
UTMS 2008–10 May 14, 2008

On the uniform perfectness of diffeomorphism

groups

by

Takashi Tsuboi

�
UNIVERSITY OF TOKYO

GRADUATE SCHOOL OF MATHEMATICAL SCIENCES

KOMABA, TOKYO, JAPAN



ON THE UNIFORM PERFECTNESS OF DIFFEOMORPHISM
GROUPS

TAKASHI TSUBOI

Abstract. We show that any element of the identity component of the group
of Cr diffeomorphisms Diffr

c(Rn)0 of the n-dimensional Euclidean space Rn

with compact support (1 5 r 5 ∞, r �= n + 1) can be written as a product

of two commutators. This statement holds for the interior Mn of a compact
n-dimensional manifold which has a handle decomposition only with handles
of indices not greater than (n − 1)/2. For the group Diffr(M) of Cr diffeo-
morphisms of a compact manifold M , we show the following for its identity

component Diffr(M)0. For an even-dimensional compact manifold M2m with
handle decomposition without handles of the middle index m, any element of
Diffr(M2m)0 (1 5 r 5 ∞, r �= 2m + 1) can be written as a product of four

commutators. For an odd-dimensional compact manifold M2m+1, any element

of Diffr(M2m+1)0 (1 5 r 5 ∞, r �= 2m + 2) can be written as a product of
six commutators.

1. Introduction

For a manifold M , let Diffr
c(M) denote the group of Cr diffeomorphisms of M

with compact support (1 � r � ∞). The support of a diffeomorphism f of M is
defined to be the closure of {x ∈ M

∣∣ f(x) �= x}. Let Diffr
c(M)0 denote the identity

component of Diffr
c(M). Here Diffr

c(M) is equipped with the Cr topology. By the
results of Mather and Thurston ([7], [8], [12]), for an n-dimensional manifold Mn,
Diffr

c(Mn)0 is a perfect group if r = 0 or 1 � r � ∞ and r �= n + 1. A group is
perfect if it coincides with its commutator subgroup.

We study in this paper the uniform perfectness of Diffr
c(Mn)0. A group is uni-

formly perfect if any element can be written as a product of a bounded number
of commutators. In [7], Mather showed that any element of Homeoc(Rn) can be
written as a commutator. Hence any element of Homeo(Sn)0 can be written as a
product of two commutators. In [14], Diffr

c(R
n)0 (1 � r < n + 1) is shown to be

uniformly perfect. Hence Diffr(Sn)0 (1 � r < n + 1) is also uniformly perfect. By
the result of Herman [5], any element of Diff∞(S1)0 can be written as a product of
two commutators.
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We show in this paper that any element of Diffr
c(R

n)0 (1 � r � ∞, r �= n+1) can
be written as a product of two commutators (Theorem 2.1). The same technique
applies to showing that for the interior Mn of a compact n-dimensional manifold
which has a handle decomposition only with handles of indices not greater than
(n − 1)/2, any element of Diffr

c(Mn)0 (1 � r � ∞, r �= n + 1) can be written
as a product of two commutators (Theorem 4.1). The handle decompositions of a
compact manifold is summarized in Section 3.

For compact manifolds Mn, we show (Theorem 5.1) that if Mn has a handle
decomposition without handles of middle indices, then any element of Diffr(Mn)0
can be written as a composition of elements to which Theorem 4.1 is applicable.
Then we show that for an even-dimensional compact manifold M2m which has
a handle decomposition without handles of the middle index m, any element of
Diffr(M2m)0 (1 � r � ∞, r �= 2m + 1) can be written as a product of four
commutators (Theorem 5.2). For an odd-dimensional compact manifold M2m+1,
Theorem 5.2 asserts that if there are no handles of indices m and m + 1, any
element of Diffr(M2m+1)0 (1 � r � ∞, r �= 2m + 2) can written as a product
of four commutators, but we have a stronger result for odd-dimensional compact
manifolds. By using the idea of the paper [2] by Burago, Ivanov and Polterovich,
we can prove that for any odd-dimensional compact manifold M2m+1, any element
of Diffr(M2m+1)0 (1 � r � ∞, r �= 2m + 2) can be written as a product of six
commutators (Theorem 6.1).

The topology of the manifold may prevent the group Diffr(M)0 from being
uniformly perfect. We thought that if an element of Diffr(M)0 could be connected
to the identity only by a very long isotopy, then the number of commutators to
write this element would be long. What we show here is the following. Unless the
manifold is even-dimensional and having a handle decomposition with handles of the
middle index, we can replace the isotopy by a nicer one to write a diffeomorphisms
as a product of bounded number of commutators.

In the proof of Theorem 2.1, we use the result on the perfectness of the group
Diffr

c(R
n)0 (1 � r � ∞, r �= n+1) by Mather and Thurston ([8], [12]) and construct

necessary diffeomorphisms. The author got the idea of this construction when he
was studying the paper [6] of Dieter Kotschick remembering some discussion with
him during his stay at the University of Tokyo in 2006. The author is very grateful
to him. The author also thank Shigenori Matsumoto for several valuable comments.

While the author was preparing a preliminary version of this paper, Danny Cale-
gari informed him the existence of the paper [2] by Burago, Ivanov and Polterovich,
which the author overlooked. In [2] they proved the results corresponding to our
Theorems 2.1, 4.1, and 5.2 in the case of spheres. Moreover they made an excellent
observation of tracing the isotopy of a graph after intersecting another graph and
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showed the uniform perfectness of Diffr(M3)0 for closed 3-dimensional manifolds
M3. The proof of the uniform perfectness of Diffr(M2m+1)0 for odd-dimensional
manifolds M2m+1 is rather straight forward after the idea of their paper and our
Theorem 5.2. Leonid Polterovich pointed out to the author that these groups
treated in this paper are meager in their terminology (Remark 6.6). The author
is very grateful to Danny Calegari and Leonid Polterovich for their valuable com-
ments. The author is also grateful to the referee for the suggestions for improving
the exposition of this paper.

2. Diffeomorphisms of the Euclidean space

First we give the proof of the following theorem.

Theorem 2.1. Let Diffr
c(R

n) be the group of diffeomorphisms of the n-dimensional
Euclidean space Rn with compact support and let Diffr

c(R
n)0 be its identity compo-

nent. If 1 � r � ∞ and r �= n + 1, then any element of Diffr
c(R

n)0 can be written
as a product of two commutators.

Proof. Take an element f ∈ Diffr
c(R

n)0 (r �= n + 1). By the result of Mather and
Thurston ([7], [8], [12]), f can be written as a product of commutators.

f = [a1, b1] · · · [ak, bk], a1, b1, . . . , ak, bk ∈ Diffr
c(R

n)0,

where [ai, bi] = aibiai
−1bi

−1. Let U be an open ball in Rn such that the supports
of ai, bi as well as the supports of the isotopies {ait}t∈[0,1] (ai0 = id and ai1 = ai),
{bit}t∈[0,1] (bi0 = id and bi1 = bi) are contained in U . Let g ∈ Diffr

c(R
n)0 be an

element such that gi(U) (i ∈ Z) are disjoint. Put

F =
k∏

i=1

gk−i([a1, b1] · · · [ai, bi])gi−k.

