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PARTIAL DATA FOR THE CALDERÓN PROBLEM IN TWO
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Abstract. We show in two dimensions that measuring Dirichlet data for the conductivity
equation on an open subset of the boundary and, roughly speaking, Neumann data in slightly
larger set than the complement uniquely determines the conductivity on a simply connected
domain. The proof is reduced to show a similar result for the Schrödinger equation. Using
Carleman estimates with degenerate weights we construct appropriate complex geometrical
optics solutions to prove the results.

1. Introduction

The Electrical Impedance Tomography (EIT) inverse problem consists in determining

the electrical conductivity of a body by making voltage and current measurements at the

boundary of the body. Substantial progress has been made on this problem since Calderón’s

pioneer contribution [7]. The inverse problem is also known as Calderón’s problem. This

problem can be reduced to studying the Dirichlet-to-Neumann (DN) map associated to

the Schrödinger equation. A key ingredient in several of the results is the construction of

complex geometrical optics for the Schrödinger equation (see [23] for a recent survey). Using

this method in dimension n ≥ 3 for the conductivity equation the first global uniqueness

result for C2 conductivities was proven in [20] and the regularity was improved to having

3/2 derivatives in [3] and [18]. More singular conormal conductivities were considered in

[11]. These results were also proven by showing a corresponding result for the Schrödinger

equation.

In two dimensions the first global uniqueness result for Calderón’s problem for full data

was in [17] for conductivities having two derivatives, and this was improved to Lipschitz

conductivities in [4] and for merely L∞ conductivities in [2]. However, the corresponding

result for the Schrödinger equation was not known until the recent breakthrough [5]. As for

the uniqueness in determining two coefficicents, see [8].

Much less is known if the DN map is only measured on part of the boundary. We only

review here the results where no a-priori information is assumed on the bounded potential.

In dimensions n ≥ 3 a global result is shown in [6] where partial measurements of the

DN map are assumed. It is shown in [6] that for C2 conductivities if we measure the DN

map restricted to, roughly speaking, a slightly larger than the half of the boundary, then

one can determine uniquely the potential. The proof relies on a Carleman estimate with

an exponential weight with a linear phase. The Carleman estimate can also be used to
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construct complex geometrical optics solutions for the Schrödinger equation. In [15] the

regularity assumption on the conductivity was relaxed to C3/2+ε, ε > 0. Stability estimates

for the uniqueness result of [6] were given in [12]. Stability estimates for the magnetic

Schrödinger operator with partial data in the setting of [6] can be found in [22].

In [14], the result in [6] was generalized to show that by all possible pairs of Dirichlet

data on an arbitrary open subset Γ+ of the boundary and Neumann data on a slightly larger

subboundary than ∂Ω \ Γ+, one can uniquely determine the potential. The case of the

magnetic Schrödinger equation was considered in [9] and improvement on the regularity of

the coefficients can be found in [16].

In this paper we show a result similar to [14] in two dimensions by constructing complex

geometrical optics solutions with degenerate weights. We note that in two dimensions the

problem is formally determined while in dimension three or higher is overdetermined. We

now state the main result more precisely.

Let Ω ⊂ R2 be a simply connected bounded domain with smooth boundary. The electrical

conductivity of Ω is represented by a bounded and positive function γ(x). In the absence of

sinks or sources of current the potential u ∈ H1(Ω) with given boundary voltage potential

f ∈ H
1
2 (∂Ω) is a solution of the Dirichlet problem

(1.1)
div(γ∇u) = 0 in Ω,

u
∣∣
∂Ω

= f.

The Dirichlet to Neumann (DN) map, or voltage to current map, is given by

(1.2) Λγ(f) = γ
∂u

∂ν

∣∣∣
∂Ω

,

where ν denotes the unit outer normal to ∂Ω. This problem can be reduced to studying the

set of Cauchy data for the Schrödinger equation with the potential q given by:

(1.3) q =
∆
√

γ√
γ

.

(1.4) Cq =

{(
u|∂Ω,

∂u

∂ν

∣∣∣
∂Ω

)
| (∆− q)u = 0 on Ω, u ∈ H1(Ω)

}
.

We have Cq ⊂ H
1
2 (∂Ω)×H− 1

2 (∂Ω).

By using a conformal map, thanks to the Kellog-Warchawski theorem (see e.g. p 42 [19]),

without loss of generality we assume that Ω = {x ∈ R2| |x| < 1}.
Let Γ− = {(cos θ, sin θ)|θ ∈ (−θ0, θ0)} be a connected subdomain in ∂Ω and θ0 ∈ (0, π],

x̂± the boundary of Γ−: ∂Γ− = {x̂±}. Denote Γ+ = S1 \ Γ−. Let ε > 0 be a small number

such that θ0 + ε ∈ (0, π]. Denote by Γ−,ε = {(cos θ, sin θ)|θ ∈ (−θ0 − ε, θ0 + ε)} and by x̂±,ε

the endpoints of Γ−,ε.

We have

Theorem 1.1. Let qj ∈ C1+ε(Ω), j = 1, 2. Consider the following sets of partial Cauchy

data:
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(1.5) Cqj
=

{(
u|Γ+ ,

∂u

∂ν

∣∣∣
Γ−,ε

)
| (∆− qj)u = 0 on Ω, u ∈ H1(Ω)

}
, j = 1, 2.

Assume

Cq1 = Cq2

with some ε > 0. Then

q1 = q2.

As a direct consequence of Theorem 1.1 we have

Corollary 1.1. Let γj ∈ C3+ε(Ω), j = 1, 2, be strictly positive. Assume that γ1 = γ2 on ∂Ω

and

Λγ1u = Λγ2u on Γ−,ε for all u ∈ H
1
2 (Γ+).

Then γ1 = γ2.

The proof of Theorem 1.1 uses Carleman estimates for the Laplacian with degenerate lim-

iting Carleman weights. The results of [6] and [14] use complex geometrical optics solutions

(CGO) of the form

(1.6) u = eτ(ϕ+
√−1ψ)(a + r),

where ∇ϕ · ∇ψ = 0, |∇ϕ|2 = |∇ψ|2 and φ is a limiting Carleman weight and a is smooth

and non-vanishing and ‖r‖L2(Ω) = O( 1
τ
), ‖r‖H1(Ω) = O(1). Examples of limiting Carleman

weights are the linear phase ϕ(x) = x · ω, ω ∈ Sn−1, used in [6], and the non-linear phase

ϕ(x) = ln |x−x0|, where x0 ∈ Rn\Ω which was used in [14]. For a complete characterization

of possible local Carleman weights in the Euclidean space and more general manifolds see

[10].

In two dimensions the limiting Carleman weights are harmonic functions so that there

is a larger class of complex geometrical optics solutions. This freedom was used in [24] to

determine inclusions for a large class of systems in two dimensions. In particular, one can

use the harmonic function φ = zn as limiting Carleman weight, assuming that 0 is outside

the domain.

In this paper we construct complex geometrical optics solutions of the form

(1.7) u = eτ(ϕ+
√−1ψ)(a + r)

√−1 + ur

where ur is a “reflected” term to guarantee that the solution vanishes in particular subsets

of the boundary, ϕ is a harmonic function having a finite number of non-degenerate critical

points in Ω, and ψ is the corresponding conjugate harmonic function. However we need to

modify the form with φ harmonic but having non-degenerate critical points. Solutions as in

(1.6) with degenerate harmonic functions were also used in [5] but here the phase function

needs to satisfy further restrictions in order to use them for the partial data problem. Another

complication is that the correction term r and the reflected term ur do not have the same

asymptotic behavior in τ as in [14] because of the degeneration of the phase so that one needs

to further decompose these terms and analyze their asymptotic behavior in τ. See section 3
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for more details. In section 2 we prove a general Carleman estimate for degenerate weights.

Finally in section 4 we prove Theorem 1.1.

2. Carleman estimates with degenerate weights

Throughout the paper we use the following notations:

Notations i =
√−1, x1, x2, ξ1, ξ2 ∈ R, z = x1 + ix2,ζ = ξ1 + iξ2,

∂
∂z

= 1
2
(∂x1 − i∂x2),

∂
∂z

=
1
2
(∂x1 +i∂x2), H1,τ (Ω) denotes the space H1(Ω) with norm ‖v‖2

H1,τ (Ω) = ‖v‖2
H1(Ω)+τ 2‖v‖2

L2(Ω).

The tangential derivative on the boundary is given by ∂τ = ν2
∂

∂x1
− ν1

∂
∂x2

, with ν = (ν1, ν2)

the unit outer normal to ∂Ω, B(x̂, δ) = {x ∈ R2||x − x̂| ≤ δ}, f(x) : R2 → R1, f ′′ is the

Hessian matrix with entries ∂2f
∂xi∂xj

.

Let Φ(z) = ϕ1(x1, x2) + iϕ2(x1, x2) be a holomorphic function in Ω:

(2.1)
∂Φ(z)

∂z
= 0 in Ω, Φ ∈ C2(Ω).

Denote by H the set of critical points of a function Φ

H =

{
z ∈ Ω|∂Φ

∂z
(z) = 0

}
.

