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Abstract
We describe explicitly the (g,K)-module structures of the principal series representations of SL(4,R).

1 Introduction

When we study a representation of a reductive Lie group, we often investigate its associated (g,K)-
module first, because it has an advantage of being purely algebraic. By using this, we sometimes have
“algorithmic” or effective computable results for the representation in question.

In this paper, we describe explicitly the (g,K)-module structures of the principal series representa-
tions of SL(4,R). The method of investigating (g,K)-module structures for groups of higher rank used
in this paper was originally found by Takayuki Oda in the case of Sp(2,R) ([6]). Furthermore Tadashi
Miyazaki [3, 4] applied the same method for the cases Sp(3,R) and SL(3,R). There is another method
different from ours, see, e.g., Howe [2] for GL(3,R).

Let us formulate the problem more precisely for a general real semisimple Lie group G with a maximal
compact subgroup K. Let g and k be the Lie algebras of G and K respectively. Moreover let (π,Hπ)
be a standard representation of G with the K-finite part Hπ,K . Since (π,Hπ) is realized as a subspace
of L2(K), we can see the K-module structure of π by the Peter-Weyl theorem. Thus, to accomplish
the investigation of the (g,K)-module structure of π, it is sufficient to investigate the action of p or pC

because of the Cartan decomposition g = k+ p. To investigate the action of pC, we define Γτ
i as follows.

For a K-type (τ, Vτ ) of π and a K-homomorphism η : Vτ → Hπ,K , we define a K-homomorphism
η̃ : pC ⊗Vτ → Hπ,K by X ⊗ v 7→ π(X)η(v), where we regard pC as a K-module by the adjoint action of
K and denote the differential of π by the same symbol π. Let pC ⊗ Vτ '

⊕
i Vτi be the decomposition

into irreducible K-modules, and fix an injection Iτ
i from Vτi

into pC ⊗ Vτ for each i. We then define a
linear map Γτ

i : HomK(Vτ ,Hπ,K) → HomK(Vτi ,Hπ,K) by η 7→ η̃ ◦ Iτ
i . This Γτ

i characterizes the action
of pC. Now the problem is to describe explicitly Γτ

i .
The key to describing Γτ

i is to find a “good” basis in the space HomK(Vτ , Hπ,K) of intertwining
operators (which is not one-dimensional in general) with respect to which we can easily describe Γτ

i .
We take as the good basis a basis induced from elementary functions in Hπ.

As a result of this paper, we obtain some relations between vectors in Hπ[τ ] and Hπ[τi]. Here
Hπ[τ ] means the τ -isotypic component of Hπ. We can use these relations to obtain explicit formulae
of principal series Whittaker functions of SL(4,R) with a certain K-type from those with another
K-type. Tatsuo Hina, Taku Ishii and Takayuki Oda [1] give the explicit formulae of principal series
Whittaker functions of SL(4,R) with the minimal K-type. So there is a possibility that we derive
explicit formulae of principal series Whittaker functions of SL(4,R) with an arbitrary K-type using the
relations obtained in this paper. Passing to the various realizations or models of the principal series
representation, including Whittaker models, one can have an infinite number of difference-differential
operators. It seems interesting problem to have explicit formulae of these realizations (see Miyazaki [5]
for SL(3,R)).

Here are the contents of this paper. In section 2, we recall the structure of G = SL(4,R) and
define the principal series representation of G. In section 3, we study representations of K = SO(4). In
section 4, we investigate the K-module structure of the principal series representation by the Peter-Weyl
theorem, where we also define the elementary functions. In section 5, which is the main part of this
paper, we define Γτ

i for G = SL(4,R) and also Γ
τ

i which is essentially the same as Γτ
i . Then we describe

Γ
τ

i explicitly in Theorem 5.2. We also give the action of pC explicitly by using Γτ
i in Theorem 5.5.

The author express his gratitude to Takayuki Oda for constant encouragement, who introduced him
this problem. He also thanks Tadashi Miyazaki for valuable advice.
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2 Preliminaries

2.1 The structure of SL(4,R)

Let G be the special linear group SL(4,R) of degree four. We take K = SO(4) as a maximal compact
subgroup of G. Let g and k be the Lie algebras of G and K respectively:

g = {X ∈ gl(4,R) | trX = 0}, k = {X ∈ g | X + tX = 0}.

Then g has the Cartan decomposition g = k + p, where p = {X ∈ g | X = tX}.
We define subgroups N , A and M of G by

N =




1 ∗ ∗ ∗
1 ∗ ∗

1 ∗
1

 ∈ G

 , A =




a1

a2

a3

a4


∣∣∣∣∣∣∣∣

ak ∈ R>0

a1a2a3a4 = 1

 ,

M =




ε1

ε2

ε3

ε4


∣∣∣∣∣∣∣∣

εk ∈ {±1}
ε1ε2ε3ε4 = 1

 .

Let a and n be the Lie algebras of A and N respectively. If we denote by Ekl ∈ M(4,R) the matrix
unit with its (k, l)-th component 1 and remaining components 0, then n =

⊕
1≤k<l≤4 REkl. We take a

basis {H1,H2, H3} of a defined by

H1 =


1

0
0

−1

 , H2 =


0

1
0

−1

 , H3 =


0

0
1

−1

 .

For 1 ≤ k ≤ 4, we define a linear form ek of a by a 3 diag(t1, t2, t3, t4) 7→ tk ∈ C. Then the
set of the restricted roots for (a, g) is given by Σ = {ek − el | 1 ≤ k, l ≤ 4, k 6= l}, and the subset
Σ+ = {ek − el | 1 ≤ k < l ≤ 4} forms a positive root system. The half sum ρ of the positive roots is
given by

ρ =
1
2

∑
e∈Σ+

e =
1
2
(3e1 + e2 − e3 − 3e4).

2.2 Definition of the principal series representations

To define the principal series representation, we fix ν ∈ HomR(a,C) and a character σ of M . We
identify ν with (ν1, ν2, ν3) ∈ C3 defined by νk = ν(Hk) (k = 1, 2, 3). Note that the half sum ρ of the
positive roots has the coordinate (ρ1, ρ2, ρ3) = (3, 2, 1) through this identification. We also identify σ
with (σ1, σ2, σ3) ∈ {0, 1}⊕3 defined by

σ(ε) = εσ1
1 εσ2

2 εσ3
3 for ε = diag(ε1, ε2, ε3, ε4) ∈ M.

We define a quasicharacter eν+ρ : A → C× by

eν+ρ(a) = aν1+ρ1
1 aν2+ρ2

2 aν3+ρ3
3 for a = diag(a1, a2, a3, a4) ∈ A.

Then the principal series representation is defined as follows.

Definition 2.1. Let H(ν,σ) be the space of the locally integrable functions on G satisfying the equation

f(namg) = eν+ρ(a)σ(m)f(g)

for (n, a, m, g) ∈ N × A × M × G, and f |K ∈ L2(K). Then the principal series representation π(ν,σ) is
the right representation of G on H(ν,σ).
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3 Representations of K

We study representations of K. We realize representations of K as SU(2) × SU(2)-modules by using a
covering map ϕ : SU(2)×SU(2) → K, which is defined in subsection 3.1. In subsection 3.3, the adjoint
action of K on pC is studied. In subsection 3.4, we give Iτ

i : Vτi → pC ⊗ Vτ , which is explained in
introduction.

3.1 The covering group of K

Let

H =
{(

a b

−b a

)∣∣∣∣ a, b ∈ C
}

.

We regard H as a four-dimensional real Euclidean space with an inner product (x, y) = tr xy∗ for
x, y ∈ H. Here y∗ = ty. We define for (g1, g2) ∈ SU(2) × SU(2), an automorphism ϕ(g1, g2) of H by

ϕ(g1, g2)(x) = g1xg−1
2 for x ∈ H .

