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Abstract. We consider an elastic bi-dimensional body whose reference configura-
tion is a shallow shell. We establish a Carleman estimate for the linear shallow shell
equation and apply it to prove a conditional stability for an inverse problem of de-
termining external source terms by observations of displacement in a neighbourhood
of the boundary over a time interval.

§1. Introduction.

The problems of controllability or observability for thin bi-dimensional bodies as
membranes or plates have been discussed for many years and we refer to Lagnese
and Lions [17], Lions [22], Russell [25] as early works. Here we do not intend a
complete list of works and we list some of important papers on the controllability for
shell and related problems; Cagnol, Lasiecka, Lebiedzik and Zolésio [3], Geymonat,
Loreti and Valente [6], [7], Komornik [16], Lasiecka [18], Lasiecka and Marchand

[19], Lasiecka, Triggiani and Valente [20], Telega and Bielski [26], Valente [27]. In

Key words and phrases. shallow shell, Carleman estimate, inverse source problem, conditional
stability.
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this paper we consider the case of an elastic body that occupies a two-dimensional
domain slightly curved and we establish a Carleman estimate. A Carleman estimate
yields observability inequalities by an argument in Cheng, Isakov, Yamamoto and
Zhou [4], Kazemi and Klibanov [14]. From a geometrical point of view, this is of
great interest because a general shell can be approximated through a juxtaposition
of shallow shells. From a theoretical point of view, the approach retained here which
is based on Carleman estimates, is powerful, while by the multipliers technique,
we were not able to obtain the controllability of a Koiter shell by a boundary
action without a “shallowness” restriction (Miara and Valente [23]). In the static
case, let us now briefly recall the equilibrium equations of a shallow shell with
middle surface S, thickness 2¢ and curvature €6 (this expression of the curvature
has been rigorously justified in Ciarlet and Miara [5]). More precisely, let Q C R?
be a bounded connected domain with Lipschitz boundary 02, and let a point in

Q be denoted by x = (z1,72), let §: Q@ — R, § € C3(Q). Let 9; = % and
0ij = 0,0; = #;Ij. Then the middle surface of the shell is therefore given by the
set S = {(x1,72,e0(x1,72)); (71, 22) € Q} and the shell with thickness 2¢ occupies
the domain {(z1,z2,e0(x1,72)) + z3a(x1,22); (71, 72) € Q, —¢ < 23 < €}, where

a(z1,x2) is the unit outward normal vector to the middle surface S at the point

(x1,22). Hence, if we denote by ©° the mapping
O (z1, 72, 3) = (901,902789(901,902)) + z3a(ry,32), (@1,72) €Q, —e <3 <,

then the reference configuration of the shell is ©°¢ (Q X (—e, 5)) Subjected to applied
volume forces F = (Fy, Fy, F3) € {L?(Q)}3 (for simplicity, no surface forces are
taken into account in this presentation), a shell which is clamped on its lateral

surface, undergoes a scaled Kirchhoff-Love displacement field of the form <u1 —
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r301u3, Uy — Tr302U3, U3>. For the precise meaning of the scaling, see Ciarlet and
Miara [5]. In this section, Latin exponents and indices take their values in the set
{1,2,3}, Greek indices take their values in the set {1,2}, the Einstein convention
for repeated exponents and indices is used. These notations are used especially for
the compatibility with the notations in Ciarlet and Miara [5], Miara and Valente
[23]. [24]. Throughout this paper, bold face letters represent vectors.

The three-dimensional vector-valued function u = (u1,ug,us) : @ — R3 de-
scribes the displacement of the middle surface of the shell and solves a boundary

value problem for shallow shell equations: Find u = (uy,us,u3) € {HI(2)}? x

HZ2(Q) such that

( 1
_/ maﬁ(u;g)@agvng—k/ngﬁ(u)(ﬁae)ﬁgvgdﬁz/vg (/ (f3+y33afa)dy3> dQ,
Q Q

Q —1

Vs € HZ(9),

1
/ naﬁ(u)ﬁgvadQ = / Vo (/ fadyg) dQ, Yu, € Hy(Q).
\ JQ Q —1

(1.1)
For a Saint Venant-Kirchhoff isotropic material with Lamé coefficients X and 1L, the

constitutive law reads:

(

AN 4.
meag(usg) ;== —| ————(Aug)dag + = p10asus |,
o (us) (3(A+2ﬁ)< $)da + 57i0ass )
AN ~ 1.2)
nhs(u) = = e® (0)das + 471l 5 (), (1.
1 1
{ egc,@(u) = 5(8auﬁ + aﬂua) + 5((%9)851@, + (8,39)8QU3).

