’y; as we will see in Sections 4.2 and 6.2.
Numerically,Cy ~ 0.489 as was reported irj4, 22, 30] As for C;, estimateC; < 0.361
is a correct but probably rough one given [i4], while an exact lower bound estimation is
Cs > [(15 ++/193) /1440]'/2 = 0.1416..., which is derived by the Ritz-Galerkin method using
11+ 19— 23 — 22 andz, x5 as the basis of the trial space employedf]. Our own numerical
computations suggest that < 0.168.

Proof. Refer [19, 25, 26] for 1) and [18, 19] for 2), respectively. For 3), we can prove by
using the results fof’; and a kind of symmetry method. We will proceed in three steps.

1] Similarly to (21), the eigenvalue problem associated’ias given by : Find {\, u} €
R x V3\{0} such that

(Vu, Vo)r = Mu,v)r (Yo € V3). (c.1)
Here, T is the unit right isosceles trianglg = ,, V* = Vf’j%,l is defined by (4), and the inner
products are those far. Notice that we are interested only in the minimum eigenvalue and
the associated eigenfunctions.

Let us divideT into two congruent parts using the ling = x1, which is also the line of

symmetry forZ". Moreover, one of the congruent parts is denoted’by

T={z={x,0} €T; z1 > 15}

12



The eigenfunction: # 0 can be uniquely decomposed into the symmetric parand the
antisymmetric one,,:
U= Us + Ug ,

where the symmetry and antisymmetry are those with respegt o x;. Due to the orthog-
onalities ofu, andu, for the bilinear formg-, -)r and(V-, V-)7, u, andu, can be dealt with
separatelyu, andu, both belong td’? and satisfy (c.1) for the minimum eigenvalie

2] We first consider the case wharg=# 0. We can see that~the restrictiorof u, to T’ is not
zero and satisfies the following eigenvalue problem relatéd to

e VA\{0}; (Vi,V)s = ANa,0)z (VoeV?), (c.2)

where\ is identical to the former one, the inner products are thenes forT, andV3 is
defined by

N

:{5€H1(T);/ (1 —s,5)ds = 0}.

0
Now we can see that this is essentially the same problem as the eigenvalue problem for
Ci(1, 3, 7) sinceT is congruent tdl) « z - It is also fairly easy to see that the eigenpair
for the minimum eigenvalue of (c.2) SatISerS (c.1), if the eigenfunction is extended to whole
T symmetrically with respect to, = x;. Thusa is an eigenfunction for the minimum eigen-
value of (c.2) in the present case. Then we find that= C;/v/2, sinceC(a,0,1/y/2) =
C1(a, 0)/v/2 as we have seen in Section 2. Of course, this conclusion is derived under the
assumption that, # 0.

3] Secondly, we consider the case whege# 0. Due to the antisymmetry, the trace «of
to the line of symmetry:, = x, insideT is shown to b&). Moreover, any antisymmetric
function in H'(T') automatically satisfies the line integration condition imposed&nThus
the restrictionu! of u, to T is not zero and is an eigenfunction of the eigenvalue problem:

Fe VI\{0}; (Vul,Vol); = Aul,vh); (Yol € VT), (c.3)
where) is identical to the former one, anild' is defined by
- 1
Vi={vl e HY(T); v'(s,5) =0 (0 < s < 5)}

If we consider the reflection with respect to the line= 1/2, (¢.3) becomes the problem of
the same form with/T replaced by

Ve e HUT); (1= ss) = 0 (0<5 < )}

Clearly, the eigenvalues remain the same under such a transformation. V3ircel’?, the
minimum eigenvalue ofc.3) cannot be smaller than that@£2), as can be seen by considering
the characterization of the minimum eigenvalue by the Rayleigh quotient. Thus it is sufficient
to consider the case whetg # 0 only, and the proof is complete. O
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3.4 Application to interpolation and a priori error estimates

In this subsection, we show how to apply the obtained results to interpolation error estimates
and some a priori error estimates for FEM.

From the preceding considerations, especially equations (11) through (13) and Theorems
1 and 2, we have for example the followiig and P; interpolation error estimates :

[0 — 119, 0]l < Codolex, )hlv]y 5 Yo € H (Tupn), (39)
1
1+ |cosf| [vyi(a,0)]2
_ 17! < J . 2
’U Haﬂ’hvh S Cl sin g |i 5 h|U‘2 > Yve H (Taﬁ,h)> (40)
o =TI g pvl| < Csgs(a, O)R*|v]y ; Yo € H*(Tapn). (41)

These may be rough but are still correct quantitative upper bounds, provided that the values
of Cy, C7; andC’5 or at least their upper bounds are known. EgrandC', we have obtained
exact values in Theorem 3, while, presumaldly,has been evaluated only approximately as
was noted in Remark 5.

As was already noted, such error bounds are available for triangles of general configuration
by applying appropriate congruent transformations[5, 10, 11, 21]. Then such interpolation
error estimates can be directly used in a priori error estimates of finite element solutions. In
what follows, we will briefly explain an example of such process. See e. g. [11] for the detalls.

As a model problem, let us consider the Dirichlet problem of the Poisson equation over an
bounded polygonal domain C R?: givenf € Ly(92), findu € H}(Q) such that-Au = f in
Q. Here, H} (Q) is the popular subspace &f' (€2) with the homogeneous Dirichlet condition
imposed. In the standard weak formulation, the condition/far H; (2) is stated as

(Vu,Vo)g = (f,v)e (Yo € Hy(Q)) , (42)

where theL,-type inner products are those for As is well known, this is a well-posed
problem so that we can define an operaidoy G : f € Ly(Q2) — u € H}(Q).
To apply the FEM based on thg triangle to this problem, we consider a regular family

of triangulations{ 7"}, -, of 2, and then construct & finite element spac&” C H;(12) for
each7™", cf. [11] for the terminologyregular. Here we have useglinstead of the standard
notationh for the discretization parameter, which has been already used in a different meaning.
The finite element approximatiom, < V" of the aboveu is now uniquely determined by
imitating (42) inV'":

(Vuy,, Vog)a = (f,vy)a (Yo, € V). (43)

An important fact in the error analysis of the Ritz-Galerkin FEM is the following best
approximation property [11]:

U — w0 = Uiréi‘gln u—vyl10, (44)
where| - |1 o is |- |1 for 2 (similar usages will frequently appear hereafter). Another important
one is thelL,-error estimate based on the Aubin-Nitsche trick [11]:

Ga —
|lu —uyllo < |u—uylo inf sup |g—vn|19 (45)

o€V e Ly (Q)\{0} 9lle
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From (44), an error estimation based on the interpolation fundfith, € V7 using the
vertex values of; is given by

U — uyli0 < |u— H"’1u|17g ) (46)

Clearly, the global interpolation operatif’! is closely related to the local oriié}wﬁ. That
is, for each triangleX’ € 7", we can find &, ¢ ;, congruent ta’ under a congruent transfor-
mation®y : K — T, ., and it then holds thal 1" u)|x = [IT} 5 { (u|K) 0 @' }] o P If

u € H?(2), we have, using notationsvy, Ox, h } for {a, 0, h} of T, 4, associated tdx,

lu — Hn’luﬁ,g = Z lu— Hn’luﬁ,f( < Z h%(CE(O‘KaHK”uB,K' (47)

KeTn KeTn

Thus we obtain from (46) an a priori error estimate
lu—uylo < Ju—T" | g < Cignlulzg, (48)
whereC,, andn are defined by

Cay = max Cy(ar, Ox), 0= max h. (49)
To evaluate”'y , from above, we can utilize various upper bounds already derived,fer, 9),
an example of which can be also found in (40). In problems more general than (42), we may
also need upper bounds 6% («, 0) to obtain globall, error bounds, although we can avoid
the use of such bounds to a certain extent by adopting the Aubin-Nitsche trick[11]. The
constants’;(«, 0) for 0 < ¢ < 3 may appear to be subsidiary here, but they actually play
essential roles in the analysis of the non-conformid-EM as is noted in [19].