Then ϕ(g1, g2) preserves the inner product and the orientation, hence we have a homomorphism

ϕ : SU(2) × SU(2) −→ SO(H) ' SO(4) = K.

We observe that ϕ is surjective and the kernel of ϕ is {±(12, 12)}. If we take

1√
2

(
1

1

)
,

1√
2

(√
−1

−
√
−1

)
,

1√
2

(
1

−1

)
,

1√
2

( √
−1√

−1

)
as an orthonormal basis in H, then ϕ : SU(2) × SU(2) → K is given by

ϕ(g1, g2) =


Re aa′ + Re bb′ − Im aa′ + Im bb′ Re ab′ − Re ba′ − Im ab′ − Im ba′

Im aa′ + Im bb′ Re aa′ − Re bb′ Im ab′ − Im ba′ Re ab′ + Re ba′

−Re ab′ + Re ba′ Im ab′ + Im ba′ Re aa′ + Re bb′ − Im aa′ + Im bb′

− Im ab′ + Im ba′ −Re ab′ − Re ba′ Im aa′ + Im bb′ Re aa′ − Re bb′


for

(g1, g2) =
((

a b

−b a

)
,

(
a′ b′

−b′ a′

))
∈ SU(2) × SU(2).

Here Re z and Im z mean the real part and the imaginary part of z ∈ C, respectively.
For later use, we give the explicit description of the differential dϕ : su(2)C ⊕ su(2)C → kC. We take

a basis {H, E, F} of su(2)C defined by

H =
(

1 0
0 −1

)
, E =

(
0 1
0 0

)
, F =

(
0 0
1 0

)
.

If we define Yk ∈ kC (1 ≤ k ≤ 6) by

Y1 =


√
−1

−
√
−1 √

−1
−
√
−1

 , Y2 =
1
2

(
C11

−C11

)
, Y3 =

1
2

(
C22

−C22

)
,

Y4 =


−
√
−1√

−1 √
−1

−
√
−1

 , Y5 =
1
2

(
C12

−C21

)
, Y6 =

1
2

(
−C21

C12

)
,

where

C11 =
(

−1
√
−1√

−1 1

)
, C12 =

(
1 −

√
−1√

−1 1

)
, C21 =

(
1

√
−1

−
√
−1 1

)
, C22 =

(
1

√
−1√

−1 −1

)
,

then the correspondence between su(2)C ⊕ su(2)C and kC through dϕ is given as follows:

(H, 0) 7−→ Y1, (E, 0) 7−→ Y2, (F, 0) 7−→ Y3,

(0,H) 7−→ Y4, (0, E) 7−→ Y5, (0, F ) 7−→ Y6.
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3.2 Representations of K

We first study representations of SU(2). For an integer m ≥ 0, let Vm be the subspace of degree m
homogeneous polynomials of two variables z1, z2 in the polynomial ring C[z1, z2]. For g ∈ SU(2) with

g−1 =
(

a b

−b a

)
and f ∈ Vm, we set

τm(g)f(z1, z2) = f(az1 + bz2,−bz1 + az2).

It is known that irreducible representations of SU(2) are exhausted by {(τm, Vm) |m ∈ Z≥0} up to
equivalence. We take {v(m)

k = zk
1zm−k

2 | 0 ≤ k ≤ m} as a basis of Vm. If we denote the differential of τm

by the same symbol τm, then the action on this basis of {H, E, F} ⊂ su(2)C is given by

τm(H)v(m)
k = (m − 2k)v(m)

k , τm(E)v(m)
k = −kv

(m)
k−1, τm(F )v(m)

k = (k − m)v(m)
k+1.

We write for m = (m,n) ∈ Z2
≥0, τm = τm £ τn and Vm = Vm £ Vn which is a representation of

SU(2) × SU(2). We take a basis {vm
(k,l) = v

(m)
k ⊗ v

(n)
l | 0 ≤ k ≤ m, 0 ≤ l ≤ n} of Vm, which is called

the standard basis.
The representation (τm, Vm) of SU(2) × SU(2) induces a representation of K = SO(4) by τm(k) =

τm(ϕ−1(k)) for k ∈ K. This definition is well-defined if τm(Ker ϕ) = 1, i.e., m + n ≡ 0 (mod 2). Thus
we find that K̂ = {(τm, Vm) | m ∈ L}, where we put L = {m = (m,n) ∈ Z2

≥0 | m + n ≡ 0 (mod 2)}.
We say that an element m = (m,n) of L is even if both m and n are even, and odd if both m and n are
odd.

For later use, we here study the dual representation of (τm, Vm). We first note that the dual
representation (τ∗

m, V ∗
m) of the representation (τm, Vm) of SU(2) is isomorphic to (τm, Vm) again, since

irreducible (m + 1)-dimensional representation of SU(2) is unique up to isomorphism. Hence we also
note that the dual representation (τ∗

m, V ∗
m) of the representation (τm, Vm) of K is isomorphic to (τm, Vm)

again. In the next lemma, we give an isomorphism between (τm, Vm) and (τ∗
m, V ∗

m).

Lemma 3.1. For m = (m,n) ∈ L, let {vm∗
(k,l) | 0 ≤ k ≤ m, 0 ≤ l ≤ n} be the dual basis of the standard

basis {vm
(k,l) | 0 ≤ k ≤ m, 0 ≤ l ≤ n}. Then (τ∗

m, V ∗
m) is isomorphic to (τm, Vm) as a K-module via

vm∗
(k,l) 7−→ (−1)k+l

(
m

k

)(
n

l

)
vm
m−(k,l)

for 0 ≤ k ≤ m, 0 ≤ l ≤ n.

Proof. From Miyazaki [4, Lemma 3.4], V ∗
m is isomorphic to Vm as an SU(2)-module via

v
(m)∗
k 7−→ (−1)k

(
m

k

)
v
(m)
m−k.

Thus we obtain the lemma.

3.3 The adjoint action of K on pC

The next proposition states the K-module structure of pC. Recall that we think of pC as a K-module
by the adjoint action of K.

Proposition 3.2. As a K-module, pC is isomorphic to V(2,2) via X(x,y) 7→ v
(2,2)
(x,y) (x, y = 0, 1, 2), where

X(x,y) ∈ pC are defined as follows:

X(0,0) = 2
(

C11

)
, X(0,1) =

(
C11

C11

)
, X(0,2) = 2

(
C11

)
,

X(1,0) =
(

C12

C21

)
, X(1,1) =


1

1
−1

−1

 , X(1,2) = −
(

C21

C12

)
,

X(2,0) = −2
(

C22

)
, X(2,1) =

(
C22

C22

)
, X(2,2) = −2

(
C22

)
.
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Proof. Because X(0,0) satisfies

[Y1, X(0,0)] = [Y4, X(0,0)] = 2X(0,0), [Y2, X(0,0)] = [Y5, X(0,0)] = 0,

we find that X(0,0) is a highest weight vector with weight (2, 2). Thus pC contains a subrepresentation
isomorphic to V(2,2). But, because dim pC = dimV(2,2) = 9, we see that pC is actually isomorphic
to V(2,2). We can take an isomorphism from pC to V(2,2) which maps X(0,0) to v

(2,2)
(0,0) . The remaining

correspondence between X(x,y) and v
(2,2)
(x,y) can be easily checked. For example, since τ(2,2)(F, 0)v(2,2)

(0,0) =

−2v
(2,2)
(1,0) , we see that v

(2,2)
(1,0) corresponds to

−1
2
[Y3, X(0,0)] = X(1,0).

3.4 Clebsch-Gordan coefficients for pC ⊗ Vm

We study the irreducible decomposition of a tensor product representation pC⊗Vm for m = (m,n) ∈ L
as a K-module. Since pC is isomorphic to V(2,2), we first investigate the su(2)C-module V2 ⊗ Vm.

