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1 Introduction

We consider nonnegative solutions of initial-boundary value problems for the
reaction-diffusion systems of the form















ut = ∆u+K1(x, t)v
p1 , x ∈ D, t > 0,

vt = ∆v +K2(x, t)u
p2, x ∈ D, t > 0,

u(x, t) = v(x, t) = 0, x ∈ ∂D, t > 0,
u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ D,

(1)
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where p1, p2 ≥ 1 with p1p2 > 1. The domain D is a cone in RN , such as

D = {x ∈ RN ; x 6= 0 and x/|x| ∈ Ω}, (2)

where Ω is some region on SN−1 smooth enough.
The initial data u0(x) and v0(x) are nonnegative, bounded and continuous

in D̄, and u0(x) = v0(x) = 0 on ∂D. The inhomogeneous terms Ki (i = 1, 2)
are nonnegative continuous functions in D × (0,∞).

In this paper we denote by BC the set of all bounded continuous functions
in D̄. The “nontrivial solution” denotes the solution u satisfying (u, v) 6≡ 0
in D × (0, T ) with some T > 0, it thus means that (u0, v0) 6≡ 0 with the
condition (u0, v0) ∈ BC.

For the Laplace-Beltrami operator with homogeneous Dirichlet boundary
condition on Ω ∈ SN−1, define ωn as Dirichlet eigenvalues and ψn(θ) as the
Dirichlet eigenfunctions corresponding to ωn which is normalized so that

∫

Ω

ψn(θ)dθ = 1.

It is following that

∫

Ω

ψm(θ)ψn(θ)dθ = 0

for m 6= n. We introduce the Green’s function G(x, y, t) = G(r, θ, ρ, φ, t) for
the linear heat equation in the cone D, where

r = |x|, ρ = |y|, θ = x/|x| and φ = y/|y| ∈ Ω (3)

The Green’s function is expressed to

G(r, θ, ρ, φ, t) =
1

2t
(rρ)−(N−2)/2 exp

(

−
ρ2 + r2

4t

) ∞
∑

n=1

Iνn

(rρ

2t

)

ψn(θ)ψn(φ),

(4)

where νn = [(N − 2)2/4 + ωn]
1/2

, and Iν is the modified Bessel function or

Iν(z) =
(z

2

)ν
∞

∑

k=0

(z/2)2k

k!Γ(ν + k + 1)
(5)

with the Gamma function Γ(z) =
∫ ∞

0
sz−1e−sds (see Watson [27, p.p.395]).
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For our first theorem we shall give the conditions of the inhomogeneous
terms Ki (i = 1, 2) as following:

there exist CU , σ̂i and q̂i ≥ 0 such that
Ki(x, t) ≤ CU〈x〉

σ̂i(t+ 1)q̂i for any x ∈ D, t ≥ 0,

}

(6)

where 〈x〉 = (|x|2 + 1)
1/2

.
Let L∞

a be a Banach space of L∞-functions in D with the norm

‖ξ‖∞,a ≡ esssupx∈D(〈x〉a|ξ(x)|).

For T > 0, set

ET = {(u, v) : [0, T ] → L∞
δ1 × L∞

δ2 ; ‖(u, v)‖ET
<∞} (7)

with the norm

‖(u, v)‖ET
:= sup

t∈[0,T ]

{‖u(t)‖∞,δ1
+ ‖v(t)‖∞,δ2

},

where

δi =
σ̂jpi + σ̂i

pipj − 1
((i, j) = (1, 2), (2, 1)). (8)

It is easily seen that ET is a Banach space.
We begin with stating the existence of the local solution for (1).

Theorem 1. Assume that u0, v0 ∈ BC, u0 ≡ v0 ≡ 0 on ∂D, and 〈x〉δ1u0(x),
〈x〉δ2v0(x) are bounded in D̄. Suppose that Ki(x, t) (i = 1, 2) satisfy (6).
Then there exists a nonnegative solution (u, v) ∈ ET which solves (1) in
D × (0, T ) for some T > 0.