Then F is an element of Diffr
c(R

n)0. Now the conjugate of F by g is as follows:

gFg−1 =
k∏

i=1

gk−i+1([a1, b1] · · · [ai, bi])gi−k−1

=
k−1∏
i=0

gk−i([a1, b1] · · · [ai+1, bi+1])gi−k.

Hence

F−1gFg−1 = ([a1, b1] · · · [ak, bk])−1
k−1∏
i=0

gk−i[ai+1, bi+1]gi−k

= f−1
k−1∏
i=0

gk−i[ai+1, bi+1]gi−k

= f−1
[ k−1∏

i=0

gk−iai+1g
i−k,

k−1∏
i=0

gk−ibi+1g
i−k

]
.
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Put

A =
k−1∏
i=0

gk−iai+1g
i−k and B =

k−1∏
i=0

gk−ibi+1g
i−k,

then A and B are elements of Diffr
c(R

n)0. Thus f can be written as a product of
two commutators: f = [A,B][g, F−1]. �

The proof uses only the fact that there is an open set U which contains the sup-
port of given finitely many diffeomorphisms and a compact support diffeomorphism
g such that gi(U) (i ∈ Z) are disjoint. Hence we have the following corollary.

Corollary 2.2. Let Mn be an n-dimensional manifold diffeomorphic to Np × Rq

(q � 1, p + q = n) for a compact manifold Np, then any element of Diffr
c(Mn)0

(1 � r � ∞, r �= n + 1) can be written as a product of two commutators.

3. Review of the Morse theory and handle decompositions

In our theorems, the assumptions are given in terms of handle decompositions.
We review in this section several facts on the Morse theory for manifolds and handle
decompositions ([10], [11]).

A function f : Mn −→ R on a compact n-dimensional manifold Mn without
boundary is called a Morse function if the critical points are nondegenerate, that
is, the Hessian matrices of f at the critical points are nondegenerate. For such a
function f , the set of critical points is a finite set. The index of the Hessian matrix
of f at a critical point is called the index of the critical point.

Any compact connected n-dimensional manifold Mn without boundary admits
a Morse function f : Mn −→ R such that f(Mn) = [0, n], the set of critical points
of index k is contained in f−1(k) (k = 0, . . . , n) and f−1(0) and f−1(n) are one
point sets ([11]).

Put Wk = f−1([0, k + 1/2]), and then this Wk is a compact manifold with
boundary ∂Wk = f−1(k + 1/2). Let ck be the number of critical points of index
k. Then the manifold Wk is diffeomorphic to the manifold obtained from Wk−1 by
attaching ck handles of index k (k = 0, . . . , n). This means the following.

Let Dk × Dn−k be the product of the k-dimensional disk Dk and the (n − k)-
dimensional disk Dn−k. Let ϕi : (∂Dk) × Dn−k −→ ∂Wk−1 (i = 1, . . . , ck) be
diffeomorphisms with disjoint images. Let

W ′
k = Wk−1 ∪Fck

i=1 ϕi

ck⊔
i=1

(Dk × Dn−k)i

be the space obtained from the disjoint union Wk−1 �
⊔ck

i=1(D
k × Dn−k)i by iden-

tifying x ∈ (∂Dk) × Dn−k ⊂ (Dk × Dn−k)i with ϕi(x) ∈ ∂Wk−1 ⊂ Wk−1.
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For given triangulations of Wk−1 and of (Dk × Dn−k)i, we have subdivisions of
them such that ϕi after isotoped are piecewise linear isomorphisms to the images.
Thus W ′

k has a triangulation as a piecewise linear manifold.
On the other hand, by smoothing along the corner which is the image

⊔ck

i=1 ϕi((∂Dk)×
(∂Dn−k)), W ′

k has a differentiable structure. This manifold W ′
k is the manifold ob-

tained from Wk−1 by attaching ck handles of index k (k = 0, . . . , n) which we
stated. The image of Dk ×Dn−k is called a handle of index k. We will simply write
the handle of index k as (Dk × Dn−k)i.

Then the manifold Wk is diffeomorphic to the manifold W ′
k with boundary. It

is better to say that the manifold Wk is obtained from the manifold W ′
k by adding

the collar of the boundary ∂W ′
k.

By using the sequence of submanifolds Dn ∼= W0 ⊂ W1 ⊂ · · · ⊂ Wn = Mn and
the diffeomorphisms Wk

∼= W ′
k, Mn is decomposed into the union of the handles

(Dk × Dn−k)i (i = 1, . . . , ck; k = 0, . . . , n). This decomposition into handles
is called a handle decomposition of M . We write the handle decomposition as
Dn ∼= W0 ⊂ W1 ⊂ · · · ⊂ Wn = Mn. This handle decomposition represents a
piecewise linear structure as well as a differentiable structure. We call the image
of Dk ×{0} the core disk of the handle (Dk ×Dn−k)i of index k, and the image of
{0} × Dn−k its co-core disk.

For the above Morse function f : Mn −→ R and the constant function n, the
function n − f is a Morse function, and the critical points of the Morse function f

of index k are nothing but the critical points of the Morse function n − f of index
n−k. Hence this gives rise to a handle decomposition of Mn called the dual handle
decomposition. A handle decomposition and its dual handle decomposition can be
considered identical as a decomposition of Mn into subsets. The handles of index
k of the original handle decomposition corresponds to the handles of index n − k

of the dual handle decomposition. This duality switches the roles of core disks and
co-core disks.

By choosing a Riemannian metric on the manifold Mn, the Morse function f

defines the gradient vector field and the gradient flow Ψt. The singular points of
the gradient vector field are precisely the critical points of f . The core disk and
the co-core disk of a handle of a handle decomposition of Mn correspond to the
local stable manifold and the local unstable manifold of the corresponding singular
point p of the gradient flow Ψt, respectively ([10], [11]). Let ek

i and e′n−k
i denote

the global stable manifold and the global unstable manifold, respectively, for the
singular point p which is a critical point of index k of f . Then ek

i and e′n−k
i

are diffeomorphic to Rk and Rn−k, respectively. Then we know that the global
stable manifolds and the global unstable manifolds of critical points give the cell
decomposition

⋃n
k=0

⋃ck

i=1 ek
i and the dual cell decomposition

⋃n
k=0

⋃ck

i=1 e′n−k
i of
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Mn, respectively ([10]). The dual cell decomposition is the cell decomposition for
the Morse function n − f . Consider the k-skeleton X(k) of the cell decomposition
and the (n − k − 1)-skeleton X ′(n−k−1) of the dual cell decomposition:

X(k) =
⋃
j�k

cj⋃
i=1

ej
i and X ′(n−k−1) =

⋃
j�k+1

cj⋃
i=1

e′n−j
i .