It follows from the Clebsch-Gordan theorem that V2 ⊗ Vm generically decomposes three irreducible
subrepresentations of su(2)C:

V2 ⊗ Vm '
⊕

i=−1,0,1

Vm+2i.

Here some components may vanish. An injection from Vm+2i into V2 ⊗ Vm for i = −1, 0, 1 is given in
the following lemma.

Lemma 3.3. When Vm+2i-component of V2⊗Vm does not vanish, we define a linear map Im
i : Vm+2i →

V2 ⊗ Vm by

Im
i (v(m+2i)

k ) =
2∑

x=0

A
[m,i]
[k,x] v

(2)
x ⊗ v

(m)
k+1−i−x.

Here we put v
(m)
k = 0 unless 0 ≤ k ≤ m and the coefficients A

[m,i]
[k,x] are defined as follows:

A
[m,1]
[k,0] =

(m − k + 2)(m − k + 1)
(m + 2)(m + 1)

, A
[m,1]
[k,1] =

2(m − k + 2)k
(m + 2)(m + 1)

, A
[m,1]
[k,2] =

k(k − 1)
(m + 2)(m + 1)

,

A
[m,0]
[k,0] =

m − k

m
, A

[m,0]
[k,1] =

2k − m

m
, A

[m,0]
[k,2] = − k

m
,

A
[m,−1]
[k,0] = 1, A

[m,−1]
[k,1] = −2, A

[m,−1]
[k,2] = 1.

Then Im
i is a generator of Homsu(2)C(Vm+2i, V2 ⊗ Vm).

Proof. We first note that Im
i (v(m+2i)

0 ) ∈ V2 ⊗Vm is a highest weight vector with weight m + 2i. Indeed,
we have

τ2 ⊗ τm(H)
(
Im
i (v(m+2i)

0 )
)

=
2∑

x=0

A
[m,i]
[0,x] τ2 ⊗ τm(H)

(
v(2)

x ⊗ v
(m)
1−i−x

)
=

2∑
x=0

A
[m,i]
[0,x]

(
τ2(H)(v(2)

x ) ⊗ v
(m)
1−i−x + v(2)

x ⊗ τm(H)(v(m)
1−i−x)

)
=

2∑
x=0

A
[m,i]
[0,x]

(
(2 − 2x)v(2)

x ⊗ v
(m)
1−i−x + (m − 2(1 − i − x))v(2)

x ⊗ v
(m)
1−i−x

)
= (m + 2i)Im

i (v(m+2i)
0 ),
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and moreover,

τ2 ⊗ τm(E)
(
Im
i (v(m+2i)

0 )
)

=
2∑

x=1

A
[m,i]
[0,x] (−x · v(2)

x−1 ⊗ v
(m)
1−i−x) +

2∑
x=0

A
[m,i]
[0,x] (−(1 − i − x)v(2)

x ⊗ v
(m)
−i−x)

= −
2∑

x=0

(
(x + 1)A[m,i]

[0,x+1] + (1 − i − x)A[m,i]
[0,x]

)
v(2)

x ⊗ v
(m)
−i−x

= 0,

since (x+1)A[m,i]
[0,x+1] +(1− i−x)A[m,i]

[0,x] = 0 for i = −1, 0, 1 and x = 0, 1, 2. Here we put A
[m,i]
[0,x] = 0 unless

0 ≤ x ≤ 2.
Thus, to complete the proof, it suffices to show that

τ2 ⊗ τm(F )
(
Im
i (v(m+2i)

k )
)

= Im
i

(
τm+2i(F )(v(m+2i)

k )
)

.

This equation is implied by

(x − 3)A[m,i]
[k,x−1] + (k + 1 − i − x − m)A[m,i]

[k,x] = (k − m − 2i)A[m,i]
[k+1,x],

which can be checked by direct computation.

We next investigate pC⊗Vm. From above arguments, pC⊗Vm generically decomposes nine irreducible
subrepresentations:

pC ⊗ Vm '
⊕

i,j=−1,0,1

Vm+2(i,j).

Here some components may vanish.

Proposition 3.4. When Vm+2(i,j)-component of pC ⊗ Vm does not vanish, we define a linear map
Im
(i,j) : Vm+2(i,j) → pC ⊗ Vm by

Im
(i,j)(v

m+2(i,j)
(k,l) ) =

2∑
x=0

2∑
y=0

A
[m,(i,j)]
[(k,l),(x,y)] X(x,y) ⊗ vm

(k,l)+(1,1)−(i,j)−(x,y).

Here we put vm
(k,l) = 0 unless 0 ≤ k ≤ m and 0 ≤ l ≤ n, and the coefficients A

[m,(i,j)]
[(k,l),(x,y)] are defined by

A
[m,(i,j)]
[(k,l),(x,y)] = A

[m,i]
[k,x] · A

[n,j]
[l,y] .

Then Im
(i,j) is a generator of HomkC(Vm+2(i,j), pC ⊗ Vm).

Proof. This follows immediately from Lemma 3.3.

Lemma 3.5. The coefficients A
[m,(i,j)]
[(k,l),(x,y)] satisfy following relations.

• A
[m,(i,j)]
[m+2(i,j)−(k,l),(x,y)] = (−1)i+jA

[m,(i,j)]
[(k,l),(2,2)−(x,y)]

• 2
{

(k − i + 1)A[m,(i,j)]
[(k,l),(0,y)] + (m − k + i + 1)A[m,(i,j)]

[(k,l),(2,y)]

}
= (im + i2 + i − 2)A[m,(i,j)]

[(k,l),(1,y)]

• 2
{

(l − j + 1)A[m,(i,j)]
[(k,l),(x,0)] + (n − l + j + 1)A[m,(i,j)]

[(k,l),(x,2)]

}
= (jn + j2 + j − 2)A[m,(i,j)]

[(k,l),(x,1)]

Proof. From the definition of A
[m,i]
[k,x] in Lemma 3.3, it is easy to see that the coefficients A

[m,i]
[k,x] satisfy

A
[m,i]
[m+2i−k,x] = (−1)i+1A

[m,i]
[k,2−x],

2
{

(k − i + 1)A[m,i]
[k,0] + (m − k + i + 1)A[m,i]

[k,2]

}
= (im + i2 + i − 2)A[m,i]

[k,1] .

Because A
[m,(i,j)]
[(k,l),(x,y)] = A

[m,i]
[k,x] · A

[n,j]
[l,y] , the lemma follows from these equations.
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4 The structure of the principal series representation as a K-
module

We first recall the Peter-Weyl theorem for the compact group K. Next we investigate the K-module
structure of the principal series representation by embedding it into L2(K).

L2(K) has a K × K-bimodule structure by the two sided regular action:

((k1, k2)f)(x) = f(k−1
1 xk2), f ∈ L2(K), x ∈ K, (k1, k2) ∈ K × K.

We define a homomorphism Φm : V ∗
m £ Vm → L2(K) of K × K-bimodules by

w ⊗ v 7−→ (k 7→ 〈w, τm(k)v〉),

where 〈 , 〉 is the canonical pairing on V ∗
m £ Vm. Then the Peter-Weyl theorem tells that

Φ =
⊕̂
m∈L

Φm :
⊕̂
m∈L

V ∗
m £ Vm −→ L2(K)

is an isomorphism of K × K-bimodules. Here
⊕̂

means a Hilbert space direct sum.
We next consider the restriction map rK : H(ν,σ) → L2(K). It is injective because G = NAK, and

if we regard L2(K) as a K-module by the regular right action only, then rK is a homomorphism of
K-modules. The image of rK is

L2
(M,σ)(K) = {f ∈ L2(K) | f(mk) = σ(m)f(k) for a.e. m ∈ M, k ∈ K}.

L2
(M,σ)(K) has an irreducible decomposition L2

(M,σ)(K) '
⊕̂

m∈LV ∗
m[σ] ⊗ Vm as a K-module. Here

V ∗
m[σ] means the σ-isotypic component in (τ∗

m|M , V ∗
m), that is

V ∗
m[σ] = {w ∈ V ∗

m | τ∗
m(m)w = σ(m)w, m ∈ M}.

