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Abstract

We consider an inverse problem of determining a coefficient matrix and an initial value for a first order
hyperbolic system. Assuming that the boundary values over a time interval are known, we characterize
coefficient matrices and initial values, and prove the uniqueness of some components of the matrix
function. The proof is based on a transformation formula and the spectral properties of the corresponding

nonsymmetric ordinary differential operator.
1 Introduction and the main result

We will consider the following initial value / boundary value problem:

Oou ou
. = Bo,—(t, P , -7 T, 1
5 (t,x) g (t,x) + P(z)u(t, ) <t< 0<x<

with boundary conditions

Uetn (t,0) = houe(t,0) £=1,2,--- .n, =T <t<T

wepn(t, 1) = Houge(t,1) £=1,2,---,n, =T <t<T
and with initial conditions

u(0,2) =a(z) 0<z<1.

(1.4)
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Here, let n € N, hy, Ho e R \ {-1,1}, /=1,2,--- /n, and let

up(t, x) ] 0
uz(t, x) 0 E, i
u(t,:c) - ) Bap = < E, 0 ) ) E, = " )
Uan (t, T) 0 !
p1,1($) p1,2($) . p1,2n($) al(a:)
Plz) = p2,1'(33) p2,2.($) p2,2fz($) ae) = G2F$) 7
pzn,1($) pzn,z(ﬂv) cee pzn,zn(x) a2n (l‘)

and wug, pre, 1 < k, ¢ < 2n be real-valued. Henceforth 0 denotes zero matrices whose sizes may change line
by Ine, and (M) ¢ denotes the (k,¢) -component of a matrix M. Moreover we assume also the compatibility

condition:

{ ag1n(0) = hgae(0) _T<t<T. (1.5)

aen(1) = Heay(1)
System (1.1) describes some vibrating system. For example, we consider a governing equation of an

electric oscillation in parallel n transmission lines:

L(xz) 0 a (I 0 E, \0 [ I R(z) 0 I\
(50 238 (0)e (2 5) () (" L) (D)o o

Here I = I(t,xz) and V = V(t,z) are vector-valued functions whose j-th components are respectively
the current and the voltage of the j-th transmission line. Moreover we assume that the electromagnetic
properties of the n lines are not homogeneous in x and the coefficients R, L, C, G depend on z € (0,1).
The parameters R, L, C, G are called a resistance matrix, an inductance matrix, a capacity matrix and a

conductance matrix respectively. If there exists a scalar function r(x) > 0 such that
L(z)C(z) = r(x)E,, (1.7)

we can reduce system (1.6) to (1.1). In fact, in terms of (1.7), we can reduce (1.6) to a equation in the form

o(1\__ 1t (0 oo (1) (R o (1
at(‘/)__r(f)(L(x) 0 >3x<V>+< 0 @z))(v)' (1.8)



Changing variables as

and

We will investigate

Inverse Problem

Determine a coefficient matrix P(x) and an initial value a(x) from the boundary values u(t,0),u(¢, 1), =T <

t<T.

For inverse problems for one-dimensional first-order system such as (1.1), the method of characteristics
is applicable (e.g. Chapter 5 in Romanov [8]). However such a method cannot characterize coefficients and
initial values yielding the same boundary values, although boundary data u(t,0), u(t,1), —=T < t < T, can
simultaneously identify a coefficient matrix and an initial value. For inverse problems for first-order systems,
see also Blagoveshchenskii [1]. For the corresponding inverse spectral problems with n = 1, see Ning [6],

Ning and Yamamoto [7], Trooshin and Yamamoto [11], Yamamoto [12].



In this paper, we will study the uniqueness in our inverse problem. Here, we will only consider the case
of n = 2. The basic properties for n = 2 such as the asymptotic behaviour of eigenvalues, are very different
from n = 1, and already the case n = 2 needs essentially different treatments.

In general, the uniqueness does not hold, as the following example shows.

Example
Let
0010 e’"
0 00 O 1
P = s =
@=11 00 0 a(z) 0
0 00 O 0
0 0 2 0 e
0 0 0 O 1
= s b = s
CW=1 5 0 0 o (=) 0
0 0 0 O 0
and hy = H; =0, £ = 1,2. Then we can verify that the solution to
%(t,x)234%(t,x)+P(x)u(t,x) —T<t<T, 0<z<l
us(t,0) = uq(t,0) =0, —-T<¢t<T
’u;g(t7 1) = u4(t, 1) = 0, =T <t< T
u(0, x) (x
is
e—l‘
1
u(t,x) = ,
to=| .
0
while the solution to
%(t,x):B46—g(t,x)+Q(x)ﬂ(t,m) -T<t<T, 0<z<l
Us(t,0) = Uy(t,0) =0, —-T<t<T
us(t,1) =uq(t,1) =0, —-T<t<T
(0, 2) = b(z)
is
—x2
o7
1
u(t,r) =
to=|
0



Therefore we obtain the same boundary value:

-1

ult,0) = (t,0) = Lt 1) =at1) =

S O ==

0
Consequently, the uniqueness does not hold, even though we restrict the coefficient matrices P(z) in (1.1)

P,
to a form 0 1(2) with 2 x 2 matrix P (z). O
P1 (1’) 0

We will find a condition for the uniqueness to our inverse problem, and the condition should be sufficiently

general. Here and henceforth, by v = up(t, x) we denote the solution to

9u(t,x) = By 2% (t,x) + P(z)ult, ) -T<t<T, 0<z<l1
wper2(t,0) = houe(t,0) €=1,2 —T<t<T

upro(t, 1) = Houp(t,1) £=1,2 —-T<t<T

u(0,2) = a(x),

provided that he, H; € R\{—1,1} are fixed.

Throughout this paper, we assume that the solution up,(t, z) is sufficiently smooth. By using an energy
estimate we can prove that there exists at most one solution. Moreover the existence of the solution can be
proved, and the sufficient smoothness can be proved by compatibility conditions of @ and P. We will omit
details of the unique existence of up, in order to concentrate on the inverse problem.

Henceforth L2(0,1) and H'(0,1) are the usual Lebesgue space and Sobolev space of complex-valued
functions.

We set
Mrp(P,a) = {(Q,b) € {C[0,1]}** ; uqs(t,0) = upa(t,0), ugs(t,1) =upa(t,1) —T <t <T}

for arbitrarily fixed (P, a) guaranteeing the unique existence of smooth up,. We can immediately see that
(P,a) € Mp(P,a). If Mp(P,a) has only one element (P,a), then uniqueness in our inverse problem would

be true. Thus it is sufficient to characterize the set Mp (P, a).



Definition 1.1 We define an operator Ap acting from {L2(0,1)}* to {L2(0,1)}*, by

{ (Apu)(z) = B44%(z) + P(z)u(z), 0<z<1 (1.10)

D(Ap) = {u € {H*(0,1)}*;ur42(0) — houe(0) = 0, wupya(l) — Hpup(l) =0, £=1,2}.