In order to apply the above to verification of various differential equations by FEM, it is
often required to evaluate norms or semi-norms of the solutions by various data. A typical
example is to give upper bounds pfi; o, in (48) by a norm off. In the present case, we
can use the well-known relation|,, < ||f||q, provided that? is convex in addition to the
assumptions already stated [15]. Then we have

u = uyl1,0 < Cagnll flla, (50)
and moreover, by applying (45) with, taken adI"!(Gyg),
lu = uylle < Cagnlu —uglio < CE (I e, (51)

where we have used the estimafey — 11" (Gg)|1.0 < Cu,n|Gglza < Cinllglle. The

present estimation can be compared with fhénterpolation estimate

Ju — " ullg < Cson’lulae < Csun?l| flle with Cs,) = max Cs(ak, Ok) - (52)

Such evaluations become much more difficult for general problems, but have been gradually
realized in various cases.
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3.5 Application to a posteriori error estimates

A posteriori error estimation is also feasible and effective in various situations by using the
interpolation error constants considered in the preceding subsections. So, before closing the
present section, we also show how to apply the obtained results to a posteriori error estimates
for FEM. Here we only explain a special and rather classical approach [12, 20, 24] briefly, but
we can find a number of literatures on this subject.

Let g be an element of/ (div; Q) := {q € Lo(Q)? | divg € Ly(Q2)} [12, 20]. Such; can
be also chosen from the narrower sp&tg2)%. Then, some simple calculations give, with
the same notations as those in Section 3.4,

[ —uyli g = (V(u—uy), V{u—up))a = (u—uy, —Au)o — (V(u—uy), Vi )a
= (u—=uy, flo+ ((V(u—uy),q¢ = Vuy — q)o
= (
<|

U — Uy, 4 divg)g + (V(u — uy), ¢ — Vuy)g
[u— uplla - || f +divglla + [u —uylie - [[¢ — Vo .

Applying (51) to the above, we haye—u, |7 o < (Cy,n || f+div qllo+llg—Vuy o) lu—uy|i 0,
and hence

|U_U77|1,Q < 04,n77|!f+diVCJ||ﬂ+ ”q_vunHQ . (53)

Here, the constartt, , appears again, and this estimate becomes an a posteriori one, provided
that ¢ is specified somehow. The most elegant but quite a restrictive choice is based on the
hypercircle method [12, 20], whetgs chosen so that + div ¢ = 0 and hence the use 6f, ,,
becomes unnecessary. More common and practical approach is to@byapost-processing

of u,, for example, by averaging or smoothiRg:, so as to belong td{(div; 2). For this
approach to be really effective, it is at least necessary||thatVu,|o = O(n), and preferably

|f + divg|lq = o(n). Combining (53) with (45) as in (51), we can also obtain a kind of a
posterioriL,-error estimate as

Ju — upllo < C3, 0 If + divglla + Cannllg — Vuy|la - (54)

In summary, we can effectively utilize error constants suofi,gsalso in a posteriori error
estimation of finite element solutions.
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4 Dependence ofC;(«) on «

Up to now, we have given some basic results for dependence of error constants amd

6. In this section, we will consider the dependence of such constants>ef in the special

case wherd = 7/2 andh = 1. Actually, we need their behaviors in the rargec o < 1,

and, in view of (32), we want to find their maxima or nice upper bounds there. Furthermore,
the limiting casea — +0 is of some practical interests in the so-called anisotropic mesh
refinements|[1, 13].

4.1 Definitions and notations

Since eaclC;(«) = C;(a,m/2,1) is defined through minimization of a Rayleigh quotient in
terms of norms and/or seminorms ovér(see (18) through (20)), it is natural to introduce the
following transformatiort = ¥, (x) betweenr = {1, 22} € T,, and{ = {&, &} € T+

=11, L=m/a, (55)

together with the associated transformatios- v o U_! between functions over T, ando
overT: 9(§) = v(z) = v(&, a&2). Notice that¥, = W, /5 for ¥, ¢ in (25).
Then we have the following expressions to (semi-)normd foin terms of those fof "

[ol7, = allollF, (56)
ov
v, = aadV) aV H +a 7 ||=— 57
| |1,Ta o ( Qg agl . 852 . ( )
2o v | 9o
o2 =ad?(0); al?(v) = ‘ — | +2a7? +a = 58
’ |2,Ta ( ) ( ) 8&-% . 851852 . ag% . ( )

where, for example in (56)y € L,(7,) andv € LQ(T) with v = 0oV, By using these
a-dependent quadratic forms, the Rayleigh quotigtff(v) = R (v) (0 < i < 5) for
R(’) 's in (18) through (20) are expressed as

i =)/~ agvl)(ﬁ) i ~ -1 i .

RO) = R)@) = Je=s v €Va\{0), =ve Wl e VAN {0} (0<i<3), (59)
T
(2)/~

RO = B@) = 0 ey (0}, 5= vows € V1 {0}, (60)
al (v)
(2)/~

R (v) = RO (v) = “ﬁ“ﬁﬁ?;vev;\{O},azvo@aleV‘*\{O}. (61)
T

We can now analyze the constaidig«)’s over the common triangl&’, at the expense of
explicit appearance of the parametein the Rayleigh quotients.
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We also present the bilinear forms associated to the quadratic &ﬁ?ms;’s fori=1,2:

ou  Ov ou Ov
(1) = =— == 2 == — ; HYT 2
ay,’ (u,v) (8:61’8961)T+a (8x2’8x2)T ; Yu, ve H(T), (62)
0*u 0% 0*u 0%v 0*u 0%
(2) = (== 2= 202 R
o’ (u:v) (8xf’ (92:%)T e ((‘31:18:62’ 8x18x2)T e <8x§’ 8x§)T
: Yu, ve HYT). (63)

Here, for simplicity, we use: andv instead ofu and o, and the variable is denoted by=

{z1, 22} instead of = {&;, &
The following function spaces will play important roles later:

HM2(T) = {v € H¥T); ov/0z, =0} (k=1,2), (64)

ViZ = {v e V' 9v/dxs = 0} (0<i<4), (65)

which are actually identified with the spaces of functions dependent only on the varjadde
we will see later. By considering bilinear form§)(-,-) for i = 1, 2 over the above type of
function spaces, we are naturally led to the following bilinear forms:

(1) — @ _81) . Hl T

ay’ (u,v) : (83:1’8:1:1)T ; Yu, v € HY(T), (66)
*u 9%

= (G 55), 5w e mD: 67)

Although these are defined over the whdfé and H? spaces for convenience, the partial
derivatives above can be actually replaced with the ordinary ones when they are considered
over the respectivé/ -# and H?# spaces.

As a characterization of the abov£"Z(T'), let us state a fundamental lemma to be used
for our analysis. Its proof is omitted here since it can be performed by slightly modifying that
for Theorem 3.1.40f [16]. Of course, essentially the same conclusions are drawn for other
spaces in (64) and (65).

Lemma 1. Anyv € H“Z(T) can be identified with a functios of single variabler; :
v(xy,x9) = v*(xy) for a.e. x ={x1, 22} €T. (68)

Remark 6. The present lemma does not necessarily hold for general domains. It holds for a
domain{2 ¢ R? which is “connected i, direction” in the sense For any two points: and
x* in © with a commorn; component, the segment connecting these points is contaified in

4.2 Monotonicity and upper bounds ofC;(«)

We first derive some fundamental results €9fa)’s for 0 < o < 1, especially for their upper
bounds. With this regard, we owe much the following results to the analysis bysBaland
Aziz [5]. In particular, the estimatio@’,(«) < C; below is an important consequence derived
in [5] and also in [25, 30], and so we here oall the Babgka-Aziz constant.
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Theorem 4. C;(«a) = Ci(a,7/2,1) (0 < i < 5) are continuous positive-valued functions
of &« € ]0,4o00] (here we consider also far > 1). In addition, except foi = 4, they are
monotonically increasing in.. Thus, in particular,

Ci(a) < C; (=Ci(1)) ; Ya €]0,1] (i =0,1,2,3,5). (69)
On the other hand, it holds far= 4 that
Cy(a) < max{Ci(a),Cy(a)} < Ci(=Cy); Va €]0,1] . (70)

Remark 7. It is also possible to show the continuity of constafif&y, #)’s with respect to
{a,0} €]0,+00[x]0, 7[ by slightly generalizing the arguments below. Kof(«), bounding

(70) assures that it is bounded from above by a monotonically increasing functiarivbbre-

over, numerical results suggest that it is also monotonically increasing as will be seen later,
although we do not have fully theoretical results at present. Existen€g(e0) for i # 4 is

clear from the monotonicity stated above, although we will make more detailed analysis in the
subsequent subsection including the case4.