For given initial values (u0, v0), let T ∗ = T ∗(u0, v0) be a maximal existence
time of the solution of (1). If T ∗ = ∞, the solutions are global in time. On
the other hand, if T ∗ < ∞, then the solutions are not global in time. If the
solution blows up in finite time such that

lim sup
t→T ∗

‖u(·, t)‖∞ + lim sup
t→T ∗

‖v(·, t)‖∞ = ∞, (9)

then the solution is not global, where ‖·‖∞ denotes the L∞-norm with respect
to space variable.

For our second theorem we shall define a region D̃ such that

there exist k > 0 and {xm}
∞
m=1 satisfying 0 < |xm| < |xm+1|,

B(xm, k|xm|) ⊂ D̃ ⊂ D for any m, and limm→∞ |xm| = ∞,

}

(10)
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where B(x, r) denotes the ball with radius r centered at x. We let the
inhomogeneous terms Ki (i = 1, 2) satisfy

there exist CL > 0, σ̌i, q̌i ≥ 0 and D̃ satisfying (10) such that

Ki(x, t) ≥ CL|x|
σ̌itq̌i for any x ∈ D̃, t ≥ 0.

}

(11)

For the theorem we should define γ+ denoting the positive root of the equa-
tion γ(γ +N − 2) = ω1,

αi =
(2 + σ̌i + 2q̌i) + (2 + σ̌j + 2q̌j)pi

pipj − 1
((i, j) = (1, 2), (2, 1)), (12)

and

Ha = {ξ ∈ C(D̄); ξ(x) ≥M〈x〉−aψ1(x/|x|) for x ∈ D̃ with some M > 0}.

The main result of this paper is summarized in the following theorem.

Theorem 2. Assume that u0, v0 ∈ BC, u0 ≡ v0 ≡ 0 on ∂D, and Ki(x, t)
(i = 1, 2) satisfy (11). Suppose that one of the following two conditions holds;

(i) max{α1, α2} ≥ N + γ+.

(ii) u0 ∈ Ha1
with a1 < α1 or v0 ∈ Ha2

with a2 < α2.

Then, there exists no nontrivial nonnegative global solution of (1).

The method using the sequence of balls in (11) was used in [4, 22] and
other papers.

Remark. (i) It is easily seen that γ+ = ν1 − (N − 2)/2.
(ii) If both (6) and (11) hold, then it is necessarily that CU ≥ CL, σ̂i ≥ σ̌i

and q̂i ≥ q̌i.

We briefly recall a history of the study on global nonexistence of solutions
to the system (1). First, the global nonexistence of solutions in the case
D = RN (Ω = SN−1), u = v, pi = p and Ki(x, t) = 1 (i = 1, 2), that is

{

ut = ∆u+ up, x ∈ RN , t > 0,
u(x, 0) = u0(x) ≥ 0, x ∈ RN ,

(13)

was studied by Fujita [3]. Fujita proved that when p < 1 + 2/N the solution
of (13) is not global in time for any nonnegative bounded and continuous
initial data u0 6≡ 0. Fujita’s results were also extended by some researcher.
Hayakawa [8], Kobayashi-Sirao-Tanaka [11] and Weissler [28] proved that
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when p = 1 + 2/N , the solution of (13) blows up in finite time for any
u0 6≡ 0. For the case p > 1 + 2/N , Lee-Ni [12] studied that if ‖u0‖∞ is large
enough or lim inf |x|→∞ |x|au0(x) > 0 with a < 2/(p− 1), the solution of (13)
is not global in time. When D is a cone, that is







ut = ∆u+ up, x ∈ D, t > 0,
u(x, t) = 0, x ∈ ∂D, t > 0,
u(x, 0) = u0(x) ≥ 0, x ∈ D,

(14)

Levine-Meier [14], [15] proved that if p ≤ 1 + 2/(N + γ+), there is no global
solution of (14).