Definition 1.2 For an eigenvalue A of Ap, we call ¢ # 0 a root vector of an operator Ap for X if (Ap —
A¥¢p =0 for some k € N. We call dim{¢; (Ap — \)*¢ = 0 for some k € N} and dim{¢; (Ap — \)¢ = 0} the

algebraic multiplicity and the geometric multiplicity of A, respectively.

In order to state the main result, we assume the following three conditions:

(I): For each root vector f* of the adjoint operator A% for Ap, the fixed initial value a(z) satisfies

(a, [*){Ls00,0)34 # 0. (1.11)

(II): The following quadratic equation in « has two distinct roots:

det {aE2 - ( 6;” egyz )G(ép)m ( e;m ejgw ) G(GP)(I)‘l} —0 (1.12)

where hy = tanh iy, Hy = —tanhv,, and

0" (2) = (01, ¢ (2))kp=1,2 = (;(pk,e(l”) + Pr,e+2(T) + Prt2,0(x) +pk+2,€+2($))> brts’ (1.13)
0" () = (Of o (2)),0=1,2 = (%(—pk,e(x) + Phe+2(7) + prta,e(T) —pk+2,6+2($))) . (1.14)

and by G(0)(z) for a 2 x 2 -matrix © = O(z), we denote the solution to
%(G(@)(w)) +0(2)G(O)(z) =0, 0<z<1 (1.15)

with the condition G(©)(0) = E».

(III): For an arbitrary eigenvalue A of Ap, we assume that the geometric multiplicity of A is 1.



Remark 1.3 Since Condition (II) holds if the determinant of quadratic equation (1.12) in «, is not zero,
we can assert that the condition holds generically. Condition (II1) is always true for n = 1. By Theorem 2.1
stated in Section 2, if Condition (I1) holds, then the geometric multiplicities of the eigenvalues is one except
for a finite number of eigenvalues. Moreover we can assert that Condition (II1) holds also generically. In

fact, let @ and ¢ be the solutions to (Ap — X\)u = 0 with conditions at x =0

1 0
0 1

0) = 5 0) = )
co=| ) o=,
0 ha

respectively. Let u # 0 satisfy (Ap — N)u = 0. Then u = ap + S with some o, € C. Since u € D(Ap),

we have

(p3(1) = Hip1(1))a + (¥3(1) — Hiy1 (1)) =0

and

(¢a(1) = Hapa(1))a + (4 (1) — Hapa(1))8 = 0.

If either of p3(1) — Hip1(1), ¥3(1) — Hiv1 (1), @a(1) — Hapa(1l) and ¥4(1) — Hata(1) is not zero, then
a = 4B or B = ya where v is independent of o« and 3. Hence u = B(yp + ) or u = alp + y¥).
That is, {u; (Ap — N)u = 0} is spanned by one vector, which means that the geometric multiplicity of X\ is
one. Therefore Condition (III) breaks only if w3(1) — Hip1(1) = ¢¥3(1) — Hi9p1(1) = wa(1) — Hapa(l) =
Ya(1) — Hatpo (1) = 0. Thanks to the transformation formula (2.10) (Theorem 2.5) with P = 0, the condition

©(1) can be described by

wm=R®m@M+AKWU%wM@

where
hi+l Xz _ hi—1_-)Xz
5 ¢ 5 €
0
hlgrle)\z + h12*1€—)\.r
0

500(337)‘) =



Thus @3(1) — Hip1(1) = pa(1) — Hapa(1) = 0 are given by two equations involving A and K, R. We note
that K and R are determined by h1, ha and P. From (1) — Hiy1(1) = 94(1) — Hatpo(1) = 0, we can
obtain similar equations. Hence for given h, ha, H1, Ha, if (A, P) does not satisfy those four equations, then

Condition (II1) holds true. In this sense, Condition (IIT) holds generically.

Let P(x) and Q(x) be 4 x 4 -matrix functions. Here let 4 x 4-matrix function

_ [ RYz) R*(2)
R(zx) = ( J > (1.16)

with 2 x 2 -matrix functions R’ (z), j = 1,2, satisfy the following system of eight ordinary differential

equations

(1.17)

(B4R (z) + Q(z)R(x) — R(z)P(x)), , + (BaR' () + Q@) R(x) — R(x)P(%))) 10 440 =0
(BaR' () + Q) R(z) — R(z)P(x)), 145 + (Bal(z) + Q(z) R(z) — R(2)P()) 145, = 0,

O<z<l, k{i=1,2

and R(0) = E,. Here and henceforth we set R'(z) = 2&(z). By the theory of ordinary differential equations,

we can prove that such an R(x) exists uniquely.

Now we are ready to state our main result characterizing My (P, a).

Theorem 1.4 Let (P,a) satisfy Conditions (I),(11) and (I11) and let a € {C3[0,1]}* N D(A%). We assume

that T' > 2. Then
(Q,b) € Mr(P,a)

if and only if the following conditions hold:

R(1) =E,4 (1.18)
(BiR'(z) + Q(2)R(z) — R(z)P(x)), , =0, k(=12 0<z<1 (1.19)
(B4R (2) + Q(x)R(z) — R(x)P(x))} 010 =0, k=12 0<z<l1 (1.20)
b(z) = R(z)a(x). (1.21)



The theorem gives the uniqueness for some components. For example, we can prove obtain the following
result by verifying that (1.19) and (1.20) yield p1¢ = g1, 1 < ¢ <4 when py¢ = qze =0 for 2 <k <4 and

1<e<4.

Corollary 1.5 If we restrict a class of coefficient matrices to the matrix with the form

a,b,c,d € CH0,1]

and the initial value is known, then the solution to the inverse problem is unique under Conditions (I) - (III).

In Section 2, we state spectral properties of the operator Ap and in Sections 3-4, we prove them. Section

5 is devoted to the proof of Theorem 1.4.

2 Spectral property of Ap and transformation formulae

In this section, we will first present the spectral property of Ap defined by (1.10), and such properties
are necessary for the proof of Theorem 1.4. There are very few works concerning spectral properties for
a nonsymmetric operator of ordinary differential equations and Theorems 2.1 and 2.3 may be independent
interests. On the other hand, there are many results on the spectral properties for the classical Sturm-
Liouville problem and readers can consult Levitan and Sargsjan [4], Naimark [5] as monographs. For n =1,
see Trooshin snd Yamamoto [10].

Let o(Ap) denote the spectrum of the operator Ap and let i = /—1.

We present the asymptotic behaviour of o(Ap).

Theorem 2.1 There exist N € N and $1,39 C 0(Ap) such that

O’(AP):ElLJEQ, YNy =0.