Hence we obtain an isomorphism of K-modules

r−1
K ◦ Φ :

⊕̂
m∈L

V ∗
m[σ] ⊗ Vm −→ H(ν,σ).

In order to accomplish the investigation of the K-module structure of H(ν,σ), it remains for us to
decide V ∗

m[σ]. We first consider Vm[σ]. Let m = (m, n). Since M is generated by three elements

m1 =


−1

1
1

−1

 , m2 =


1

−1
1

−1

 , m3 =


1

1
−1

−1

 ,

we see that v ∈ Vm is in Vm[σ] if and only if τm(mi)v = (−1)σiv for i = 1, 2, 3. On the other hand, from
the definition of (τm, Vm) and because the inverse images of m1, m2, m3 under ϕ : SU(2)×SU(2) → K
are given by

ϕ−1(m1) =
{
±

((
0

√
−1√

−1 0

)
,

(
0 −

√
−1

−
√
−1 0

))}
, ϕ−1(m2) =

{
±

((
0 1
−1 0

)
,

(
0 1
−1 0

))}
,

ϕ−1(m3) =
{
±

((√
−1 0
0 −

√
−1

)
,

(√
−1 0
0 −

√
−1

))}
,

we have

τm(m1)vm
(k,l) = (−1)m+ m+n

2 vm
m−(k,l),

τm(m2)vm
(k,l) = (−1)k+lvm

m−(k,l),

τm(m3)vm
(k,l) = (−1)k+l+ m+n

2 vm
(k,l).
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Thus if vm
m−(k,l) + (−1)εvm

(k,l) ∈ Vm with ε ∈ {0, 1} lies in Vm[σ], then we have

σ1 ≡ ε + m +
m + n

2
(mod 2),

σ2 ≡ ε + k + l (mod 2),

σ3 ≡ k + l +
m + n

2
(mod 2),

or equivalently

m ≡ σ1 + σ2 + σ3 (mod 2),

ε ≡ σ1 + m +
m + n

2
(mod 2),

k + l ≡ σ3 +
m + n

2
(mod 2).

Therefore, we see that if m 6≡ σ1 + σ2 + σ3 (mod 2) then Vm[σ] = 0, and that if m ≡ σ1 + σ2 + σ3

(mod 2) then
Vm[σ] =

⊕
(k,l)∈Z(σ;m)

C(vm
m−(k,l) + (−1)ε(σ;m)vm

(k,l)).

Here ε(σ;m) ∈ {0, 1} is defined by

ε(σ;m) ≡ σ1 + m +
m + n

2
(mod 2),

and Z(σ;m) is defined as follows:

• If m is even and ε(σ;m) = 1, then

Z(σ;m) =
{

(k, l) ∈ Z2

∣∣∣∣ 0 ≤ k ≤ m and 0 ≤ l ≤ n/2 − 1, or 0 ≤ k ≤ m/2 − 1 and l = n/2
k + l ≡ σ3 + (m + n)/2 (mod 2)

}
.

• If m is even and ε(σ;m) = 0, then

Z(σ;m) =
{

(k, l) ∈ Z2

∣∣∣∣ 0 ≤ k ≤ m and 0 ≤ l ≤ n/2 − 1, or 0 ≤ k ≤ m/2 and l = n/2
k + l ≡ σ3 + (m + n)/2 (mod 2)

}
.

• If m is odd, then

Z(σ;m) =
{

(k, l) ∈ Z2

∣∣∣∣ 0 ≤ k ≤ m and 0 ≤ l ≤ n − 1
2

, k + l ≡ σ3 +
m + n

2
(mod 2)

}
.

By the correspondence between Vm and V ∗
m in Lemma 3.1, we note that if m 6≡ σ1 + σ2 + σ3 (mod 2)

then V ∗
m[σ] = 0, and if m ≡ σ1 + σ2 + σ3 (mod 2) then {vm∗

m−(k,l) + (−1)ε(σ;m)vm∗
(k,l) | (k, l) ∈ Z(σ;m)}

is a basis of V ∗
m[σ].

From above arguments, we obtain the following.

Proposition 4.1. As a K-module, the principal series representation H(ν,σ) has an irreducible decom-
position

H(ν,σ) '
⊕̂
m∈L

V ∗
m[σ] ⊗ Vm.

Here if m 6≡ σ1 + σ2 + σ3 (mod 2) then V ∗
m[σ] = 0, and if m ≡ σ1 + σ2 + σ3 (mod 2) then

V ∗
m[σ] =

⊕
(k,l)∈Z(σ;m)

C(vm∗
m−(k,l) + (−1)ε(σ;m)vm∗

(k,l)).

Corollary 4.2. Let d(σ;m) be the dimension of the space HomK(Vm,H(ν,σ)) of intertwining operators.
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1. When σ1 + σ2 + σ3 ≡ 0 (mod 2):

• If m = (m,n) is even, then

d(σ;m) =


(mn + m + n)/4 + 1 for (σ1, σ2, σ3) = (0, 0, 0) and m ≡ n (mod 4),
(mn + m + n + 2)/4 − 1 for (σ1, σ2, σ3) = (0, 0, 0) and m 6≡ n (mod 4),
(mn + m + n)/4 for (σ1, σ2, σ3) 6= (0, 0, 0) and m ≡ n (mod 4),
(mn + m + n + 2)/4 for (σ1, σ2, σ3) 6= (0, 0, 0) and m 6≡ n (mod 4).

• If m = (m,n) is odd, then d(σ;m) = 0.

2. When σ1 + σ2 + σ3 ≡ 1 (mod 2):

• If m = (m,n) is even, then d(σ;m) = 0.

• If m = (m,n) is odd, then

d(σ;m) =
1
4
(mn + m + n + 1).

We define an element s(m; (p1, p2), (q1, q2)) of H(ν,σ) for m = (m,n) ∈ L, (p1, p2) ∈ Z(σ;m),
0 ≤ q1 ≤ m and 0 ≤ q2 ≤ n by

s(m; (p1, p2), (q1, q2)) = r−1
K ◦ Φ((vm∗

m−(p1,p2)
+ (−1)ε(σ;m)vm∗

(p1,p2)
) ⊗ vm

(q1,q2)
).

We call it the elementary function. Moreover we define a K-homomorphism ηm
(p1,p2)

∈ HomK(Vm,H(ν,σ))
for (p1, p2) ∈ Z(σ;m) by

ηm
(p1,p2)

(vm
(q1,q2)

) = s(m; (p1, p2), (q1, q2)).

Then {ηm
(p1,p2)

| (p1, p2) ∈ Z(σ;m)} is a basis of HomK(Vm,H(ν,σ)), and we call it the induced basis
from the elementary functions.

5 The structure of the principal series representation as a g-
module

Let H(ν,σ),K be the K-finite part of H(ν,σ). To investigate the g-module structure of H(ν,σ),K , it is
sufficient to investigate the action of pC because of the Cartan decomposition g = k + p.

In this section, we define a linear map Γm
(i,j), and also Γ

m

(i,j) by modifying Γm
(i,j) a little, which is easier

to treat than Γm
(i,j). We then describe Γ

m

(i,j) explicitly in Theorem 5.2. This Γm
(i,j) or Γ

m

(i,j) characterizes
the action of pC. We give an explicit description of the action of pC by using Γm

(i,j) in Theorem 5.5.

Notation . For m = (m,n) ∈ Z2
≥0 and a vector space W , we denote by M(m,W ) the set of (m +

1) × (n + 1) matrices whose components are elements of W . For convenience, the indices of rows and
columns of matrices in M(m,W ) start from 0. For example, the element of M(m,W ) whose (k, l)-th
component is wkl ∈ W , which is denoted by (wkl)kl, is



0 1 . . . l . . . n

0 w00 w01 . . . w0n

1 w10 w11 . . . w1n
...

k
...