Fujita’s results were extended to the case D = RN , u = v, pi = p and
Ki(x, t) = K(x, t) for i = 1, 2, that is

{

ut = ∆u+K(x, t)up, x ∈ RN , t > 0,
u(x, 0) = u0(x) ≥ 0, x ∈ RN .

(15)

In the case K(x, t) = |x|σ with σ ≥ 0, Bandle-Levine [1] had that when
p < 1 + (2 + σ)/N the solution of (15) is not global in time for any u0 6≡ 0.
Hamada [6] had the same result for p = 1+(2+σ)/N (see also [18]). Suzuki
[23] extended to the case σ ∈ R for the quasilinear parabolic equations.
Thereafter, Qi [20] extended the result to the case K(x, t) = tq|x|σup with
q ≥ 0, σ ≥ 0. He proved that when p ≤ 1 + (2 + σ + 2q)/N there exists no
global solution of (15). When D is a cone, that is







ut = ∆u+K(x, t)up, x ∈ D, t > 0,
u(x, t) = 0, x ∈ ∂D, t > 0,
u(x, 0) = u0(x) ≥ 0, x ∈ D,

(16)

in the case K(x, t) = |x|σ with σ ≥ 0, Levine-Meier [14], [15] and Hamada
[6] had that if p ≤ 1 + (2 + σ)/(N + γ+), there is no global solution of
(16). For the case p > 1 + (2 + σ)/(N + γ+), Hamada [7] studied that if
u0(x) ≥ M〈x〉−aψ1(x/|x|) with a ≤ (2 + σ)/(p− 1), 0 ≤ σ ≤ (p− 1)(N − 2)
and some M > 0, the solution of (16) is not global. In the case K(x, t) ∼ tq

with q > −1 as t→ ∞, Levine-Meier [15] had that if p ≤ 1+(2+2q)/(N+γ+),
there exists no global solution of (16).

In the case D = RN , our results are reduced to Escobedo-Herrero [2] and
Mochizuki [16] with Ki(x, t) = 1 (i = 1, 2), to Uda [24] with Ki(x, t) = tqi

(i = 1, 2), and to Mochizuki-Huang [17] with Ki(x, t) = |x|σi with σi ∈
[0, n(pi−1)) (i = 1, 2). Additionally, Guedda-Kirane [5] and Kirane-Qafsaoui
[10] studied in this field. They studied the case Ki(x, t) ∼ tqi |x|σi as t → ∞
and |x| → ∞. However, they needed the condition max{2qi, σi} < n(pi − 1)
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(i = 1, 2). Moreover, when Ki(x, t) (i = 1, 2) satisfy (6) and (11) with
D = RN , the system (1) was studied by Igarashi-Umeda [9]. When D is a
cone, in the case Ki(x, t) = 1, the condition (i) of Theorem 2 is reduced to
Levine [13].

The rest of the paper is organized as follows. In section 2, we state the
proof of the local existence (Theorem 1). The proof of global nonexistence
(Theorem 2) is given in section 3. For the change of variable as (3), we
decide η(x, y, t) = η(r, θ, ρ, φ, t), η(x, t) = η(r, θ, t) or η0(x) = η0(r, θ) for any
function.

2 Local existence in time

In this section we use σi = σ̂i and qi = q̂i for i = 1, 2. In order to show
the local solvability of the Cauchy problem (1), we consider the associated
integral system

u(x, t) = S(t)u0(x) +

∫ t

0

S(t− s)K1(x, s)v(x, s)
p1ds, (17)

v(x, t) = S(t)v0(x) +

∫ t

0

S(t− s)K2(x, s)u(x, s)
p2ds, (18)

where

S(t)ξ(x) =

∫

D

G(x, y, t)ξ(y)dy (19)

with G defined by (4). Define

Ψ(u, v) = (S(t)u0(x) + Φ1(v), S(t)v0(x) + Φ2(u)), (20)

where

(Φ1(v),Φ2(u)) =

∫ t

0

S(t− s)(K1(x, s)v(x, s)
p1, K2(x, s)u(x, s)

p2)ds.