(1) Let equation (1.12) possess distinct roots a1 and aa. Then the following (a) and (b) hold.
(a): X1 consists of 2(2N — 1) eigenvalues by taking the algebraic multiplicities into consideration, and is

ncluded in

{A; |Im/\—&|<N7r—g}.

Here and henceforth we set

. 1 1
a = ZImlog o) + Zlmlog s

and we take the principal value of the logarithm : —m < Imlogay; <m, j=1,2.

(b): All the elements of 3o are eigenvalues whose algebraic multiplicities are one, and

ZQC{)\||Im)\—&'\>N7T—g}

and with suitable numbering {\jm}j—=1.2,m|>N,mez of 0(A), the eigenvalues have an asymptotic behaviour

1 1
Ajm = 3 log aj + mmi + O <—> (2.1)

iml
as |m| — oo.
(2) Let (1.12) possess the multiple root oy = ag = . Then ¥y has the same property as in Case (1) and
we can number all the eigenvalues of Yo by {)\j7m}j:1727‘m|21\[7m€z such that A\ m = A2, may happen, but

Xim # Njrme for 3,5 =1,2 4f m #m/, and

1 1
Njom = 3 loga + mmi+ O (m) (2.2)

as |m| — oo. Moreover for sufficiently large |m|, the algebraic multiplicities of M m and Ao are one if

A,m # A2m and are two if A\, = Aap.

The asymptotic behaviour in the case of a3 # a4 has two branches whose real parts are close to % Relog a;

and %Re log cva, and is very different from the case of n = 1.

10



Next we discuss the completeness of eigenvectors.

Definition 2.2 We call {b;, }mez a Riesz basis in {L2(0,1)}* if each u € {L2(0,1)}* has a unique expansion

u = Z Cmbm, cm€C

meZ

and there exists a positive number M, which is independent of the choice of u, such that

MY eml® < Nlullfryayys <M Y leml®.
meZ meZ

We state the completeness of the root vectors.
Theorem 2.3 Let (1.12) have two distinct roots. Then the set of all the root vectors of Ap is a Riesz basis
in {L2(0,1)}*.

In Theorem 2.3, we note that we need not assume Condition (III).
In order to state transformation formulae, which are basic tools for our inverse problem, we prove the

following lemma. Until the end of section 2, we will consider general n € N, not necessarily n = 2.

Lemma 2.4 Assume that P(x) and Q(z) are 2n X 2n-matriz functions whose elements are in C1[0,1]. Let
ag,o(x),bre(z),1 < k,¢ <n be real valued functions. Let hi,1 <k <n be constants and |hy| #1,1 < k <n.

Moreover we set
Q={(y.z) eR*; 0<y<z <1}

Then there exists a unique solution K(y,z) € {C*(Q)}2"*2" to

OK 0K ‘
an%(yax) +Q(z)K(y,z) = K(y,x)P(y) — a—y(y,x)Bgn in Q (2.3)
Ky p2n(0,7) = —hi K, ,
k040 (0, T) i Ky.,e(0, ) k(=12 .n, 0<z<l (2.4)
Kign o0 (0,2) = —hp Kiin,0(0, 2)
Kipin(2,2) — Kpgne(x,2) = ag () k=12 n, 0<z<L. 25)
Ky o(2,2) — Kiyn o1n(2,2) = b e()

11



The proof is given in Appendix A.
Transformation formulae are given as follows. Let P(x), Q(z) be fixed 2n x 2n -matrix functions with

C'[0, 1]-elements. Here, let 2n x 2n-matrix function R(z)

(R@) R
M”‘(W@ H@)

with n X n matrix functions R?(x), j = 1,2, satisfy system of 2n? ordinary differential equations:

{<&¢ww+mwmm—mmmwmﬂw&uwm+@mmm—R@Pmuﬂﬂn=o 26

(BanR'(2) + Q(z)R(x) — R(x)P(%)), 4, + (Ban R/ (2) + Q@) R(z) — R(2)P()) 1400 = 0,
0<z<l, k{L=1,2,---,n
and

R(0) = Ea,.

By a classical theory of ordinary differential equations, we can prove that there exists a unique solution

R = R(x) to this system of ordinary differential equations.

Theorem 2.5 (Transformation formula in the stationary case)

Let 11,79, , 7o € R and let K = K(y,x) be the solution to (2.3),(2.4) and

K0 (2,2) — Kne(z,2) = (B2n R () + Q) R(z) — R(2) P(2) )1 0 kot=1,2,--- n. (2.7)
Kio(2,2) = Kipn o (2,2) = (B2 R () + Q(2) R(x) — R(x)P(2))kyon A
¢1(x7 /\) wl (.23, /\)
Assume that ¢(z, \) = and P(x,\) = are R?>"-valued functions and satisfy
Gan(, ) Van (2, A)
B2, % + P(x)p=)\p, O<a<l1
¢1(07 )‘) =T, Y ¢n(07 )‘) = Tn (28)
¢n+1(07)\) = h17-17 Ty ¢2n(07)\) = hpTy
Bo, %+ Q(z)p =Xy, O0<z<l
(2 (Oa )‘) =T1, ¢n(07 /\) =Tn (29)
wn—i-l(oa /\) = thla Tty ¢2n(07 )\) = hnTn~

12



Then,
¥(z,\) = R(x)d(x,\) + /0$ K(y,x)é(y,\dy, 0<z<lL. (2.10)

The proof of Theorem 2.5 is given in Appendix B.

Next we consider the following Cauchy problems:

9u(t,x) = By 2% (t, ) + P(x)u(t,z), x>0, —T+a<t<T-—uz (2.11)

wp(t,0) = we(t), Unte(t,0) = howe(t), £=1,2,---,n '
and

%(t,x):Bgn%(t,x)—&—Q(x)ﬂ(t,x), x>0, - THarx<t<T—zx (2.12)

ﬂg(t,O) :wg(t), ﬂn+g(t,0) Zhgwg(t), £=1,2,---,n '

for given wy € C1[-T,T].

We can prove the transformation formula for these Cauchy problems.

Theorem 2.6 Between the solution to (2.11) and the solution to (2.12), the following relation holds :
u(t,r) = R(z)u(t, ) —|—/ K(y,x)u(t,y)dy, x>0, —-THz<t<T-—uz,
0

where R(x) and K (y,x) are defined in Theorem 2.5.

Theorem 2.6 can be proved similarly to Theorem 2.5, by verifying that the right hand side satisfies (2.12)

and using the uniqueness for the Cauchy problem (2.12). We omit the proof.

3 The proof of Theorem 2.1

Step 1. We shall prove the following lemma.

Lemma 3.1 The spectrum o(Ap) consists entirely of countable isolated eigenvalues with finite algebraic
multiplicities.

13



Proof of Lemma 3.1. Let U(x, ) = (Ug,¢e(z, )k =1,2,3.4 be the solution to

B 4 P(z)U=\U, 0<z<l1
U(0,\) = Ej4.