... wkl

...
...
m wm0 wm1 . . . wmn


.
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5.1 Definition of Γm
(i;j) and Γ

m

(i;j)

For a K-type (τm, Vm) of π(ν,σ) and η ∈ HomK(Vm,H(ν,σ),K), we define a K-homomorphism η̃ :
pC ⊗ Vm → H(ν,σ),K by X ⊗ v 7→ π(ν,σ)(X)η(v). Here we denote the differential of π(ν,σ) by the same
symbol π(ν,σ). Then, for −1 ≤ i ≤ 1 and −1 ≤ j ≤ 1, we define a linear map

Γm
(i,j) : HomK(Vm,H(ν,σ),K) −→ HomK(Vm+2(i,j),H(ν,σ),K).

by η 7→ η̃ ◦ Im
(i,j).

Let Jm be an injective linear map from HomK(Vm,H(ν,σ),K) into M(m,H(ν,σ),K) defined by

Jm(η) = (η(vm
(q1,q2)

))q1q2 for η ∈ HomK(Vm,H(ν,σ),K).

Put S(m; (p1, p2)) = Jm(ηm
(p1,p2)

). Then {S(m; (p1, p2)) | (p1, p2) ∈ Z(σ;m)} is a basis of the image of

Jm in M(m,H(ν,σ),K). We also put Γ
m

(i,j) = Jm+2(i,j) ◦ Γm
(i,j) ◦ J−1

m whose domain is the image of Jm in
M(m,H(ν,σ),K):

HomK(Vm, H(ν,σ),K)
Γm

(i,j)−−−−→ HomK(Vm+2(i,j),H(ν,σ),K)

Jm

y yJm+2(i,j)

Image(Jm) −−−−→
Γ
m
(i,j)

Image(Jm+2(i,j))

∩ ∩

M(m,H(ν,σ),K) M(m + 2(i, j), H(ν,σ),K)

Note that describing Γm
(i,j) with respect to the induced basis { ηm

(p1,p2)
| (p1, p2) ∈ Z(σ;m)} is equiv-

alent to describing Γ
m

(i,j) with respect to {S(m; (p1, p2)) | (p1, p2) ∈ Z(σ;m)}. Thus we also call
{S(m; (p1, p2)) | (p1, p2) ∈ Z(σ;m)} the induced basis.

5.2 An explicit description of Γ
m

(i;j)

We give the Iwasawa decomposition of X(x,y) ∈ pC, which is needed in the proof of the next theorem.

Lemma 5.1. The basis {X(x,y) | 0 ≤ x, y ≤ 2} of pC given in Proposition 3.2 have the following
expressions according to the Iwasawa decomposition gC = nC ⊕ aC ⊕ kC:

X(0,0) = 4
√
−1E34 − 2H3 − Y1 − Y4,

X(0,1) = 2(−E13 +
√
−1E14 +

√
−1E23 + E24) − 2Y2,

X(0,2) = 4
√
−1E12 − 2(H1 − H2) − Y1 + Y4,

X(1,0) = 2(E13 −
√
−1E14 +

√
−1E23 + E24) − 2Y5,

X(1,1) = H1 + H2 − H3,

X(1,2) = −2(E13 +
√
−1E14 −

√
−1E23 + E24) − 2Y6,

X(2,0) = −4
√
−1E12 − 2(H1 − H2) + Y1 − Y4,

X(2,1) = 2(E13 +
√
−1E14 +

√
−1E23 − E24) − 2Y3,

X(2,2) = −4
√
−1E34 − 2H3 + Y1 + Y4.

Here Ekl ∈ nC and Hk ∈ aC are defined in subsection 2.1, and Yk ∈ kC are defined in subsection 3.1.

Proof. This may be checked by direct computation.

Now we state an explicit description of Γ
m

(i,j) with respect to the induced bases.

Theorem 5.2. For m = (m,n) ∈ L and −1 ≤ i, j ≤ 1 such that d(σ;m) 6= 0 and d(σ;m + 2(i, j)) 6= 0,
we have

Γ
m

(i,j)(S(m; (p1, p2))) =
∑

(k,l)=(0,0),±(1,1),±(1,−1)

γ
[m,(i,j)]
[(p1,p2),(k,l)] S(m + 2(i, j); (p1, p2) + (i, j) + (k, l)). (∗)
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Here γ
[m,(i,j)]
[(p1,p2),(k,l)] ∈ C are given by

γ
[m,(i,j)]
[(p1,p2),(1,1)] = (−2ν3 − 2ρ3 + m − 2p1 + n − 2p2)A

[m,(i,j)]
[m+2(i,j)−((p1,p2)+(i,j)+(1,1)),(0,0)],

γ
[m,(i,j)]
[(p1,p2),−(1,1)] = (−2ν3 − 2ρ3 − m + 2p1 − n + 2p2)A

[m,(i,j)]
[m+2(i,j)−((p1,p2)+(i,j)−(1,1)),(2,2)],

γ
[m,(i,j)]
[(p1,p2),(1,−1)] = (−2ν1 − 2ρ1 + 2ν2 + 2ρ2 + m − 2p1 − n + 2p2)A

[m,(i,j)]
[m+2(i,j)−((p1,p2)+(i,j)+(1,−1)),(0,2)],

γ
[m,(i,j)]
[(p1,p2),(−1,1)] = (−2ν1 − 2ρ1 + 2ν2 + 2ρ2 − m + 2p1 + n − 2p2)A

[m,(i,j)]
[m+2(i,j)−((p1,p2)+(i,j)+(−1,1)),(2,0)],

γ
[m,(i,j)]
[(p1,p2),(0,0)] = (ν1 + ρ1 + ν2 + ρ2 − ν3 − ρ3 + im + jn + i2 + j2 + i + j − 4)A[m,(i,j)]

[m+2(i,j)−((p1,p2)+(i,j)),(1,1)],

where we put A
[m,(i,j)]
[(p′

1,p′
2),(x,y)] = 0 unless 0 ≤ p′1 ≤ m + 2i and 0 ≤ p′2 ≤ n + 2j. In the right hand side of

(∗), we put
S(m + 2(i, j); (p′1, p

′
2)) = 0

if p′1 < 0 or p′2 < 0, and

S(m + 2(i, j); (p′1, p
′
2)) = (−1)ε(σ;m+2(i,j))S(m + 2(i, j);m + 2(i, j) − (p′1, p

′
2))

if (p′1, p
′
2) 6∈ Z(σ;m + 2(i, j)), p′1 ≥ 0 and p′2 ≥ 0.

Proof. Let E(k,l) ∈ M(m + 2(i, j),C) be the matrix unit with its (k, l)-th component 1 and remaining
components 0. Let us consider a linear map Ψ : M(m + 2(i, j),H(ν,σ)) → M(m + 2(i, j),C) defined by
(fq′

1q′
2
)q′

1q′
2
7→ (fq′

1q′
2
(14))q′

1q′
2
. Since

s(m + 2(i, j); (p′1, p
′
2), (q

′
1, q

′
2))(14) = 〈vm+2(i,j)∗

m+2(i,j)−(p′
1,p′

2)
+ (−1)ε(σ;m+2(i,j))v

m+2(i,j)∗
(p′

1,p′
2)

, v
m+2(i,j)
(q′

1,q′
2)

〉

= δm+2(i,j)−(p′
1,p′

2),(q
′
1,q′

2)
+ (−1)ε(σ;m+2(i,j))δ(p′

1,p′
2),(q

′
1,q′

2)
,

we have

Ψ(S(m + 2(i, j); (p′1, p
′
2))) = S(m + 2(i, j); (p′1, p

′
2))(14) = Em+2(i,j)−(p′

1,p′
2)

+(−1)ε(σ;m+2(i,j)) E(p′
1,p′

2)
.

