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Abstract

We consider the inverse acoustic scattering problem of determining a sound-hard

obstacle by far field measurements. It is proved that a polyhedral scatterer in R
n,

n ≥ 2, consisting of finitely many solid polyhedra, is uniquely determined by a single

incoming plane wave.

1 Introduction

Let D be a compact subset of Rn, n ≥ 2, and assume that a time harmonic plane wave
uin(x) = exp(ikd ·x), x ∈ Rn, is incident on the scatterer D. Here k > 0 is the wave number,
which is kept fixed throughout the paper, and d ∈ Sn−1 is the incident direction. In the case
of a sound-hard scatterer D, the total field u which is the sum of uin and the scattered field
usc satisfies the following exterior boundary value problem in Dc := Rn\D:

∆u + k2u = 0 in Dc , ∂νu = 0 on ∂D ,

lim
r→∞

r(n−1)/2(∂ru
sc − ikusc) = 0 , r = |x| .

}

(1.1)

Here ν is the unit normal to ∂D pointing to Dc, and the relation in the second line of (1.1) is
the Sommerfeld radiation condition which holds uniformly in all directions x̂ = x/|x| ∈ Sn−1

as |x| → ∞. This condition implies that the asymptotic behaviour at infinity of the scattered
field usc is governed by the relation

usc(x) = r(1−n)/2 exp(ikr){u∞(x̂) + O(r−1)} , r → ∞ , (1.2)

holding uniformly in all directions x̂ ∈ Sn−1; see, e.g., [3], [11]. The function u∞ defined by
(1.2) on S

n−1 is called the far field pattern of usc. In the case of a sound-soft scatterer D,
the boundary condition on ∂D in (1.1) is replaced by u = 0.
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The inverse acoustic scattering problem consists in determining a (sound-soft or sound-hard)
scatterer by its far field pattern u∞ for one or several incident directions, and its uniqueness
presents important and challenging open problems since many years; see, e.g., [3], [4], [7].
Uniqueness results with a minimal number of incident waves have recently been obtained
within the class of polygonal and polyhedral scatterers.

Definition 1 A compact set D ⊂ Rn is called a polyhedral obstacle if D is the union of
finitely many convex polyhedra and its exterior Dc is connected. We shall say that a compact
set D ⊂ Rn with connected exterior Dc is a polyhedral scatterer if D is the union of a
polyhedral obstacle and finitely many cells, where a cell is defined as the closure of an open
connected subset of an (n − 1)-dimensional hyperplane.

Note that a polyhedral obstacle coincides with the closure of its interior, whereas a polyhedral
scatterer may also contain (n − 1)-dimensional components (e.g., screens).

It was proved in [1] that any sound-soft polyhedral scatterer is uniquely determined by the
far field pattern of a single incident wave. The method in [1] is based on a careful study of
the nodal set N = {x : u(x) = 0} of the direct solution in Dc, the reflection principle for
the Helmholtz equation, and the construction of a path in Dc connecting a point on ∂D to
infinity and intersecting N suitably.

The approach of [1] was considerably simplified in [8] to obtain a shorter proof in the sound-
soft case, together with the result that any sound-hard polyhedral scatterer is uniquely
determined by the far field patterns for n linearly independent incident directions, general-
izing previous work in the 2D case [2]. Moreover, these uniqueness results can be extended
to scatterers with impedance and mixed type (Dirichlet/Neumann) boundary conditions [9],
[10].

What about uniqueness in the inverse Neumann problem with only one incident direction?
The counter-examples of [9] show that, in general, a polyhedral scatterer cannot be uniquely
reconstructed using less than n incident waves. On the other hand, it was shown in [6]
and [10] that one incident wave is enough to recover a polygonal obstacle (in the sense of
Definition 1 for n = 2). The aim of this paper is to prove the higher dimensional analogue
of that result.

Theorem. For fixed k > 0 and d ∈ Sn−1, a polyhedral obstacle D ⊂ Rn(n ≥ 2) is uniquely
determined by the far field pattern u∞.

For the proof of our uniqueness result, the notion of a Neumann plane is of importance (cf.
also [8]).