Proof. We just give sketches since the arguments employed here are rather standard. As was
mentioned in Section 4.1 and also used in [5], we consider the Rayleigh quo%éhtsfor
functions over the common domdin

For the continuity, we first note that each Rayleigh quotient for a fixed 0 is a con-
tinuous positive function ofy, so that its infimum over ald is uniformly bounded over any
compact interval forv of the form[a;, as]; 0 < a; < as < +oo. Itis also clear that the
infimum for eacha > 0 is actually the minimum and cannot be zero (i. e., it is positive), as
is shown by the usual arguments based on the Rellich compactness theorem and the reduc-
tion to absurdity. Then we can assure the existence of hath., C; *(3) (< C; *(a)) and
limg; C;%(B) for eacha > 0 andi; 0 < i < 5. Choosing an appropriate bounded sequence
in V* associated to the above lower limit, we can préve’(a) < lim, ., C;*(f), i.e., the
continuity ata, by adopting the weakly lower semi-continuity of the numerator and the con-
tinuity of the denominator appearing in the definition/df’ with respect to the metric df ‘.
Here, the Rellich type compactness theorem is again needed, and arguments similar to those
in the subsequent subsection are used as well.

For the monotonicity and (70), we omit the proof since they can be concluded in completely
the same fashion as in [5]. O

4.3 Asymptotic behaviors of constants as: — +0

We will now analyze the asymptotic behaviors of the constépts)’'s (0 < i < 5) asa — +0

by adopting various techniques developed e.g. in [23]. In particular, the right limit values
C;(+0)’s are given by zeros of certain transcendental equations (derived from eigenvalue prob-
lems of ordinary differential equations, ODE'’s) in terms of the hypergeometric functions [32].
For example(C,(+0)~! is equal to the first positive zero of the Bessel functift). More-

over, these right limits give lower bounds for respecti¥éx)’s, including the non-trivial case

i = 4. Such results can be of use for understanding and analyzing the so-called “anisotropic
triangulations” discussed e. g. in [1, 8, 13].
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4.3.1 Main results

We first present the main results as a theorem below.
Theorem 5. For each: (0 < i < 5), C;(+0) = lim,_.( C;(«) exists and is positive. More-
over, they are the lower limits of the respective constants, {’g40) = inf,~, C;(«a) for
0 < i < 5. They are characterized by the relatiofs(+0) = 1/vA\® for 0 < < 5, where
A?’s are the minimum eigenvalues of the following eigenvalue problems
0 <i<3:FindA\(=A\?) € Randu € V*?\ {0} such that

a(ZI)(u,U) = AMu,v)p; Yo € Vi, (71)
i=4:Find \(= \¥) € Randu € V4% \ {0} such that

a(ZQ)(u, v) = /\a(Zl)(u,v) Yo e VA7 (72)

i=5:Find \(= A\®) € Randu € V44 \ {0} such that

a(Z2) (u,v) = Mu,v)p ; Yo € VI, (73)

These eigenvalue problems are also expressed by those for the following 2nd- or 4th-order
ordinary differential equations foz = u(s) over the interval0, 1].

i=0: —[1-5)u(s)] = A1 =s)u(s) (0<s<1), /0 (1—s)u(s)ds =u'(0) =0, (74)

i=1:—[(1 =5 (s) =AY =s)u(s) +C (0<s<1), /0 u(s)ds =u'(0) =0, (75)

i=2: —[(1 = s)u'(s)] = A1 = s)u(s) (0<s<1), u0)=0, (76)

i = 3 : essentially the same as for 1;

—[(1=s)u'(s)] = A\OQ = s)u(s)+ C (0 <5< 1), /O1 u(s)ds =u'(0) =0, (77)
i = 4 : actually reduces to the case= 1;

(1= s)u"(s)]" = =AV[(1 = s)u/(s)]" (0<s<1), u(0)=u(l)=u"(0)=0, (78)
i=5:[(1=5)u"(s) =X —s)u(s) (0<s<1), u0)=u(l)=u"(0)=0. (79)
Here,C is an unknown constant to be determined simultaneouslymatid A (i = 1, 3).

Remark 8. In (74), the two conditiong,(1 — s)u(s) ds = 0 and«/(0) = 0 are actually
identical for smooth: as may be seen by integrating the differential equation7ity from

s = 0tos = 1. In the above, the numbers of boundary conditions are smaller than the orders
of differential equations. This is mainly because the ordinary differential equations above
have singularities in their coefficients at= 1, so that the usual full numbers of boundary
conditions are excessive to decide eigenfunctions in respective sgdsg® < j < 4). The
eigenfunctions and eigenvalues are determined by using the hypergeometric fui3&jons
and the results are summarized in Appendix.
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4.3.2 Proof of main results

Let us now prove Theorem 5. The statements for us to show range frofnto « = 5, but the
methods and techniques to be employed are more or less alike. Among them, the analysis for
1 = 4 appears to be the most complicated, so that we will present the proof almost exclusively
in this particular case. We will proceed in several steps.

1] To analyze asymptotic behaviors 6f(«), let us define\s(a) for a > 0 by M\y(a) :=
C%(a) > 0, that is,

(2)
_ AN, D) _ Qo (v)
)\4<Oé) - ve\l/r‘ll\f{O} Ra (U) ) Ra (U> - a((xl) (U)

: (80)

where, for simplicity,v is used instead of unlike in (60). By the standard arguments, the
infimum is shown to be actually the minimum, and is attained by a cestairt/* \ {0}.
Moreover{\,(«), u} is an eigenpair of the following eigenvalue problem:

a? (u,v) = M(a)aV(u,v); Yo eV, (81)

Whereaﬁf)(u, v) fori = 1, 2 are the bilinear forms associatedaﬂ@()’s, see (62) and (63). Of
course, the present(a) > 0 is the minimum eigenvalue of (81).

Since" (v) is a homogeneous form of ordérwe can normalize the eigenfunctioras
aV(u) =1. (82)

2] Let us show that,(+0) = lim,_ o \(c) exists and is positive. Taking € V*\ {0}
in (80) asv(z1,zs) = z1(1 — 1), we can see thaty(«) is uniformly bounded forv €10, oo],
and hencer = 0 is an accumulation point. In particular, both := lim,, ., A\4(a) > 0 and
Al :=Tima_ 40 A4 (e) exist. Then we can find a sequenige, }°° , in |0, 1] such that

lim o, =0, lim A\y(av,) = A} . (83)

n—oo n—oo

We must show thak? coincides with\| to conclude the existence of the right limif(+0).
Associated to the above sequeree }, there exists a sequenge, } in V4 \ {0} such that
each member satisfies (81) and (82), iaéﬁ?,(un) =1,a (un) = M(ay,), and

agﬁ (Un,v) = )\4(Ozn)a82 (Un,v); Yo €V, (84)

sincelul?; = Y0, 0u/0x|3 < af(w) andjul3 = 307, 0%u/0:0x; 3 < ol (u) for
a > 0, we have fo{u, } that

‘un‘%,T + |un‘§,T <14 M) (Rn=1,2,..). (85)

Thatis,{u, } is bounded with respect to the semi-norm¢df{ T') and H?(T") appearing above.
Moreover, we can show thdf|u, ||} is also bounded by noting thét,, } is a sequence i
and utilizing the Rellich theorem.
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Thus{u,} is a bounded sequence H¥(T), so that there exists a subsequencégqf},
again denoted byu,, } for convenience, and, € V* such that, fom — oo,

U, — up weakly in V* € H*(T), and strongly in H'(T), (86)

where the strong convergence is concluded by the Rellich theorem. Substityting*# as
v € V*in (84) and then taking the limit for — oo, we find

a(ZQ) (ug,vz) = )\Za(ZD(uo,vz) Yoy € VA2 (87)
Furthermore, sincBdu,, /0|2 = a2 |a') (u,) — ||Ou, /871 ||%| from (62), we can show that

8u0/8x2 = O, i. €., Ug € V4’Z . (88)

Thus we have obtained (72), provided thgt# 0. For the moment, we cannot exclude the
possibility thatu, = 0, so that we will now consider the two cases below.