Assume that Φ has no critical points at the boundary and nondegenerate critical points in

the interior;

(2.2) H ∩ ∂Ω = {∅}, Φ
′′
(z) 6= 0 ∀z ∈ H.

Then Φ we have only a finite number of critical points:

(2.3) cardH < ∞.

Denote ∂Φ
∂z

(z) = ψ1(x1, x2) + iψ2(x1, x2).

We will prove Carleman estimates for the conjugated operator

(2.4) ∆τ = eτΦ∆e−τΦ.

We will use the factorization

(2.5)

eτϕ1∆e−τϕ1 ṽ =

(
4

∂

∂z
− 2τ

∂Φ

∂z

)(
4

∂

∂z
− 2τ

∂Φ

∂z

)
ṽ =

(
4

∂

∂z
− 2τ

∂Φ

∂z

)(
4

∂

∂z
− 2τ

∂Φ

∂z

)
ṽ

and prove Carleman estimates first for every term in the factorization.

Proposition 2.1. Let Φ satisfy (2.1) and (2.2). Let f̃ ∈ L2(Ω) and ṽ be solution to the

problem

(2.6) 2
∂ṽ

∂z
+ τ

∂Φ

∂z
ṽ = f̃ in Ω

or ṽ be solution to the problem

(2.7) 2
∂ṽ

∂z
+ τ

∂Φ

∂z
ṽ = f̃ in Ω.
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In the case (2.6) we have

∥∥∥∥
(

∂

∂x1

+ iψ2τ

)
ṽ

∥∥∥∥
2

L2(Ω)

+ τ

∫

∂Ω

(∇ϕ1, ν)|ṽ|2dσ

+Re

∫

∂Ω

i

((
ν2

∂

∂x1

− ν1
∂

∂x2

)
ṽ

)
ṽdσ +

∥∥∥∥
(
−i

∂

∂x2

+ τψ1

)
ṽ

∥∥∥∥
2

L2(Ω)

= ‖f̃‖2
L2(Ω)(2.8)

and ṽ solves (2.7) we have

∥∥∥∥
(

∂

∂x1

− iψ2τ

)
ṽ

∥∥∥∥
2

L2(Ω)

+ τ

∫

∂Ω

(∇ϕ1, ν)|ṽ|2dσ + Re

∫

∂Ω

i

((
−ν2

∂

∂x1

+ ν1
∂

∂x2

)
ṽ

)
ṽdσ

+

∥∥∥∥
(

i
∂

∂x2

+ ψ1τ

)
ṽ

∥∥∥∥
2

L2(Ω)

= ‖f̃‖2
L2(Ω).(2.9)

Proof. We prove the statement of the proposition first for the equation 2∂ev
∂z

+ τ ∂Φ
∂z

ṽ = f̃ .

Since ∂
∂z

+ τ ∂Φ
∂z

= ( ∂
∂x1

+ iψ2τ)+( ∂
i∂x2

+ψ1τ), taking the L2− norm of the right and left hand

sides of (2.6) we have

∥∥∥∥
(

∂

∂x1

+ iψ2τ

)
ṽ

∥∥∥∥
2

L2(Ω)

+ 2Re

((
∂

∂x1

+ iψ2τ

)
ṽ,

(
−i

∂

∂x2

+ ψ1τ

)
ṽ

)

L2(Ω)

+

∥∥∥∥
(
−i

∂

∂x2

+ ψ1τ

)
ṽ

∥∥∥∥
2

L2(Ω)

= ‖f̃‖2
L2(Ω).

Since we take the commutator to have [( ∂
∂x1

+ iψ2τ), ( ∂
i∂x2

+ ψ1τ)] ≡ 0, we obtain

∥∥∥∥
(

∂

∂x1

+ iψ2τ

)
ṽ

∥∥∥∥
2

L2(Ω)

+

((
∂

∂x1

+ iψ2τ

)
ṽ, (−iν2ṽ)

)

L2(∂Ω)

+

(
ν1ṽ,

(
−i

∂

∂x2

+ ψ1τ

)
ṽ

)

L2(∂Ω)

+

∥∥∥∥
(
−i

∂

∂x2

+ ψ1τ

)
ṽ

∥∥∥∥
2

L2(Ω)

= ‖f̃‖2
L2(Ω).

This equality implies

∥∥∥∥
(

∂

∂x1

+ iψ2τ

)
ṽ

∥∥∥∥
2

L2(Ω)

+ τ

∫

∂Ω

(ψ1ν1 − ψ2ν2)|ṽ|2dσ +

∫

∂Ω

i

((
ν2

∂

∂x1

− ν1
∂

∂x2

)
ṽ

)
ṽdσ

+

∥∥∥∥
(
−i

∂

∂x2

+ ψ1τ

)
ṽ

∥∥∥∥
2

L2(Ω)

= ‖f̃‖2
L2(Ω).

Finally by (2.1) we observe that ψ1 = 1
2
(∂ϕ1

∂x1
+ ∂ϕ2

∂x2
) = ∂ϕ1

∂x1
and ψ2 = 1

2
(∂ϕ2

∂x1
− ∂ϕ1

∂x2
) = −∂ϕ1

∂x2
.

Therefore from the above equality (2.8) follows immediately.

Now we prove the statement of the theorem first for the equation (2.7). Since ∂
∂z

+ τ ∂Φ
∂z

=

( ∂
∂x1

− iψ2τ) + (− ∂
i∂x2

+ ψ1τ), taking the L2− norm of the right and left hand sides of (2.7)

we have
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∥∥∥∥
(

∂

∂x1

− iψ2τ

)
ṽ

∥∥∥∥
2

L2(Ω)

+ 2Re

((
∂

∂x1

− iψ2τ

)
ṽ,

(
i

∂

∂x2

+ ψ1τ

)
ṽ

)

L2(Ω)

+

∥∥∥∥
(

i
∂

∂x2

+ ψ1τ

)
ṽ

∥∥∥∥
2

L2(Ω)

= ‖f̃‖2
L2(Ω).

Since [( ∂
∂x1

− iψ2τ), (− ∂
i∂x2

+ ψ1τ)] ≡ 0, we obtain

∥∥∥∥
(

∂

∂x1

− iψ2τ

)
ṽ

∥∥∥∥
2

L2(Ω)

+

((
∂

∂x1

− iψ2τ

)
ṽ, (iν2ṽ)

)

L2(∂Ω)

+

(
ν1ṽ,

(
i

∂

∂x2

+ ψ1τ

)
ṽ

)

L2(∂Ω)

+

∥∥∥∥
(

i
∂

∂x2

+ ψ1τ

)
ṽ

∥∥∥∥
2

L2(Ω)

= ‖f̃‖2
L2(Ω).

This equality implies

∥∥∥∥
(

∂

∂x1

− iψ2τ

)
ṽ

∥∥∥∥
2

L2(Ω)

+ τ

∫

∂Ω

(ψ1ν1 − ψ2ν2)|ṽ|2dσ +

∫

∂Ω

i

((
−ν2

∂

∂x1

+ ν1
∂

∂x2

)
ṽ

)
ṽdσ

+

∥∥∥∥
(

i
∂

∂x2

+ ψ1τ

)
ṽ

∥∥∥∥
2

L2(Ω)

= ‖f̃‖2
L2(Ω).

Finally we observe that ψ1 = 1
2
(∂ϕ1

∂x1
+ ∂ϕ2

∂x2
) = ∂ϕ1

∂x1
and ψ2 = 1

2
(∂ϕ2

∂x1
− ∂ϕ1

∂x2
) = −∂ϕ1

∂x2
. Thus (2.9)

follows immediately from the above equality (2.9), finishing the proof of the proposition. ¤

Let u solve

(2.10) ∆u = f in Ω, u|∂Ω = 0.

Denote

∂Ω+ = {(x1, x2) ∈ ∂Ω|(∇ϕ1, ν) > 0}
and

∂Ω− = {(x1, x2) ∈ ∂Ω|(∇ϕ1, ν) < 0}.
The main result of this section is the following Carleman estimate with degenerate weights.

Theorem 2.1. Suppose that Φ satisfies (2.1), (2.2). Let f ∈ L2(Ω) and a solution to (2.10)

with u ∈ H1(Ω) be a real valued function. Then there is a positive constant C > 0 such that:

1

C5

(
τ‖ueτϕ1‖2

L2(Ω) + ‖ueτϕ1‖2
H1(Ω) + τ 2

∥∥∥∥
∣∣∣∣
∂Φ

∂z

∣∣∣∣ ueτϕ1

∥∥∥∥
2

L2(Ω)

)
− τ

∫

∂Ω−
(ν,∇ϕ1)

∣∣∣∣
∂u

∂ν

∣∣∣∣
2

e2τϕ1dσ

≤ C

(
‖fesϕ1‖2

L2(Ω) + τ

∫

∂Ω+

(ν,∇ϕ1)

∣∣∣∣
∂u

∂ν

∣∣∣∣
2

e2τϕ1dσ

)
.(2.11)



PARTIAL DATA IN TWO DIMENSIONS 7

Proof. As indicated earlier we can take Ω to be the unit ball. Denote ṽ = ueτϕ1 . Observe

that ∆ = 4 ∂
∂z

∂
∂z

and ϕ1(x1, x2) = 1
2
(Φ(z) + Φ(z)). Therefore

eτϕ1∆e−τϕ1 ṽ =

(
4

∂

∂z
− 2τ

∂Φ

∂z

)(
4

∂

∂z
− 2τ

∂Φ

∂z

)
ṽ =

(
4

∂

∂z
− 2τ

∂Φ

∂z

) (
4

∂

∂z
− 2τ

∂Φ

∂z

)
ṽ = feτϕ1 .