Definition 2 Let Π ⊂ Rn be an (n−1)-dimensional hyperplane. A non-void open connected
component π of Π ∩ Dc such that ∂νu = 0 in π (where u is the solution of (1.1)) is called a
Neumann plane of u.

Note that in contrast to a Dirichlet plane in the sound-soft case, which is always a bounded
set (see [1], [8]), a Neumann plane may be unbounded. As a key preliminary result, we
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will show in Section 2 that there are at most finitely many unbounded Neumann planes
of u (Lemma 2). To carry out the proof of the theorem in Section 3, we modify the path
and reflection arguments of [1] and [8] in that we construct a path to infinity avoiding the
unbounded Neumann planes. Note that our approach here differs essentially from that in
the 2D case [6], [10], which is mainly based on the finiteness of the set of bounded Neumann
planes (lines) and is difficult to extend to higher dimensions.

2 Preliminaries

Let D ⊂ Rn be a polyhedral obstacle, and let u ∈ H1
loc(D

c) be the unique solution of the
direct problem (1.1); see, e.g., [5, Chap. 3.4]. Note that the solution u to the homogeneous
Helmholtz equation is real-analytic in Dc. We first collect some properties of the Neumann
planes of u, which will be needed in the sequel.

Let π ⊂ Π be a Neumann plane of u, where Π ⊂ R
n is an (n − 1)-dimensional hyperplane.

Then its boundary ∂π is always a subset of ∂D (but may be void) since otherwise the zero
set of ∂νu on Π ∩ Dc could be extended.

A Neumann plane π ⊂ Π may be bounded or unbounded, but Π can contain at most one
unbounded Neumann plane for n ≥ 3 and at most two Neumann planes (lines) if n = 2. This
is clear for n = 2 since a connected open set in R is a (bounded or unbounded) interval, and
there cannot lie more than two unbounded intervals on an infinite straight line. Here and
in the following, we refer to [12, Chaps. 2.9, 2.10] for the properties of connected sets. For
n ≥ 3, assume there are two different unbounded Neumann planes π1, π2 on Π. However,
outside a sufficiently large ball B ⊂ Π, there is no continuous curve on Π connecting points
from π1 and π2 since it would intersect ∂D. Note that ∂D is bounded and Bc is connected.

Moreover, a hyperplane Π contains at most finitely many bounded Neumann planes. Note
that Dc is the union of Qc and finitely many bounded convex polyhedra, where Q is a
sufficiently large closed cube. Hence Dc is the union of finitely many (possibly unbounded)
convex polyhedra. Moreover, the intersection of the interior of such a polyhedron with Π is
either void or an (n − 1)-dimensional open convex polyhedron. Thus the intersection of Π
with Dc can only have finitely many connected components.

Lemma 1 The normal to an unbounded Neumann plane is always orthogonal to the wave
vector d of the incident wave uin.

The proof is analogous to that of Lemma 9 in [2], using the fact that limr→∞ |∇usc| = 0; see
also Lemma 2 in [8].

For n = 2, it was proved in [10, Cor. 2.16] that all unbounded Neumann lines must lie on
one infinite straight line, so that there exist at most two unbounded Neumann lines of u.
Using Lemma 1, we can prove the following weaker version of this result which is valid in
any dimensions and is sufficient for our purposes.
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Lemma 2 There is at most a finite number of unbounded Neumann planes of u, say πj ⊂ Πj,
j = 1, · · · , N , where Πj are (n−1)-dimensional hyperplanes. Of course, the set of unbounded
Neumann planes may be void, N = 0.

Note that the hyperplanes Πj must be mutually different for n ≥ 3, whereas this need not
be the case for n = 2.

Proof of Lemma 2. Assume there exists a sequence of (different) hyperplanes {Πj : j ∈ N}
such that there is (at least) one unbounded Neumann plane πj ⊂ Πj for each j. We first
show that the convex hull D of the polyhedral obstacle D must be symmetric with respect
to each Π ∈ {Πj}.