3] (Caseuy # 0) In this case{)\;,uo} € R x V*4Z is an eigenpair of (87), and is also
associated with the following minimization problem:

AP )
A= inf - : (89)
vevaz\(oy o) (v)

It is not difficult to show that this minimization problem has a minimum> 0, which is at
the same time the minimum eigenvalue of (87) and whose arbitrary minintizeri’+4\ {0}
is an associated eigenfunction. Noting thais an eigenvalue of (87) and

@ @z @7
g — uf azl (U) _ CLZI (U ) _ aal (U ) _ Rgl}(’UZ) > )\4(05) for Vo E]0,00[,
veV4HZ\{0} a(Z)(U) a(Z)(vZ) a&)(vz)
(90)

we havep, < A = lim,_ . M\(a) < )Jl = lima_40 M\(a) < py4, thatis, X coincides
with /\Il and also withuy, so that it is the minimum eigenvalue of (87) amgis an associated
eigenfunction. Thus, ifyy, # 0 for all possible subsequences, is uniquely determined
independently of the sequences like origifal,}, so that the present; is the true right
limit A4(-+0). Furthermore, from the above consideratiahjs also the upper limit of\4(«)
for v €]0, 00|, that is,1/,/); is the lower limit of C4(«). Of course, such conclusions are
justified provided thati, cannot be). By usingv(z;,z3) = sinwx; € V42 \ {0} in the
Rayleigh quotient appearing in (89), we can also show that

0<py=\ <7m*<10. (91)
4] (Caseuy = 0) Letus definav, by w, = a; '0u,/dzs (n =1,2,...). Then we can see

thatw, € V2 C H'(T). Sinceu,, — uo = 0 strongly inH'(T) anday (u,) = 1, it holds that
(2

|w,||% =1 — ||Ou,/0x1]|2 — 1. Moreoverae, (u,) = As(ay,), i. €.,
10%un /02 (|7 + 2[|0w, /01 |7 + @, 2| 0w, [0 || 7 = M) (n=1,2,...), (92)

22



is uniformly bounded, so thdtw,, } is bounded in!(T") and||0w,, /dzs||r — 0 (n — o).
Thus, further choosing a subsequencd©f,} and denoting it by the same notation for sim-
plicity, we can show the existence of € VV*Z \ {0} with ||wy||z = 1 such that, fom — oo,

w, — wy weakly in V? ¢ H'(T), and strongly in L*(T). (93)

Let v* be an arbitrary function of; such that* € C?([0, 1]) with v*(0) = 0, and take
v € V*4in (84) asv(xy, z2) = v*(z1)xy. For simplicity, we will identifyv* with v* ® 1,,,
wherel,, is the unit constant function af,. Then (84) becomes

%u,, 0*v ow,, Ov* ou,, Ov .
Qy, (8_1:%’ 8_x%)T + 2 (8_x1’ 3_$1>T = )\4(0%)[0% (a—xl; a—xl)T + (wn,v )T] . (94)

Lettingn — oo above, we find that, € V%% \ {0} satisfies
9 (8w0 ov*

Oz’ Oy

Moreover, the above holds even fér* taken fromV/%Z, since any functions ifv?# can be
approximated byC? functions ofz; vanishing atr; = 0. Thus the present relation can be
viewed as an eigenvalue problem which Hag/2, w,} as an eigenpair. As usual, we can
show that all the eigenvalues are positive, so fjat 0.

By Lemma 1,w, can be identified with a functiom* of a single variable:;, so that (95)
can be expressed by

1 dw* dl}* 1
Kkl_%LMJhMm@ﬂmh:%&Zkl_MMwawmmm' (96)

Taking v* from C§°(]0, 1[), we have, in the distributional sense (and actually in the classical
sense as well) on the interval 1],

d dw* 1., .
_d_:L‘1 [(1 — IL‘l) dr, (171)} = 5/\4(1 - xl)w (:L‘l) . (97)

) = Xi(wo,v*)r, ie., @%%w)zﬁM@@vﬁ. (95)
T

Moreover, it follows from the conditiom, € V2?7 thatw*(0) = 0. Since\; > 0, the general
solution of the above is of the form, for arbitrary constantandc,,

w*(z1) = c1Jy ( %(1 — $1)) + Y (\/g(l — x1)> , (98)

where Jy(-) andYy(-) are the O-th order Bessel functions of the first and second kinds, re-
spectively. As is well known,J,(-) is sufficiently smooth, whiléj(-) is of the formY(s) =

cslog s + r(s) for s > 0, wherecs # 0 is a constant and(s) is a sufficiently smooth remain-
der term[32]. Consequently, must be zero fow, to belong toV>Z c HY(T). Then by
considering the conditions*(0) = 0 andc; # 0, Jy(1/A}/2) must be zero, that is/\}/2 is
equal to a positive zero ofy(-). In fact.Jy(-) has countably many positive zeros without any
accumulation points exceptoo [32]. Denoting the smallest positive zero fy > 0, we have

Ap > 275 (99)
We can show that, > 2.25 = 9/4, so that\} > 10. Comparing this with (91), i.el0 >
fa > Sup,-o A(a) > A\j, we have a contradiction, and can exclude the possibility:that 0.
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Remark 9. Although itis well known that, = 2.4048... numerically, we must verify that >
2.25 for strict analysis. This can be done for example by using the well-known power series

: = 1 2 : o :
expansion/y(s) = Z W(—%)m and numerical verification techniques, [df8, 33]

m=0

5] We have now proved that; andu, # 0 are actually the minimum eigenvalue and the
associated eigenfunction of (72), respectively, andthat-0) = 1//\; = infa-o Cy(a).

It is not difficult to prove (78). That is, the differential equation can be obtained just as we
derived (97) from (96), while:(0) = (1) = 0 follow from the conditionu, € V*Z. Finally,
u”(0) = 0 is obtained as a natural boundary condition associated to (72).

Let us also show that (78) reduces to (75). Denotihdpy v and then integrating the
differential equation in (78) with respect to the variableve have

~[(1 = 5)' ()] = AV[(1 = s)u(s)] + C, (100)

which coincides with the differential equation in (75) after rewritings«. The boundary
conditionv’(0) = 0 follows from«”(0) = 0, and the Conditiorfo1 v(s)ds = 0 is derived from

the relationfo1 u'(s)ds = u(l) — u(0) = 0. Oncewv is determinedy can be reconstructed by
integration :u(s) = [ v(t) dt. Consequently, the present case 4 reduces to the case= 1.

6] Inthe cases other than= 4, the analyses are a bit easier since the denominatdtef
do not depend on. For example, (71) and (73) can be derived easily. We just show, in the
case ofi = 1, how to derive (75) from (71).
Fori = 1, u = u(zy,79) andv = v(wzy,z-) in V1Z can be identified with functions
u* = u*(x1) andv* = v*(x;), respectively, so that (71) far= 1 can be expressed by, as (96),

/1(1 — e M )y = A/l(l — w)ut ()0 () da (101)
o 1 dl’l 1 dl’l 1 1 — o 1 1 1 1-
Let us consideriw* /dx, for Vw* € C§°(]0,1[). Then it can be identified with a function in
V1.2 so that, by substituting it into (101) a$, we have in the sense of distribution that

d? du* d

da? [“ =) (’””] = Ag M —e)u (@], (102)

from which we obtain the differential equation in (75). The conditf@m(s) ds = 0 follows
fromu € V14, while +/(0) = 0 is a natural boundary condition associated to (71) ferl.

Remark 10. Table1 shows numerical results far;(+0) (0 < i < 5) by Mathematic&®, cf.
Appendix.

Table 1: Numerical values @f;(+0) (0 <i < 5)

l 0 1,3,4 2 5
C;(+0) | 0.26098| 0.32454| 0.41583| 0.10790
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5 A posteriori estimation of some constants

It is in general very difficult to determine exact values of various constants defined in Section
2 for T, o of general shape. Numerically, we can adopt the FEM to obtain approximate values
to such constants as may be found e.g. in [4, 7, 22, 30], but their quantitative error estimates
are often unavailable. In this section, as an application of our results, let us give a kind of a
posteriori estimation of’;(«, 0)’s (0 < i < 3) by adopting theP, (piecewise linear) FEM.
At present, our approach gives only approximate or numerical boundings of constants, but
they can be turned into mathematically correct boundings provided that appropriate numerical
verification methods are introduced.