Denote w̃1 = (4 ∂
∂z
−2τ ∂Φ

∂z
)ṽ, w̃2 = (4 ∂

∂z
−2τ ∂Φ

∂z
)ṽ and ∂Φ

∂z
= ψ1(x1, x2)+ iψ2(x1, x2). Thanks

to the boundary condition (2.10), we have

w̃1|∂Ω = 4∂zṽ|∂Ω = 2(ν1 + iν2)
∂ṽ

∂ν
|∂Ω, w̃2|∂Ω = 4∂zṽ|∂Ω = 2(ν1 − iν2)

∂ṽ

∂ν
|∂Ω.

By Proposition 2.1

∥∥∥∥
(

∂

∂x1

− iψ2τ

)
w̃1

∥∥∥∥
2

L2(Ω)

− τ

∫

∂Ω

(∇ϕ1, ν)

∣∣∣∣
∂ṽ

∂ν

∣∣∣∣
2

dσ + Re

∫

∂Ω

i

((
ν2

∂

∂x1

− ν1
∂

∂x2

)
w̃1

)
w̃1dσ

+

∥∥∥∥
(

i
∂

∂x2

+ ψ1τ

)
w̃1

∥∥∥∥
2

L2(Ω)

=
1

4
‖fesϕ1‖2

L2(Ω)

and

∥∥∥∥
(

∂

∂x1

+ iψ2τ

)
w̃2

∥∥∥∥
2

L2(Ω)

− τ

∫

∂Ω

(∇ϕ1, ν)

∣∣∣∣
∂ṽ

∂ν

∣∣∣∣
2

dσ + Re

∫

∂Ω

i

((
−ν2

∂

∂x1

+ ν1
∂

∂x2

)
w̃2

)
w̃2dσ

+

∥∥∥∥
(

i
∂

∂x2

− ψ1τ

)
w̃2

∥∥∥∥
2

L2(Ω)

=
1

4
‖fesϕ1‖2

L2(Ω).

Let us simplify the integral Re i
∫

∂Ω

((
ν2

∂
∂x1

− ν1
∂

∂x2

)
w̃1

)
w̃1dσ. We recall that ṽ = ueτϕ1

and w̃1 = 2(ν1 + iν2)
∂ev
∂ν

= 2(ν1 + iν2)
∂u
∂ν

eτϕ1 . Denote A + iB = (ν1 + iν2). Thus

Re

∫

∂Ω

i

((
ν2

∂

∂x1

− ν1
∂

∂x2

)
w̃1

)
w̃1dσ =

Re

∫

∂Ω

4i

((
ν2

∂

∂x1

− ν1
∂

∂x2

)[
(A + iB)

∂u

∂ν
eτϕ1

])
(A− iB)

∂u

∂ν
eτϕ1dσ =

Re

∫

∂Ω

4i

[(
ν2

∂

∂x1

− ν1
∂

∂x2

)
(A + iB)

] ∣∣∣∣
∂ṽ

∂ν

∣∣∣∣
2

(A− iB)dσ +

Re

∫

∂Ω

2i(A2 + B2)

(
ν2

∂

∂x1

− ν1
∂

∂x2

) ∣∣∣∣
∂ṽ

∂ν

∣∣∣∣
2

dσ =

4

∫

∂Ω

∣∣∣∣
∂ṽ

∂ν

∣∣∣∣
2

dσ.
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Let us simplify the integral Re
∫

∂Ω
i
((
−ν2

∂
∂x1

+ ν1
∂

∂x2

)
w̃2

)
w̃2dσ. We recall that ṽ = ueτϕ1

and w̃2 = 2(ν1 − iν2)
∂ev
∂ν

= 2(ν1 − iν2)
∂u
∂ν

eτϕ1 . We conclude

Re

∫

∂Ω

i

((
−ν2

∂

∂x1

+ ν1
∂

∂x2

)
w̃2

)
w̃2dσ =

Re

∫

∂Ω

4i

((
−ν2

∂

∂x1

+ ν1
∂

∂x2

)[
(A− iB)

∂u

∂ν
eτϕ1

])
(A + iB)

∂u

∂ν
eτϕ1dσ =(2.12)

Re

∫

∂Ω

4i

[(
−ν2

∂

∂x1

+ ν1
∂

∂x2

)
(A− iB)

] ∣∣∣∣
∂ṽ

∂ν

∣∣∣∣
2

(A + iB)dσ −

Re

∫

∂Ω

2i(A2 + B2)

(
ν2

∂

∂x1

− ν1
∂

∂x2

) ∣∣∣∣
∂ṽ

∂ν

∣∣∣∣
2

dσ =

∫

∂Ω

4

∣∣∣∣
∂ṽ

∂ν

∣∣∣∣
2

dσ.

Using the above formulae we obtain

∥∥∥∥
(

∂

∂x1

+ iψ2τ

)
w̃2

∥∥∥∥
2

L2(Ω)

+

∥∥∥∥
(

i
∂

∂x2

− ψ1τ

)
w̃2

∥∥∥∥
2

L2(Ω)

− 2τ

∫

∂Ω

(ν,∇ϕ1)

∣∣∣∣
∂ṽ

∂ν

∣∣∣∣
2

dσ

+

∥∥∥∥
(

∂

∂x1

− iψ2τ

)
w̃1

∥∥∥∥
2

L2(Ω)

+

∥∥∥∥
(

i
∂

∂x2

+ ψ1τ

)
w̃1

∥∥∥∥
2

L2(Ω)

+4

∫

∂Ω

∣∣∣∣
∂ṽ

∂ν

∣∣∣∣
2

dσ =
1

2
‖fesϕ1‖2

L2(Ω).(2.13)

Let a function ψ̃k satisfy

∂ψ̃1

∂x1

= ψ2,
∂ψ̃2

∂x2

= ψ1 in Ω.

We can rewrite equality (2.13) in the form

∥∥∥∥
∂

∂x1

(ei eψ1τ w̃2)

∥∥∥∥
2

L2(Ω)

+

∥∥∥∥
∂

∂x2

(e−i eψ2τ w̃2)

∥∥∥∥
2

L2(Ω)

− 2τ

∫

∂Ω

(ν,∇ϕ1)

∣∣∣∣
∂ṽ

∂ν

∣∣∣∣
2

dσ

+

∥∥∥∥
∂

∂x1

(e−i eψ1τ w̃1)

∥∥∥∥
2

L2(Ω)

+

∥∥∥∥
∂

∂x2

(ei eψ2τ w̃1)

∥∥∥∥
2

L2(Ω)

+4

∫

∂Ω

∣∣∣∣
∂ṽ

∂ν

∣∣∣∣
2

dσ =
1

2
‖fesϕ1‖2

L2(Ω).(2.14)
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Observe that there exists some positive constant C > 0, independent of τ such that

1

C
(‖w̃1‖2

L2(Ω) + ‖w̃2‖2
L2(Ω)) ≤

1

2

∥∥∥∥
∂

∂x1

(ei eψ2τ w̃2)

∥∥∥∥
2

L2(Ω)

+
1

2

∥∥∥∥
∂

∂x2

(ei eψ1τ w̃2)

∥∥∥∥
2

L2(Ω)

−τ

∫

∂Ω−
(ν,∇ϕ1)

∣∣∣∣
∂ṽ

∂ν

∣∣∣∣
2

dσ

+
1

2

∥∥∥∥
∂

∂x1

(e−i eψ1τ w̃1)

∥∥∥∥
2

L2(Ω)

+
1

2

∥∥∥∥
∂

∂x2

(ei eψ2τ w̃1)

∥∥∥∥
2

L2(Ω)

.(2.15)

Since ṽ is the real-valued function we have∥∥∥∥2
∂ṽ

∂x1

+ τψ1ṽ

∥∥∥∥
2

L2(Ω)

+

∥∥∥∥2
∂ṽ

∂x2

− τψ2ṽ

∥∥∥∥
2

L2(Ω)

≤ C0(‖w̃1‖2
L2(Ω) + ‖w̃2‖2

L2(Ω)).

Therefore

4

∥∥∥∥
∂ṽ

∂x1

∥∥∥∥
2

L2(Ω)

− 2τ

∫

Ω

(
∂ψ1

∂x1

− ∂ψ2

∂x2

)
ṽ2dx

+‖τψ1ṽ‖2
L2(Ω) + 4

∥∥∥∥
∂ṽ

∂x2

∥∥∥∥
2

L2(Ω)

+ ‖τψ2ṽ‖2
L2(Ω) ≤ C1(‖w̃1‖2

L2(Ω) + ‖w̃2‖2
L2(Ω)).(2.16)

By the Cauchy-Riemann equations the second integral is zero.