We set

im0 om0
0 hz 0 H2
~h E
BO -~ M B} g 00
0 0 —H E,

(3.1)

We note that 0 means a zero matrix whose sizes may change line by line and for example, in the above, 0

means the 2 x 2 zero matrix. Then we have

71

y=| " | eD(4p)

3
Y4

if and only if
ye ('O, B0) + BV (1) =0,
For given f € {LQ(O, 1)}47 let us consider the following equation:
<B4i + P(z) — /\) v=f.
dx
By the variation of constants, a general solution to this equation is

(i, X) = U, N + Uz, ) /O Uy ) Baf (n)dy,

where U(x,)\) is the fundamental solution and 7 € C* is arbitrary. In order to satisfy the condition

v € D(Ap) for fixed A, we choose 1 such that

B5(0) + B{V4(1) =0,

14



that is to say,
1
(B + BPU, )+ BUPU1 N / U(y,\) "' Baf(y)dy = 0.
0
If det (B”) + B{MU(1,\)) # 0, then

1
n=—BY 1+ BOUI ) BPUI N / Uy, N~ Buf(y)dy
0

satisfies this condition. Moreover we can write

1
() = U NBY + BOU ) BOU, ) / Uy A Baf (y)dy

+UE) [N By
0
Therefore, if det(BiO) + Bil)U(l, o)) # 0 for some \g € C, then (Ap — \g)~! is a compact operator from
{L?(0,1)}* to itself. By Kato [3], this implies that o(Ap) consists of isolated eigenvalues with finite algebraic
multiplicities. Hence it is sufficient to show that there exists Ao € C such that det(BiO) + Bfll)U (1, X)) # 0.
Since

Uo (. \) = ( FEscosh Az Essinh Az >

FEssinh Ax  Es cosh Az

is the solution to

By-LUs(x,A) = ANUo(z,)), 0<z<1
UO(Ov)‘) = Ey,

by the transformation formula, we can write

Uz, A) = R(z)Up(x, A) +/I KW (y,z) ( Eacosh Ay 0 )dy

0 Eysinh Ay 0
£ E5sinh A
LA L B £ (3.2)
0 0 FE3cosh)y

Here, we recall that the 4 x 4-matrix



with 2 x 2-matrix functions R7, j = 1,2, satisfies

{ (BaR/() + P(e) R(x)ie + (BaR' (&) + P)R@)kroers =0 0o o

(BsR/(z) + P(2)R(2))re+2 + (BaR' (z) + P(2)R(2))rt2.0 = 0,

and R(0) = E4. Let K be the solution to

By2K " (y,2) + P(x) KW (y,2) = — 2K (y,2)By  in Q)

K{)p0,2) =0, k=1,234, (=12

(i) (1) , (3.3)
Ky po@w) = Kily y(z,2) = [Bal (2) + P(2)R(z)]ke, 0<a<1 k(=12
K (@,2) = Ky o(@,2) = [BaR (z) + P(2)R(@)|epr2, 0<a<1 k(=12
and K@ be the solution to
By22(y, > + P(2) KO (y,2) = ~282 (y,2)Bs in O
12[2( ) k:172a3a47 6:172 (34)
K,i ng (x,x) — K,ii)”(x x) = [BaR () + P(x)R(2)k,e, 0<2<1 Kk £=1,2 .
,gg( ) — K2y o o(,2) = [BaR (2) + P(@)R(2))ies2, 0<a <1 kl=1,2

We can prove by a usual method of characteristics that K (1) and K(® exist uniquely.

Let us consider the second term on the right hand side of (3.2). By integration by parts, we obtain

r E hy 0 1 /7 d Essinh Ay 0

| O (o a5 [ KOs ()
0 Essinh Ay 0 AJo dy \ Escoshly 0

y=z
1 Eysinh Ay 0 v Essinh Ay 0
KW(y,z) 27 - / S EW(yz) | 2O dy
B 0o Oy FEscoshy 0

- Escosh Ay 0
Therefore, for any C' > 0, there exists a constant Cy > 0, which is dependent on C and is independent of A,

such that

sup
0<z<1

if |[ReA| < C.

0 Essinh Ay 0 [Al

Here, for a 4 x 4-matrix M, we define a matrix norm |M| by

|A4‘:: max |A4k¢L
k,0=1,2,3,4

Similarly, we can verify that there exists a constant Cy = Co(C) > 0 such that

r Escosh\y 0 x 0 FEsysinh\y Cy
KW (y, 2 d +/ K@ (y, dy| < =2 3.5
/0 (v, ) ( Essinh Ay 0 Y 0 (v, ) 0 FEscosh\y v = [A| (3.5)

if | Re | < C.

sup
0<z<1
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Setting A = 0 4 2mmi with 8 € C and m € Z, we can write

Essinh 3 E5cosh 8

E h E5 sinh
det(B + BOU,N) = det (Bio) + BYRM) ( 2 cos B FEzsinh )) +0 <|;> .

Let us calculate

FEscosh  FEs5sinh )

B + B{YR(1
4 a B FEssinh 8 FEs cosh 8

By the definition of R(x), we can write

@) = —5 3 (P2 (@) + Pusnm (@) R (2)

m=1

(Pr,m (%) + Pry2,mt2(2)) R ev2(z), k=12

N)lH

MN l\D\H iMM

2
(Pr,m (%) + Prg2,m+2(2)) Rm,e(2)

m=1

k é+2

(Pi,m+2(x) + Pogrom(x))Rme+2(z), k,0=1,2

DN | =

m=1

Ry 0(0) = 0pe, k,0=1,2, Rie42(0)=0, k=12

Here and henceforth we set dxr = 1 and dge = 0 if k& # £. Setting

Tk,z(x) = Rk’g(x) + Rk,prz(.r) kl—1.2
The(2) = Rpo(x) — Ry py2(x), ’ 7

we can reduce the preceding differential equation into

7€(x) +Zm 1016 m( ) Z(:C) =0
k7€(m) +Zm 1016 m( ) @(Z) =0 k,éZ 1,2
k,0(0) = 7%,0(0) = ke,

<

Recalling the definition of G(6F)(z) and G(6F)(x), we can write

17



Hence

E h FE5 sinh
B£0)+B£1)R(1) QC?S B E;sinhf
Essinh 8 Eycosh 8

::< ~h E2> ! ( 00 ) (eﬁGwam+ﬂrﬂG@Pxn eﬂGwan—wfﬁG@Px1>>

o o ) 2\ 7 B BGOP)(1) — e PGOF)(1) PGOP)(1) + e PG(OP)(1)

—h Es
= ( e (B~ )G(OP) (1) —e P (Ba+ )G(OP)(1) e (Ba— H)G(07) (1) +e~ P (Ba+ H)G(ET)(1) )
2 2

Therefore we have

E h FE5sinh
det Bio) + Bfll)R(l) 2 C?S A 2sinh 5
FEysinh 8 FEjcosh

1 0 Es
‘Tm<wﬂ@—ﬁWWWM@+%—eW@+ﬁm@wm@—m} *)
This determinant is not zero if and only if
det (eﬂ {(E2 — H)GOP)1)(Bs + 1) — e 28 (s + H)GBT)(1)( Bz — E)}) £ 0.