The outline of the contents of the paper is as follows: In the next section we
rewrite the shallow shell equations in a more appropriate form to deal with the
evolution problem, in section 3 we establish a Carleman estimate for the evolution

problem and finally in section 4 we solve the inverse problem.

§2. The evolution problem of the shallow shell equation.
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Let © C R? be a bounded domain with smooth boundary 99Q, z = (x1,z2),
0; = 29, = g Ojr, = 00, = 81’88 and let §: Q — R be given and sufficiently

smooth,

u(zy, zo,t) = (ug(z,t), uz(x,t), us(x,t)),

u(zy, o, t) = (ui(z,t),uz(z,t)) :Q— R

Then, considering the force of inertia in (1.1) and (1.2), we can describe an

evolution problem for shallow shell equation:

POt — pAd — (A + p)Vdiva — (diva) VA — (Va + (Va)”) Vu

— é(D2U3, V’LLg) = F, (2.1)

and

A+ 2u

4 2
p@fug + A2U3 + (§Vu + gV)\) -V (AUg)

+ (uAu + (A + p)Vdiva) - VO + G3(Va, D*us, Vug) = F5 in Q = Q x (0,7T).
(2.2)

Here

G(D%us, Vug) = Y {V (A(O40)(Dkus)) + O {(Ohuz) (VO) + p(040) (Vuz)}
k=1

G5 (V, D?usz, Vuz) = {(div WVA + (Vi + (V) D)V + G(D?us, vu3)} V0

2

1 2

( ) (Dug) + ) 5 i) (Ojkus) E n% 0510,
J.k=1 jk 1

F = (F,F)

and

N =4ANi/(N +20),  p =2,
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A=07+05, V=(01,0), V= (01,0,0),
divu = 81u1 + (92U2, rotu = 81UQ - 82U1,

Vi <81U1 31U2> . D%uz = (82uz, 92us, D1dous)

82711 82u2
and (Vu)7T is the transpose matrix of V.

Henceforth we set

Leu = pdfa — pAtd — (A + p)Vdiva — (diva) VA — (Va + (Va)’) Vu

— G(D?ug, Vus)

and

A+ 2 4 2
Lyu = pafu:g + %AQU:; + (§Vu + gV)\) -V (Au;g)

+ (uAu + (A + p)Vdiva) - VO + G3(Va, D*us, Vus) in Q.

§3. Carleman estimate.
In this section, we establish a Carleman estimate for the shallow shell equation.
We assume that p = p(x), A = A(z) and g = p(z) are in C?(Q) and positive in
Q. We set to = T/2,

QO(.’L‘,t) = 6’7(|90—370|2_’/|75_150\2)7 (31)
v and v are positive constants, ro = (2, z2) € R?\Q. We set

A+ 20

4 2
Lus = p0?usz + N2us + (—Vu + —VA) -V (Aus) .

3 3

First we present

Lemma 1. We assume that p, i and X are in C*(Q) and positive on Q and that

(V log (, /5 _3:’2“) (2) - (o — x0)> > _9 zeq. (3.2)
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Let v > 0 be arbitrarily fized in (3.1). Then there exists a number vy > 0 such that
for arbitrary v > 7o, we can choose sog > 0 satisfying: there exists a constant C' > 0

such that

2
/ {3|V3tv|2 + 5|VAu2 + s2|0)* + 53| Av)® + s Z 10,0k v|?
Q g k=1
2
+ | Vol? + s%u]? + Z |6j8k8gv|2}628@dxdt < C/ | Lv|?e**? dadt
k=1 Q

for all s > so and every real-valued v € L?(0,T; H3(Q))NH(0,T; H3(Q))N H2(0,T; H}(Q))
satisfying v(-,0) = O (-,0) = v(-,T) = Ow(-,T) = 0, provided that the right
hand side of what is finite. The constants sg and C' continuously depend on T,
v, Ioleny Ilos @y Nellos, and o continuously depends on T, [lpllca .
H)\Hol(ﬁ): HM’Cl(ﬁ)'

We note that if A and p are positive constants, then condition (3.2) is automat-

ically satisfied.