Our approach is based on the classical a priori error estimates for the finite element ap-
proximations to the smallest non-zero eigenvalue of the (minus) Laplacian with the Neumann
or Dirichlet boundary conditions, cf. e. g. Schultz [29].

5.1 Preliminaries

First, let us make some preparations. Debe a bounded convex polygonal domain. In the
present applications, it is often the triangular donmi&in. Let us also consider a closed linear
subspacéi(92) of H'(§2), which can be infinite-dimensional and satisfies

Hy(Q) #{0}, 1¢ H,(Q), (103)

wherel is the constant function of unit value §h A typical example of sucli’!(Q) is H; ()
considered in Section 3.4.
As a generalization of (42), we can consider the problem of findiggH ! (2), for a given
f € Ly(Q), such that
(Vu, Vo)g = (f,v)q (Yo € HL()). (104)
The uniqueness and existenceudh H!(f2) are almost trivial, so that we can define an oper-
atorG, by
G, f € Ly(Q) — u € HX(Q) determined by (104) . (105)
As a generalization of the problem related to (18), let us also consider a minimization
problem for the Rayleigh quotient

= ‘”‘—12 . ve HY(Q)\ {0}. (106)
[0]l%,

The minimum actually exists and is positive under (103) as may be shown by the compactness
arguments. Moreover, denoting the minimum and an associated minimizer-by0 and
u e HI(Q)\ {0}, respectively, they satisfy

(Vu, Vo)g = Mu,v)q (Vv € HEX(Q)). (107)

By usingG, in (104), the present € H!(Q) is shown to satisfy, = \G,u.

To apply theP, FEM to the above two problems, we first introduce a regular family of
triangulations{7"},-, of {2 as was mentioned in Section 3.4, and then construct the piecewise
linear finite element spac®’ c H'(Q) for each7" as

S = {v, € C(Q)| v,|K is alinear function for eack’ € 7"} . (108)

R (v)
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Foru € H?(Q) C C(2), we can define the piecewise linear interpoEftu € S” by
(") (2*) = u(z*) for any vertexe* of 77 . (109)

We will also use the parameteys= maxyern hi, Cy,y = maxgern Cy(ok, 0x) andCs,, =
maxyern Cs(a, 0k ) defined in Section 3.4. Then we have the following interpolation esti-
mates for the above as was discussed in Section 3.4

lu— " ul o < Cagnlulso,  llu—T"ullo < CsynPlulsg - (110)

To construct approximate problems to (104) and the minimization of (106), let us consider
the subspacg™* of S” defined by

ST = ST HY(Q), (111)

which we assume to be different frof0}. Of course, various other finite-dimensional sub-
spaces of}(Q2) are available in place of™*, but the above one is theoretically simple and
also practically favorable in many cases.

Then an approximation to (104) is to fing € S™°, for a givenf € Ly(£2), such that

(Vuy, Vog)a = (f,vg)a (Yo, € S7°). (112)

The uniqueness and existencewgfin S”° are trivial, so that we can define an operatgr
approximating=, by

G7: f € Ly(Q) — u, € S determined by (112) . (113)
As generalizations of (44) and (45), we have

Gsf = Gifla = min |Gof vl (114)

IGaf = G flle < |Gaf — G flha inf  sup |G29 = Uiho

(115)
€S e Ly (Q)\{0} glle

On the other hand, an approximation problem relate®10) is to find its minimum in
S5\ {0}. In this case, the existence of the minimum is again trivial, and the mininiuamd
an associated minimizer, € S"* \ {0} satisfies the relation analogous to (107):

(Vu,, Vog)a = A (uy, vy)a (Yo, € ST%). (116)

The following results are easy to derive but will play an essential role in our approach, cf.
e.g. Theorem 8.3 of [29].

Lemma 2. Let A and \" be respectively defined by = min,cp1(0) 0y B°(v) and A7 =
min,, esn\ oy R*(vy,), andu € H(2) be an minimizer associated fosuch that||u|, = 1.
Then it holds that, fox/v, € S7*\ {0} with ||u —v,|q < 1,

lu — UHE,Q

(1= flu = vyll0)?

AN <A+ (117)
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The following results are also well known and will be used later, cf. [15].

Lemma 3. Let us consider the problemfor the present) and a givenf € L,(f), find
u € H'(Q2) such that
(Vu, Vv)g = (f,v)q (Vv e H'(Q)). (118)

Then such exists if and only if
(f,)a=0, (119)

and is unique up to an additive arbitrary constant function. Moreowet, H?(2) with
ul2,0 < ([ Aullo = || flla - (120)

Remark 11. To assure the uniqguenessitowe can for example impose the conditianl)q, =
0 onu. The present problem corresponds to the one for the Poisson equation with the homo-
geneous Neumann boundary condition

ou

—Au=fin Q, — =0 on 0Q. (121)
on

5.2 A posteriori estimation of Cy(«, 0)

We first give a posteriori estimates @(«, #). In this case) = T,y and H;(2) = V.
Let us define an orthogonal projection opera®y, : Ly (To0) — LY(Ta6) == {9 € La(as) |
(9, Dz, , = 0} by

fT g($) dl’ (g, ]-)T
Plog=g— Qfe—da; =9- |T—QTQ (Vg € Ly(Twap)) , (122)
Ta’g a,

where|T,, »| denotes the measure Bf ,. We can easily show tha{§79|H1(Ta,9) is an orthog-
onal projection operator from*(7, ) to Vo?,@ with respect to the standard inner product of
HY(Top): (u,v)11,, == (u,0)1,, + (Vu,Vo)g, , (Yu, v € H'(T,4)). We also denote the
presents,, G, S" and.S" respectively byG? ,, G79, S, andS"y. SincesS! , contains the
constant functions, we find that
Seg = PoSey - (123)

From now on, we will omit the subscrifft, » for the norms, semi-norms and inner products
related to this domain. Noting th&f P, ,v = Vv and (f, P v) = (P3,f,v) for Vv €
H'(T44), €9. (104) for the presemte V7, becomes

(Vu, Vo) = (Popf,v) (Yo € H' (Tap)), (124)

which reduces to (118) under (119). Likewise, eq. (107) for the présenf € RxV;,\{0}
becomes
(Vu, Vv) = AMu,v) (Vv € HY (T,p)), (125)

sincePy yu = u. By Lemma 3, the above belongs toH?(T, ) N V), with
ula < Allull . (126)
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Under the preceding preparations, let us apply Lemma 2 to estimate the minimum eigen-
value)\g’g of (116) in terms of the onﬁg,(, of (107) or (125). The minimizer associatedng;e
is denoted by, , with the normalization conditiofjuy, ,|| = 1. As v, in (117), we can take
various candidates fror:ﬁ”0 One possibility is to utilize the interpolaft”!«? 0 € 5"9 of
u? - Unfortunately, it may be outsidg” 2 but its prOJectlonP0 1710 o0 Can be used thanks
to (123) By taking advantage of propertles of the orthogonal prolectlon (122), we find that

lug g — Lo gII ud g1t = Jug g — 71 o1 (127)

||U39_P0 "'y 09”— ||P39( ae—Hnl ge)” < ||ua9—H"1 09” (128)

Using (110) and (126), we can evaluate the above in terms 129179, Cy,, andCs,,. Unfor-
tunately, we have not necessarily obtained accurate theoretical upper bounds, fas was
noted in Section 3.3. So we should try to avoid the use of such a constant.

Another possibility is to use? , , := A% ,Gyu 5, which is surely in5” and is suggested
by the identityu;, , = AD ,G?, 9ua - For this choice, we have

|Ug,9 - ﬂ?],aﬁh < |ug9 PoeHnl 9|1 = |U39 g 9|1 ) (129)
~ ‘GO gd — U 1
Hug,e - Ug,a,eu < ‘Ug,e 17040‘1 inf sup —ets T (130)
vneStY geLa(Taofoy  IIY

In this case, we only need former part of (110), that is, the valuasxﬁﬂ andCy,, and can
actually avoid the use afs ,,.
Based on the above considerations, we have now the following two a priori error estimates.