The boundary ∂Wk of Wk is transverse to the gradient flow Ψt, and hence M \
(X(k) ∪ X ′(n−k−1)) is diffeomorphic to ∂Wk × R by the map

∂Wk × R 
 (x, t) �−→ Ψt(x) ∈ M \ (X(k) ∪ X ′(n−k−1)).

Moreover Ψt(∂Wk) converges to X(k) as t −→ −∞ and to X ′(n−k−1) as t −→ ∞.
Hence, M \X ′(n−k−1) is diffeomorphic to the interior int(Wk) of Wk and X(k) is a
deformation retract of both Wk and M \ X ′(n−k−1):

X(k) ⊂ int(Wk) ⊂ Wk ⊂ M \ X ′(n−k−1).

Using the flow Ψt, for any neighborhood V of X(k) and for any compact sub-
set A in int(Wk), we can construct an isotopy {Gt : int(Wk) −→ int(Wk)}t∈[0,1]

with compact support such that G0 = idint(Wk), Gt|X(k) = idX(k) (t ∈ [0, 1]) and
G1(A) ⊂ V . A similar statement is true for X(k) ⊂ M \ X ′(n−k−1).

By careful choices of the Morse function and the Riemannian metric on M ,
the cell complexes X(k) and X ′(n−k−1) become differentiably embedded simplicial
complexes. Since we use this fact, we give here a sketch of the proof.

Proposition 3.1. Let L be an �-dimensional simplicial complex differentiably em-
bedded in ∂Wk (� � k). Then there is an (� + 1)-dimensional simplicial complex
L̂ differentiably embedded in Wk such that ∂Wk ∩ L̂ = L and L̂ is a deformation
retract of Wk.

Sketch of the proof. The proof is roughly as follows: It is shown by the induction
on k. For k = 0, we take the cone of L as L̂. We assume that the assertion is
true for k − 1 and we construct L̂ for Wk. First, for the handles (Dk × Dn−k)i of
index k (i = 1, . . . , ck), we can deform the co-core disks ({0} × Dn−k)i so that
the belt spheres Sn−k−1

i = ({0} × (∂Dn−k))i are in general position to L. In a
neighborhood of a belt sphere Sn−k−1

i , L is isomorphic to the product of a small
k-dimensional disk Bk and Sn−k−1

i ∩L. We can subdivide L′
i = Sn−k−1

i ∩L so that
L′

i becomes an (� − k)-dimensional simplicial complex. Then we subdivide L and
the triangulation of (Dk×Dn−k)i (⊂ Wk) so that Bk×({0}∗L′

i) (⊂ (Bk×Dn−k)i)
becomes an (� + 1)-dimensional subcomplex of the subcomplex (Bk × Dn−k)i of
(Dk ×Dn−k)i ⊂ Wk (i = 1, . . . , ck) after isotoping the triangulation of the handle
(Dk × Dn−k)i. Here, {0} is the center of the co-core disk ({0} × Dn−k)i and we
regard Bk as a small disk embedded in Dk. If remove (Int(Bk) × Dn−k)i (i = 1,
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. . . , ck) from Wk, we obtain a piecewise linear manifold W ′′
k−1 isomorphic to Wk−1

and an �-dimensional simplicial complex

L1 = (L \
ck⋃

i=1

Bk × L′
i) ∪

ck⋃
i=1

(∂Bk) × ({0} ∗ L′
i)

on ∂W ′′
k−1. By the induction hypothesis, we have an (� + 1)-dimensional simplicial

complex L̂1 in W ′′
k−1 such that ∂W ′′

k−1 ∩ L̂1 = L1 and L̂1 is a deformation retract
of W ′′

k−1. Since W ′′
k−1 ∪

⋃ck

i=1 Bk × ({0} ∗ L′
i) is a deformation retract of Wk, L̂ =

L̂1 ∪
⋃ck

i=1 Bk × ({0} ∗L′
i) is the desired (�+1)-dimensional simplicial complex. �

As for this proposition, the case where L is the empty set corresponds to the
construction of a k-dimensional simplicial complex Kk in Wk which is a deformation
retract of Wk. In this case, the complex Kk is constructed from the core disks
(Dk × {0})i (⊂ (Dk × Dn−k)i).

Corollary 3.2. There is a k-dimensional simplicial complex Kk differentiably em-
bedded in Wk which is a deformation retract of Wk.

We note here that by careful choices of the Morse function and the Riemannian
metric on Mn, we can make Kk be differentiably embedded and be the union of
the stable manifolds of the gradient flow. Hence we have the following proposition.

Proposition 3.3. Let Dn ∼= W0 ⊂ W1 ⊂ · · · ⊂ Wn = Mn be a handle decomposi-
tion.

(1). There is a k-dimensional simplicial complex Kk differentiably embedded in
Wk such that, for any neighborhood V of Kk and for any compact subset A in
int(Wk), there is an isotopy {Gt : int(Wk) −→ int(Wk)}t∈[0,1] with compact support
such that G0 = idint(Wk), Gt|Kk = idKk (t ∈ [0, 1]) and G1(A) ⊂ V .

(2). There is an (n − k − 1)-dimensional simplicial complex K ′n−k−1 differen-
tiably embedded in M \ Wk such that, for any neighborhood V of Kk and for any
compact subset A in M \K ′n−k−1, there is an isotopy {Gt : M \K ′n−k−1 −→ M \
K ′n−k−1}t∈[0,1] with compact support such that G0 = idM\K′n−k−1, Gt|Kk = idKk

(t ∈ [0, 1]) and G1(A) ⊂ V .

Remark 3.4. For a compact connected n-dimensional manifold Mn with boundary
∂Mn, we have a handle decomposition of the form Dn ∼= W0 ⊂ W1 ⊂ · · · ⊂ Wk =
Mn for some k < n. Then Proposition 3.3 (1) holds.

4. Diffeomorphisms of manifolds with small spines

We study the group of diffeomorphisms of open manifolds to which the idea of
the proof of Theorem 2.1 applies.
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Theorem 4.1. Let Mn be the interior of a compact n-dimensional manifold with
handle decomposition with handles of indices not greater than (n − 1)/2, then any
element of Diffr

c(Mn)0 (1 � r � ∞, r �= n + 1) can be written as a product of two
commutators.

Proof. This theorem is a corollary to the following Proposition 4.2. For, by Propo-
sition 3.3 (Remark 3.4), we can construct a k-dimensional simplicial complex Kk

(k � (n − 1)/2) differentiably embedded in Mn such that, for any compact set A

in Mn and for any neighborhood V of Kk, there is an isotopy {Gt}t∈[0,1] required
in Proposition 4.2. �

Proposition 4.2. Let Mn be an n-dimensional manifold. Assume that 2k +1 � n

and there is a finite k-dimensional simplicial complex Kk differentiably embedded
in Mn such that for any compact set A in Mn and any neighborhood V of Kk,
there is an isotopy {Gt : Mn −→ Mn}t∈[0,1] such that G0 = idMn , Gt|Kk = idKk

(t ∈ [0, 1]) and G1(A) ⊂ U . Then any element of Diffr
c(Mn)0 (1 � r � ∞,

r �= n + 1) can be written as a product of two commutators.