Proof of Lemma 1. Except for the term Z?,k,é:l |0;0,0pv|?€?*¢, by Yuan and
Yamamoto [28], all the terms on the left hand side is proved to be estimated by the

right hand side. We have to estimate 0;0,0,v. We have
A((950)e*) = AN(9v)e*? + 25V (0;v) - (Vp)e*? + (9,;v)(sDp + 52| Vip|)e?,
and so
IA((0jv)e*?)|? < C|A(0;v)]2e*5? + Cs*|V(0;v)[2e*5? + Cs*|Vu|?e**¢.  (3.3)
Similarly we have

|A(ve*?) |2 < C|Av|?e*? 4 Os?|Vo[2e®*¢ + Cst|v|? e,
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Lemma 1 yields
32/ |A(ve*®)|?dadt < C'/ |Lv|?e**¢ dxdt.
Q Q
Here the a priori estimate for the Dirichlet problem for A implies

2
Z / s2|8j8k(ves‘p)|2dmdt§C’/ |Lv|?e**¢ dxdt.
Q Q

jk=1

Since
0;00(ve™?) = (0;00)€" + 5¢°*{(D2)0hv + (Ohp) Oy}
+{5(0;00) + 5°(0;) (Dnp) Jve®*?,
we have
2
Z / s2|8j6’kv|2625‘pdxdt§0/ |Lv|?e*s¢ dxdt (3.4)
j k=1 Q Q

in terms of Lemma 1. Hence by (3.3) and Lemma 1, we have

/ A(00)e*) Pdadt
Q

2
SC’/ (|V(Av)|* + 52 Z 10,;0k0] + s*|Vo|?)e**dadt < C’/ | Lv|?e*? dadt.
Q Q

J k=1
Hence the a priori estimate for the Dirichlet problem for A yields
2
Z / 10,0k ((0v)e?) [Pdadt < C’/ | Lv|?e*?dadt,
gk t=17@Q Q
that is,
2
> / |0;0k0¢v > dazdt
gk, t=17@Q

SC/ |Lv|?e**?dxdt + C’/ 5 Z 0,;0,0|? + s*|Vv|? | e**¢dadt.
Q Q .k
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In terms of (3.4), we obtain

Z / 10,0k 0v|?e**? dxdt < 0/ | Lv|?e*$? dadt. (3.5)

7,k =1

Thus the proof of Lemma 1 is completed.
Next we present a Carleman estimate for the two-dimensional isotropic Lamé

system. We set u = (u1,us) and
Lot = pd*ia — pAt — (A + p)Vdiva — (diva) VA — (Va + (Va)!) V.

Let zg ¢ Q. Set

D = [sup |z — xo|? — inf |x — zo|?
z€Q zeQ

We introduce conditions on a function a:
Ha“03(5) < My,

(x — o) - Va(z) — (3.6)
2(;(1.) <1—6y, xe€fl,

a(x) > 61 > 0,

where the constants My > 0, 0 < 6y < 1, 6; > 0 are given. We fix a positive

constant v such that

\/_ < 0901, 0, inf |z — z0|* — vsup |z — z0|* > 0. (3.7)
\/_1 z€QN z€Q

Here we note that such v > 0 exists because zo ¢ Q.

Then

Lemma 2. We assume that p, \, ;1 € C3(Q), p, \, ;. > 0 on Q, and that (3.2) holds
and % and ALPQE satisfy (3.6). Let p(z,t) be defined by (3.1), v > 0 be sufficiently

large, and v > 0 satisfy (3.7). Then

/ (5|VairotT|? + 8|V, 1 divt)? + 5|V af? + s |rot]? + 53| divt|? + s° [a]*)e?* P dadt
Q

< C’/ (|Loul? + |V(Low)|?) e**?dxdt
Q
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for s > so and u € {H3(Q)}>.