Let R denote the reflection with respect to Π. If D were not symmetric, i.e. D 6= R(D),
there would exist a vertex P ∈ R(D) such that P ∈ Dc. Applying even reflection to the
solution u of (1.1) and using the fact that at least n faces (cells) of D meet at the vertex
R(P ) of D (and D), we obtain n unbounded Neumann planes passing P and having linearly
independent normal vectors. Note that P ∈ Dc ⊂ Dc is a vertex of the convex set R(D), and
u is even symmetric with respect to Π and analytic in Dc. This contradicts Lemma 1 since
there do not exist more than n − 1 linearly independent vectors orthogonal to xn-direction.

Finally, we observe that D cannot be symmetric with respect to infinitely many hyperplanes
since the number of vertices of D is finite. This contradiction finishes the proof of the lemma.

�

3 Proof of Theorem

3.1 The case N = 0

To prove the theorem in this case (where no unbounded Neumann plane of u exists), we
employ path and reflection arguments due to [1] and later modified in [8]. Here we follow [8]
in spirit, but present a shorter version.

Step 1: existence of a Neumann plane
Assume contrarily that there is another polyhedral obstacle D1 6= D such that the far fields
of u and u1 (the solution of problem (1.1) for D1) coincide on S

n−1. The following arguments
are standard, and we refer to [6], [8] for the details. We have

u1 = u in the unbounded connected component Ω of R
n\(D ∪ D1) . (3.1)

Furthermore, since Dc and Dc
1 are connected, we obtain ∂Ω 6⊂ D ∪ D1 and can assume

without loss of generality that

S := (∂D1\D) ∩ ∂Ω 6= ∅ . (3.2)

By (3.1) and (3.2), there is a cell F ⊂ S such that ∂νu = 0 on F , and denoting by Π the
hyperplane containing F and by int(F ) the interior of the set F , we find a Neumann plane
π of u such that int(F ) ⊂ π ⊂ Π which must be bounded by our assumption.
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Step 2: path argument
Choose a point P ∈ int(F ) and a continuous and injective path γ(t), t ≥ 0, starting at
P = γ(0) and leading to infinity in the connected set Ω. In fact, if B is a sufficiently large
ball (centered at the origin), we can first connect P with some point Q ∈ Bc ∩Ω by finitely
many segments parallel to the coordinate axes, and Q may be connected to infinity e.g. by
a ray parallel to xn-direction. Note that the set γ := {γ(t) = t ≥ 0} is homeomorphic to
[0,∞).

Let M be the set of intersection points of γ with all (bounded) Neumann planes of u. By
Step 1, M 6= ∅. Moreover, M is bounded since there is no bounded Neumann plane outside
a sufficiently large ball B. (A Neumann plane π, with π ∩ Bc 6= ∅ and B large, must be
unbounded since ∂D is bounded.)

By Lemma 2 in [8], M is also closed, hence compact. Thus there exists t0 ≥ 0 such that no
Neumann plane of u can intersect γ(t) for t > t0. Let π0 ⊂ Π0 be a Neumann plane passing
γ(t0), where Π0 is an (n − 1)-dimensional hyperplane.

Step 3: reflection argument and final contradiction
We now apply the reflection argument of [1, Lemma 3.7] to prove the existence of a Neumann
plane π′ intersecting γ(t) at some t′ > t0 which is a contradiction.

Let R denote the reflection with respect to the plane Π0, and choose x+ = γ(t0 + ε) for
ε > 0 sufficiently small and x− = R(x+). Let G± be the connected component of Dc\π0

containing x±, and denote by E± the connected component of G± ∩ R(G∓) containing x±.
We set E = E+ ∪ π0 ∪E−. Note that E is a connected open set whose boundary consists of
cells of ∂D and R(∂D).

Then, by the (even) reflection principle for the Helmholtz equation in Dc, we obtain that u
is even symmetric in E (with respect to Π0), so that ∂νu = 0 on ∂E and E ∩Π0. Moreover,
E is bounded since otherwise Π0 would contain an unbounded Neumann plane.

Hence, γ(t) must intersect ∂E at some t′ > t0, so that there exists a Neumann plane π′

passing γ(t′). �

Remark 1 The decisive step in the above argument is the boundedness of the set E. Here
this is ensured by the fact that Π0 does not contain an unbounded Neumann plane.