For the proofs of this proposition and the theorems for diffeomorphisms of com-
pact manifolds we need the following lemmas. These lemmas should be well-known
but we include their proofs for the completeness.

Lemma 4.3. Let Mn be a compact n-dimensional manifold. Let Kk and L� be
k-dimensional and �-dimensional finite simplicial complexes, respectively. Let f :
Kk −→ Mn and g : L� −→ Mn be differentiable maps and assume that f is an
embedding. If k + � + 1 � n then there is an isotopy {Ft : Mn −→ Mn}t∈[0,1]

(F0 = id) such that F1(f(Kk)) ∩ g(L�) = ∅.

Proof. We construct the isotopy Ft, skeleton by skeleton. We consider that Kk ⊂
Mn and let K(m) be the m skeleton of Kk (m = 0, . . . , k). Assume that there
is an isotopy {Fm

t }t∈[0,1] such that Fm
1 (K(m)) ∩ g(L�) = ∅. Assume also that the

number of (m + 1)-dimensional simplices of Kk is Nm+1 and for 0 � u < Nm+1,
we obtained an isotopy {F (m+1),u

t }t∈[0,1] such that

F
(m+1),u
1 (K(m) ∪ (σm+1

1 ∪ · · · ∪ σm+1
u )) ∩ g(L�) = ∅.

For the (m + 1)-dimensional simplex σm+1
u+1 of Kk, F

(m+1),u
1 (σm+1

u+1 ) is differen-
tiably embedded in Mn. We take the normal bundle ν of F

(m+1),u
1 (σm+1

u+1 ), and
take the image U under the exponential map of a small disk bundle in ν. Let
π : U −→ F

(m+1),u
1 (σm+1

u+1 ) be the projection. We may assume that for neigh-
borhoods V0 and V1 of ∂σm+1

u+1 in σm+1
u+1 such that ∂σm+1

u+1 ⊂ V0 ⊂ V0 ⊂ V1,
π−1(V1)∩L� = ∅ and π−1(σm+1

u+1 \V0) does not intersect other (m + 1)-dimensional
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simplices of F
(m+1),u
1 (Kk). Since this normal bundle is trivial, we have a projec-

tion p : U −→ Rn−m−1 (of rank n − m − 1) such that p−1(0) = F
(m+1),u
1 (σm+1

u+1 ).
Note that p(g(L�) ∩ U) is a finite union of the images under differentiable maps of
simplices of dimension not greater than �. Since � � n − k − 1 � n − (m + 1) − 1,
p(g(L�) ∩ U) is nowhere dense subset of Rn−m−1. Take a point q close to 0 in
p(U) − p(g(L�)) ⊂ p(U) ⊂ Rn−m−1. Let {F (m+1),u+1

t }t∈[0,1] be an isotopy with
support in U such that π(F (m+1),u+1

t (x)) = x, p(F (m+1),u+1
t (x)) = tμ(x)q for

x ∈ σm+1
u+1 , where μ : σm+1

u+1 −→ [0, 1] is a C∞ function such that μ(x) = 1 for
x ∈ σm+1

u+1 \ V1 and μ(x) = 0 for x ∈ V0. Then F
(m+1),u+1
1 (σm+1

u+1 ) ∩ g(L) = ∅.
Thus we obtain an isotopy {Fm+1

t }t∈[0,1] such that Fm+1
1 (K(m+1)) ∩ g(L�) = ∅

as the composition of {F (m+1),Nk−1
t }t∈[0,1], . . . , {F (m+1),0

t = Fm
t }t∈[0,1].

Note that the support of the isotopy {Ft}t∈[0,1] can be made to be an arbitrarily
small compact neighborhood of Kk. �

Remark 4.4. Under the notation of Lemma 4.3, if k+� = n, then we obtain Ft such
that F1(f(K(k−1))) ∩ g(L�) = ∅, F1(f(Kk)) ∩ g(L(�−1)) = ∅ and the intersection
F1(f(σk)) ∩ g(τ �) is transverse for each k-dimensional simplex σk of Kk and each
�-dimensional simplex τ � of L�, where L(�−1) denotes the (� − 1) skeleton of L�.
For, we can proceed as in the proof of Lemma 4.3, and for the modification with
respect to a k-dimensional simplex σk

u+1 of Kk, we can use a regular value of the
projection p : U −→ R� to the fiber of the normal bundle of F

(k),u
1 (σk

u+1).

Lemma 4.5. Let Mn be an n-dimensional manifold. Let Kk be a k-dimensional
finite simplicial complex differentiably embedded in Mn. If 2k + 1 � n, then there
are an isotopy {Ft : Mn −→ Mn}t∈[0,1] with compact support (F0 = id) and an
open neighborhood U of Kk such that (F1)�(U) (� ∈ Z) are disjoint.

Proof. There is a neighborhood V of Kk such that for any neighborhood W of
Kk (Kk ⊂ W ⊂ W ⊂ V ) and a compact subset A ⊂ V , there is an isotopy
{Gt : Mn −→ Mn}t∈[0,1] with support in V such that G0 = id and G1(A) ⊂ W .
The neighborhood U is defined by using the structure of normal bundles of each
simplex of Kk used in the proof of Lemma 4.3. Then the isotopy is defined skeleton
by skeleton by using the normal bundle projections.

By Lemma 4.3 applied to g(L�) = Kk, there is an isotopy {ht}t∈[0,1] such that
h0 = id and h1(Kk) ∩ Kk = ∅. We may assume that the support of the isotopy
{ht}t∈[0,1] is contained in V .

Take a neighborhood W0 of Kk and W1 of h1(Kk) such that W0∩W1 = ∅. Then
W = W0 ∩ (h1)−1(W1) is a neighborhood of Kk such that W ∩ h1(W ) = ∅. Here
we can take W0 and W1 such that their closures W0 and W1 are compact, and then
W is compact.
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For W and h1(W ), we have an isotopy {Gt : Mn −→ Mn}t∈[0,1] with support
in V such that G0 = id and G1(h1(W )) ⊂ W .