The proof of the lemma is found in Imanuvilov and Yamamoto [10], [11], [12] for
example.
Now we proceed to the derivation of the Carleman estimate for the shallow shell

equation. Since Au; = 0;(divu) — derot u and Aug = d2(divu) + 0irot u, we have
|Au]? < C(|V(diva)]? + |V(rot 1)|?).
Hence Lemma 2 yields
/Q S| A2 dzdt < C /Q (ILofi]2 + |V (Loti) [2)e2 dadt. (3.9)

On the other hand, since

1 A N
021 = ~ Lot + “ At + 2 E v (diva)
p p p
VA . ~
—|—(divu)v7 + (Vu + (Vu)T)%,

we obtain
/ |07u)?e** P dxdt < (J/ |Lou|?e**¢dxdt
Q Q
+c/ (AT + |V(div )2 + [VE[2)e2 ¢ ddt.
Q
Therefore by Lemma 2 and (3.8), we have
/ 020222 dadt < C / (Lol + [V (Loi)[2)e2 dadt. (3.9)
Q Q
Applying Lemma 2 and (3.9), we obtain
/ (s|Vrotu|? + s|Vdiva|? + s|Vu|? + s]0; (rot ) |* + 5|0; (diva) |* + s|0.ul?
Q

+s3|rot u|? 4 s3|dival? + s*|ul?® + s|Auf? + |020)?)e* P drdt

SC/ > 0%usl +FP | + ) [05us)? + |[VF[? b e*Pdadt
Q

la| <2 |l <3

gC/ > 0%usl® + IF2 + |VF|]? | e**%dadt. (3.10)
Q
|| <3
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Applying Lemma 1, (3.4) and (3.5) to (2.2), we have
/ {s[V@tU3]2 + 5|V Auz|? + s3|0sus|* + s°| Ausl?
Q

2
+5% Y |0;0kus|® + s Vusl® + Clus + D |a§u3\2}e2wdxdt
k=1 |a|=3

g(]/(|Aﬁ]2+ Vdival]® + |Va] + |fi|2)e2wdxdt+0/ | Fy 2625 ddt.
@ Q (3.11)

Here we absorbed Zikzl 10;0kus]? and |Vug|? into the left hand side. Substitute

(3.11) into the right hand side of (3.10), we obtain

/ (s|Vrotu|? + s|Vdival|? + s|Vu|? + 5[0, (rot 1) |* + 5|0, (diva) |* + s|0,u?
Q
+s3|rot u|? 4 s3|dival? + s*|ul?® + s|Auf? + |020)?)e* P drdt
gC/ (AT + [Vdiva + [VE? + [6[2)e>*dedt
Q
+0/ (IF]2 + |VF)? + |F5]?)e?** dxdt.
Q
Absorbing the first term on the right hand side into the left hand side, we reach
/ (s|Vrot u|? + s|Vdival|? + s|Vu|? + 5[0; (rot 1) |* + s]0; (diva) |* + s|0,u/?
Q
+s3|rot u|? 4 s3|dival? + s*|ul?® + s|Aul? + |021)%)e* P dadt
gc/ (B + [VE? + |Fs[2)e2 dadt. (3.12)
Q
Again the application of (3.12) in (3.11) yields
/ {S|V8tu?,|2 + 5|V Aus|? + s3|0,us]? 4 53| Ausl?
Q
2
+52 ) [00kusl® + ' Vus|* + sClus> + ) |agu3|2}62wdxdt
j,k:l |C¥‘:3

1=y 1 _=
gc/ (g|F\2 + ;\VFIQ + | F3)%)e?*dadL. (3.13)
Q

Thus we proved
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Theorem 1 (Carleman estimate). We assume that p, A\, u € C? (ﬁ), p(x) >0,
Mz) > 0, p(x) > 0 for all x € Q, and that (3.2) holds, £ and H% satisfy
(3.6). Let o(z,t) be defined by (3.1) and v > 0 satisfy (3.7). Then there ex-
ists v9 > 0 such that for any v > 79, we can choose sy = Sso(v) > 0 and

C = C(s0,7%, Mo, bp,01,v,Q,T,x0,w) > 0 such that
/Q{S|V$’trot1~1|2 + 8|V e dival|® + 5|V, .l
+s3|rota|? + s*|dival® + s3[ul? + s|Aul? + ]3,?ﬁ]2}628‘pdxdt
—|—/Q{slvatu?,|2 + 5|V Aus|? + 53|0sus]? 4 53| Ausl?