Now since by assumption (2.2) the function Φ has zeros of at most order one, we have

(2.17) τ‖ṽ‖2
L2(Ω) ≤ C

(
‖ṽ‖2

H1(Ω) + τ 2

∥∥∥∥
∣∣∣∣
∂Φ

∂z

∣∣∣∣ ṽ

∥∥∥∥
2

L2(Ω)

)
.

By (2.16) and (2.17)

(2.18) τ‖ṽ‖2
L2(Ω) + ‖ṽ‖2

H1(Ω) + τ 2

∥∥∥∥
∣∣∣∣
∂Φ

∂z

∣∣∣∣ ṽ

∥∥∥∥
2

L2(Ω)

≤ C1(‖w̃1‖2
L2(Ω) + ‖w̃2‖2

L2(Ω)).

Using (2.18), we obtain from (2.14) and (2.15)

1

C5

(
τ‖ṽ‖2

L2(Ω) + ‖ṽ‖2
H1(Ω) + τ 2

∥∥∥∥
∣∣∣∣
∂Φ

∂z

∣∣∣∣ ṽ

∥∥∥∥
2

L2(Ω)

)
− τ

∫

∂Ω

(ν,∇ϕ1)

∣∣∣∣
∂ṽ

∂ν

∣∣∣∣
2

dσ

+

∫

∂Ω

8

∣∣∣∣
∂ṽ

∂ν

∣∣∣∣
2

dσ ≤ ‖fesϕ1‖2
L2(Ω) − τ

∫

∂Ω−
(x1ν1 − x2ν2)

∣∣∣∣
∂ṽ

∂ν

∣∣∣∣
2

dσ

concluding the proof of the theorem. ¤

We note that in the theorem we can add a zeroth order term to the Laplacian and the

estimate is valid for large enough τ.

As usual the Carleman estimate implies existence of solutions of the solution for the

Schrödinger equation satisfying estimates with appropriate weights.

Consider the following problem

(2.19) ∆u + q0u = f in Ω, u|∂Ω− = 0.



10 O. IMANOUILOV, G. UHLMANN, AND M. YAMAMOTO

Proposition 2.2. Let q0 ∈ L∞(Ω). There exists τ0 > 0 such that for all τ > τ0 there exists

a solution to problem (2.19) such that

(2.20) ‖ueτϕ1‖L2(Ω) ≤ C‖feτϕ1‖L2(Ω)/
√

τ .

Proof. Let us introduce the space

H =

{
v ∈ H1

0 (Ω)|∆v + q0v ∈ L2(Ω),
∂v

∂ν
|∂Ω+ = 0

}

with the scalar product

(v1, v2)H =

∫

Ω

e−2τϕ1(∆v1 + q0v1)(∆v2 + q0v2)dx.

By Proposition 2.1 H is a Hilbert space. Consider the linear functional on H : v → ∫
Ω

vfdx.

By (2.11) this is a continuous linear functional with the norm estimated by a constant

C‖feτϕ1‖L2(Ω)/
√

τ . Therefore by the Riesz theorem there exists an element v̂ ∈ H so that
∫

Ω

vfdx =

∫

Ω

e−2τϕ1(∆v̂ + q0v̂)(∆v + q0v)dx.

Then, as a solution to (2.19), we take the function u = e−2τϕ1(∆v̂ + q0v̂). ¤

3. Complex geometrical optics solutions with degenerate weights

In this section we construct the complex geometrical optics which we will use.

We first observe that we can put the set Γ− and S in a more convenient position on the

boundary of the unit ball and slightly deform the ball itself.

Namely

(3.1) Ω ⊂ B(0, 1), Γ− ⊂ S1, S = ∂Ω \ Γ−,ε ⊂ S1.

Let `+ ∈ Γ+ be a piece of ∂Ω between points x̂+ and x̂+,ε and `− ∈ Γ+ be a piece of ∂Ω

between points x̂− and x̂−,ε. Then

(3.2) `± ⊂ B(0, 1).

We construct CGO solutions of the Schrödinger equation ∆ + q1, with q1 satisfying the

conditions of Theorem 1.1.

(3.3) L1u = ∆u + q1u = 0 in Ω.

Let Φ(z) be a holomorphic function satisfying (2.1) and (2.2). Let us fix small positive

constants ε, ε′ and consider two domains:

(3.4) ∂Ω−,−ε = {x ∈ ∂Ω|(∇ϕ1, ν) < −ε}, ∂Ω+,ε′ = {x ∈ ∂Ω|(∇ϕ1, ν) > ε′}.
Suppose that

(3.5) Γ− ⊂ ∂Ω−,−ε,

and endpoints in B(0, 1) such that
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(3.6) S ⊂ ∂Ω+,ε′ .

We will construct solutions to (3.3) of the form

(3.7) u1(x) = eτΦ(z)a(z)− χ1(x)eτΦ( 1
z
)a

(
1

z

)
+ eτϕ1u11 + eτϕ1u12, u1|Γ− = 0.

We explain in the next subsections the different phase functions ϕ1 and the amplitudes

a(z) in (3.7). The function Φ and φ1 satisfy (2.1) and (2.2). Moreover we derive the behavior

for large τ of the different pieces of the CGO solutions.

3.1. The amplitude a(z) and the function χ1. The amplitude a(z) has the following

properties:

a ∈ C2(Ω),
∂a

∂z
≡ 0, a(z) 6= 0 on Ω.

Next we construct the cut-off function χ1(x).

By (3.1), (3.2) there exists a neighborhood O1 of the set Γ− such that ϕ̃1(x) = Re Φ(1
z
)

is a harmonic function satisfying

(3.8) ϕ̃1(x) < ϕ(x), ∀x ∈ Ω ∩ O1,

(3.9) ∂Ω ∩ O1 ⊂ ∂Ω−,− ε
2
,

(3.10) supp∇χ1 ⊂⊂ B(0, 1) ∩ O1.

Consider the following integral

J(τ) =

∫

Ω

χ1r(x)eτΦ( 1
z
)−τΦ(z)dx.

We have

Proposition 3.1. Let r ∈ C1+ε(Ω) for some positive ε. Then

J(τ) = o

(
1

τ

)
.

Proof. Observe that the function χ1 can be chosen in such a way that

(3.11) ∂z

(
Φ

(
1

z

)
− Φ(z)

)
|suppχ1 6= 0.

Assume that for some point from ∂Ω−,−ε we have

∂z

(
Φ

(
1

z

)
− Φ(z)

)
|suppχ1 = 0,

and the above equality is equivalent to

Re(Φ′(z)z) = 0.

This equality and the Cauchy-Riemmann equations imply that at this point ∂ϕ
∂ν

= 0 which

is a contradiction. Since it suffices to choose supp χ1 close to Γ−, the proof of (3.11) is

completed.
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Therefore

J(τ) =

∫

Ω

χ1r(x)eτΦ( 1
z
)−τΦ(z)dx =

1

τ

∫

Ω

χ1r(x)
1

∂z(Φ(1
z
)− Φ(z))

∂ze
τΦ( 1

z
)−τΦ(z)dx.

Integrating by parts we have:

J(τ) = −1

τ

∫

Ω

∂z(χ1r(x))
1

∂z(Φ(1
z
)− Φ(z))

eτΦ( 1
z
)−τΦ(z)dx

+
1

2τ

∫

∂Ω

χ1r(x)
1

∂z(Φ(1
z
)− Φ(z))

(ν1 + iν2)e
τΦ( 1

z
)−τΦ(z)dσ = J1 + J2.

Observe that on ∂Ω

eτΦ( 1
z
)−τΦ(z) = e2τiImΦ(z).

Using stationary phase, taking into account that ∂νReΦ = ∂τ ImΦ 6= 0 on suppχ1 ∩ ∂Ω, we

obtain

J2 = o

(
1

τ

)
.

Next we observe that since r ∈ C1+ε(Ω) we have

J1 = o

(
1

τ

)
.

The proof of the proposition is finished. ¤

3.2. Construction of u11. The function eτΦ(z)a(z)−χ1(x)eτΦ( 1
z
)a(1

z
) does not satisfy (3.3).

We construct the next term in the asymptotic expansion- the function u11. Before we start

the construction of this term we need several Propositions.

Let us introduce the operators:

∂−1
z g =

1

2πi

∫

Ω

g(ζ)

ζ − z
dζ ∧ dζ = − 1

π

∫

Ω

g(ζ)

ζ − z
dξ1dξ2,

∂−1
z g = − 1

2πi

∫

Ω

g(ζ)

ζ − z
dζ ∧ dζ = − 1

π

∫

Ω

g(ζ)

ζ − z
dξ1dξ2.(3.12)

Then we know (e.g., [25] p. 56):

Proposition 3.2. Let m ≥ 0 be an integer number, α ∈ (0, 1). The operators ∂−1
z , ∂−1

z ∈
L(Cm+α(Ω), Cm+α+1(Ω)).

Here and henceforth L(X, Y ) denotes the Banach space of all bounded linear operators

from a Banach space X to another Banach space Y .