Lemma 4 (A priori estimates for \? ) Let A} , and AZ% be defined as above. Then, if
05’77772>\379 < 1,

(Cy ni 6)2
Nop S A <ALy + —— (131)
. . . (1—- CS,n772)‘3,9)2
Similarly, if C3,n*A) 4 < 1, then
O /\0 2
Mg SAMG <N g+ (Canmop) (132)

(1= C%,m*Aep)

Remark 12.  In actual application of the above estimates, where the exact valdg pof
(Cs,,, resp) may not be available, we can use an appropriate upper b@u}pl(égw, resp).
From the considerations in Section 3.3 for concrete values of these consgianisyould give
a better bounding thafl32), if an accurate upper bouné”g,,?7 of Cs,, becomes available.

Let us define two functions related to (131) and (132):

(04 n?]t)2
t) =t+ ———— t 133
SOOJ( ) + (1 _ 0577177215)2 (O <i< 05771772) ) ( )
(04 nnt)2
ty=t+ ——"—— t 134
Poalt) =+ (1—CF,mPt)? (O<t< (04,7777)2) ’ (134)
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wheret is the variable, while other quantities are considered just parameters. Since these
two functions are continuous and monotonically increasing on their domains of definition,
they have their inverse functions, which are definedint-oo[ and will be denoted by the
popular notatlonso and ;5. Of course, these inverse functions are also continuous and
monotonically mcreasmg Then we can easily obtain the following a posteriori estimates or
boundings ong o, by numerically obtainedg’%.

Theorem 6 (A posteriori estimates for)), ;). Let\? ,, /\Z o» P01 andgy ; be defined as above.
Then it holds that

1
Goa(ATG) < N0y < Ay if ATY < —— (135)
b 9 b b b 057,,7/]72
1

(Cam)?

Proof. From the preceding theorem, we have, for examle; ) \), 5 < ©0.1(A) ) < @0,1(A2’7%)
if AZ”% < 1/(Cs,m?). Then (135) follows immediately by operatirqﬁg;} to this inequality,
while (136) can be obtained similarly. O

Poa(ALY) S A0y < Ay if AT < (136)

It is now straightforward to obtain boundings to the constéagi{iv, #). For example, we
have from (135) that

1/4/ A2 < Cola, 0) < 1/4 /o1 (AFG) if AZG < (137)

1
05,7]772 .

The results (135) and (136) can be also viewed as a posteriori error estima.h@%,fsince
(135), for example, can be rewritten@s< A"y — A, < A — @g (A1),

Remark 13. The results in Lemmé and Theorent, i. e., estimate$131), (132), (135) and
(136), also hold for\ and \” of Lemma2 in the case wheré/! (Q2) = H}(Q) andS™* = S"N
H}(Q). In such a case, Lemnsacannot be used, but the correspondifig has the property
G Ly(Q) — HY(QNH2(Q) with |G fla < || f]] (Vf € La(Q)), since is a bounded convex
polygonal domaifil5]. Moreover, we cannot utilize projection operators ik, above, but,
instead, we can take full advantage of the propéfty! G, f € S™* (Vf € L,(Q)) for the
presentlI™!, G, and S™*. The present case is related to the approximation of the Po@car
constan{2], which is essentially the numerical evaluation of the smallest eigenvalue\of
with the homogeneous Dirichlet boundary condition. Similatly«, 0) is associated with the
second eigenvalue efA over(2 = T, y with the homogeneous Neumann boundary condition,
as was noted in Section 2.

5.3 A posteriori estimation of C;(«, 0)’'s (i = 1,2, 3)

Secondly, we give a posteriori estimatestga,f)'s (1 < i < 3). In these cases, let us
choose or use the notatiofs = T, 9, H{(Q) = V,,, G, = G, ,, G1 = GV, S" = S,

a,0?
and S"* = S”’ for eachi € {1,2,3}. Let us define an operatdt, , : H'(T.g) — Vi,
(i € {1,2,3}) by

ol = U — |e_|/ vds (Vv eV,y), (138)



wherele;| denotes the length of edge Unlike P° ¢» the above operators are not well-defined
over Ly (7, ¢), but the following relations similar to (123) still hold :

Sie=PagSny (1<i<3). (139)

Suggested by [26], let us introduce quadratic functififes(1 <i<3) of x = {z1, 25} by

(21— 20)? + (22 — 24)?] (140)

where
vt ={z}, 23} =B(acosf,asinb), *={z], 23} = A(1,0), 2°={23 23} = 0(0,0). (141)
These functions are sufficiently smooth and satisfy

o,
on

Then, forvv € H'(T, ), we find that

=4;; on e; for Vi, Vj e {1,2,3}. (142)

/ vds = (Vfi,Vv)+ (Afi,v), (143)

€

so that (138) can be rewritten by

[(Vfl,Vv) (Afi,v)] (Vv e HY(T,.y)) . (144)

Lovi= —
0 |€z|

Similarly to (124), eq. (104) for the present V! , becomes
(Vu, Vo) = (f, PLyv) (Vo€ H' (T.y)), (145)

which can be rewritten by

(Vs G2pw0) == Laf)  wem@ma. )
By Lemma 3, we find that + (‘J;—lffz € H*(T, ) with
e L) <y - L, (147
7 2 €;

and hence, by using the triangle and Schwarz inequalities,

|(f, D) L Vol

leil el

Julsy < [[fII+

(fil +IALD < WA+ =Sl +IALD | - (148)
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Clearly, it holds that

|Ta,0|:gSin07 les] =1, |ea] =, |es| = V1+ a2 —2acosb,

2
V2 €;
e = L2IARI, Afier ) = 491 (149)
2 | T 0]
so that we have, fovi € {1,2, 3},
V2
lula < (2 + T)HfH : (150)

Similarly to (145), eq.(107) for the presefit,u} € R x V!, (1 <14 < 3) becomes
(Vu, Vo) = Mu, PLyv) (Vo € H' (Tayp)) - (151)

Thus, we can utilize the results for (145) by takifgn (145) as\u in (151). The approxima-
tion problems corresponding to (112) and (116) are also given by Lﬁ:@’g (1 <i<3).
Then, just like Lemma 4 and Theorem 6 f6%(«, ¢), we have the following results for
Ci(a,0)s (1 <1i<3).

Theorem 7 (A priori and a posteriori estimates for )\Z’fe’s (1 < ¢ < 3)). For eachi €
{1,2,3}, let A, , and AZ’; be respectively the smallest eigenvalue$10f’) and (116) in the
present case wher! () = V!, and S7* = Sy, Then, if(MCy,n)?\, , < 1 with M :=
2 ++/2/2, it holds that

; ' ; (MCyymA,p)°
A, <A\ <\ & ) 152
a,d = a,l — ol + (1 . MQCZWT/Q)\;’Q)Q ( )
and, if\? <« ——
0 (MO4,7777)2 . ) )
pi H(Amg) < Mg S ALY (153)
where
(MC4 nnt)2 .
(1) =1t ’ 0<t< ———; 1<i<3)|, 154
w0 =t T ancs, ey GG = >4)

which is continuous and monotonically increasing.

Remark 14. Because of the factar/ ~ 2.7071..., efficiency 0{152) is worse than that of
(132). In the present case, estimates correspondin@$ad) and usingC} ,, do not appear to

be fully effective unlike in the preceding subsection. This is attributed to the fact that we cannot
at present obtain desirable estimates fiar— P ;11" u|| (Yu € VI ,NH?*(T,4); 1 <i < 3),
sincePéﬁ is not definable over,(7, ) and hence we cannot take advantage of the best
approximation property with respect to ttig norm.
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6 Numerical results

We performed numerical computations to see the actual dependence of various constants on
« andfd. Furthermore, we also utilized the obtained exact values or upper bounds of such
constants to give quantitative a posteriori error estimates for some eigenvalue problems.