2
+5° Z 10, 0kus|? + % Vug|? + s®|uz|? + Z |8§‘U3\2}62wd9€dt
j,k?:]. |Oé‘:3

SC/ (|Leu|® 4 |V(Lew) | + |Lyu|?)e* P dadt.
Q

for all s > 5o, u € {H3(Q)}? and uz € HF(Q).

This is a Carleman estiamate for the linear shallow shell equation, which is
novel to the authors’ best knowledge. As for Carleman estimates and applications
to the observability and inverse problems for nonstationary Lamé system and a
plate equation, see Cheng, Isakov, Yamamoto and Zhou [4], Imanuvilov, Isakov

and Yamamoto [9], Imanuvilov and Yamamoto [10], [11], [12], Isakov [13].

84. Inverse source problem.
We consider

Luu=F (4.1)
Liu=F; inQ=Qx(0,T), (4.2)

u = ﬁtu =0 on () x {to}, (43)
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u=0 on 02 x (0,T), (4.4)

where t5 = %, F = (Fy, Fy), and u = (u1,uz) and us depends on (z,t) € Q.

Inverse source problem. We assume that
F(a,t) = (5;2?2;2) - (}"Ei%ﬁléiii) . Fs(a,t) = fa(@)Rs(z,t).  (45)

Let an observation subdomain w C € satisfy 92 C dw and T > 0 be suitably
given. Then determine an z-dependent component (fi(z), fo(x), f3(z)), z € Q of

an exterior force (Fy, Fy, F3) from the observations of
u(z,t) = (u(z,t),us(z,t), (x,t) € Qu=wx(0,T).

The condition dw D 02 means that w C € is a neighbourhood of 0€2. We can relax
the condition dw D 02, but we cannot choose an arbitrary subdomain w, because
the equation in u is hyperbolic, so that we need some geometric condition on w
(e.g., [10]). This condition is related with the pseudo-convexity which is necessary
for proving a Carleman estimate (e.g., Hérmander [8]).

We are ready to state the main result for the inverse source problem.

Theorem 2. We assumne that p, A\, p € C*(Q), p(z) > 0, A(z) > 0, p(z) >0
for all x € Q, and that (3.2) holds, and % and H% satisfy (3.6). Let v > 0 satisfy

(3.7). Furthermore we assume that

T > 271; (4.6)

and there exist constants My,rqg > 0 such that

||Rj||W3,oo(Q) S M17 |Rj<£l/‘,t0)| Z To, HAS ﬁ» ] - 17 273 (47)
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Moreover, we assume that 0 € {W5>(Q)}?, us € Wo=(Q), f; € C1(Q), j =1, 2,

fs € C(Q) satisfy (4.1) - (4.5) and
[0l pprace(gyy2 < Mo, [usllyys.(g) < Mo (4.8)

Then there exist constants k = k(My, My, Ma, 0y, 61, Q, T, xq, p, \, n) € (0,1)

and Cy = Co(My, My, My, 6y, 01, Q, T, xg, p, A, ) > 0 such that

Ll @) + 12l 1 o) + 13l 2) < Co (HGH{H‘l(Qw)}Q + ||u3||H6(Qw)> . (4.9)

This kind of inverse problems was considered firstly in Bukhgeim and Klibanov
[2], whose method is based on Carleman estimates. See also Bellassoued and Ya-
mamoto [1], Klibanov [15] and the references therein. Here we do not give more

detailed references on inverse problems by Carleman estimates.

Proof. The proof is adapted from e.g., [10]. By (4.6) and the definition (3.1) of ¢,
we have

o) > d>1, 0<p(,0)=p(T)<d, ze0, (4.10)
where d = exp(yinf g |z—x0]?). Therefore, for any given small ) € (0, d —sup, g (z, T)),
we can choose a sufficiently small § = §(n) > 0, such that

0<op(x,t)<d—n, (z,t)€Qx([0,26]U[T —25,T)). (4.11)

In order to apply Theorem 1, we introduce two cut-off functions y; and y» satisfying

X1 €C®(R), x2a € CL(Q),0< xy1(t) <1fort € R, 0< xa(x) <1 forzeQ,

e { 0, tel0,8ulT—4T], 12)

1, te[26,T—26),

and xo(x) =1 for z € Q\w.
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We set w = (W, ws3), W = (w1, ws) = Xlat2ﬁ € {W3’OO(Q)}2 and w3 = Xlatgu?) €

W4°(Q). Then, by (4.1) and (4.2), we have

Lew = X1 (8ff) +2p (9ex1) (970) + p (97x1) (971) (4.13)
and
w =0, on 90 x (0,7). (4.15)

Moreover, we set v = (v, v3) = x2(W,ws). Then, by definition of x; and x2, (4.13)

and (4.14), we have v € {H3(Q)}? and v3 € H(Q),
Lev=x1 (6,521?‘) +2p (Ox1) (870) + p (07x1) (070) — Le (1 — x2)w),  (4.16)

Lyv = x1 (07 F3) 4+ 2p (0ex1) (9us) + p (07x1) (97us) — Ly (1 — x2)w) in Q.