Let Ft be the composition of Gt and ht. Then F1(W ) ⊂ W . Since F1(W )∩Kk =
∅, we can take a neighborhood U of Kk such that U ⊂ W and U ∩ F1(W ) = ∅.
Then U ⊂ W \ F1(W ) and for � > 0, (F1)�(U) ⊂ (F1)�(W ) \ (F1)�+1(W ). Hence
(F1)�(U) (� ∈ Z, � � 0) are disjoint. Then (F1)�(U) (� ∈ Z) are disjoint. �

Proof of Proposition 4.2. By Lemma 4.5, there are a neighborhood U of Kk and
an element g of Diffr

c(M
n)0 such that gi(U) (i ∈ Z) are disjoint. For any element

f ∈ Diffr
c(M

n)0, by the assumption of the proposition, there is an isotopy {Gt :
Mn −→ Mn}t∈[0,1] such that G0 = id, Gt|Kk = idKk and G1(supp({ft}t∈[0,1])) ⊂
U . Then by the argument of Theorem 2.1, G1 ◦ f ◦ G1

−1 can be written as a
product of two commutators in Diffr

c(Mn)0. Hence f can be written as product of
two commutators in Diffr

c(Mn)0. �

5. Diffeomorphisms of compact manifolds

If a compact manifold M has a decomposition into nice pieces, we can show that
any element of Diffr(M)0 can be written as a composition of diffeomorphisms to
which we can apply Theorem 4.1, and that any element of Diffr(M)0 can be written
as a product of a bounded number of commutators.

Theorem 5.1. Let Mn be a compact n-dimensional manifold. Let P p and Qq be
p-dimensional and q-dimensional finite simplicial complexes differentiably embedded
in Mn, respectively. Assume that p + q + 2 � n and that P p ∩ Qq = ∅. Then any
element f ∈ Diffr(Mn)0 (1 � r � ∞) can be written as a product f = g ◦ h such
that g ∈ Diffr

c(M
n \ k(Qq))0 and h ∈ Diffr

c(M
n \ P p)0, where k ∈ Diffr(Mn)0,

k(Qq) ∩ P p = ∅, and Diffr
c(M

n \ k(Qq))0 and Diffr
c(M

n \ P p)0 are considered as
subgroups of Diffr(Mn)0, respectively.

By using Theorems 5.1 and 4.1, we obtain the following theorem.

Theorem 5.2. Let Mn be a compact n-dimensional manifold. If Mn has a han-
dle decomposition without handles of middle indices, that is, if there is a handle
decomposition with p-handles, where 2p + 2 � n or 2p − 2 � n, then any ele-
ment of Diffr(Mn)0 (1 � r � ∞, r �= n + 1) can be written as a product of four
commutators. In particular, if M2m is a (2m)-dimensional compact manifold with
a handle decomposition without handles of index m, any element of Diffr(M2m)0
(1 � r � ∞, r �= 2m + 1) can be written as a product of four commutators.

Proof. We look at the handle decomposition and the dual handle decomposition
of Mn. Then by using the core disks of the handles of indices not greater than
q = (n − 2)/2 of the handle decomposition and the dual handle decomposition, we
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obtain q-dimensional simplicial complexes P q and Qq such that P q ∩Qq = ∅. Since
q + q + 2 � n, any element f ∈ Diffr(Mn)0 can be written as a product f = g ◦ h

such that g ∈ Diffr
c(Mn \ k(Qq))0 and h ∈ Diffr

c(Mn \P q)0 by Theorem 5.1, where
k ∈ Diffr(Mn)0. By Proposition 3.3, Mn \ P q and Mn \Qq as well as Mn \ k(Qq)
satisfy the assumption of Theorem 4.1. Hence g and h can be written as product
of two commutators in Diffr(Mn)0. Thus Theorem 5.2 is proved. �

Proof of Theorem 5.1. Let {ft}t∈[0,1] be the isotopy such that f0 = id and f1 = f .
Let F : [0, 1] × Mn −→ Mn be the trace of the isotopy: F (t, x) = ft(x).

We look at the image F ([0, 1]×P p) ⊂ Mn. Since p+1+q � n−1, by Lemma 4.3,
there is an isotopy {ks}s∈[0,1] (k0 = id, k1 = k) such that F ([0, 1]×P p)∩k(Qq) = ∅.

Let U be a neighborhood of F ([0, 1] × P p) and V be a neighborhood of k(Qq)
such that U ∩ V = ∅.

Let ξ be the vector field on [0, 1] × Mn given by
∂

∂t
+

(dft+s(x)
ds

)
s=0

at (t, ft(x)). This ξ generates the isotopy ft. Let η be a vector field on [0, 1]×Mn

with support in [0, 1] × U such that η = ξ on a neighborhood of {(t, ft(x0))
∣∣ x0 ∈

P p, t ∈ [0, 1]}. Then η = ∂/∂t on [0, 1] × V which is a neighborhood of [0, 1] ×
k(Qq). Then η generates an isotopy {gt}t∈[0,1] such that gt is the identity on the
neighborhood V of k(Qq) and gt(x) = ft(x) for x in a neighborhood of P p. Put
h = g1

−1f1, then h is the identity in a neighborhood of P p, and it is isotopic to the
identity as an element of Diffr(Mn). Put ht = gt

−1 ◦ ft. Then ht is the identity on
a neighborhood of P p.

Thus f = g ◦ h and g ∈ Diffr
c(M

n \ k(Qq))0 and h ∈ Diffr
c(M

n \ P p)0. �

Remark 5.3. In the proof of Theorem 5.1, the decomposition of a diffeomorphism
uses only the fact that F ([0, 1] × P p) ∩ k(Qq) = ∅.

Remark 5.4. For a compact manifold M we have a handle decomposition. For a
compact odd-dimensional manifold M2m+1, M2m+1 is covered by two open sets U1

and U2 which are neighborhoods of the union of handles of indices not greater than
m and the union of dual handles of indices not greater than m. Then by the frag-
mentation lemma ([1]), there is a neighborhood N of the identity in Diffr(M2m+1)0
such that every element f of N can be written as a product f = g ◦ h, where
g ∈ Diffr

c(U1)0 and h ∈ Diffr
c(U2)0. Hence by Theorem 4.1, every element f of

N can be written as a product of four commutators of elements of Diffr(M2m+1)0
(1 � r � ∞, r �= 2m+ 2). For a compact even-dimensional manifold M2m, M2m is
covered by three open sets U1, U2 and U3. Here, U1 and U2 are neighborhoods of
the union of handles of indices not greater than m−1 and the union of dual handles
of indices not greater than m−1, and U3 is a disjoint union of open balls which is a
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neighborhood of the union of m handles. Then by the fragmentation lemma, there
is a neighborhood N of the identity in Diffr(M2m)0 such that every element f of N
can be written as a product f = a ◦ g ◦h, where g ∈ Diffr

c(U1)0, h ∈ Diffr
c(U2)0 and

a ∈ Diffr
c(U3)0. Hence by Theorem 4.1, every element f of N can be written as a

product of six commutators of elements of Diffr(M2m)0 (1 � r � ∞, r �= 2m + 1).

6. Diffeomorphisms of odd-dimensional compact manifolds

In [2], Burago, Ivanov and Polterovich proved that for a closed 3-dimensional
manifold M3, any element of Diffr(M3)0 can be written as a product of ten commu-
tators. Their method together with the general position argument in the previous
sections gives the following theorem.

Theorem 6.1. Let M2m+1 be a compact (2m + 1)-dimensional manifold. Then
any element of Diffr(M2m+1)0 (1 � r � ∞, r �= 2m+2) can be written as a product
of six commutators.