Lemma 2.1. Let δ ≥ 0 and α := max{0,−δ(N − 2 − δ)/2}. If we take
0 < T ≤ (log 2)/α, then for 0 ≤ t < T

‖S(t)ξ‖∞,δ ≤ 2‖ξ‖∞,δ.

Moreover for 0 ≤ t < T

‖S(t)〈·〉−δ‖∞,δ ≤ 2.

6



Proof. Let w(x, t) := S(t)ξ(x) − ‖ξ‖∞,δ〈x〉
−δ exp(αt), then we have

∆w − wt

=
[

α|x|4 + {2α + δ(N − 2 − δ)}|x|2 +Nδ + α
]

‖ξ‖∞,δ〈x〉
−δ−4 exp(αt) ≥ 0.

Combining this with Protter-Weinberger [19, Theorem 10, p.p.183-184], we
get w(x, t) ≤ 0; that is,

〈x〉δS(t)ξ(x) ≤ ‖ξ‖∞,δ exp(αt).

Then we obtain ‖S(t)ξ‖∞,δ ≤ ‖ξ‖∞,δ exp(αt). Moreover, if we take 0 < T ≤
(log 2)/α, then for 0 < t < T

‖S(t)ξ‖∞,δ ≤ 2‖ξ‖∞,δ.

Lemma 2.2. (i) Assume that 〈x〉δ1u0(x) and 〈x〉δ2v0(x) are bounded in D̄.
(S(·)u0, S(·)v0) ∈ ET for 0 < T ≤ (log 2)/α, and we have

‖(S(·)u0, S(·)v0)‖ET
≤ 2{‖u0‖∞,δ1

+ ‖v0‖∞,δ2
},

where ET is defined in (7).
(ii) Let (u, v) ∈ ET . Suppose that Ki(x, t) (i = 1, 2) satisfy (6). Then
(Φ1(v),Φ2(u)) ∈ ET for some T > 0, and we have

‖(Φ1(v),Φ2(u))‖ET
≤ 2CU(T̃1(T ) + T̃2(T )){‖(0, v)‖p1

ET
+ ‖(u, 0)‖p2

ET
},

where the constant CU is appeared in (6), and T̃i(t) = {(t+1)qi+1−1}/(qi+1)
(i = 1, 2).

Proof. (i) It is obvious from Lemma 2.1 with δ = δi (i = 1, 2).
(ii) Note that

∫ t

0

S(t− s)K1(x, s)v(x, s)
p1ds

≤

∫ t

0

S(t− s)CU(s+ 1)q1〈x〉σ1−δ2p1ds sup
s∈[0,t]

‖v(·, s)‖p1

∞,δ2
.

A simple calculation gives −σ1 + δ2p1 = δ1. Then it follows from Lemma 2.1
that

‖S(t− s)〈·〉σ1−δ2p1‖∞,δ1
≤ 2.
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Thus we have

‖Φ1(v)‖∞,δ1
≤ 2CU T̃1(t) sup

s∈[0,t]

‖v(s)‖p1

∞,δ2
.

Similarly, we have

‖Φ2(u)‖∞,δ2
≤ 2CU T̃2(t) sup

s∈[0,t]

‖u(s)‖p2

∞,δ1
.

We conclude from these inequations.
Proof of Theorem 1.

Let BR = {(u, v) ∈ ET ; ‖(u, v)‖ET
≤ R} and PT = {(u, v) ∈ ET ; u ≥

0, v ≥ 0}, and define T̃i same as in Lemma 2.2 (ii). For (u1, v1), (u2, v2) ∈
BR ∩ PT with R ≥ 1 sufficient large, we have

‖Ψ(u1, v1) − Ψ(u2, v2)‖ET
= ‖(Φ1(v1) − Φ1(v2),Φ2(u1) − Φ2(u2))‖ET

. (21)

We consider

|Φ1(v1) − Φ1(v2)|〈x〉
δ1

≤

∫ t

0

S(t− s)CU(s+ 1)q1〈x〉σ1 |v1(x, s)
p1 − v2(x, s)

p1|ds〈x〉δ1.