(4.17)
Here we have used
v=w—(1—x2)wW, wv3=ws—(1—x2)wsin Q. (4.18)
Furthermore, by (4.16), we have
V(Lev) = xaV (07F) +2(000) ¥ (0 (970)) + (91) V (o (973))
—VA{L:((1 = x2)w)} in Q. (4.19)

Applying Theorem 1, we obtain

/ (33 V12 4 5| VeV > + 5 | AV + 5 |vs)” + 5° \vw,tvgﬁ) 25 dudt
Q

< / (|Lev]? 4 |V (Lev)|? + | Lyv[?) e dadt (4.20)
Q
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for all large s > 0. Here and henceforth, C, denote generic positive constants which
may depend on sg, s1, S2, v, My, My, Ms, 6y, 61, D, d, 2, T, w, x1, X2, 6, 1, but

are independent of s. By the definition of y; and y2, we have

(1 —x2(z))w(x,t) =0, (1 —x2(x))ws(x,t) =0 for (x,t) € (2 \w) x (0,T) (4.21)
and (Oyx2) (t) = (02x2) (t) =0 for t € (0,6) U (26, — 26) U (T — 6, T). Therefore,

by (4.5), (4.7), (4.8), (4.11) and (4.16), we have

/ Lov]? 2% dadt < Cy / 1 OPF2e P dadt + C / Lo (1 — xo)w)[2e2* dadt

w

25
(/ / )/ 120(9:x1)(970) |2 + |p(0%x1) (0210)|?)e*5P dadt

< Cs {/Q(!JW + | f2]?) 2P dadt + 5@ 4 em@}

for all s > 0, where ® = sup, ;5 ¢(@,t) = 1 and
O = [0l ague + lusl g (4.22)
Similarly, by (4.5), (4.7), (4.8), (4.11), (4.17) and (4.19), we have
/Q (Lyv ] + [V (Lev) e dadt

2
<Cs {/ (Z (’fk\Q + |ka]2) + ]f3|2) e25% dudt + ¢25(d=m) 4 625@@}
Q

k=1
for all s > 0. Therefore, by (4.18), (4.20) and (4.21), we arrive at
/ (S| + 8|V ]2 + | AT + s|ws|? + |V ws2e2 P dudt
Q
307/ (SI12 + 8|V i T2 + | AT + slvs|® + |V gvs]?)e2 P dadt
Q

+Case® (|1 = Xx2) W {2 (quyy> + 11— x2)wslinq.))

2
{/ <Z |fk|2 + |ka ) + |f3|2> e2s<pdxdt+e2s(d—n) + 8625¢@}
k=1

(4.23)
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for all large s > 0.

On the other hand, by integral by parts, we have

1 _ 1 [t =

~ | VW (x, to)|2e25 P @) gy = = Oy Vw;(z,t)|?e2? @ dz | dt
j

2 Jo 2 Jo Qi

/ / (Orw;) (Or0yw;) + s(0pp) | VW|? | €252 dxdt

7,k=1

to 2 2
— / / (D) VW[ =Y~ dyw; (ij + 282(8kwj)(8kg0)> e dxdt
0 Q j=1 k=1

Sclo/ (|AW|? + 5|V, W|?)e? 5P dxdt
Q

for all s > 0. Here we have used (4.15) and w(-,0) = 0 by (4.12). Furthermore we

have

1 <7 S x 1 to 2 S x
5/ W (, to)|2e25?(@10) dy = 5/ Oy /Z|wj(x,t)\262 #@t) dy | dt
Q 0 Qi
to 2
[ [ X w0+ st | et
j=1