By hj # +1 and H; # +1for j = 1,2, det G(#7)(1) # 0 and the continuity of the determinant, for sufficiently
large Re 3 > 0, the preceding determinant is not equal to zero. Here we used that det G(0#7)(1) # 0. In fact,
for y € (0,1), by G(0)(z;y) we denote the solution to (1.15) such that G(6)(y;y) = E2. Then the uniqueness
of the initial value problem for (1.15) yields G(0)(z;y)G(0)(y; ) = Es, which implies det G(6)(x;y) # 0 for
any x,y € (0,1). Since G(6F)(1) = G(#7)(1;0) by the definition, we have det G(87)(1) # 0.

Consequently we can choose sufficiently large |m| and sufficiently large Re 8 > 0 such that
det(B”) + BMU(1, 1) £0

for X\ # B + 2mmi.

Therefore, the proof of Lemma 3.1 is completed. O
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Step 2. Let a 4 x 2-matrix function ¢(z, A) be the solution to the following equations:

Batkg(a, ) + P(e)d(a,\) = Ab(z, ),  0<z <1
ww=<%>

Then, A € C is an eigenvalue of Ap if and only if the determinant of
o) = (A B )61

is equal to zero. Henceforth we call det ®(\) the characteristic function for Ap. In fact, if ¢ is an eigenfunction

of Ap, then we can choose (c1,c2) # (0,0) such that
Y(x,A) = c1¢1(2,A) + c22(w, A),
where ¢y is the ¢-th column vector of ¢(x, ), £ = 1,2. Since
( _H B, )w(L)\) —0,
we have
( _H B >¢(1,>\) - ( _H B, )c1¢1(1,x)+( “H B, )CQ¢2(1,A) —0.
Hence
(-8 B)aan, (-0 B )ée0n}

is linearly dependent, so that det ®(\) = 0 follows.

Conversely, if
(-F B )eln), =12
are linearly dependent, then there exists (¢1,c2) # (0,0) such that

(—H B ) (o112 +ea0o(1,0) =0,
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Then 9(x,\) = c1¢1(z, A) + cada(z, A) is an eigenfunction of Ap, that is, A is an eigenvalue of Ap. Thus we
have proved that A is an eigenvalue of Ap if and only if det ®(\) = 0.

Moreover we can prove

Lemma 3.2 The algebraic multiplicity of an eigenvalue Ao is equal to the multiplicity of Ao as zero of

det D(N).

The proof is given in Appendix C.

Let us calculate ®(\). Using the transformation formula, we have

cosh Ax + hy sinh Az 0
oz, \) =R(=z)| . 0 cosh Az + hg sinh Az
sinh Az + h1 cosh Az 0
0 sinh Az + ho cosh Az
cosh \y 0
’ 0 cosh \y
+ [ KWy, i
/0 (@) sinh Ay 0 y
0 sinh \y
h1 sinh Ay 0
: 0 hy sinh Ay
), dy. 3.7
/0 (v.2) hi cosh Ay 0 Y (3.7)
0 hs cosh \y

Here KM (y,z) and K (y,2) are defined by (3.3) and (3.4).

For simplicity, by &(,\) we denote the integral terms on the right hand side of (3.7) with z = 1. Setting

he = tanh pg, we can write

cosh(A + p1) 0
0 cosh(A + p2) L 0 ~
1,A) = R(1 cosh i1 A). 3.8
s =Ry | I ( REN 8 (35)
0 sinh(A + p2)

By (3.6), we have

1 Ap seMtie £ By o= A ke, ,_ _1 0 ~
(b(la)‘) — 5( ( k€ + Dk € )k,571,2 > < cosh pq . > +¢(>\)7

(ApceMHe — By je ™ 7H)y o 5 0

cosh po

where G(0F)(1) = (Ap)k =12, GOF)(1) = (Bro)ki=1.2-
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Multiplying ( ~H E, ) from the left, we obtain

1 =~ 0
B(\) = = | coshm . (Ak,eeMeruk _ Bk,eef()\Jr#H"Vk))k’e:lQ
2 0 cosh vy
1
0 ~ ~
X < 0058“1 1 > + D(A) = Do(N) + D(N), (3.9)
cosh pa

where H; = — tanh vy and ®()\) = ( —H E, ) ().

Let us calculate E)()\) By integration by parts,

b0 = (-1 Ez)l

A
y=1
sinh Ay 0 h1 cosh \y 0
x KW (y,1) O s e, N ha cosh Ay
cosh Ay 0 hq sinh Ay 0
0 cosh \y 0 hg sinh Ay o
sinh \y 0
- ( / I KO (y,1 0 sinh Ay a
cosh Ay 0
0 cosh Ay
hy cosh Ay 0
H Lo 0 ha cosh Ay
()] ,
( 2 )N J, oy (y,1) hy sinh Ay . Y
0 ho sinh Ay
Hence
el %eIReM’ (3.10)

where we recall that [®(\)| denotes the matrix norm of ®(\) and C' > 0 is a positive constant which is
independent of \.

We show that there exists a positive constant K satisfying
|[ReA\| < K for any A € o(A4p). (3.11)

If not, then there exists a sequence { Ay, }men C 0(Ap) such that lim,,—,o | Re \;,| = co. Without loss of

generality, we suppose that there exists a subsequence {A;,, }men C {Am}men satisfying lim,, .o Re ), =
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co. Since \;,, are eigenvalues, by (3.9) we have

0=|det ®();,,)|

2 0 1

cosh vy

1 0 -
x | coshm . +®(N\,) |-
0 —
cosh pa

Here, using (3.10), we have

1 = 0 _ Y
det <_ Cosh g (Akje)\"’"-ﬂtﬁ_uk _ Bk,Ze ()\Jm+uz+uk))kl:1’2

0=|det ®(};,, )| =

1 — 0 ; _ _ o o
det (2 cos(l;ul . (Ak,lezlm)\]m+ue+yk _Bkle QRE/\Jm ZIm/\Jm e Vk)k,[:l,Z

cosh vy

L 0
X cosg 75 . +em
cosh pa

where lim|,,| oo [em| = 0. Here we have det G(67)(1) # 0, which is derived at the end of Step 1. Hence,

62 Re A

Jm

since det(Ag ! TV o1 0 = etrTr2T1H12 det G(OF)(1) # 0. Then taking |m| — oo, the right hand side
tends to oo, because of the continuity of the determinant. Thus this yields a contradiction and the proof of

(3.11) is completed.