Then, since (u2, v2) ∈ BR we obtain

|Φ1(v1) − Φ1(v2)|〈x〉
δ1 ≤ 2p1CU T̃1(T ) sup

s∈[0,t]

‖Rp1−1p1(v1(·, s) − v2(·, s))‖∞,δ2
.

(22)

By the same argument we have

|Φ2(u1) − Φ2(u2)|〈x〉
δ2 ≤ 2p2CU T̃2(T ) sup

s∈[0,t]

‖Rp2−1p2(u1(·, s) − u2(·, s))‖∞,δ1
.

(23)

Substitute (22) and (23) into (21). Since max{p1, p2} ≤ p1p2, we obtain

‖Ψ(u1, v1) − Ψ(u2, v2)‖ET

≤ 2p1p2CU(T̃1(T ) + T̃2(T ))Rp1p2−1p1p2‖(u1 − u2, v1 − v2)‖ET
.

Taking T > 0 small enough, we have

‖Ψ(u1, v1) − Ψ(u2, v2)‖ET
≤ ρ‖(u1, v1) − (u2, v2)‖ET

for some ρ < 1. Then Ψ is a strict contraction of BR ∩PT into itself, whence
there exists a unique fixed point (u, v) ∈ BR ∩ PT which solves (1).
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3 Nonexistence of global solution

In this section we treat the nonexistence of global solutions in time of (1).
Here, we take the same strategy as in [17], [18], [25] and [26]. Let σi = σ̌i

and qi = q̌i for i = 1, 2 through this section.
First, we should consider only the case k ∈ (0, 1/2) by comparison. Let

λm > 0 denote the principal eigenvalue of −∆ with Dirichlet problem in
B(xm, k|xm|), and let ζm(x) > 0 denote the corresponding positive eigen-
function, normalized by

∫

B(xm,k|xm|)
ζm(x)dx = 1. Define

Fm(t) =

∫

B(xm,k|xm|)

u(x, t)ζm(x)dx, Gm(t) =

∫

B(xm,k|xm|)

v(x, t)ζm(x)dx.

(24)

We will show that for an appropriate choice of k, (Fm(t), Gm(t)) is not global
in time, thereby contradicting the assumption that (u, v) is a global solution.
By the same arguments as in [9, §3], [13] and [21], we have the following
proposition:

Proposition 3.1. Let (Fm(t), Gm(t)) by (24) for some t0 ∈ (0, t] and m ∈
N. If

Fm(c1|xm|
2) > A|xm|

−α1 or Gm(c1|xm|
2) > B|xm|

−α2

with some A,B > 0 and some c1 > 0, then (Fm(t), Gm(t)) is not global in
time.

Lemma 3.1. Let u0 and v0 are BC and (u0, v0) 6≡ 0, and let (u, v) be a
solution of (1). Then for any τ > 0 and x ∈ D there exist constants µ ≥ 1
and C = C(N, τ, u0, v0, K1, K2, p1, p2, µ) > 0 such that

u(x, τ) ≥ C|x|γ+e−µ|x|2ψ1(x/|x|) and v(x, τ) ≥ C|x|γ+e−µ|x|2ψ1(x/|x|).

Proof. We may let u0(x) 6≡ 0 without loss of generality. Since u(x, t) ≥
S(t)u0(x), Iν(z) ≥ Czν and γ+ = ν1 − (N − 2)/2, we obtain

u(x, t) ≥
C

(2t)1+ν1
rγ+e−r2/4tψ1(θ)

×

∫ ∞

0

∫

Ω

ργ++N−1e−ρ2/4tψ1(φ)u0(ρ, φ)dφdρ.