Another possibility to prove boundedness of E is to use a bounded connected component G−

of Dc\π0 with ∂νu = 0 on ∂G−, in which case Π0 may contain an unbounded Neumann
plane. We will employ a version of this argument to prove existence of a bounded Neumann
plane in the case N ≥ 1.

3.2 The case N ≥ 1

We now assume that there is at least one unbounded Neumann plane of u.

Definition 3 Let π be a Neumann plane of u. We write π ∈ P0 if π is either an unbounded
Neumann plane (πj ⊂ Πj , j = 1, · · · , N) or a bounded Neumann plane lying on one of the
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hyperplanes Πj (j = 1, · · · , N). Otherwise, if π is bounded and not contained in one of the
hyperplanes Πj, we write π ∈ P1.

To prove the theorem for N ≥ 1 by contradiction along the lines of Section 3.1, we will modify
the path and reflection arguments appropriately. More precisely, we construct a path γ(t),
t ≥ 0, which starts at a Neumann plane of u and leads to infinity avoiding the finitely many
(cf. Section 2) Neumann planes of P0 for all t > 0. Then we prove existence of a bounded
Neumann plane intersecting γ(t) at some t∗ > 0 by using the reflection argument. Finally,
the path and reflection arguments of Section 3.2 are applied again to obtain a contradiction
to the existence of a “last” intersection point of {γ(t) : t ≥ t∗} with the Neumann planes of
P1.

Step 1. By Lemma 2 we can assume that P0 = {π1, · · · , πN+M}, where M ≥ 0 and πj,
j > N , are bounded Neumann planes lying on the hyperplanes Πk, k = 1, · · · , N . We
introduce the open set (cf. (3.1))

Σ := Ω\
N+M
⋃

j=1

πj , (3.3)

which has only finitely many bounded and unbounded connected components, but at least
one unbounded connected component. In fact, Ω̄ is the union of finitely many (possibly
unbounded) convex polyhedra, and by the hyperplanes Π1, · · · , ΠN each of these convex
polyhedra is cut into a finite number of polyhedral connected components. Recall that each
πj (j = 1, · · · , N + M), i.e. any Neumann plane on Π1, · · · , ΠN , extends to the boundary of
Ω and/or to infinity.

Let Ω1, · · · , Ωl be the bounded components of Σ if there is any, and the case l = 0 is not
excluded. We remove the bounded components (which may block the exit to infinity) from
Σ by setting

Σ1 := Σ\
l

⋃

j=1

Ω̄j (3.4)

and observe that ∂Σ1 consists of cells lying on ∂Ω and the Neumann planes from P0. The
following lemma is crucial for the path and reflection arguments of the next step.

Lemma 3 There is a cell F ∗ ⊂ ∂Σ1 with the following properties.

(i) int(F ∗) is contained in a Neumann plane π0 (which may be unbounded),

(ii) F ∗ lies on the boundary of a bounded connected component, say G−, of R
n\(Σ̄1 ∪ D)

such that ∂νu = 0 on ∂G−,

(iii) F ∗ belongs to the boundary of some (unbounded) connected component Ω∗ of Σ1.

Proof of Lemma 3. Let first l ≥ 1 and set K =
⋃l

j=1 Ω̄j . Note that Ω̄, Σ̄1 and K are unions
of finitely many convex polyhedra (bounded ones in case of K), and by (3.3), (3.4) we have

Ω̄ = Σ̄ = K ∪ Σ̄1 , int(K) ∩ int(Σ̄1) = ∅ . (3.5)
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The connectedness of Ω and (3.5) imply

S∗ := ∂Σ̄1 ∩ ∂K ∩ Ω 6= ∅ , (3.6)

and since ∂Σ̄1 and ∂K consist of cells, there exists a cell F with

F ⊂ S∗ ⊂ ∂Σ̄1 ⊂ ∂Σ1 . (3.7)

Moreover, there is a subcell F ′ ⊂ F such that

F ′ ⊂ ∂Ωj∗ for some j∗ ≤ l . (3.8)

To verify (3.8), we note that each Ω̄j is the union of finitely many convex polyhedra, and the
intersection of the boundary of such a polyhedron with F is either a cell or a convex set of
dimension ≤ n − 2 (possibly void). However, the latter case cannot occur for each of those
convex polyhedra since its intersection with F is nowhere dense in F .