We define two other operators:

(3.13) RΦg = eτ(Φ(z)−Φ(z))∂−1
z (geτ(Φ(z)−Φ(z))), R̃Φg = eτ(Φ(z)−Φ(z))∂−1

z (geτ(Φ(z)−Φ(z))).
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Proposition 3.3. Let g ∈ Cε(Ω) for some positive ε. The function RΦg is a solution to

(3.14) ∂zRΦg − τ
∂Φ(z)

∂z
RΦg = g in Ω.

The function R̃Φg solves

(3.15) ∂zR̃Φg + τ
∂Φ(z)

∂z
R̃Φg = g in Ω.

Proof. The proof is by direct computations:

∂zR̃Φg + τ
∂Φ(z)

∂z
R̃Φg = ∂z(e

τ(Φ(z)−Φ(z))∂−1
z (geτ(Φ(z)−Φ(z))))

+τ
∂Φ(z)

∂z
(eτ(Φ(z)−Φ(z))∂−1

z (geτ(Φ(z)−Φ(z)))) =

−τ
∂Φ(z)

∂z
(eτ(Φ(z)−Φ(z))∂−1

z (geτ(Φ(z)−Φ(z)))) + (eτ(Φ(z)−Φ(z))(geτ(Φ(z)−Φ(z))))

+τ
∂Φ(z)

∂z
(eτ(Φ(z)−Φ(z))∂−1

z (geτ(Φ(z)−Φ(z)))) = g.

¤
Denote

Oε = {x ∈ Ω|dist(x, ∂Ω) ≤ ε}.
Proposition 3.4. Let g ∈ C1(Ω), g|Oε ≡ 0, g(x) 6= 0 for all x ∈ H. Then

(3.16) |RΦg(x)|+ |R̃Φg(x)| ≤ C max
x∈H

|g(x)|/τ

for all x ∈ Oε/2. If g ∈ C2(Ω) and g|H = 0 then

(3.17) |RΦg(x)|+ |R̃Φg(x)| ≤ C/τ 2

for all x ∈ Oε/2.

Proof. Observe that eτ(Φ(z)−Φ(z)) = e2iτImΦ(z). By the Cauchy-Riemann equations, the sets of

the critical points of Φ(z) and ImΦ(z) are exactly the same. Therefore by our assumptions

the Hessian of ImΦ(z) is nondegenerate at each point of H. It suffices to show that∣∣∣∣
∫

Ω

g(ζ)

z − ζ
dζ ∧ dζ

∣∣∣∣ ≤ C max
x∈H

|g(x)|/τ and

∣∣∣∣
∫

Ω

g(ζ)

z − ζ
dζ ∧ dζ

∣∣∣∣ ≤ C/τ 2.

We observe that for any z = x1+ix2 ∈ O ε
2

function g(ζ)
z−ζ

is smooth compactly supported func-

tion of the variable ζ. The statement of the proposition follows from the standard stationary

phase argument (see e.g. [13]). ¤
Denote

(3.18) r(z) = Π`
k=1(z − zk) where H = {z1, . . . , z`}.

Proposition 3.5. Let g ∈ C1(Ω), g|Oε ≡ 0. Then for each δ ∈ (0, 1) there exists a constant

C(δ) such that

(3.19) ‖R̃Φ(r(z)g)‖L2(Ω) ≤ C(δ)‖g‖C1(Ω)/τ
1−δ, ‖RΦ(r(z)g)‖L2(Ω) ≤ C(δ)‖g‖C1(Ω)/τ

1−δ.
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Proof. Denote v = R̃Φ(r(z)g). By Proposition 3.4

(3.20) ‖v‖L2(Oε/2) ≤ C/τ.

Then by Proposition 3.3
∂v

∂z
+ τ

∂Φ

∂z
v = r(z)g in Ω.

There exists a function p such that

−∂p

∂z
+ τ

∂Φ(z)

∂z
p = v in Ω

and there exists a constant C > 0 independent of τ such that

(3.21) ‖p‖L2(Ω) ≤ C‖v‖L2(Ω).

Let χ be a nonnegative function such that χ ≡ 0 on O ε
16

and χ ≡ 1 on Ω \ O ε
8
. Setting

p̃ = χp, using g|Oε ≡ 0, we have that
∫

Ω

r(z)gpdx =

∫

Ω\Oε

r(z)gpdx =

∫

Ω

r(z)gp̃dx

and

(3.22) −∂p̃

∂z
+ τ

∂Φ(z)

∂z
p̃ = χv − p

∂χ

∂z
in Ω.

Then

(3.23) ‖χ 1
2 v‖2

L2(Ω) =

∫

Ω

r(z)gpdx +

∫

Ω

p
∂χ

∂z
vdx.

Note that

(3.24) ‖p̃‖H1(Ω) ≤ Cτ‖p‖L2(Ω) ≤ Cτ‖v‖L2(Ω),

∫

Ω

r(z)gpdx =

∫

Ω

gr(z)p̃dx.

Taking the scalar product of (3.22) and r(z)
∂zΦ(z)

g we obtain

∫

Ω

r(z)

∂zΦ(z)
g

(
−∂p̃

∂z
+ τ

∂Φ(z)

∂z
p̃

)
dx =

∫

Ω

r(z)

∂zΦ(z)
g

(
χv − p

∂χ

∂z

)
dx,

τ

∫

Ω

gr(z)p̃dx =

∫

Ω

r(z)

∂zΦ(z)
g

(
χv + p

∂χ

∂z

)
dx−

∫

Ω

∂

∂z

(
r(z)

∂zΦ(z)
g

)
p̃dx.

By (3.24) and the Sobolev embedding theorem, for each ε ∈ (0, 1
2
) we have

∣∣∣∣∣
∫

Ω

∂

∂z

(
r(z)

∂zΦ(z)
g

)
p̃dx

∣∣∣∣∣ ≤
∣∣∣∣∣
∫

Ω

r(z)∂2
zΦ(z)

(∂zΦ(z))2
gp̃dx

∣∣∣∣∣ +

∣∣∣∣∣
∫

Ω

r(z)

∂zΦ(z)

∂g

∂z
p̃dx

∣∣∣∣∣

≤ C‖g‖C1(Ω)

∥∥∥∥
1

∂zΦ(z)

∥∥∥∥
L2−ε(Ω)

‖p̃‖
L

2−ε
1−ε (Ω)

≤ C‖p̃‖Hδ3(ε)(Ω) ≤ Cτ δ4‖v‖L2(Ω).(3.25)
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Here we choose δ3(ε) > 0 such that δ3(ε) → +0 as ε → +0 and Hδ3(ε)(Ω) ⊂ L
2−ε
1−ε (Ω).

Therefore

(3.26)

∣∣∣∣
∫

Ω

gr(z)p̃dx

∣∣∣∣ ≤ Cτ−1+δ4‖v‖L2(Ω) as δ4 → +0.

By (3.20)

(3.27)

∣∣∣∣
∫

Ω

p
∂χ

∂z
vdx

∣∣∣∣ ≤ C‖p‖L2(Ω)‖v‖L2(O ε
8
) ≤ C‖p‖L2(Ω)/τ.

By (3.21), (3.26) and (3.27) we obtain from (3.23)

‖v‖2
L2(Ω) ≤ C(τ−1+δ4‖v‖L2(Ω) + ‖p‖L2(Ω)/τ) ≤ Cτ−1+δ4‖v‖L2(Ω).

In the last estimate we used (3.21). ¤

We construct the function u11 in the form u11 = (u11,1+u11,2) where the functions u11,k are

defined in the following way: Let ei ∈ C∞(Ω), e1 + e2 ≡ 1, e2 is zero in some neighborhood

of H and e1 is zero in a neighborhood of ∂Ω. The second term u11 in the asymptotic (3.7),

is constructed to satisfy

(3.28) ∆u11 + 4τ
∂Φ(z)

∂z
∂zu11 = aq1 + o

(
1

τ

)
in Ω.

Let m1(z),m2(z),m3(z) be polynomials satisfying

(∂−1
z (aq1)−m1(z))|H = 0.

m2(z)|H = 0, (∂z(∂
−1
z (aq1)−m1(z))−m2(z))|H = 0.

m3(z)|H = ∂zm3(z)|H = 0, ∂2
z (∂

−1
z (aq1)−m1(z)−m2(z)−m3(z))|H = 0.

The equation for u11 can be transformed into

4∂zu11 + 4τ
∂Φ(z)

∂z
u11 = ∂−1

z (aq1)−
3∑

k=1

mk(z) + o

(
1

τ

)
.

Then

4∂zu11,1 + 4τ
∂Φ(z)

∂z
u11,1 = e1

(
∂−1

z (aq1)−
3∑

k=1

mk(z)

)

and we define u11,1 as

(3.29) u11,1(x) =
1

4
R̃Φ

(
e1(∂

−1
z (aq1)−

3∑

k=1

mk(z))

)

and we define u11,2 as

(3.30) u11,2(x) =
1

4
e2

(
∂−1

z (aq1)−
3∑

k=1

mk(z)

)
/(τ∂zΦ(z)).