Then we have, for every τ1 > 0,

u(x, τ1) ≥ C1r
γ+e−µ1r2

ψ1(θ) (25)
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with µ1 = max{1, 1/4τ1} and

C1 = C1(τ1, N, u0) =
C

(2τ1)1+ν1

∫ ∞

0

∫

Ω

ργ++N−1e−ρ2/4τ1ψ1(φ)u0(ρ, φ)dφdρ.

From (18) and the fact that Iν ≥ Czν with some C > 0, we have

v(x, t) ≥ Crγ+ψ1(θ)

∫ t

0

∫ ∞

0

∫

Ω

1

(2(t− s))ν1+1
e−r2/4(t−s)

× ργ++N−1e−ρ2/4(t−s)ψ1(φ)K2(ρ, φ, s)u
p2(ρ, φ, s)dφdρds.

Then by (25) we obtain for τ2 > 2τ1

v(x, τ2) ≥ C2r
γ+ψ1(θ)

∫ τ2

τ2/2

1

(2(τ2 − s))ν1+1
e−r2/4(τ2−s)ds

≥ C2r
γ+ψ1(θ)

1

τ ν1+1
2

e−r2/2τ2

∫ τ2

τ2/2

ds = C2r
γ+ψ1(θ)

1

2τ ν1

2

e−r2/2τ2

with

C2 = C2(τ2, N, u0, K2)

= inf
s∈(τ2/2,τ2)

C

∫ ∞

0

∫

Ω

ργ++N−1e−ρ2/4(τ2−s)ψ1(φ)K2(ρ, φ, s)u
p2(ρ, φ, s)dφdρ.

Then we have

v(x, τ2) ≥ C3r
γ+e−µ2r2

ψ1(θ)

with µ2 = max{1, 1/2τ2} and C3 = C2/2τ
ν1

2 . Put C = min{C1, C2, C3} and
µ = max{µ1, µ2} and τ = τ2. Then we have

u(x, τ) ≥ Crγ+e−µr2

ψ1(θ) and v(x, τ) ≥ Crγ+e−µr2

ψ1(θ).

Lemma 3.2. For σ ≥ 0, µ ≥ 1, x ∈ D and t ≥ τ with some τ > 0, we have

S(t)χB(x)|x|σe−µ|x|2 ≥ Ct(σ−γ+)/2(1 + 4µt)−(N+σ+γ+)/2|x|γ+e−|x|2/4tψ1(x/|x|)

with some C > 0 and B = B(b, a) ⊂ D with a > 0 and b ∈ D, where χB is
a characteristic function of B such that χB(x) = 1 for x ∈ B and = 0 for
x ∈ D\B. The domain B(b, a) denotes the open ball of radius a centered at
b.
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Proof. We can put positive constants a1, a2 and domain Ω′ ⊂ Ω satisfying
0 < a1 < a2 < ∞, |Ω′| 6= 0 and DB = {x; |x| ∈ (a1, a2), x/|x| ∈ Ω′} ⊂ B. By
(19) and

∫

Ω′
ψ1(φ)dφ = C with some C ∈ (0, 1], we have

S(t)χB(x)|x|σe−ν|x|2 ≥

∫ a2

a1

∫

Ω′

G(r, θ, ρ, φ, t)ρσe−µρ2

ρN−1dφdρ

≥
C

(2t)1+ν1
rγ+e−r2/4tψ1(θ)

∫ a2

a1

∫

Ω′

ργ++σ+N−1e−(1+4µt)ρ2/4tψ1(φ)dφdρ

≥
Crγ+e−r2/4tψ1(θ)

(2t)1+ν1µ̃(t)γ++σ+N

∫ µ̃(t)a2

µ̃(t)a1

sγ++σ+N−1e−s2

ds

where µ̃(t) =
√

(1 + 4µt)/4t. Since 1 ≤
√

µ ≤ µ̃(t) ≤ µ̃(τ) for t ≥ τ , we
have

S(t)χB(x)|x|σe−ν|x|2 ≥ Ct(σ−γ+)/2(1 + 4µt)−(N+σ+γ+)/2rγ+e−r2/4tψ1(θ).