Here δ(p′
1,p′

2),(q
′
1,q′

2)
= δp′

1q′
1
δp′

2q′
2

and δp′q′ is the Kronecker delta. Hence {Ψ(S(m + 2(i, j); (p′1, p
′
2))) |

(p′1, p
′
2) ∈ Z(σ;m + 2(i, j))} are linearly independent over C. Thus, in order to prove the theorem, it is

sufficient to compare the values of the both side of (∗) at 14 ∈ G.
Since the value of the right hand side of the equation (∗) at 14 ∈ G becomes

Γ
m

(i,j)(S(m; (p1, p2)))(14)

= Jm+2(i,j) ◦ Γm
(i,j) ◦ J−1

m (S(m; (p1, p2)))(14)

= Jm+2(i,j) ◦ Γm
(i,j)(η

m
(p1,p2)

)(14)

= Jm+2(i,j)(η̃m
(p1,p2)

◦ Im
(i,j))(14)

=
(
η̃m
(p1,p2)

◦ Im
(i,j)(v

m+2(i,j)
(q′

1,q′
2)

)(14)
)

q′
1q′

2

=
2∑

x=0

2∑
y=0

(
A

[m,(i,j)]
[(q′

1,q′
2),(x,y)]{η̃

m
(p1,p2)

(X(x,y) ⊗ vm
(q′

1,q′
2)+(1,1)−(i,j)−(x,y))}(14)

)
q′
1q′

2

=
2∑

x=0

2∑
y=0

(
A

[m,(i,j)]
[(q′

1,q′
2),(x,y)]{π(ν,σ)(X(x,y))s(m; (p1, p2), (q′1, q

′
2) + (1, 1) − (i, j) − (x, y))}(14)

)
q′
1q′

2

,

we first compute {π(ν,σ)(X(x,y))s(m; (p1, p2), (q1, q2))}(14). By the definition of principal series repre-
sentation, we have

{π(ν,σ)(Ekl)s(m; (p1, p2), (q1, q2))}(14) = 0

for 1 ≤ k < l ≤ 4, and

{π(ν,σ)(Hk)s(m; (p1, p2), (q1, q2))}(14) = (νk + ρk)s(m; (p1, p2), (q1, q2))(14)

= (νk + ρk)(δm−(p1,p2),(q1,q2) + (−1)ε(σ;m)δ(p1,p2),(q1,q2))
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for k = 1, 2, 3. In addition, from the definition of the elementary function s(m; (p1, p2), (q1, q2)), we have

{π(ν,σ)(Y1)s(m; (p1, p2), (q1, q2))}(14) = (m − 2q1)s(m; (p1, p2), (q1, q2))(14)

= (m − 2q1)(δm−(p1,p2),(q1,q2) + (−1)ε(σ;m)δ(p1,p2),(q1,q2)),
{π(ν,σ)(Y2)s(m; (p1, p2), (q1, q2))}(14) = −q1s(m; (p1, p2), (q1 − 1, q2))(14)

= −q1(δm−(p1,p2),(q1−1,q2) + (−1)ε(σ;m)δ(p1,p2),(q1−1,q2)),
{π(ν,σ)(Y3)s(m; (p1, p2), (q1, q2))}(14) = (q1 − m)s(m; (p1, p2), (q1 + 1, q2))(14)

= (q1 − m)(δm−(p1,p2),(q1+1,q2) + (−1)ε(σ;m)δ(p1,p2),(q1+1,q2)),
{π(ν,σ)(Y4)s(m; (p1, p2), (q1, q2))}(14) = (n − 2q2)s(m; (p1, p2), (q1, q2))(14)

= (n − 2q2)(δm−(p1,p2),(q1,q2) + (−1)ε(σ;m)δ(p1,p2),(q1,q2)),
{π(ν,σ)(Y5)s(m; (p1, p2), (q1, q2))}(14) = −q2s(m; (p1, p2), (q1, q2 − 1))(14)

= −q2(δm−(p1,p2),(q1,q2−1) + (−1)ε(σ;m)δ(p1,p2),(q1,q2−1)),
{π(ν,σ)(Y6)s(m; (p1, p2), (q1, q2))}(14) = (q2 − n)s(m; (p1, p2), (q1, q2 + 1))(14)

= (q2 − n)(δm−(p1,p2),(q1,q2+1) + (−1)ε(σ;m)δ(p1,p2),(q1,q2+1)).

Therefore, by using the Iwasawa decomposition in Lemma 5.1, we have

{π(ν,σ)(X(0,0))s(m; (p1, p2), (q1, q2))}(14)

= (−2ν3 − 2ρ3 − m + 2q1 − n + 2q2)(δm−(p1,p2),(q1,q2) + (−1)ε(σ;m)δ(p1,p2),(q1,q2)),
{π(ν,σ)(X(0,1))s(m; (p1, p2), (q1, q2))}(14)

= 2q1(δm−(p1,p2),(q1−1,q2) + (−1)ε(σ;m)δ(p1,p2),(q1−1,q2)),
{π(ν,σ)(X(0,2))s(m; (p1, p2), (q1, q2))}(14)

= (−2ν1 − 2ρ1 + 2ν2 + 2ρ2 − m + 2q1 + n − 2q2)(δm−(p1,p2),(q1,q2) + (−1)ε(σ;m)δ(p1,p2),(q1,q2)),
{π(ν,σ)(X(1,0))s(m; (p1, p2), (q1, q2))}(14)

= 2q2(δm−(p1,p2),(q1,q2−1) + (−1)ε(σ;m)δ(p1,p2),(q1,q2−1)),
{π(ν,σ)(X(1,1))s(m; (p1, p2), (q1, q2))}(14)

= (ν1 + ρ1 + ν2 + ρ2 − ν3 − ρ3)(δm−(p1,p2),(q1,q2) + (−1)ε(σ;m)δ(p1,p2),(q1,q2)),
{π(ν,σ)(X(1,2))s(m; (p1, p2), (q1, q2))}(14)

= −2(q2 − n)(δm−(p1,p2),(q1,q2+1) + (−1)ε(σ;m)δ(p1,p2),(q1,q2+1)),
{π(ν,σ)(X(2,0))s(m; (p1, p2), (q1, q2))}(14)

= (−2ν1 − 2ρ1 + 2ν2 + 2ρ2 + m − 2q1 − n + 2q2)(δm−(p1,p2),(q1,q2) + (−1)ε(σ;m)δ(p1,p2),(q1,q2)),
{π(ν,σ)(X(2,1))s(m; (p1, p2), (q1, q2))}(14)

= −2(q1 − m)(δm−(p1,p2),(q1+1,q2) + (−1)ε(σ;m)δ(p1,p2),(q1+1,q2)),
{π(ν,σ)(X(2,2))s(m; (p1, p2), (q1, q2))}(14)

= (−2ν3 − 2ρ3 + m − 2q1 + n − 2q2)(δm−(p1,p2),(q1,q2) + (−1)ε(σ;m)δ(p1,p2),(q1,q2)).