Since by the assumption e2 vanishes near the zeros of Φ, the function u11,2 is smooth.
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We will apply Proposition 3.5 to the function u11,1 to get the asymptotic behavior in τ. In

order to do that we need to represent the function

(3.31) G1 = e1

(
∂−1

z (aq1)−
3∑

k=1

mk(z)

)
,

in the form

G1 = r(z)g(x),

where g is some function from C1(Ω). This is an equivalent representation of the function

m = ∂−1
z (aq1)−

∑3
k=1 mk(z) in the form

m = r(z)g1, g1 ∈ C1(Ω).

We remind that the polynomial r(z) is given by (3.18). Denote as p = ∂−1
z (aq1). Let xj

be a critical point of the function ImΦ and zj ∈ H (see (3.18)). By Taylor’s formula

p(x) = p(zj) + p1(z − zj) + p2(z − zj) + p11(z − zj)
2 + p12(z − zj)(z − zj) + p22(z − zj)

2 +

q(z, z). Then m = p2(z − zj) + p22(z − zj)
2 + p12(z − zj)(z − zj) + q(z, z) and we set

g1 = (p2(z − zj) + p22(z − zj)
2 + p12(z − zj)(z − zj) + q(z, z))/r(z). Let us show that

g1 ∈ C1(Ω). Obviously (p2(z − zj) + p22(z − zj)
2 + p12(z − zj)(z − zj))/r(z) is a smooth

function and q̃(z, z) = q(z, z)/r(z) is C1 outside of z = 0. Continue the function q̃ by zero

on z = 0. Since q = o(|z|3) the partial derivatives of this function at zero vanishes.

By Proposition 3.5

(3.32) ‖u11,1‖L2(Ω) ≤ C(δ)/τ 1−δ ∀δ ∈ (0, 1).

3.3. Construction of u12. We will define u12 as a solution to the inhomogeneous problem

(3.33) ∆(u12e
τϕ1) + q1u12e

τϕ1

= (q1u11 + ∆u11,2)e
τΦ − L1

(
χ1e

τΦ( 1
z
)a

(
1

z

))
in Ω,

(3.34) u12|Γ− = 0.

This can be done since

‖q1u11 + ∆u11,2‖L2(Ω) ≤ C(δ)/τ 1−δ ∀δ ∈ (0, 1)

and by (3.8), (3.10)
∥∥∥∥L1

(
χ1e

τΦ( 1
z
)a

(
1

z

))
e−τϕ1

∥∥∥∥
L2(Ω)

= o

(
1

τ 2

)
.

By Proposition 2.2 there exists a solution to (3.33) satisfying

(3.35) ‖u12‖L2(Ω) ≤ C/τ
3
2
−δ, ∀δ ∈ (0, 1).
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3.4. Replacing Φ by −Φ. Now we construct CGO solutions for the potential q2 satisfying

the conditions of the Theorem 1.1 but with Φ replaced by −Φ and the solution vanishes on

S.

This is very similar to what we have already done.

Consider the Schrödinger equation

(3.36) L2v = ∆v + q2v = 0 in Ω.

We will construct solutions to (3.36) of the form

(3.37) v1(x) = e−τΦ(z)b(z)− χ1(x)e−τΦ( 1
z
)b

(
1

z

)
+ e−τϕ1v11 + e−τϕ1v12, v1|S = 0.

The construction of v1 repeats the corresponding steps of the construction of u1. In fact

the only difference is that the parameter τ is negative or in terms of the weight function we

use −ϕ1 instead of ϕ1. We provide the details for the sake of completeness. The amplitude

b(z) has the following properties:

b ∈ C2(Ω),
∂b

∂z
≡ 0, b(z) 6= 0 in Ω.

Next we construct the cut-off function χ2(x) with supp χ2 ∈ O2 where O2 is a neighborhood

of S, and

(3.38) ϕ̃1(x) > ϕ(x), ∀x ∈ Ω ∩ O2,

(3.39) ∂Ω ∩ O2 ⊂ ∂Ω
+, ε′

2
,

(3.40) supp∇χ2 ⊂⊂ B(0, 1) ∩ O2,

(3.41) suppχ2 ∩ suppχ1 = ∅.
Consider the following integral

J̃(τ) =

∫

Ω

χ2r(x)e−τΦ( 1
z
)+τΦ(z)dx.

Similarly to Proposition 3.1 we have

Proposition 3.6. Let r ∈ C1+ε(Ω) for some positive ε. Then

J̃(τ) = o

(
1

τ

)
.

Now we construct v11 Let ei ∈ C∞(Ω) , e1(x)+e2(x) ≡ 1, e2 is zero on some neighborhood

of H and e1 is zero on some neighborhood of ∂Ω. Then

∆v11 − 4τ
∂Φ(z)

∂z
∂zv11 = bq2 + o

(
1

τ

)
.

Let m̃1(z), m̃2(z), m̃3(z) be polynomials satisfying

(∂−1
z (bq2)− m̃1(z))|H = 0,

m̃2(z)|H = 0, (∂z(∂
−1
z (bq2)− m̃1(z))− m̃2(z))|H = 0
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and

m̃3(z)|H = ∂zm̃3(z)|H = 0, ∂2
z (∂

−1
z (bq2)− m̃1(z)− m̃2(z)− m̃3(z))|H = 0.

The equation for v11 can be transformed into

4∂zv11 − 4τ
∂Φ(z)

∂z
v11 =

(
∂−1

z (bq2)−
3∑

k=1

m̃k(z)

)
+ o

(
1

τ

)
.

Then

4∂zv11,1 − 4τ
∂Φ(z)

∂z
v11,1 = e1

(
∂−1

z (bq2)−
3∑

k=1

m̃k(z)

)

and we take v11,1 as

(3.42) v11,1 =
1

4
RΦ

(
e1

(
∂−1

z (bq2)−
3∑

k=1

m̃k(z)

))

and we take v11,2 as

(3.43) v11,2 =
1

4
e2

(
∂−1

z (bq2)−
3∑

k=1

m̃k(z)

)
/

(
τ
∂Φ

∂z

)
.

Thanks to our assumption on the function e2, this function is smooth. Let us show that

we can apply Proposition 3.4 to the function v11,1. In order to do that we need to represent

the function

(3.44) G2 = e1

(
∂−1

z (bq2)−
3∑

k=1

m̃k(z)

)
,

in the form

G2 = zg(x),

where g is some function from C1(Ω). This is an equivalent representation of the function

m = ∂−1
z (bq2)−

∑3
k=1 m̃k(z) in the form

m = r(z)g1, g1 ∈ C1(Ω).

Denote as p = ∂−1
z (bq2). Let xj be a critical point of the function ImΦ and zj be an arbitrary

critical point of the function Φ. By Taylor’s formula p(x) = p(xj)+p1(xj)(z−zj)+p2(xj)(z−
zj) + p11(z − zj)

2 + p12(z − zj)(z − zj) + p22(z − zj)
2 + q(z, z). Then m = p1(xj)(z − zj) +

p11(z − zj)
2 + p12(z − zj)(z − zj) + q(z, z) and we set g1 = (p1(xj)(z − zj) + p11(z − zj)

2 +

p12(z − zj)(z − zj) + q(z, z))/r(z). Let us show that g1 ∈ C1(Ω). Obviously (p1(z − zj) +

p11(z − zj)
2 + p12(z − zj)(z − zj))/r(z) is a smooth function and q̃(z, z) = q(z, z)/r(z) is C1

outside of z = 0. Continue the function q̃ by zero on z = 0. Since q = o(|z|3) the partial

derivatives of this function at zero vanishes.

By Proposition 3.4

(3.45) ‖v11,2‖L2(Ω) + ‖v11,1‖L2(Ω) ≤ C(δ)/τ 1−δ, ∀δ ∈ (0, 1).

Let v12 be a solution to the problem

(3.46) ∆(v12e
−τϕ1) + q2v12e

−τϕ1
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= (q2v11 + ∆v11,2)e
−τΦ + L2

(
χ2e

−τΦ( 1
z
)b

(
1

z

))
in Ω

and

(3.47) v12|S = 0.

Then since

‖q2v11 + ∆v11,2‖L2(Ω) ≤ C(δ)/τ 1−δ, ∀δ ∈ (0, 1)

and by (3.40) ∥∥∥∥∥L2

(
χ2e

−τΦ( 1
z
)b

(
1

z

))
eτϕ1

∥∥∥∥∥
L2(Ω)

= o

(
1

τ 2

)
,

by Proposition 2.2 there exists a solution to problem (3.46) such that

(3.48) ‖v12‖L2(Ω) ≤ C(δ)/τ
3
2
−δ, ∀δ ∈ (0, 1).

4. Proof of the theorem

Proposition 4.1. Suppose that Φ satisfies (2.1),(2.2), (3.5) and (3.6). Let {x1, . . . , x`} be

the set of critical points of the function ImΦ. Then for any potentials q1, q2 ∈ C`(Ω), ` > 1

with the same DN maps and for any holomorphic functions a and b, we have

∑̀

k=1

2π(qab)(xk)

τ(det ImΦ′′)(xk)
= 0, q = q1 − q2.