By Lemma 3.1, we can assume

u0(x) ≥ C|x|γ+e−µ|x|2ψ1(x/|x|)

for some C > 0 and µ > 0. Then we have, for t ≥ τ

u(x, t) ≥ C(1 + 4µt)−N/2−γ+ |x|γ+e−|x|2/4tψ1(x/|x|). (26)

Lemma 3.3. Let v be the second element of the solution of (1). Then we
have

v(x, t) ≥ Ct((p2−1)γ++σ2+2q2+2)/2(t+ 1)−γ+p2−Np2/2|x|γ+e−|x|2/2tψ(x/|x|)p2+1

for t ≥ τ with some τ > 0 and C = C(τ, u0, v0, K1, K2, p1, p2) > 0.

Proof. It follows from (11), (18) and (26), we obtain

v(x, t) ≥C

∫ t

0

S(t− s)χB̃k,1
(x)|x|σ2+p2γ+sq2

× (4s+ 1/µ)−Np2/2−p2γ+e−p2|x|2/4sψp2

1 (x/|x|)ds.

By Lemma 3.2, we then have

v(x, t) ≥ C(t/2)(p2−1)γ+/2+σ2/2(t/4)q2(2t+ 1/µ)−γ+p2−Np2/2

× |x|γ+e−|x|2/2tψp2+1
1 (x/|x|)

∫ t/2

t/4

ds.

Thus, the inequality of the lemma holds.
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Lemma 3.4. Let u be first element of the solution of (1) and α1 ≥ N + γ+.
Then for t ≥ a

u(x, t)

≥

{

Ct−N/2−γ+ |x|γ+e−|x|2/2tψ1(x/|x|)
p1p2+p1+1 log(t/2a), if α1 = N + γ+,

Ct−N/2−γ+ |x|γ+e−|x|2/2tψ1(x/|x|)
p1p2+p1+1(tp̃ − (2a)p̃), if α1 > N + γ+

with C = C(a, u0, v0, K1, K2, p1, p2, N) > 0, where a > 0 is a small constant
and p̃ = (p1p2 − 1)(α1 −N − γ+)/2.

Proof. By Lemma 3.3, we have

u(x, t) ≥ C

∫ t

a

S(t− s)χB̃k,1
(x)|x|σ1sq1s(1+σ2/2+q2)p1+p1(p2−1)γ+/2

× (s+ 1)−Np1p2/2−γ+p1p2|x|p1γ+e−p1|x|2/2sψ1(x/|x|)
p1(p2+1)ds.

It follows from Lemma 3.2 that

u(x, t) ≥ C(t/2)(σ1+p1γ+−γ+)/2t−(N+σ1+p1γ++γ+)/2|x|γ+e−|x|2/2t

× ψ1(x/|x|)
p1p2+p1+1

∫ t/2

a

s{(−N−γ+)(p1p2−1)+(2+σ2+2q2)p1+σ1+2q1}/2ds

for small a > 0. Since

{(−N − γ+)(p1p2 − 1) + (2 + σ2 + 2q2)p1 + σ1 + 2q1}/2

= {(p1p2 − 1)(α1 −N − γ+)}/2 − 1,

this proves the inequality of the lemma.