Step 3. We choose sufficiently large K > 0 satisfying (3.11) and

1
‘2Relogaj < K, 7=12.

We further choose K > 0 large enough, so that
| det ®(N) — det Pg(N)] < | det Po(N)|

for all A with |[ReX| = K. Here we recall taht & = ® — ®. It is possible because (3.10) holds and
det(Ak,geerV")k,g:l’g 7é 0, det(Bk’gefwfy")k,g:LQ 7é 0 in (3.9).

Then we set

Km:{)\; —K—-1<Red< K+1, &+m7r—g<lm)\<&+m7r+g}, m e Z,
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using the constant o defined in the statement of Theorem 2.1.
Now we will prove the following Assertion :
There exists N € N such that in K, there are exactly 2 zeros of det ® by taking the algebraic multiplicities

into consideration for |m| > N.

Noting
Ky, ={A+mmi; X € Ko},
and
cosh(A + p1) 0
~ 0 h(A : 0
oo =( - B )RO)| COshA ¥ p2) < ooshi )
sinh(\ + p1) 0 0 cosh
0 sinh(\ + p2)
by definition (3.9) of @, we have
i o = mij ) =L.
JDin |det ®o(A)| = min |det Bo(})]
For sufficiently large N € N, we have
sup |det ®(N\) —det Po(N)| <L, N <|m)|
AEOK m
by (3.10) and the linearity of the determinant in each column. Therefore
|det ®(A) —det ®o(N)] < |det Po(A)|, on A€ IK,,. (3.12)
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On the other hand,

det @0()\) =0

1
< det (% ( COS(;‘ v (1) ) (Ag g THetve By ge=Obmetvi)y,

cosh vo

1
% ( cosh p1 0 ) ) =0
0 1
cosh po

<= det ((Aue)‘*”””k — Bk7g€7()\+uz+uk))k,€:1,2) =0

9 et 0 et 0
= det <e A( 0 o >G(9P)(1)< N )
e 0 ~ et 0
(0 A Jemo ()
= det <E - ( o ) @) ( ol ) G<6P><1>—1> ~o.

Therefore, from the definition of a; and as, the zeros of det ®( are

1
5 logaj; +mmi, m€cZ.

By the Rouché theorem, all K, contains exactly 2 zeros of det ® by taking into consideration the multiplic-
ities. Thus the proof of Assertion is completed.

Setting

K(O)E{)\; ~K-1<ReA<K+1, &—Nw+g<ImA<&+Nw—g},

we have
|det ®(\) — det Bo(\)| < |det Bo(N)| on K,

by (3.12). Hence, since det ®o(\) = 0 possesses 2(2N — 1) zeros in K(©), the Rouché theorem yields that
K© contains exactly 2(2N — 1) zeros of det ® by taking into consideration the multiplicities.

According to the argument of this step, in terms of Lemma 3.2, we see:
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There exists N € N such that K, contains exactly 2 eigenvalues of Ap for all im| > N and KO contains

2(2N — 1) eigenvalues of Ap by taking into consideration the algebraic multiplicities.

Step 4. We will show the asymptotic behaviour of the eigenvalues. Here let N < |m|. We note that
two zeros of det @ are included in K, with the multiplicities. Now we consider det ®(\) = 0 in K,,. By
(3.9) and (3.10), using the linearity of the determinant in each column, we see that det ®(A) = 0, A € K,
is rewritten as

1

m|

det ((Ak7ze>\+/tz+l/k — Bk7ge_()‘+“‘+”k))k,g:Lg) =0 < ) , ANE K.

By |ReM| < K + 1, we can rewrite the left hand side to obtain

—2u —2n
o [ €7 0 oP em 0 Py1y-1 0 1
s (7 2 Yo7 2 Yo )=o(), rer.

We rewrite this equation as

1
(M2 +a1e®* +a9=0 <|m|> , ANE K, (3.13)

where a1 and ag are constants. That is, A is a root of

1
64)‘—|—a162)‘—|—a0—|—nm:0, nm—O(ﬁ>.
m

We set (, = %log a1 +mmi € K,,. Then o; = e?“» and by the definition of a;, we have
2% e 0 =p e 2m 0 Py qy—1
detg e*>™ Ey — 0 o2 G(67)(1) 0 o212 G(67)(1) =0,
that is, (,, is a root of the equation in A :
e +a1e®* + a9 =0.

Using the Rouché theorem, we will estimate the difference between (,, and a root of (3.13). First, for
sufficiently large |m|, we consider a circle S¢,, . centred at (,, with radius r,,. For large |m|, we will find
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rm such that
[m| < e +are®* +ag| on S, .- (3.14)

We set p(A) = e +a1e** +ag and n = a1 + 2. Let us calculate [p(A)| under |A — (| = 7. By p(¢m) = 0,

we have

le™ + are®* + ag| = [{(e** — 1) + a1 }* + ar {(e** — a1) + a1} + ag|

= (e — a1)® +2(e* — ar)ar + a1 (e — ar)| = (¢ — a1)® + (e — ai).

Case 1: (1.12) possesses distinct roots a; and «s.

Then 1 # 0 and we have
Ip(N)] = |e* — o] ‘(62)\ —aq) + 77’ > Cor |(e2)‘ —aq) + 77‘ on Se,. .r

At the last inequality, we used (,, = %log a1 +mmi and |e** — | = |ay||e*A=¢m) — 1|, Taking sufficiently

small d < 1, by || > 0 we can estimate
|(e2)‘ — 1) +77’ >1n—Cor>C >0 on S, foral r<d,
where d and C are dependent on a;, a1, and independent of m. Hence

lp(M)] = Cr.

1
[m]

), for sufficiently large C’ > 0, we set 7, so that Cry, > |km|, that is,

C/
— Iml?

Therefore, since |k, | = O (
(3.14) holds on S, (1) .
Moreover p(A) possesses a unique zero in {A; |A — (| < 7} for sufficiently large |m|. Applying the

Rouché theorem, in terms of (3.14), we see that e** + a;e?* + ag + K, = 0 possesses a unique zero denoted

by At m in {A; |A = (| < rm} and

1 1
AM.m = =logay + mmi + O <—> .
’ 2 m|
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For a, we can argue similarly. Thus the proof of (2.1) is completed in Case 1.

Case 2: (1.12) possesses the multiple root @1 = ae. Then n = 0, and

(V)| = [} — > > C3r? on Se,,.

and for sufficiently large |m|, the function p()\) possesses exactly two zeros in {A ; |A — (| < 7} including

the multiplicity. Choosing 7, = \/% with large C’ > 0, we can argue similarly to Case 1, in terms of the
m

Rouché theorem to see that e** +a1e** +ag+km = 0 possesses two zeros A1, and Az, in {A; [A—Gn| < 7o}

by taking into consideration the multiplicities, and

1 .
|)\j,m - le =0 (W) > J= 172

as |m| — oo. Thus the proof of Theorem 2.1 is completed. O

4 The proof of Theorem 2.3

In this section, we prove Theorem 2.3. For this, we apply the Bari theorem (e.g., Gohberg and Krein
[2]).
Let a1, ag be the solutions to (1.12). Because of the assumption oy # ag, for sufficiently large |m|, we

see that

Km:{)\; —K—-—1<Rel< K +1, &+m7r—g<lm)\<a+m7r+g}

contains two eigenvalues each of whose algebraic multiplicity is one.