SC’11/(S|V~V|2 + |0, w|?) e P dxdt
Q

and

1
5 / s () 2210 dgr < O / (s]ws |2 + [Oyws|2)e2P dadt
Q Q

for all s > 0. Therefore, we have

/<|V"7VV($7750)|2 + [W(x, to)]? + |ws(z, to)|?)e25? @ t0) dg:
Q

<Cua [ (SIS 5 Vsl 4 |55 4 s + [Dpwn|”) 27t
Q (4.24)

for all s > 0. Moreover, by (4.1), (4.2), (4.3) and (4.12), we have

F(z,to) = p(x)07u(x, o) = p(x)W(z, to),
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Fs(x,to) = p(2)02us(x, to) = p(x)ws(x,to), x € Q.

Therefore, noting (4.5) and (4.7), we have

xr .
fj(x):—tw](l’?t())a ]:172737

and

Vfi(x) = wi(z, to)V { Rkp((;‘i)to)} + Rkp((;;)to)vwk(x,to), k=1,2, z € Q.

Therefore, by (4.7), we have

2
/Q (Z(|fk|2 + |ka|2) + |f3|2) e25¢(x,t0) g

k=1

S014/ (IVW(z,to) > + |W(z, to)|* + lws(z, to)|?) e25#(@:t0) gy
Q

(4.25)
for all s > 0. By (4.23), (4.24) and (4.25), we obtain
2
€ \k=1
2
=0 {/ (Z(IW +IVAl) + |f3|2> 2P dadt + 254" 4 seQSCP@}
C (4.26)

for all sufficiently large s > 0.
We will estimate the first term of the right hand side of (4.26) as follows. By

(3.1), we have

o(z,t) — o(z, tg) = eVIFwol~vt=t0)®) _ grlw—wof*

—elz—wol® <e_W(t_t°)2 — 1) < et 1 <0, telo,T).

2
/ <Z (1ful? + [V £il?) + \f3|2> e**Pddt
k=1
T 2
/ (2s(e(@0) (@, to”dt) <Z (1 + IV 1) +|f3|2> 2% (@:t0) gy
0 ke

1

T s e*’yu(tft )2_ 2
(/ ¢’ ( A ) (E : (|fk|2 + |ka:|2> T |f3|2> e?s# (o) gy
0

k=1 (4.27)
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for all large s > 0. Moreover, we have lim,_., exp{2s(exp(—yv(t —t9)?) — 1)} =0
for t # to and | exp{2s(exp(—yv(t — t9)?) — 1)}| < 1. Therefore, by the Lebesgue

theorem, we have that there exists s; > 0 such that
T 2 —'yu(t—to)2 1 ]_
C15/ e2sle Dt < 5 for all s > s;. (4.28)
0

From (4.26), (4.27) and (4.28) it follows that there exists so > 0 such that

/Q (Z <|fk‘2 + ‘ka|2> + ‘f3|2> eZscp(ac,to)dx <205 {628(d—n) + S@QS(I)@}

k=1

for all s > s5. Therefore, noting (4.10), we otain that there exists s3 > 0 such that

/ (22: (14 +19£:) + |f3|2) da
€ \k=1
2

Se_QSd/ (Z (|fk!2 + !ka|2> + !f3\2> e2s#(@:t0) gy
Q

k=1
§2015 {6_2877 + 8623(©—d)®} < 2015 {6_2877 + €2S<I>@}

for all s > s3. Hence we have

2

/ <Z <|fk|2 + |ka|2> + |f3|2> dz < Cig (7" +€**?0) for all s > 0,
Q

k=1

where C1g = 2052532,
In order to prove (4.9), we can assume that © < 1, so that —(log ©)(2n+2®) > 0.

We take

. log ©
O 2n 428

Then it follows that

_ _n_
e 2sn =€2s©@=@”+‘1’.

Therefore, by (4.29), we have

2
/Q (Z <’f’€‘2 + Wfk’Q) + \f3|2) dx < 20,407+ .

k=1

Noting (4.22), we obatin (4.9). The proof of Theorem 2 is completed. [
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§5. Extensions.

Relying on this approach of Carleman estimates which have been proved suc-
cessful, we are now considering the case of more general geometries to solve the
inverse problems for elastic bodies whose equilibrium equations are of Koiter shells
type (Li, Miara and Yamamoto [21]) and relax the condition of the shallowness

introduced in [23].
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