Proof. Let u1 be a solution to (3.3) and satisfy (3.37), and u2 be a solution to the following

equation

∆u2 + q2u2 = 0 in Ω, u2|∂Ω = u1, ∇u2|Γ−,−ε = ∇u1.

Denoting u = u1 − u2 we obtain

(4.1) ∆u + q2u = −qu1 in Ω, u|∂Ω =
∂u

∂ν
|Γ−,−ε = 0.

We multiply (4.1) by v and integrate over Ω. By (3.35) and (3.48), we have

0 =

∫

Ω

qu1vdx =

∫

Ω

q(ab + bu11 + av11)e
τ(Φ(z)−Φ(z))dx

+

∫

Ω

(
qχ1(x)eτΦ( 1

z
)a

(
1

z

)
be−τΦ(z) + qχ1(x)e−τΦ( 1

z
)b

(
1

z

)
aeτΦ(z)

+qχ1(x)eτΦ( 1
z
)a

(
1

z

)
χ2(x)e−τΦ( 1

z
)b

(
1

z

))
dx + o

(
1

τ

)
.(4.2)

By Propositions 3.1 and 3.6

∫

Ω

(
qχ1(x)eτΦ( 1

z
)a

(
1

z

)
be−τΦ(z) + qχ2(x)e−τΦ( 1

z
)b

(
1

z

)
aeτΦ(z)

)
dx = o

(
1

τ

)
.
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By (3.41) ∫

Ω

qχ1(x)eτΦ( 1
z
)a

(
1

z

)
χ2(x)e−τΦ( 1

z
)b

(
1

z

)
dx = 0.

Therefore we can rewrite (4.2) as

(4.3)
∑̀

k=1

2π(qab)(xk)

τ(det ImΦ′′)(xk)
+

∫

Ω

q(bu11 + av11)e
τ(Φ(z)−Φ(z))dx + o

(
1

τ

)
= 0.

By (3.30), (3.43) and the fact that

∫

Ω

bqu11,2e
τ(Φ(z)−Φ(z))dx =

1

4τ

∫

Ω

bq
e2(∂

−1
z (aq1)−

∑3
k=1 mk(z))

τ∂zΦ(z)
eτ(Φ(z)−Φ(z))dx = o

(
1

τ

)
,(4.4)

and the fact that ∫

Ω

aqv11,2e
τ(Φ(z)−Φ(z))dx =

1

4τ

∫

Ω

aq
e2(∂

−1
z (bq2)−

∑3
k=1 m̃k(z))

τ∂zΦ(z)
eτ(Φ(z)−Φ(z))dx = o

(
1

τ

)
,(4.5)

which follows from the stationary phase e2|H = 0 we obtain

(4.6)
∑̀

k=1

2π(qab)(xk)

τ(det ImΦ′′)(xk)
+

∫

Ω

q(bu11,1 + av11,1)e
τ(Φ(z)−Φ(z))dx + o

(
1

τ

)
= 0.

By (3.13), (3.43) and (3.29)

0 =
∑̀

k=1

2π(qab)(xk)

τ(det ImΦ′′)(xk)
+

∫

Ω

q(bR̃ΦG1 + aRΦG2)e
τ(Φ(z)−Φ(z))dx + o

(
1

τ

)
=

∑̀

k=1

2π(qab)(xk)

τ(det ImΦ′′)(xk)
−

∫

Ω

((∂−1
z (qb))G1 + (∂−1

z (qa))G2)e
τ(Φ(z)−Φ(z))dx + o

(
1

τ

)
=

∑̀

k=1

2π(qab)(xk)

τ(det ImΦ′′)(xk)
+ o

(
1

τ

)
.(4.7)

We remind the definitions of the functions G1 and G2 introduced in (3.31) and (3.44).

In order to get rid of the integral
∫

Ω
((∂−1

z (qb))G1 + (∂−1
z (qa))G2)e

τ(Φ(z)−Φ(z))dx, we used

the stationary phase lemma (see e.g. Theorem 7.7.5 [13]) and the fact that G1|H = G2|H = 0.

Passing to the limit in this equality as τ → +∞ we obtain
∑`

k=1
2π(qab)(xk)

τ(detImΦ′′)(xk)
= 0. ¤

The Proposition 4.1 plays the key role in the proof of the Theorem 1.1. In order to be

able to use this proposition we need to prove the existence of the weight function Φ. The

following proposition will allow us to construct this function.

Let Gε be a non-empty open subset of the boundary ∂Ω: the union of the segment between

x̂+ and x̂+,ε and the segment between x̂−,ε and x̂−.
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Consider the Cauchy problem for the Laplace operator

(4.8) ∆ψ = 0 in Ω,

(
ψ,

∂ψ

∂ν

)
|∂Ω\Gε = (a(x), b(x)).

The following proposition establishes the solvability of (4.8) for a dense set of Cauchy

data.

Proposition 4.2. There exist a set O ⊂ C2(∂Ω \ Gε)×C1(∂Ω \ Gε) such that for each (a, b) ∈
O problem (4.8) has at least one solution ψ ∈ C2(Ω) and O = C2(∂Ω \ Gε)×C1(∂Ω \ Gε).

Proof. First we observe that without the loss of generality we may assume that a ≡ 0.

Consider the following extremal problem

(4.9) J(ψ) =

∥∥∥∥
∂ψ

∂ν
− b

∥∥∥∥
2

H2(∂Ω\Gε)

+ ε‖ψ‖2
H2(∂Ω) +

1

ε

∥∥∆2ψ
∥∥2

L2(Ω)
→ inf,

(4.10) ψ ∈ X .

Here X =
{
δ(x)|δ ∈ H2(Ω), ∆2δ ∈ L2(Ω), ∆δ|∂Ω = δ|∂Ω\Gε = 0, δ|∂Ω ∈ H2(∂Ω), ∂ψ

∂ν
∈ H2(∂Ω \ Gε)

}
.

For each ε > 0 there exists a unique solution to (4.9) which we denote as ψ̂ε. By the

Fermat theorem (see e.g. [1] p. 155) we have

J ′(ψ̂ε)[δ] = 0, ∀δ ∈ X .

Here X =
{
δ(x)|δ ∈ H2(Ω), ∆2δ ∈ L2(Ω), ∆δ|∂Ω = δ|∂Ω\Gε = 0, δ|∂Ω ∈ H2(∂Ω), ∂ψ

∂ν
∈ H2(∂Ω \ Gε)

}
.

This equality can be written in the form
(

∂ψ̂ε

∂ν
− b,

∂δ

∂ν

)

H2(∂Ω\Gε)

+ ε(ψ̂ε, δ)H2(∂Ω) +
1

ε
(∆2ψ̂ε, ∆

2δ)L2(Ω) = 0.

This equality implies that the sequence {∂ bψε

∂ν
} is bounded in H2(∂Ω\Gε), the sequence {√εψ̂ε}

converges to zero in H2(∂Ω) and
{

1√
ε
∆2ψ̂ε

}
is bounded in L2(Ω).

Therefore there exist q ∈ H2(∂Ω \ Gε) and p ∈ L2(Ω) such that

(4.11)
∂ψ̂εk

∂ν
− b ⇀ q weakly in H2(∂Ω \ Gε)

and

(4.12)

(
q,

∂δ

∂ν

)

H2(∂Ω\Gε)

+ (p, ∆2δ)L2(Ω) = 0.

Next we claim that

(4.13) ∆p = 0 in Ω

in the sense of distributions. Suppose that (4.13) is already proved. This implies

(p, ∆2δ)L2(Ω) = 0 ∀δ ∈ H4(Ω), ∆δ|∂Ω =
∂∆δ

∂ν
|∂Ω = 0.
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This equality and (4.12) imply that

(4.14)

(
q,

∂δ

∂ν

)

H2(∂Ω\Gε)

= 0 ∀δ ∈ H4(Ω), ∆δ|∂Ω =
∂∆δ

∂ν
|∂Ω = 0.

Then using the trace theorem we conclude that q = 0 and (4.11) implies that

∂ψ̂εk

∂ν
− b ⇀ 0 weakly in H2(∂Ω \ Gε).

By the Sobolev embedding theorem

∂ψ̂εk

∂ν
− b → 0 in C2(∂Ω \ Gε).

Therefore the sequence {ψ̂εk
− ψ̃εk

}, with

∆ψ̃εk
= ∆ψ̂εk

in Ω, ψ̃εk
|∂Ω = 0

represents the desired approximation for solution of the Cauchy problem (4.8).

Now we prove (4.13). Let x̃ be an arbitrary point in Ω and let χ̃ be a smooth function

such that it is zero in some neighborhood of ∂Ω \ Gε and the set B = {x ∈ Ω|χ̃(x) = 1}
contains an open connected subset F such that x̃ ∈ F and Gε ∩ F is an open set in ∂Ω. By

(4.12)

0 = (p, ∆2(χ̃δ))L2(Ω) = (χ̃p, ∆2δ)L2(Ω) + (p, [∆2, χ̃]δ)L2(Ω).

That is,

(4.15) (χ̃p, ∆2δ)L2(Ω) + ([∆2, χ̃]∗p, δ)L2(Ω) = 0.