6.1 Computational methods

To obtain approximate values of error constants, we can utilize the FEM quite effectively. In
particular, we used the most popul@r triangular finite element for numerical computations

of Ci(a,0)'s for 0 < i < 3 by preparing appropriate triangulationsGfy. For Cy(«, )
andCs(a, 0), it is natural to use various triangular finite elements for Kirchhoff plate bend-
ing problems, since the associated partial differential equations are of 4th order as is noted in
Section 2. In our actual computations, we used the discrete Kirchhoff triangular element pre-
sented in [17]. On the other hand, we can also use the Siganevich approach for computation of
C4(a, 0), which adopts the”, triangle and a kind of penalty method for a system of 2nd order
partial differential equations similar to the incompressible Stokes system [30]. This method
also works well if the penalty parameter is carefully chosen.

In every case, we have a matrix eigenvalue problem as the discretization of the original
eigenvalue problem described by a weak form. More specifically, it is a generalized matrix
eigenvalue problem with respect to unknown eigenvectors of nodal values of approximate
eigenfunctions, and it can be solved for example by the inverse iteration method and the
subspace iteration method[9]. A difficulty in deriving such matrix eigenvalue problems is
how to deal with linear constraint conditions imposed on the spb@gsfor i =0,1,2,3.

Similar constraint conditions are also necessary to deal with, if we con(gLte, 0) by

the Siganevich method. On the other hand, we do not have such a difficulty in comput-
ing Cy(«, 8) andC5(«v, 0) by Kirchhoff type triangular elements, where the linear constraints
v(0) = v(A) = v(B) = 0 for V!, can be handled as homogeneous “point” conditions.

One possible method is to eliminate some unknown nodal values by using the linear con-
straints, but then we have non-sparse coefficient matrices in general. Another method is to use
the Lagrange multiplier method, which does not essentially destroy the global sparseness of
the matrices. We tested both approaches with reasonable results. Various iteration methods
may be also available for the same purposes.

The numerical results below are obtained by FEM in the double or quadruple precision
arithmetics, without evaluating the errors strictly by the interval analysis. But their accuracy
appears to be reasonable at least in graphical level, since finer mesh computations give essen-
tially the same graphs. We hope that effective verification methods will be established in near
future, so that numerical results can be of strictly mathematical significance.

6.2 Numerical results for error constants

Here, we first show some results f6t(«)’s (0 < ¢ < 5) by the P, finite element and the
Kirchhoff triangular element in [17] with the uniform triangulation of the dom&in In such
calculations [, is subdivided into a number of small triangles congruenttg , , with e. g.
h = 1/20. The penalty method in [30] is also tested to calcul@téy) approximately.
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Figure 2: Numerically obtained graphs fof(a)’s (0<i<5;0<a <1)
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Figure 2 consists of two parts and illustrates the graphs of approxithate's (0 < i < 5)
versusa €0, 1]. Exact values ot’, andC; = C, together with an approximate value ©f
are also included as horizontal lines in graphscoAt 1, the approximate values coincide well
with the available exact ones in Theorem 3, and we can numerically se€thatCs) is a
nice upper bound of’y. For generaty, the monotonically increasing behaviors theoretically
predicted forC;(«)’s (i = 0,1,2,3,5) as well as the relatio,(«) < min{C}(a), Ca(a)}
are also well observable in the graphs. The present numerical results sugg€stdhas also
monotonically increasing, but we have not succeeded in proving such a conjecture. Moreover,
whena = 0, the numerical results agree well with the exact right limits given in Table 1 based
on the asymptotic analysis.

For Cy (), we tested two methods, that is, tRetriangle with the penalty method and the
Kirchhoff triangle. These two methods turned out to give almost the same results if the meshes
are relatively fine and the penalty parameter is appropriately chosen. The grapfidorin
Fig. 2 is actually obtained by the Kirchhoff element, but is indistinguishable in graphical level
from the one by the penalty method.

We also performed numerical computations to see the validity and effectiveness of the
upper bounds fof’,(«, 6) given in Corollary 1 and Theorem 2. We here show just one example
with 0 < a < 1 andf = 27/3. That is, we numerically compaig,(«, ), Cﬁl)(a, 0) =
Cy(a)pa(0) andCf)(a, 0) := v(a, 0)/(v/2sin ) for = 27/3, where the latter two functions
come from (32) and (35). In the computatiotg(«), Ci(«, 27/3) andCy (v, 27 /3) were also
obtained numerically for use in the above two upper bound formulas, and the uniform meshes
were again employed. The results are shown in Fig. 3, and we can see théﬁB(xﬁh 27/3)
andCf)(a, 27/3) give upper bounds t674(1)(a, 27/3) numerically. Moreover, at least in the
present casejf)(a, 27/3) is superior t(ﬁil)(a, 27/3) as an upper bound.

Figures 4 and 5 illustrate numerically obtained contour linegfow, 6)’s in thea—6 polar
coordinates, where the abscissa denatess ¢, and the ordinate doessin . The unit circle
«a = lis also shown by a dotted curve. The minimum required range &rdd is specified by
(1), but the contour lines are shown for wider ranges, so that we can easily see global behaviors
of error constants. These results can be also useful for practical adaptive computations to
specify constants in error indicators approximately. Of course, for strict mathematical analysis
like numerical verification, we need correct upper bounds to error constants. The contour lines
are sometimes cut off in the portions where the expected accuracy may be insufficient. For
example, wherv =~ 0 or |§ — /2| ~ 7/2, it requires extraordinarily fine meshes to retain
sufficient accuracy. The behavior 6f,(«, §) appears to be the most complicated among alll
the constants, and the necessity of the maximum angle condition can be visually recognized.
The other constants seem to be uniformly bounded over the unit«hisk .

6.3 A posteriori estimates of eigenvalues

To apply the results in Section 5, let us consider a posteriori estimates or boundidgs=for
Co(1,7/2) andC; = C4(1,7/2) based on thé>, FEM. We denote the associated eigenvalues
by Ao = C;? and); = C; 2, and the results will be shown for these eigenvalues. We can also
give a posteriori estimates to genefa(«, 6)'s for i = 0, 1, 2, 3 by the same approach.
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Figure 3: Two upper bounds 6f,(«, 0) for = 27/3

Table 2 gives the boundings fap based on (135) and (136) of Theorem 6 and those for
A1 based on (153) of Theorem 7. We tested several meshes, which are uniform ones composed
of small triangles similar to the entire domaihas is shown in the same table. The values of
parametersim, 657,, andn that are necessary to use the formulas (135), (136) and (153) are
specified here as
Ciy=05, C5, =017, n=1/N, (155)

where N is the number of elements along each edg& ¢fV = 4 in the figure of Table 2).
Notice here tha<t74777 = 0.5 is a theoretical upper bound 6f, ,, (cf. Remark 12), but the above
05,77 = 0.17 is only a numerically obtained approximate upper bound'f at present. We
tested (135) only to see its effectiveness experimentally.

We can observe that the present simple methods can actually b@uemt C; from both
above and below. As is expected, (135) gives better lower bounds than (136) for coarser
meshes. Table 2 also shows that the lower bounds obtain€d fare in general rougher than
those forCy,. This is probably attributed to the existence of the fadtbe= 2 + v/2/2. Even
in this case, we can obtain reasonable results by mesh refinement.

As another application of our method, let us consider the bounding of the first eigenvalue
for —A subjected to the Dirichlet boundary condition for the righpolygonal domairt?,,
(n > 3), circumscribing the unit disk,, centered at the origin. In this case, the formulas in
Lemma 4 and Theorem 6 can be used without modifications as is noted in Remark 13, since
each(2,, is convex. Itis well known that the first eigenvalue foy is monotonically increasing
in n and is bounded from above by that far,. The eigenvalues fat = 4 andn = oo are
known asw?/2 and the square of the first zero of the Bessel functipgnrespectively, but
it is difficult to determine the exact values for general So we will numerically evaluate
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such eigenvalues for severalwith a posteriori estimates. At present, such estimates are
just numerical, but they will be strictly mathematical estimates when appropriate verification
methods become available.

As meshes, we first triangulate the right triangl& AB with OA = 1, AB = tan(n/n)
andZOAB = w/2 just as we did forfl’ andT,, in the preceding problems by dividing each
edges uniformly intaV segments. Then by a reflection and rotations, we can obtain whole
meshes fof?2,,, see Fig. 6. Then we can use (136) with

V3/N if n=3

/N ifn>4" (156)

Ciy =05 n= {

wherea < 1in all the cases.
The obtained results are summarized in Table 3, from which we can experimentally see the
effectiveness of our bounding method.