Now let us compute Γ
m

(i,j)(S(m; (p1, p2)))(14). By above equations, we have

Γ
m

(i,j)(S(m; (p1, p2)))(14)

=
(
{−2ν3 − 2ρ3 − m + 2(q′1 + 1 − i) − n + 2(q′2 + 1 − j)}A[m,(i,j)]

[(q′
1,q′

2),(0,0)]

× (δm−(p1,p2),(q′
1,q′

2)+(1,1)−(i,j) + (−1)ε(σ;m)δ(p1,p2),(q′
1,q′

2)+(1,1)−(i,j))
)

q′
1q′

2

+
(
{−2ν3 − 2ρ3 + m − 2(q′1 − 1 − i) + n − 2(q′2 − 1 − j)}A[m,(i,j)]

[(q′
1,q′

2),(2,2)]

× (δm−(p1,p2),(q′
1,q′

2)−(1,1)−(i,j) + (−1)ε(σ;m)δ(p1,p2),(q′
1,q′

2)−(1,1)−(i,j))
)

q′
1q′

2
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+
(
{−2ν1 − 2ρ1 + 2ν2 + 2ρ2 − m + 2(q′1 + 1 − i) + n − 2(q′2 − 1 − j)}A[m,(i,j)]

[(q′
1,q′

2),(0,2)]

× (δm−(p1,p2),(q′
1,q′

2)+(1,−1)−(i,j) + (−1)ε(σ;m)δ(p1,p2),(q′
1,q′

2)+(1,−1)−(i,j))
)

q′
1q′

2

+
(
{−2ν1 − 2ρ1 + 2ν2 + 2ρ2 + m − 2(q′1 − 1 − i) − n + 2(q′2 + 1 − j)}A[m,(i,j)]

[(q′
1,q′

2),(2,0)]

× (δm−(p1,p2),(q′
1,q′

2)+(−1,1)−(i,j) + (−1)ε(σ;m)δ(p1,p2),(q′
1,q′

2)+(−1,1)−(i,j))
)

q′
1q′

2

+
(
(ν1 + ρ1 + ν2 + ρ2 − ν3 − ρ3)A

[m,(i,j)]
[(q′

1,q′
2),(1,1)](δm−(p1,p2),(q′

1,q′
2)−(i,j) + (−1)ε(σ;m)δ(p1,p2),(q′

1,q′
2)−(i,j))

)
q′
1q′

2

+
(
2(q′1 + 1 − i)A[m,(i,j)]

[(q′
1,q′

2),(0,1)](δm−(p1,p2),(q′
1,q′

2)−(i,j) + (−1)ε(σ;m)δ(p1,p2),(q′
1,q′

2)−(i,j))
)

q′
1q′

2

+
(
2(q′2 + 1 − j)A[m,(i,j)]

[(q′
1,q′

2),(1,0)](δm−(p1,p2),(q′
1,q′

2)−(i,j) + (−1)ε(σ;m)δ(p1,p2),(q′
1,q′

2)−(i,j))
)

q′
1q′

2

+
(
−2(q′2 − 1 − j − n)A[m,(i,j)]

[(q′
1,q′

2),(1,2)](δm−(p1,p2),(q′
1,q′

2)−(i,j) + (−1)ε(σ;m)δ(p1,p2),(q′
1,q′

2)−(i,j))
)

q′
1q′

2

+
(
−2(q′1 − 1 − i − m)A[m,(i,j)]

[(q′
1,q′

2),(2,1)](δm−(p1,p2),(q′
1,q′

2)−(i,j) + (−1)ε(σ;m)δ(p1,p2),(q′
1,q′

2)−(i,j))
)

q′
1q′

2

= α
[m,(i,j)]
[(p1,p2),(1,1)] Em+2(i,j)−((p1,p2)+(i,j)+(1,1)) +(−1)ε(σ;m)β

[m,(i,j)]
[(p1,p2),−(1,1)] E(p1,p2)+(i,j)−(1,1)

+ α
[m,(i,j)]
[(p1,p2),−(1,1)] Em+2(i,j)−((p1,p2)+(i,j)−(1,1)) +(−1)ε(σ;m)β

[m,(i,j)]
[(p1,p2),(1,1)] E(p1,p2)+(i,j)+(1,1)

+ α
[m,(i,j)]
[(p1,p2),(1,−1)] Em+2(i,j)−((p1,p2)+(i,j)+(1,−1)) +(−1)ε(σ;m)β

[m,(i,j)]
[(p1,p2),(−1,1)] E(p1,p2)+(i,j)+(−1,1)

+ α
[m,(i,j)]
[(p1,p2),(−1,1)] Em+2(i,j)−((p1,p2)+(i,j)+(−1,1)) +(−1)ε(σ;m)β

[m,(i,j)]
[(p1,p2),(1,−1)] E(p1,p2)+(i,j)+(1,−1)

+ α
[m,(i,j)]
[(p1,p2),(0,0)] Em+2(i,j)−((p1,p2)+(i,j)) +(−1)ε(σ;m)β

[m,(i,j)]
[(p1,p2),(0,0)] E(p1,p2)+(i,j) .

Here

α
[m,(i,j)]
[(p1,p2),(1,1)] = (−2ν3 − 2ρ3 + m − 2p1 + n − 2p2)A

[m,(i,j)]
[m+2(i,j)−((p1,p2)+(i,j)+(1,1)),(0,0)],

α
[m,(i,j)]
[(p1,p2),−(1,1)] = (−2ν3 − 2ρ3 − m + 2p1 − n + 2p2)A

[m,(i,j)]
[m+2(i,j)−((p1,p2)+(i,j)−(1,1)),(2,2)],

α
[m,(i,j)]
[(p1,p2),(1,−1)] = (−2ν1 − 2ρ1 + 2ν2 + 2ρ2 + m − 2p1 − n + 2p2)A

[m,(i,j)]
[m+2(i,j)−((p1,p2)+(i,j)+(1,−1)),(0,2)],

α
[m,(i,j)]
[(p1,p2),(−1,1)] = (−2ν1 − 2ρ1 + 2ν2 + 2ρ2 − m + 2p1 + n − 2p2)A

[m,(i,j)]
[m+2(i,j)−((p1,p2)+(i,j)+(−1,1)),(2,0)],

α
[m,(i,j)]
[(p1,p2),(0,0)] = (ν1 + ρ1 + ν2 + ρ2 − ν3 − ρ3)A

[m,(i,j)]
[m+2(i,j)−((p1,p2)+(i,j)),(1,1)]

+ 2(m + 1 − p1)A
[m,(i,j)]
[m+2(i,j)−((p1,p2)+(i,j)),(0,1)] + 2(n + 1 − p2)A

[m,(i,j)]
[m+2(i,j)−((p1,p2)+(i,j)),(1,0)]

+ 2(p2 + 1)A[m,(i,j)]
[m+2(i,j)−((p1,p2)+(i,j)),(1,2)] + 2(p1 + 1)A[m,(i,j)]

[m+2(i,j)−((p1,p2)+(i,j)),(2,1)],

β
[m,(i,j)]
[(p1,p2),(1,1)] = (−2ν3 − 2ρ3 + m − 2p1 + n − 2p2)A

[m,(i,j)]
[(p1,p2)+(i,j)+(1,1),(2,2)],

β
[m,(i,j)]
[(p1,p2),−(1,1)] = (−2ν3 − 2ρ3 − m + 2p1 − n + 2p2)A

[m,(i,j)]
[(p1,p2)+(i,j)−(1,1),(0,0)],

β
[m,(i,j)]
[(p1,p2),(1,−1)] = (−2ν1 − 2ρ1 + 2ν2 + 2ρ2 + m − 2p1 − n + 2p2)A

[m,(i,j)]
[(p1,p2)+(i,j)+(1,−1),(2,0)],

β
[m,(i,j)]
[(p1,p2),(−1,1)] = (−2ν1 − 2ρ1 + 2ν2 + 2ρ2 − m + 2p1 + n − 2p2)A

[m,(i,j)]
[(p1,p2)+(i,j)+(−1,1),(0,2)],

β
[m,(i,j)]
[(p1,p2),(0,0)] = (ν1 + ρ1 + ν2 + ρ2 − ν3 − ρ3)A

[m,(i,j)]
[(p1,p2)+(i,j),(1,1)]

+ 2(p1 + 1)A[m,(i,j)]
[(p1,p2)+(i,j),(0,1)] + 2(p2 + 1)A[m,(i,j)]

[(p1,p2)+(i,j),(1,0)]

+ 2(n + 1 − p2)A
[m,(i,j)]
[(p1,p2)+(i,j),(1,2)] + 2(m + 1 − p1)A

[m,(i,j)]
[(p1,p2)+(i,j),(2,1)].