This equality implies that χ̃p ∈ H1(Ω).

Next we take another smooth cut off function χ̃1 such that supp χ̃1 ⊂ B. A neighborhood

of x̃ belongs to B1 = {x|χ̃1 = 1}, the interior of B1 is connected, and Int B1 ∩ Gε contains

an open subset O in ∂Ω. Similarly to (4.16) we have

(4.16) (χ̃1p, ∆
2δ)L2(Ω) + ([∆2, χ̃1]

∗p, δ)L2(Ω) = 0.

This equality implies that χ̃1p ∈ H2(Ω). Let ω be a domain such that ω∩Ω = ∅, ∂ω∩∂Ω ⊂
O contains a set open in ∂Ω.

We extend p on ω by zero. Then

(∆(χ̃1p), ∆δ)L2(Ω∪ω) + ([∆2, χ̃]∗p, δ)L2(Ω∪ω) = 0.

Hence

∆2(χ̃1p) = 0 in Int B1 ∪ ω, p|ω = 0.

By Holmgren’s theorem ∆(χ̃1p)|Int B1
= 0, that is, (∆p)(x̃) = 0. ¤

Completion of the proof of Theorem 1.1. It suffices to prove that q(0) = 0. We take

Gε in the previous proposition to be the union of the segment between x̂+ and x̂+,ε and the

segment between x̂−,ε and x̂−.

We will show that q1(0) = q2(0). By obvious changes of the argument below we can prove

that q1(x) = q2(x) for any point x ∈ Ω.
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Suppose for some Cauchy data the problem (4.8) is solved. Next, since Ω is simply con-

nected, we construct a function ϕ such that the function Φ(z) = ϕ(x)+ iψ(x) is holomorphic

in Ω. Consider the function Φ̃(z) = z2Φ(z). Observe that ImΦ̃ = (x2
1−x2

2)ψ(x)+2x1x2ϕ(x).

In particular by (4.8) and the Cauchy-Riemann equations, we have

ImΦ̃|∂Ω\Gε = (x2
1 − x2

2)a(x) + 2x1x2c(x),
∂c(x)

∂τ
= b(x).

Since we can choose a, b from a dense set in C1(∂Ω \ Gε) and the tangential derivatives of

(x2
1 − x2

2) and x1x2 are not equal zero simultaneously we can choose a, b such that

(4.17)
∂ImΦ̃

∂τ
|Γ− =

∂ReΦ̃

∂ν
|Γ− < 0,

∂ImΦ̃

∂τ
|∂Ω\Γ−,ε

=
∂ReΦ̃

∂ν
|∂Ω\Γ−,ε

> 0.

Obviously the function Φ̃ has a critical point at zero. We may assume that ∂2
z Φ̃(0) 6= 0.

Really if Φ(0) 6= 0 then ∂2
z Φ̃(0) = 2Φ(0). If Φ(0) = 0 we modify this function by adding a

small real number: Φ(z) + ε. Obviously we will have (4.17).

A general function Φ̃ may have a degenerate critical points. In order to avoid them, we

approximate the function Φ̃ in C1(Ω) by a sequence of holomorphic functions {Φ̃k}∞k=1 such

that

(4.18) Φ̃k → Φ̃ in C1(Ω),
∂ReΦ̃k

∂ν
|Γ− < 0

∂ReΦ̃k

∂ν
|∂Ω\Γ−,ε

> 0,

(4.19) Hk = {z|∂zΦk(z) = 0}, cardHk < ∞, Hk ∩ ∂Ω = {∅}, ∂2
z Φ̃k(z`) 6= 0, ∀z` ∈ Hk.

Let us show that such a sequence exists. For any ε1 ∈ (0, 1) we consider a function

Φ̃(z/(1 + ε1)). Obviously

Φ̃(·/(1 + ε1)) → Φ̃ in C1(Ω), as ε1 → +0.

Each function Φ̃(z/(1 + ε1)) is holomorphic in B(0, 1 + ε1) and in B(0, 1) it can be approx-

imated by a polynomial. Let ε1 ∈ (0, 1) be an arbitrary but fixed. Consider the sequence

of such polynomials. Let p(z) =
∑κ

k=0 ckz
k be a polynomial from this sequence. Consider

the polynomial p′(z) =
∑κ

k=1 kckz
k−1 = Π`

k=1(z − ẑk)
s(k). Here we assume ẑj 6= ẑk for k 6= j.

Let us construct an approximation of the polynomial p(z) by a sequence of polynomials

of the order κ. We do the construction in the following way. First pick up all s(k) such

that s(k) ≥ 2. Denote the set of such indices as U . Let k̂ ∈ U . Consider the sequences

{ẑk,`1,ε2}, . . . , {ẑk,`
s(bk)

,ε2} such that

ẑk,`i,ε2 → ẑk as ε2 → +0, ∀`i ∈ {`1, . . . , `s(bk)},
ẑk,`i,ε2 6= ẑk,`j ,ε2 , 1 ≤ k ≤ κ, if `i 6= `j.

The polynomial

p′ε2(z) = Π`
k=1Π

s(k)
i=1 (z − ẑk,i,ε2)

does not have any zeros of order greater then one. By the construction we have

p′ε2(z) =
κ∑

k=1

kck,ε2z
k−1
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satisfying

ck,ε2 → ck, ∀k ∈ {1, . . . , κ}.
This means that the sequence of polynomials pε2(z) =

∑κ
k=0 ck,ε2z

k, c0,ε2 = c0 converges to

p(z) in C1(Ω) and for small ε2 these polynomials do not have critical points. Let us fix some

sufficiently large k̂ and consider k > k̂. Then cardHk1 = cardHk2 for all k1 > k̂ and k2 > k̂.

Let cardHk = ` and points z1 = x̃1,1 + ix̃2,1, . . . , z` = x̃1,` + ix̃2,` represent all critical points

of the function Φ̃k(z) = ϕk(z) + iψk(z).

Then by Proposition 4.1 we have

∑̀
j=1

q(x̃j)

|detψ′′k(x̃j)| 12
= 0, x̃j = (x̃1,j, x̃2,j).

Let ĵ ∈ {1, . . . , `}. Consider the polynomial

p(z) = p1(z) + ip2(z) =
d1

2

Πk 6=bj(z − zk)
3

Πk 6=bj(zbj − zk)3
(z − zbj)

2 + d
Πk 6=bj(z − zk)

3

Πk 6=bj(zbj − zk)3
(z − zbj).

Then

∂2
zp(zbj) = d1 ∈ C, ∂2

zp(zbj) = d ∈ C,(4.20)

p(zj) = ∂zp(zj) = ∂2
zp(zj) = 0 j ∈ {1, . . . , `} \ {ĵ}.(4.21)

Consider the function Φ̃k(z) + εp(z). For small ε the set of critical points of this function

consists exactly of ` points,which we denote as zj(ε) (x̃j(ε) = (Rezj(ε), Imzj(ε))). These

critical points have the following properties:

(4.22) zj(0) = zj,
∂zj(ε)

∂ε
|ε=0 = 0, j 6= ĵ,

∂zbj(ε)

∂ε
|ε=0 =

d

∂2
zΦj(zbj)

.

In fact, there exists ε0 > 0 such that

zj = zj(ε), ∀ε ∈ (−ε0, ε0), j 6= ĵ.

Then by Proposition 4.1 we have

J(ε) =
∑̀
j=1

q(x̃j(ε))

|det(ψk + εp)′′(x̃j(ε))| 12
= 0.

Taking the derivative of the function J(ε) at zero, we have:

1

|∂2
z Φ̃k(x̃bj)|2

qx1(x̃bj(0))Re(d∂2
z Φ̃k(x̃bj)) + qx2(x̃bj(0))Im(d∂2

z Φ̃k(x̃bj))

|det(ψk)′′(xbj(0))| 12
(4.23)

−1

2

∑̀
j=1

(
q(x̃j(0))(−2ψkx1x2(x̃j(0))Impx1x2(x̃j(0))− 2ψkx1x1(x̃j(0))Impx1x1(x̃j(0))

|detψ′′k(x̃j(0))| 32

−1

2

q(x̃j(0))(∂x1(detψ′′k(x̃j(0))Re(d∂2
z Φ̃k(x̃bj) + ∂x2(detψ′′k(x̃bj(0))Im(d∂2

z Φ̃k(x̃bj)

|∂2
z Φ̃k(x̃bj)|2|detψ′′k(x̃bj(0))| 32

) = 0.
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The first and third terms of (4.23) are independent of Impx1x2(x̃j(0)) and Impx1x1(x̃j(0)).

Consequently

1

2

∑̀
j=1

q(x̃j(0))(−2ψkx1x2(x̃j(0))Impx1x2(x̃j(0))− 2ψkx1x1(xj(0))Impx1x1(x̃j(0))

|detψ′′k(x̃j(0))| 32
= 0.

This formula and (4.22) imply that q(x̃bj(0)) = 0. Since by (4.18) and (4.19) the set Hk

converges to the set of critical points of Φ̃ and 0 belongs to the set of critical points of Φ̃, we

have q(0) = 0. ¥
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