Table 2: A posteriori estimates fap and )\,

n=1/N, N =4 inthe leftfigure
+ Approximate eigenvalue is outside the domain of definitionfpt.

T

N | bounds for\g by g1 | bounds for\, by 3 | bounds for\; by ;"
2 [ 5.9890 < A\ < 11.7155 | 6.5550 < A\g < 11.7155 A\ < 4.3071f
3 | 7.8874 < A\ < 10.7213 | 8.1463 < A\g < 10.7213 | 1.9780 < \; < 4.2102
4 | 87512 < )\ < 10.3570 | 8.8616 < A\g < 10.3570 | 2.6006 < A\; < 4.1713
8 9.6055 < A\g < 9.9946 | 9.6143 < Ny < 9.9946 | 3.6537 < \; < 4.1304
16 | 9.8054 < Ay < 9.9012 | 9.8060 < A\g < 9.9012 | 3.9982 < A\ < 4.1196
32 | 9.8537 < A\y < 9.8776 | 9.8537 < A\g < 9.8776 | 4.0864 < A\; < 4.1168
64 | 9.8656 < A\g < 9.8716 | 9.8656 < Ay < 9.8716 | 4.1085 < A\ < 4.1161
(c0) Ao = 7% = 9.869604... A & 4.115858

7 Concluding remarks

We have obtained some explicit relations for the dependence of several interpolation error con-
stants on geometric parameters of triangular finite elements. In particular, we have succeeded
in determining some special constants including the BeltAziz constant from very simple
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Figure 6: Meshes for-polygonal domains), with N =5:n =3, 4, 5,10

equations. We can effectively utilize these results to give upper bounds of various a priori and
a posteriori error estimates of finite element solutions based oR;thad/or P, approximate
functions. Some numerical results were also given to see the effectiveness of our analysis and
the actual behaviors of the error constants. To obtain more clear picture for the dependence of
the interpolation error constants, we should also perform various analyses including numerical
analysis with verifications, asymptotic analysis etc.

We have mainly considered the conformiAgtriangle, which can naturally construct sub-
spaces offf! space over the entire domain. But there also exists a non-conforming counter-
part, which is also based on the piecewise linear polynomials but uses as nodes the midpoints
of edges or edges themselves[11, 31]. Analysis of such an element is more complicated, since
we must additionally evaluate the errors induced by the interelement discontinuity of the ap-
proximate functions. Still we can obtain some results for the interpolation errors as suggested
in [19] by using the constants for thé and the conforming?, triangles. We will report more
refined results to the non-conformirg triangle in subsequent papers.
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Table 3: A posteriori estimates for the first eigenvalugssociated t6,,

n | N bounds for\ N bounds for\ N bounds for\

315 139082 < \<4.4963 | 10| 4.2688 < A < 4.4147 | 100 | 4.3853 < A < 4.3868
4 | 5 [4.7700 < XA < 5.0211 | 10 | 4.8954 < XA < 4.9569 | 100 | 4.9344 < X < 4.9351
5 15 [5.0049 < A< 5.2826 | 10 | 5.1590 < A < 5.2273 | 100 | 5.2075 < A < 5.2082
6 | 5 | 51387 < A< 54323 | 10 | 5.3114 < A < 5.3839 | 100 | 5.3659 < A < 5.3667
7 15 |5.2220 < X< 5.5257 | 10 | 5.4078 < A < 5.4831 | 100 | 5.4666 < A < 5.4674
8 | 5 | 52774 < A < 5.5879 | 10 | 5.4727 < XA < 5.5498 | 100 | 5.5346 < A < 5.5354
9 | 5 |5.3160 < A <5.6313 | 10 | 5.5185 < A < 5.5969 | 100 | 5.5827 < A < 5.5836
10 | 5 | 5.3440 < A < 5.6628 | 10 | 5.5520 < A < 5.6313 | 100 | 5.6181 < A < 5.6190
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A Determination of A\() = C:72(4+0) (0 <4 < 5)

Recall Theorem 5 for the determination relations(9f+0) := lim, . o C;(a) or A =
C723(+0) (i = 0,1,2,3,4,5). Fortunately, all the ordinary differential equations (ODE) ap-
pearing there can be solved by means of the hypergeometric functions including the Bessel
functions[32], so that we can obtain the determination equations as transcendental ones in
terms of such functions. All the numerical results below are obtained by using Mathebatica

Al \©
From Theorem 5, the ODE and the boundary condition in this case are given by
—((1 = 9)u(s5)) = X001 = s)u(s) for s €]0,1[, ' (0)=0. (157)

The general solution of the above ODE that can be identified with an elem&ni{df > V*Z
is expressed by

u(s) = W Jy(VAO (1 = s)) (158)

wherecV) is an arbitrary constant and, is the 0-th order Bessel function of the first kind.
Actually Yy (VA (1—5)) (Yo=the 0-th order Bessel function of the second kind) also satisfies
the ODE but cannot be identified with an elementfdf(T"). Thus applying the boundary
condition above and the relatioh = —.J;;, we have the following equation for® :

JI(VAO) =0 | (159)

which means that/\(©) is the smallest positive zero of. Thus we can obtain approximate
values ofA(”) andC;(0+) as

A9 % 3831712, Cy(+0) =~ 0.260980 . (160)

A2 2D = )6 = )\®

Similarly, the ODE, the linear constraint and the boundary condition in this case are given by
(75) as

—((1 = 9)u/ () = XV = s)u(s) + C for s €0, 1], /o u(s)ds =0, u'(0) =0, (161)

whereC' is an arbitrary constant. Then the general solution of ODE that can be identified with
an element of/*(7T") > V7 is expressed by

u(s) = D J(VAD(1 = 8)) — C (1 — )1 F5(1;3/2,3/2; = AD(1 — 5)2/4),  (162)

wherec)) is an arbitrary constant, ands(-; -, -, -;-) is a kind of hypergeometric function.
Using the linear constraint and the boundary condition to the above, we have the following
determination equation for = A(V:

A A 33 A 1 3 A

Ao 2 =)o F(1,1: 22 2 -y 1 B2, 2 D) By(1;
01(77 )2 3(7727277 )+1 2(27727 4)1 2(7

. . . )=0, (163)
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where [} and, F; are also hypergeometric functions. Solving this equation numerically, we
have the following approximate values:

A 2 3.08126%,  C1(+0) ~ 0.324542 . (164)

A3 \®
By Theorem 5, the ODE and the boundary condition associated\itlare given as

—((1 = 8)u/(s)) = X1 = s)u(s) for s€]0,1[, u(0)=0. (165)
Then the general solution of the above ODE belonging t¢7") > V%7 is the same as (158):
u(z) = D I (VAD(1 — 5)) (166)
so that the determination equation #d?) is obtained as
Jo(VA@) =0. (167)
Thusv/A® is the minimum positive zero of,. Approximately, we have

A? x2.40483%  Cy(+0) ~ 0.415831 . (168)

A4 \O

By Theorem 5, the ODE and the boundary conditions associate®tare given as
(1= s)u"(s))" = A1 = s)u(s) for s€]0,1[, u(0)=wu(1l)=u"(0)=0. (169)

Then the general solution of the ODE belonging®®T") > V47 is

133 X9 —s) 3.5 AO(1 - )t
—c (- 2 2. @1 —§)oFa(:2.1. 2
U’(S) c 0 3(7274’4’ 256 )+C ( 8)0 3(’47 747 256 )
55 3 A0 —s)
@1 — B(=, >, = 170

wherecV), (2 and¢® are arbitrary constants, agd} is a hypergeometric function. Then,

introducing two functiong’(\, t) =t o F3(; 3,1, 2; 2*) andg(\, ¢) = 2 o F3(; 2, 2, 35 214,

the determination equation far= \® is given by

f”()‘a ]-)g(/\u 1) - g”(/\v 1)f(/\7 1) = 07 (171)
where” = 9% /0t*. Approximately, we find that

O~ 9.267752,  C5(+0) ~ 0.107901 . (172)
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