Proof of Theorem 2.
First we consider the case (i). We may assume α1 ≥ α2. Put Ym =

√

c1|xm|. From the definition, we have α1 ≥ N + γ+. By Lemma 3.4, since
x ∈ B(xm, k|xm|), we have

Fm

(

Y 2
m

)

≥ CY −N−γ+

m hm

×

∫

B(xm,k|xm|)

|x|γ+

|xm|γ+
exp

(

−
|x|2

2Y 2
m

)

ζm(x)ψ1(x/|x|)
p1p2+p1+1dx

≥ C|xm|
−N−γ+(c1)

−N/2−γ+hm(1 + k)γ+ exp(−(1 + k)2c1/2),

where hm = log(Y 2
m/2a) for α1 = N+γ+ and hm = Y 2p̃

m −(2a)p̃ for α1 > N+γ+

with C = C(a, u0, v0, K1, K2, p1, p2, N) > 0 and p̃ defined in Lemma 3.4.
Since α1 ≥ N + γ+, it follows that

|xm|
α1Fm

(

Y 2
m

)

≥ C|xm|
α1−N−γ+c

−N/2−γ+

1

× hm(1 + k)γ+ exp(−(1 + k)2c1/2) > A

12



for m large enough. Thus, (Fm(t), Gm(t)) is not global in time by Proposition
3.1.

Next, we consider the case (ii). Since u(x, t) ≥ S(t)u0(x), u ∈ Ha1
,

Iν(z) ≥ Czν and
∫

Ω
ψ1(φ)2dφ is constant, it follows that

u(x, t) ≥

∫ ∞

0

∫

Ω

G(r, θ, ρ, φ, t)u0(ρ, φ)ρN−1dφdρ

≥ C

∫ ∞

0

rγ+ρN+γ+−1

tγ++N/2
exp

(

−
r2 + ρ2

4t

)

(1 + ρ2)−a1/2ψ1(θ)dρ.

Then, since γ+ = ν1 − (N − 2)/2, we obtain

u(x, Y 2
m) ≥ C

(

r

Ym

)γ+

exp

(

−
r2

4Y 2
m

)
∫ ∞

0

1

Ym

(

ρ

Ym

)
N
2

+ν1

× exp

(

−
ρ2

4Y 2
m

)

(1 + ρ2)−a1/2ψ1(θ)dρ.

Since Ym =
√

c1|xm|2, we have for x ∈ B(xm, k|xm|)

u(x, Y 2
m) ≥ C(1 + k)−

N
2 (1 − k)1+ν1c

−γ+/2
1 exp

{

−(1 + k)2/c1
}

× ψ1(θ)

∫ ∞

0

1

Ym

(

ρ

Ym

)
N
2

+ν1

exp

(

−
ρ2

4Y 2
m

)

(1 + ρ2)−a1/2dρ.

Putting χ = ρ/Ym, we have

u(x, Y 2
m) ≥ Cψ1(θ)

∫ ∞

0

χ
N
2

+ν1 exp

(

−
χ2

4

)

(1 + χ2Y 2
m)−a1/2dχ.

Note that 1 + χ2Y 2
m ≤ Y 2

m(1 + χ2) if m is large enough. Then, we obtain

u(x, Y 2
m) ≥ Cψ1(θ)|Ym|

−a1

∫ ∞

0

χ
N
2

+ν1 exp

(

−
χ2

4

)

(1 + χ2)−a1/2dχ

≥ Cψ1(x/|x|)|xm|
−a1

for sufficiently large m. Since
∫

B(xm,k|xm|)
ψ1(x/|x|)ζm(x)dx is constant, we

have

Fm

(

Y 2
m

)

≥

∫

B(xm,k|xm|)

u(x, Y 2
m)ζm(x)dx

≥ C|xm|
−a1

∫

B(xm,k|xm|)

ψ1(x/|x|)ζm(x)dx ≥ C|xm|
−a1 .

13



Since u0 ∈ Ha1
with a1 < α1, we have

|xm|
α1Fm

(

Y 2
m

)

≥ C|xm|
α1−a1 > A

for sufficiently large m. If v0 ∈ Ha2
with a2 < α2, we similarly have

|xm|
α2Gm(Y 2

m) ≥ C|xm|
α2−a2 > B

for m large enough. Thus, (Fm(t), Gm(t)) is not global in time by Proposition
3.1.
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