Let us set 3; = %logaj, j = 1,2. Now we prove that

cosh (81 + p1) 0
~ 0 cosh (81 +p2) |
rank ( —H F» )R(l) sinh (81 + 1) 0 =1
0 sinh (81 + p2)
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By (3.6), this ranks is equal to

e~ 0 ~ e~ 2m 0
rank{6261E2< 0 o2 )G(QP)(1)< 0 22 )G(GP)(1)—1}.

By the assumption that a; = €291 is the solution to (1.12), the rank is not equal to 2. We assume

nk{ﬁE—<0 6_02u2>G<5P><1><6_;‘” o >G<9P><1>1}:o.

Then because each column of this matrix is equal to 0, we have

d e 0 ~p e~ 0 P 1
¢ foufor (7 2 Ym0 awar)

This contradicts the assumption that quadratic equation (1.12) has distinct roots. Therefore we obtain

=0.

a=e2B1

cosh (1 + 1) 0
~ h
rank ( —H Fs )R(l) . 0 cosh (1 + piz) =1
sinh (61 + p1) 0
0 sinh (61 + p2)
Then there exists (¢1,c2) # (0,0) such that
cosh (81 + 1) 0
- 0 h 0
gm0 e | () (0
sinh (81 + p1) 0 Co 0
0 sinh (81 + p2)
Without loss of generality, we can assume that
0
~ h 0
( “H B, ) Ry | CohBritne) |, . (4.1)
0 0
sinh (81 + p2)
Then we have ¢; # 0.
Similarly, we can take (di,dz2) # (0,0) such that
cosh (B2 + p1) 0
~ 0 sh d 0
(-# B )RO)| cosh (2 + ) L) = :
sinh (82 + p1) 0 da 0
0 sinh (B2 + p2)
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and we can assume that

0
(- B )R cosh(ﬂgﬂm) ¢<8>

sinh (82 + p2)

without loss of generality. Then we can directly verify that d; # 0.

By S(x), we denote a 4 X 4 matrix

crcosh(fBix + p1) dicosh(Bex + 1) crsinh(Brx + p1)  dq sinh(Bax + p1)
S(z) = R(x) cocosh(B1x + p2) docosh(Bex + pe)  cosinh(Brx + p)  do sinh(Bax + p2)
crsinh(Br1x + p1)  disinh(Bex 4+ 1)  cpcosh(Bix + 1) dy cosh(Bazx + py)
cosinh(B1x + p2)  dosinh(B2x 4 p2)  cocosh(B1x + p2)  dz cosh(Bax + p2)

Since the property of the determinant yields

i A BY_yA-B B-4
=de
“\B 4 B A

A-B 0
— det — det(A — B)det(A + B
e( B A+B> et )det(A+ B)

for 2 x 2-matrices A, B, we have

coexp (frz+ p12)  daexp (Ba + pi2)
et ( crexp (—fre — ) dyexp (—Boz — 1) ) .

det S(z) = det R(x) det ( crexp (brz + 1)  diexp (Box + 1) )

coexp (—fix — p2) dpexp(—fax — p2)
If c1dy — cady # 0, then the inverse matrix S~!(z) exists. We will prove cida — cady # 0. If not, then we

can take a constant v such that

Hence 31 and (2 are the solution to the following equation in \:

cosh (A + 1) 0
- 0 cosh (A + p2) c1
“H E, )RQ1 -0, 4.2
( H 2 ) ( ) Sinh ()\ + ﬂl) 0 ( C2 ) ( )
0 sinh (A + p2)

which implies

dije* +dize”* =0
do1e* +dgse™ =0
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with some di ¢ € C, k,¢ = 1,2. Then there exists dig¢ # 0. Otherwise all A\ € C is the solution to (4.2),

which means that ®o(A\) = 0 for all A € C. This is a contradiction.

Therefore dividing some dj s # 0, we obtain €21 = 272, Hence 2031 — 232 = 2k7i with some k € Z, that

is,

log a1 = log as + 2kmi.

This contradicts that a; # ao. Thus we proved that cide — cady # 0.

By the definition of S, we have

COSMTT c1 cosh (frx + mmiz + pq)
S(x) N 0 ~ R(z) Co c?sh (G + mmjx + p2) :
isinmmx ¢y sinh (frz + mmiz + pq)
0 cosinh (f1z + mmiz + pa)
0 dy cosh (Bax + mmix + 1)
() coOSMTT — R(x) doy c.osh (Boz + mw?m + p2)
0 dy sinh (Bax + mmiz + pq)
isinmmx do sinh (Bax + mmiz + pa)

We set
c1 cosh (frx + mmiz + p) dy cosh (Bax + mmiz + pq)
€1 = R(z) Co Cf)Sh (Prz + mﬂ%‘x + u2) " eam = R(x) ds Cf)Sh (Bazx + mmjx + u2)
¢y sinh (frx + mmiz + pq) dy sinh (Box + mmiz + 1)
co sinh (frx + mmiz + pa) dg sinh (B + mmiz + p2)
Since S(z) is invertible and
COS MTX 0
0 coSMmmx
tsin mmx ’ 0
0 isinmmnzx

meZ

is a Riesz basis in {L2(0,1)}*, we see that {€1,m,€2.m }mez is a Riesz basis in {L3(0,1)}" (e.g., Gohberg and

Krein [2]).
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We can write an eigenfunction corresponding to Aq ., as

cosh(A1,me + 111) 0
R 0 cosh(A1,;mx + p2) E{lm)
(z) . ~(m)
sinh(A1,mx + p1) 0 (2
0 sinh(A1 ;e + p2)
~(m)
~ ~ ¢
(A1) Bm) ) ( o ) ~ (4.3
2

~(m) ~(m)

from (3.7). Here, ¢1 (A1, ), d2(Aim, ), m € Z correspond to the integral terms on (3.7) and &™), &™ m €

Z are constants such that

cosh(A1,m + f1) 0
~ 0 cosh(A1,m + p2) &m)
(-8 B )RO)| e
sinh(A1,m + p1) 0 5
0 sinh(A1,m + p2)

- . . ~m) 0
+(-F B )( aiml) S0um)) ( ;;n) ) _ ( . ) (4.4)
Such E{lm),%m)

Cy ', m € Z exist because A1 ., are eigenvalues. By (2.1) and (3.10), we choose C' > 0 such that

|k (ALm, )| < meZ0<z<l. (4.5)

C
ml’
Now we prove that for sufficiently large |m/|, we can take E{lm),?:ém) such that E{lm) =c; and E{Qm) —c2 =

0 (%)

Because we assume (4.1), we have

0
( _F g )R(l) cosh(>\16m+u2) £ < 8 ) (4.6)

sinh (A1, + p2)
for sufficiently large |m|. Then, by (4.4) and (4.5), we have E(lm) # 0 for sufficiently large |m|. Multiplying

2, with A

¢, ey a*f’l”” we can take (cq, )) as (E{lm),éém)).