Proof. We look at the handle decomposition and the dual handle decomposition
of M2m+1. Then by using the core disks of the handles of indices not greater
than m of the handle decomposition and the dual handle decomposition, we obtain
m-dimensional simplicial complexes Pm and Qm such that Pm ∩ Qm = ∅. By
Proposition 3.3, M2m+1 \Pm and M2m+1 \Qm satisfy the assumption of Theorem
4.1. Then the theorem follows from the following theorem and Theorems 2.1 and
4.1. �

Theorem 6.2. Let M2m+1 be a compact (2m + 1)-dimensional manifold. Let
Pm and Qm be m-dimensional finite simplicial complexes differentiably embedded
in M2m+1, respectively. Assume that Pm ∩ Qm = ∅. Then any element f ∈
Diffr(M2m+1)0 (1 � r � ∞) can be written as a product f = a ◦ g ◦ h such that
a ∈ Diffr

c(
⊔

i Ui)0, g ∈ Diffr
c(M

2m+1 \ k(Qm))0 and h ∈ Diffr
c(M

2m+1 \ k′(Pm))0,
where

⊔
i Ui is a disjoint union of (2m + 1)-dimensional open balls Ui embedded in

M2m+1, k, k′ ∈ Diffr(M2m+1)0, and Diffr
c(

⊔
i Ui)0, Diffr

c(M2m+1 \ k(Qm))0 and
Diffr

c(M2m+1\k′(Pm))0 are considered as subgroups of Diffr(M2m+1)0, respectively.

For the proof of Theorem 6.2, we need several lemmas.

Lemma 6.3. Let P (m−1) and Q(m−1) be the m − 1 skeletons of Pm and Qm,
respectively. Then any element f ∈ Diffr(M2m+1)0 can be written as a product
f = g ◦ h such that g ∈ Diffr

c(M2m+1 \ k(Qm))0 and h ∈ Diffr
c(M2m+1 \ P (m−1))0,

where k ∈ Diffr(M2m+1)0 and k(Qm) ∩ Pm = ∅. Moreover there is an isotopy
{ht}t∈[0,1] such that h0 = id, h1 = h, ht is the identity in a neighborhood of P (m−1),
and for H(t, x) = ht(x), H([0, 1] × Pm) ∩ k(Q(m−1)) = ∅ and, for m-dimensional
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simplices τm of Pm and σm of Qm, the intersection H([0, 1] × τm) ∩ k(σm) is
transverse. Thus H([0, 1] × Pm) ∩ k(Qm) is a finite set.

Proof. Let {ft}t∈[0,1] be the isotopy such that f0 = id and f1 = f . Let F :
[0, 1] × M2m+1 −→ M2m+1 be the trace of the isotopy: F (t, x) = ft(x). As in the
proof of Theorem 5.1, we look at the image F ([0, 1] × P m) ⊂ M2m+1.

Since the dimension of the manifold is 2m + 1, by Lemma 4.3 and Remark
4.4, there is an isotopy {ks}s∈[0,1] (k0 = id, k1 = k) such that F ([0, 1] × Pm) ∩
k(Q(m−1)) = ∅, F ([0, 1]×P (m−1))∩k(Qm) = ∅ and k(σm) is transverse to F ([0, 1]×
τm) for each pair of m-dimensional simplices σm of Qm and τm of Pm. Hence,
F ([0, 1] × Pm) ∩ k(Qm) is a finite set:

F ([0, 1] × Pm) ∩ k(Qm) = {F (ti, ui)
∣∣ i = 1, . . . , r} ⊂ M2m+1.

We proceed as in the proof of Theorem 5.1. We can take an isotopy gt fixing a
neighborhood of k(Qm) and gt = ft in a small neighborhood of P (m−1). Then for
H(t, x) = ht(x) = gt

−1◦ft(x), ht is the identity on a neighborhood of P (m−1). Thus
the intersection H([0, 1] × Pm) ∩ k(Qm) is transverse. Since H(ti, ui) = F (ti, ui),

H([0, 1] × Pm) ∩ k(Qm) = {F (ti, ui)
∣∣ i = 1, . . . , r}

= {H(ti, ui)
∣∣ i = 1, . . . , r} ⊂ M2m+1.

�

We would like to decompose an element h close to h as a composition of an
element a ∈ Diffr

c(
⊔

i Ui)0, where
⊔

i Ui is a disjoint union of (2m + 1)-dimensional
open balls Ui embedded in M2m+1, an element g ∈ Diffr

c(M
2m+1 \ k(Qm))0 and an

element h′ ∈ Diffr
c(M

2m+1 \ k′(Pm))0:

h = a ◦ g ◦ h′.

By the classical result of Whitney [18], we have the following lemma.

Lemma 6.4. Let {ht}t∈[0,1] be an isotopy which is the identity in a neighborhood of
P (m−1) and put H(t, x) = ht(x). Let V ⊂ P be the complement of a neighborhood
of P (m−1) where ht = id. Then there is an isotopy {ht}t∈[0,1] fixing a neighborhood
of P (m−1) such that its trace H : [0, 1] × M2m+1 −→ M2m+1 is close to H :
[0, 1] × M2m+1 −→ M2m+1 and H|[0, 1] × V is an immersion outside of a finite
subset. Moreover the image H([0, 1] × V ) ⊂ M2m+1 \ (P (m−1) ∪ k(Q(m−1))) has
finitely many double point curves which is in general position with respect to the
curves H([0, 1]×{v}) (v ∈ V ). If m � 2 these double point curves are disjoint, and
if m = 1, there are at most finitely many triple points and cusps.

Lemma 6.5. For generic h = h1 ∈ Diffr
c(M

2m+1 \ P (m−1))0 given by Lemma
6.4, h can be decomposed as h = a ◦ g ◦ h′, where a ∈ Diffr

c(
⊔

i Ui)0,
⊔

i Ui is a
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disjoint union of (2m + 1)-dimensional open balls Ui embedded in M2m+1, g ∈
Diffr

c(M
2m+1 \ k(Qm))0 and h′ ∈ Diffr

c(M
2m+1 \ Pm)0.

For the proof of Lemma 6.5, we need to find the open balls Ui. These balls are
neighborhoods of embedded arcs or embedded trees in M2m+1 \ (Pm ∪k(Q(m−1))).
This is a construction essentially due to Burago, Ivanov and Polterovich ([2])

Let
H([0, 1] × Pm) ∩ k(Qm) = {H(si, vi)

∣∣ i = 1, . . . , r}
⊂ M2m+1 \ (Pm ∪ k(Q(m−1))).

We look at H([si, 1] × {vi}). For generic H, H([si, 1] × {vi}) does not intersect
Pm ∪ k(Qm) other than H(si, vi) ∈ k(Qm)

If m � 2, then for generic H, H([si, 1]×{vi}) does not intersect the double point
curves.