By using the relations in Lemma 3.5, we find that

γ
[m,(i,j)]
[(p1,p2),(k,l)] = α

[m,(i,j)]
[(p1,p2),(k,l)] = (−1)i+jβ

[m,(i,j)]
[(p1,p2),(k,l)].
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Moreover we see that

ε(σ;m + 2(i, j)) ≡ σ1 + m + 2i +
m + 2i + n + 2j

2
≡ i + j + ε(σ;m) (mod 2).

Hence Γ
m

(i,j)(S(m; (p1, p2)))(14) becomes∑
(k,l)=(0,0),±(1,1),±(1,−1)

γ
[m,(i,j)]
[(p1,p2),(k,l)]

(
Em+2(i,j)−((p1,p2)+(i,j)+(k,l)) +(−1)ε(σ;m+2(i,j)) E(p1,p2)+(i,j)+(k,l)

)
.

This equals the value of the left hand side of (∗) at 14 ∈ G, thus we complete the proof.

5.3 Projections for pC ⊗ Vm

To give the action of pC, we need a projection from pC ⊗ Vm onto Vm+2(i,j). We first give a projection
from V2 ⊗ Vm onto Vm+2i.

Lemma 5.3. When Vm+2i-component of V2⊗Vm does not vanish, we define a linear map Pm
i : V2⊗Vm →

Vm+2i by
Pm

i (v(2)
x ⊗ v

(m)
k ) = B

[m,i]
[k,x] v

(m+2i)
k+i+x−1.

Here we put v
(m+2i)
k = 0 unless 0 ≤ k ≤ m + 2i, and the coefficients B

[m,i]
[k,x] are defined as follows:

B
[m,1]
[k,0] = 1, B

[m,1]
[k,1] = 1, B

[m,1]
[k,2] = 1,

B
[m,0]
[k,0] =

2k

m + 2
, B

[m,0]
[k,1] =

2k − m

m + 2
, B

[m,0]
[k,2] = −2(m − k)

m + 2
,

B
[m,−1]
[k,0] =

k(k − 1)
(m + 1)m

, B
[m,−1]
[k,1] = − (m − k)k

(m + 1)m
, B

[m,−1]
[k,2] =

(m − k)(m − k − 1)
(m + 1)m

.

Then P i
m is the generator of Homsu(2)C(V2 ⊗ Vm, Vm+2i) such that Pm

i ◦ Im
i = idVm+2i .

Proof. We follow the proof of Miyazaki [4, Lemma 6.1]. The composite map

V2 ⊗ Vm ' V ∗
2 ⊗ V ∗

m ' (V2 ⊗ Vm)∗ 3 f 7→ f ◦ Im
i ∈ V ∗

m+2i ' Vm+2i

is a surjective su(2)C-homomorphism from V2 ⊗ Vm onto Vm+2i, where the isomorphism from V ∗
m to

Vm have been defined in the proof of Lemma 3.1. Therefore we get the assertion by multiplying this
composite map by some scalar so that it satisfies Pm

i ◦ Im
i = idVm+2i .

Proposition 5.4. When Vm+2(i,j)-component of pC ⊗ Vm does not vanish, we define a linear map
Pm

(i,j) : pC ⊗ Vm → Vm+2(i,j) by

Pm
(i,j)(X(x,y) ⊗ vm

(k,l)) = B
[m,(i,j)]
[(k,l),(x,y)]v

m+2(i,j)
(k,l)+(i,j)+(x,y)−(1,1).

Here we put v
m+2(i,j)
(k,l) = 0 unless 0 ≤ k ≤ m + 2i and 0 ≤ l ≤ n + 2j, and the coefficients B

[m,(i,j)]
[(k,l),(x,y)]

are defined by
B

[m,(i,j)]
[(k,l),(x,y)] = B

[m,i]
[k,x] · B

[n,j]
[l,y] .

Then Pm
(i,j) is the generator of HomkC(pC ⊗ Vm, Vm+2(i,j)) such that Pm

(i,j) ◦ Im
(i,j) = idVm+2(i,j) .

Proof. This follows immediately from Lemma 5.3.

5.4 The action of pC on the elementary functions

We give an explicit description of the action of pC on the elementary functions, which compose a basis
of H(ν,σ),K .
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Theorem 5.5. The action of X(x,y) ∈ pC on the elementary function s(m; (p1, p2), (q1, q2)) for m =
(m, n) ∈ L, (p1, p2) ∈ Z(σ;m), 0 ≤ q1 ≤ m and 0 ≤ q2 ≤ n is given by
π(ν,σ)(X(x,y))s(m; (p1, p2), (q1, q2))

=
X

i,j=−1,0,1
(k,l)=(0,0),±(1,1),±(1,−1)

γ
[m,(i,j)]
[(p1,p2),(k,l)]

B
[m,(i,j)]
[(q1,q2),(x,y)]

s(m + 2(i, j); (p1, p2) + (i, j) + (k, l), (q1, q2) + (i, j) + (x, y) − (1, 1)).

In the right hand side of the above equation, we put

s(m + 2(i, j); (p′1, p
′
2), (q

′
1, q

′
2)) = 0

if p′1 < 0, p′2 < 0, q′1 < 0, q′1 > m + 2i, q′2 < 0 or q′2 > n + 2i, and

s(m + 2(i, j); (p′1, p
′
2), (q

′
1, q

′
2)) = (−1)ε(σ;m+2(i,j))s(m + 2(i, j);m + 2(i, j) − (p′1, p

′
2), (q

′
1, q

′
2))

if (p′1, p
′
2) 6∈ Z(σ;m + 2(i, j)), p′1 ≥ 0, p′2 ≥ 0, 0 ≤ q′1 ≤ m + 2i and 0 ≤ q′2 ≤ n + 2j.

Proof. We see that

π(ν,σ)(X(x,y))s(m; (p1, p2), (q1, q2)) = π(ν,σ)(X(x,y))ηm
(p1,p2)

(vm
(q1,q2)

)

= η̃m
(p1,p2)

(X(x,y) ⊗ vm
(q1,q2)

)

= η̃m
(p1,p2)

 ∑
i,j=−1,0,1

Im
(i,j) ◦ Pm

(i,j)(X(x,y) ⊗ vm
(q1,q2)

)


=

∑
i,j=−1,0,1

Γm
(i,j)(η

m
(p1,p2)

) ◦ Pm
(i,j)(X(x,y) ⊗ vm

(q1,q2)
).

By Theorem 5.2 and Proposition 5.4, we have

Γm
(i,j)(η

m
(p1,p2)

) =
∑

(k,l)=(0,0),±(1,1),±(1,−1)

γ
[m,(i,j)]
[(p1,p2),(k,l)] η

m+2(i,j)
(p1,p2)+(i,j)+(k,l)

and
Pm

(i,j)(X(x,y) ⊗ vm
(q1,q2)

) = B
[m,(i,j)]
[(q1,q2),(x,y)]v

m+2(i,j)
(q1,q2)+(i,j)+(x,y)−(1,1),

hence
π(ν,σ)(X(x,y))s(m; (p1, p2), (q1, q2))

=
X

i,j=−1,0,1
(k,l)=(0,0),±(1,1),±(1,−1)

γ
[m,(i,j)]
[(p1,p2),(k,l)]

B
[m,(i,j)]
[(q1,q2),(x,y)]

η
m+2(i,j)
(p1,p2)+(i,j)+(k,l)

(v
m+2(i,j)
(q1,q2)+(i,j)+(x,y)−(1,1)

)

=
X

i,j=−1,0,1
(k,l)=(0,0),±(1,1),±(1,−1)

γ
[m,(i,j)]
[(p1,p2),(k,l)]

B
[m,(i,j)]
[(q1,q2),(x,y)]

s(m + 2(i, j); (p1, p2) + (i, j) + (k, l), (q1, q2) + (i, j) + (x, y) − (1, 1)).
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