From (3.6)–(3.8) we now observe that the cell F ′ satisfies (i) and (ii). In particular, it is
contained in a Neumann plane of P0, and we can choose as G− the bounded component Ωj∗ .

Let now l = 0, i.e. Σ1 = Σ. As in Step 1 in Section 3.1 we can choose a cell F ⊂ S ⊂ ∂Ω,
which additionally belongs to the boundary of a bounded connected component of Dc\∂D1,
say G−, for which ∂νu = 0 on ∂G−. This follows immediately from (3.1) and (3.2), provided
there exists a bounded connected component of Dc\(∂D1∩∂Ω). If the latter set is unbounded
and connected, we obtain ∂νu = 0 on ∂(Dc\∂D1). Note that we have Dc\∂D1 ⊂ Dc\(∂D1 ∩
∂Ω) and thus u = u1 in Dc\∂D1. Therefore, since ∂(Dc\∂D1) ⊂ ∂D ∪ ∂D1, ∂νu = 0 on ∂D
and ∂νu1 = 0 on ∂D1, we obtain ∂νu = 0 on ∂(Dc\∂D1). Furthermore, by (3.2), and since
D and D1 are assumed to be polyhedral obstacles, there is a bounded connected component
of Dc\∂D1, so that we have ∂νu = 0 on its boundary.

Therefore, in any case, there exists a cell F satisfying (i) and (ii). Finally, since Σ1 (where
Σ1 = Σ for l = 0) only consists of finitely many (unbounded) polyhedral components, we
can choose a subcell F ∗ ⊂ F which also satisfies (iii); see the proof of (3.8). �

Step 2. Now we select a (continuous and injective) path γ(t), t ≥ 0, starting at some point
P ∗ = γ(0) ∈ int(F ∗) and leading to infinity in the connected set Ω∗ (from Lemma 3).

Indeed, for a sufficiently large ball B centred at the origin, we first connect P ∗ to some point
Q∗ ∈ Bc ∩Ω∗ by finitely many segments parallel to the coordinate axes. Then, by Lemma 1
and because there is no bounded Neumann plane outside B, we may connect Q∗ to infinity
by a ray parallel to xn-direction.

Next we show that γ must intersect another Neumann plane π at some point P = γ(t∗),
t∗ > 0. For this we apply the reflection argument of Section 3.1 to u with respect to the
hyperplane Π0 ⊃ F ∗, where F ∗ is the cell from Lemma 3.

In particular, we use the bounded component G− from Lemma 3 and choose G+ as the
connected component of Dc\π0 containing γ(ε) for sufficiently small ε > 0 (cf. Section 3.1,
Step 3). Thus the existence of such a Neumann plane π is guaranteed (cf. also Remark 1),
and by our construction of the path γ, π must belong to P1.
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Denoting by M∗ the set of intersection points of γ∗ = {γ(t) : t ≥ t∗} with all Neumann
planes of P1, we can repeat the arguments of Section 3.1 to show that M∗ is compact. Hence,
there exists a “last” intersection point of γ∗ with the (bounded) Neumann planes from P1.

Step 3. Performing another reflection step, we obtain a final contradiction as in Section 3.1
since γ∗ can only intersect Neumann planes from P1. This finishes the proof of the theorem.
�

Remark 2 The theorem is not true for polyhedral scatterers in the sense of Definition 1 as
counter-examples in [9] show. In fact, the results of Liu and Zou [8] on the uniqueness of
polyhedral scatterers in the inverse Neumann problem with n linearly independent incident
directions cannot be improved in general. We also note that the arguments of Section 3.1
are sufficient to prove these uniqueness results with n incident waves since the corresponding
(simultaneous) Neumann planes are always bounded.

Remark 3 Combining our approach with some of the arguments in [9], [10], the theorem
can be extended to polyhedral obstacles with mixed type and impedance boundary conditions.
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