If m = 1, then H([si, 1]×{vi}) may intersect the double point curves. For generic
H, the intersection consists of finitely many points H(si,i1 , vi) = H(s′i,i1 , v

′
i,i1

)
(i1 = 1, . . . , ji), where we only take the double points such that s′i,i1 > si,i1 . For
the double points where s′i,i1 > si,i1 , we look at the curve H([s′i,i1 , 1] × {v′

i,i1
}).

For generic H, H([s′i,i1 , 1] × {v′
i,i1

}) does not intersect P 1 ∪ k(Q1) but may in-
tersect the double point curves at finitely many points again. H(s′i,i1,i2

, v′
i,i1

) =
H(s′′i,i1,i2

, v′′
i,i1,i2

) (i2 = 1, . . . , ji,i1). Then for s′′i,i1,i2
> s′i,i1,i2

, we look at the curve
H([s′′i,i1,i2

, 1] × {v′′
i,i1,i2

}).
We continue this process and obtain trees consisting of arcs of the form H([s, 1]×

{v}) starting at the points of the intersection H([0, 1]×P 1)∩k(Q1) bifurcating at the
double points which are the intersections of the arcs and the forward image ht(P 1)
of P 1 under the isotopy. Note that the branches of the trees are finitely many. It is
because outside of small neighborhoods of the tangencies of the double point curves
and the curves H([0, 1]×{v}) (v ∈ V ) and outside of small neighborhoods of triple
points and cusps, there exists a positive real number δ such that two intersecting
points H(s0, v), H(s1, v) of the double point curves and H([0, 1] × {v}) satisfy
|s0 − s1| > δ. Thus we obtain final branches which look like H([s(k)

i,i1,i2,...,ik
, 1] ×

{v(k)
i,i1,i2,...,ik

}). Note also that the tree intersect P 1 ∪ k(Q1) only at the starting
point H(si, vi) ∈ k(Q1).

Proof of Lemma 6.5 for m � 2. If m � 2, using the curves H([si, 1] × {vi}),
we can define an isotopy {at}t∈[0,1] (a0 = id) with support in neighborhoods of
H([si, 1] × {vi}) such that (a1 ◦ h)(Pm) ∩ k(Qm) = ∅ and there is an isotopy
{h′

t}t∈[0,1] such that h′
0 = id, h′

1 = a1 ◦ h and h′
t(Pm) ∩ k(Qm) = ∅ (t ∈ [0, 1]).

We take a small neighborhood Ui of H([si, 1]×{vi}) diffeomorphic to the (2m+1)-
dimensional ball. We take these Ui to be disjoint and the intersection of Ui and
H([0, 1] × Pm) or k(Qm) is described as follows.
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We put a coordinate (x1, x2, . . . , xm+1, xm+2, . . . , x2m+1) ∈
(−2, 2)2m+1 on Ui such that, for εi > 0,

k(Qm) ∩ Ui = {0} × {0}m × (−2, 2)m,
H((si − 2εi(1 − si), 1] × {vi}) ∩ Ui = (−2, 1] × {0}2m,

hsi+t(1−si)(P
m) ∩ Ui = {t} × (−2, 2)m × {0}m (t ∈ [−εi, 1]).

Take an isotopy {at}t∈[0,1] with support in
⊔r

i=1 Ui such that on each Ui, a0 = id
and, for (x1, x2, . . . , x2m+1) ∈ [−εi, 1] × [−1, 1]2m ⊂ (−2, 2)2m+1,

at(x1, x2, . . . , x2m+1) = (x1 − (1 + εi)t, x2, . . . , x2m+1).

Now (a1 ◦ h1)(Pm) ∩ k(Qm) = ∅. Moreover there is an isotopy {h′
t}t∈[0,1] from

the identity to a1 ◦ h1 such that h′
t(P

m) ∩ k(Qm) = ∅ (t ∈ [0, 1]).
The reason is that we can modify ht on Ui by replacing by

a(ui+εi)/(1+εi) ◦ hsi+ui(1−si)

for t = si + ui(1 − si) ∈ [si − εi(1 − si), 1], i.e., ui ∈ [−εi, 1]. Then

(a(ui+εi)/(1+εi) ◦ hsi+ui(1−si))({−εi} × [−1, 1]m × {0}m)
= a(ui+εi)/(1+εi)({ui} × [−1, 1]m × {0}m)
= {ui − (ui + εi)} × [−1, 1]m × {0}m

= {−εi} × [−1, 1]m × {0}m

Thus there is an isotopy {h′
t}t∈[0,1] such that h′

0 = id, h′
1 = a1 ◦ h1 and h′

t(P
m) ∩

k(Qm) = ∅ (t ∈ [0, 1]).
Then by the proof of Theorem 5.1 (Remark 5.3), a1◦h can be written as a compo-

sition a1◦h = g◦h′, where g ∈ Diffr
c(M

2m+1\k(Qm))0 and h′ ∈ Diffr
c(M

2m+1\Pm)0.
Thus h = (a1)−1 ◦ g ◦ h′. Since (a1)−1 ∈ Diffr

c(
⊔r

i=1 Ui)0, Lemma 6.5 for m � 2 is
proved. �

Proof of Lemma 6.5 for m = 1. If m = 1, then we will take Ui considering the
intersection with the double point curves.

First take a small neighborhood Ui of H([si, 1] × {vi}) as in the case where
m � 2. Ui has the coordinate (−2, 2)3 as before. We will modify Ui by using
several isotopies.

We also take small neighborhoods Ui,i1 , Ui,i1,i2 , . . . of the branches H([s′i,i1 , 1]×
{v′

i,i1
}) (s′i,i1 > si), H([s′′i,i1,i2

, 1] × {v′′
i,i1,i2

}) (s′′i,i1,i2
> s′i,i1), . . . . We put a coor-

dinate (x1, x2, x3) ∈ (−2, 3) × (−2, 2)2 on Ui,i1 such that

H([s′i,i1 − 2εi,i1(1 − s′i,i1), 1] × {v′
i,i1

}) ∩ Ui,i1 = (−2, 1] × {(0, 0)},
hs′

i,i1
+t(1−s′

i,i1
)(P 1) ∩ Ui,i1 = {t} × (−2, 2) × {0} (t ∈ [−εi,i1 , 1]),

and coordinates on Ui,i1,i2 , . . . are taken in a similar way.
We take isotopies {ai,i1

t }t∈[0,1] with support in Ui,i1 such that ai,i1
0 = id and, for

(x1, x2, x3) ∈ [−εi,i1 , 1] × [−1, 1]2 ⊂ (−2, 3) × (−2, 2)2,

ai,i1
t (x1, x2, x3) = (x1 + t(1 + εi,i1), x2, x3).
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We also take isotopies {ai,i1,i2
t }t∈[0,1], . . . with support in Ui,i1,i2 , . . . in a similar

way. Then we take Ui very thin so that(
(

∏
i1,i2,...,ik

ai,i1,i2,...,ik

1 ) ◦ · · · ◦ (
∏
i1,i2

ai,i1,i2
1 ) ◦ (

∏
i1

ai,i1
1 )

)
(Ui)

does not intersect H([si, 1] × P 1) outside of a neighborhood of H([si, 1] × {v1}),
where {ai,i1,i2,...,ik

t }t∈[0,1] is the isotopy with support in a neighborhood Ui,i1,i2,...,ik

of the final branch H([s(k)
i,i1,i2,...,ik

, 1] × {v(k)
i,i1,i2,...,ik

}) defined in a similar way. Let

a =
r∏

i=1

(
∏

i1,i2,...,ik

ai,i1,i2,...,ik

1 ) ◦ · · · ◦ (
∏
i1,i2

ai,i1,i2
1 ) ◦ (

∏
i1

ai,i1
1 ).

Then a ◦ at ◦ a−1 is isotopic to the identity by the isotopy with support in the
disjoint union of 3-dimensional open balls a(

⊔r
i=1 Ui). By the construction, ((a ◦

a1 ◦ a−1) ◦ h1)(P 1) ∩ k(Q1) = ∅. We show that there is an isotopy {h′
t}t∈[0,1] from

the identity to (a ◦ a1 ◦ a−1) ◦ h1 such that h′
t(P

1) ∩ k(Q1) = ∅ (t ∈ [0, 1]).
For the construction of h′

t, we define the local time ui ∈ [−εi, 1] on Ui (1 � i � r)
by t = si + ui(1 − si) as in the case where m � 2. We can modify ht on the union

Ui ∪
⋃
i1

Ui,i1 ∪
⋃

i1,i2

Ui,i1,i2 ∪ · · · ∪
⋃

i,i1,i2,...,ik

Ui,i1,i2,...,ik

for t = si + ui(1 − si) ∈ [si − εi(1 − si), 1] (ui ∈ [−εi, 1]) and define h′
t there by

h′
t = (a ◦ a(ui+εi)/(1+εi) ◦ a−1) ◦ hsi+ui(1−si).

Then this isotopy {h′
t}t∈[0,1] satisfies that h′

0 = id, h′
1 = (a ◦ a1 ◦ a−1) ◦ h1 and

h′
t(P 1) ∩ k(Q1) = ∅ (t ∈ [0, 1]).
Then by the proof of Theorem 5.1 (Remark 5.3), (a◦a1 ◦a−1)◦h1 can be written

as a composition (a ◦ a1 ◦ a−1) ◦ h1 = g ◦ h′, where g ∈ Diffr
c(M3 \ k(Q1))0 and

h′ ∈ Diffr
c(M

3 \ P 1)0. Thus h = (a ◦ a1
−1 ◦ a−1) ◦ g ◦ h′. Since a ◦ a1

−1 ◦ a−1 ∈
Diffr

c(a(
⊔r

i=1 Ui))0, Lemma 6.5 for m = 1 is proved. �

Proof of Lemma 6.5 for m = 0. This is an (easy) exceptional case. The only
compact connected 1-dimensional manifold is the circle S1. For f ∈ Diffr(S1)0 and
p ∈ S1, we take a point q distinct from p and f(p), Let g be a Cr diffeomorphism
of S1 which coincides with f on a neighborhood of p and with the identity on a
neighborhood of q. Then h = g−1 ◦ f is the identity on a neighborhood of p. Since
g is isotopic to the identity as an element of Diffr

c(S1 \ {q})0, and h is isotopic to
the identity as an element of Diffr

c(S1 \ {p})0, f = g ◦ h in a desired way. (Then
any element of Diffr(S1)0 (1 � r � ∞, r �= 2) can be written as a product of four
commutators as in Theorem 5.2.) Note that in this case the original isotopy for f

is different from the composition of the isotopies for g and h. �
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Proof of Theorem 6.2. For h ∈ Diffr(M2m+1), let h be the diffeomorphism
obtained by Lemma 6.4. By Lemma 6.5, h can be written as h = a ◦ g ◦ h′, where
a ∈ Diffr

c(
⊔

i Ui)0, g ∈ Diffr
c(M2m+1\k(Qm))0 and h′ ∈ Diffr

c(M2m+1 \Pm)0. Then
h = a ◦ g ◦ h′ ◦ (h−1h). Since h−1h is close to the identity, by Remark 5.4, h−1h

can be written as the product h−1h = ĥ◦ ĝ, where ĝ ∈ Diffr
c(M2m+1 \k(Qm))0 and

ĥ ∈ Diffr
c(M

2m+1 \ Pm)0. Then

h = a ◦ g ◦ h′ ◦ ĥ ◦ ĝ = a ◦ (g ◦ ĝ) ◦ ĝ−1 ◦ (h′ ◦ ĥ) ◦ ĝ.

Here a ∈ Diffr
c(

⊔
i Ui)0, g ◦ ĝ ∈ Diffr

c(M2m+1 \ k(Qm))0 and ĝ−1 ◦ (h′ ◦ ĥ) ◦ ĝ ∈
Diffr

c(M
2m+1 \ ĝ−1(Pm))0. Thus Theorem 6.2 is shown. �

Remark 6.6. In Corollary 2.2 and Theorem 4.1, there is an open subset U of Mn

and there is an element g of Diffr
c(Mn)0 such that any element f of Diffr

c(Mn)0
is conjugate to an element of Diffr

c(U)0 and g(U) ∩ U = ∅. Then any commutator
[a, b] in Diffr

c(U)0 can be written as a product of 4 conjugates of g or g−1. For, if
a, b ∈ Diffr

c(U)0, then by putting c = g−1ag, cb = bc and

aba−1b−1 = gcg−1bgc−1g−1b−1

= gcg−1c−1cbgc−1b−1bg−1b−1

= g(cg−1c−1)(bcgc−1b−1)(bg−1b−1).

Thus for an n-dimensional manifold Mn satisfying the assumption of Corollary 2.2
or Theorem 4.1, any element f of Diffr

c(Mn)0 can be written as a product of 8
conjugates of g or g−1 ((1 � r � ∞, r �= n + 1). By this observation, Theorem 5.2
implies that for an even-dimensional compact manifold M2m which has a handle
decomposition without handles of the middle index m, there is an element g such
that any element f of Diffr(M2m)0 can be written as a product of 16 conjugates of
g or g−1 (1 � r � ∞, r �= 2m + 1). Here g is taken so that g maps a neighborhood
U of the union of the simplicial complexes P k and Qk in Theorem 5.2 to an open
set g(U) with U ∩ g(U) = ∅. In a similar way, Theorem 6.1 implies that for an
odd-dimensional compact manifold M2m+1, there is an element g such that any
element f of Diffr(M2m+1)0 can be written as a product of 24 conjugates of g or
g−1 (1 � r � ∞, r �= 2m + 2). This implies that these groups are meager in the
terminology of the paper [2] as Polterovich pointed out to the author. Note that,
for a perfect group, if there is an element g with the above property, then it is
uniformly perfect.
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