Now let us prove co — E{Qm) =0 (ﬁ) For this purpose, we will first prove that E{Qm) = O (1). Equation
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(4.4) yields

cosh(A1,m + p1) 0
~ 0 cosh(A1,m + p2) c1
( —-H Ep ) R1) | . ( ~(m)
sinh(A1 g + f11) 0 (D)
0 sinh(A1 m + p2)

(-0 B )( 60um1) eOum1) ) ( Eg,;) > - ( 8 ) (4.7)

that is,

cosh(A1,m + 1)

~ 0 - ~
—-H FE R(1 + —-H FE AM.m, 1
Cl( 2 ) (1) sinh(A1,m + p1) “l ( 2 )¢1( 1 1)
0
0
m ~ h(A m ~ ~ 0
& (-8 B RO [ " ( 1(’)’“”2) +&" (~H By ) da(am,1) = ( . )
sinh(A1 . + u2)
By using (4.6) and ¢ (A1,m,1) = O (\m|>’ we obtain ¢; ~ = O(1).
We will estimate cg — E{Qm). Because of (4.7) and A1, = B1 + mmi + 6y, with 6, = O (ﬁ), we have
cosh(B1 + 1) 0
~ h
( 7 B )R(l) . 0 cosh(B1 + p2) cosh ., A(C;L)
sinh(3y + p1) 0 Cs
0 sinh(f31 + p2)
sinh(81 + p1) 0
_ 0 sinh(B1 + p2) . 1
+( - E )RQ hom [ L
( 2 ) (1) cosh(B1 + u1) 0 o Eé )
0 cosh(fB1 + p2)
~ ~ ~ C1 0
+( —H FE; ) ( H1(A1ms 1) d2(A1,m, 1) ) ( E<2m) ) = < 0 >
From this equation, we subtract the following;:
cosh(fy + 1) 0
~ h
( _H E2 ) R(l) ) 0 cos (/81 + ,u2) COSh(sm C1 _ 0 7
sinh(B31 + p1) 0 &) 0
0 sinh(81 + p2)

which follows from (4.2). Then, since the second and the third terms on the left hand side are bounded by
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0 (L) in terms of d,, = O (L) and (4.5), we obtain

[m] [m]

0
cosh 6,, ( ~H FE, ) R(1) COSh(ﬂS +h2) (c2 — Eém)) =0 (%) .

sinh(51 + p2)
Therefore, by (4.1) we have

. 1
-V =0(o).

Thus for sufficiently large |m/|, we can choose an eigenfunction fi ,,, corresponding to A1, such that

cosh(A 1 me + p1) 0
0 cosh(A1,ma + pi2) c1 < 1 >
m =R ’ +0(— ). 4.8
fl7 (fﬂ) ({E) Sinh()\Lm:T + /141) 0 co + 0) (\Tlﬂ_|> |m| ( )
0 sinh(A1 mx + p2)

For the eigenvalue Aq ,,, for sufficiently large |m|, we can argue similarly and can choose an eigenfunction

f2,m corresponding to Az, such that

cosh(Agme + f11) 0
0 cosh(Ag ;@ + p2) dy ( 1 )
m —R ’ +0|—). 4.9
.f2A, (117) (93) sinh()\gmx + Nl) 0 da + 0O (|71_n\> ‘m‘ ( )
0 sinh(Ag,mx + pi2)

Supplementing root vectors to f;m, j = 1,2 for sufficiently large |m|, we can obtain the totality of all

the root vectors which can be denoted by { fj.m }j=1,2, mez without fear of confusion such that

lejm(z) = fim(z)| = O (%) , 0<xz<l.

Therefore we have

Z Z [lejm — fj,mH%LQ(O,l)}‘* < 00.

j=1,2meZ

If {fjm}j=1,2,mez is linearly independent, then we can complete the proof of the theorem by the Bari
theorem (e.g., [2]). Let us prove the linear independence of {f;j m}j=1,2,mez. For this purpose, we renumber
the eigenvalues of Ap and the root vectors {f;m};j=1,2mez as follows. In terms of Theorem 2.1, we number

the eigenvalues {\;m}j=1,2,mez as

o(Ap) = {prtrez U{veti<e<n,

33



where uy,k € Z are the eigenvalues with algebraic multiplicity one, vy, 1 < ¢ < N are the eigenvalues with

algebraic multiplicity x, > 2 and

Mk, 7é/~"k27 Ve, 7&1/527 kl#k%gl 7&82

We renumber the root vectors { fjm}j=1,2.mez as

{fim}Yi=1.2.mez = {grtrez U {hejhr1<e<ni<i<v,

where gy is an eigenfunction corresponding to the eigenvalue ux, and {hs;}1<j<y, is a basis of {¢; (Ap —
ve)*¢ = 0for some k € N}.

Now we verify that

> arhe; + Y Brgr =0, au, B €C (4.10)

£=1,2,---\N, j=1,2,--- ,x¢ keZ

implies ay; =0, 1 </ <N,1<j<x¢and B =0, k € Z. We define

1
P, =

2mi Jr,

(n—Ap)~tdu, keZ

where T'y,, k € Z is a sufficiently small circle centred at py, including no other points of o(Ap). By Theorem

2.1, such I'j, exists. Then

Pigr = gk, Pugr, =0, Prhej =0 ifk#k, 1<L<N, 1<j<Xxs

SESINLIR) >

independent system, we obtain o ; = 0,1 < £ < N, 1 < j < x¢. Thus the proof of Theorem 2.3 is completed.
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5 The proof of Theorem 1.4

We denote the adjoint operator of Ap by A}. We can easily see that

(Apu)(z) = —B4Z—Z(:c) + Plz)u(r) O0<ax<1

D(AS) = {u € {H*0,1)}* ; uen(0) + houe(0) =0, wppn(1) + Houg(1) =0, £=1,2}.

Here P! denotes the transpose matrix of P. By Theorem 2.1, we can number all the eigenvalues of Ap
as {A\m }mj<n—1 U {Njm}im|>nN,j=1,2 such that the algebraic multiplicity of \;,, is one for [m| > N and
j = 1,2, and the value \,,, |m| < N — 1 appears as many times as its algebraic multiplicity. According to
the numbering of the eigenvalues, we number the eigenvectors and the associated root vectors. That is, in
the case |m| > N, for j = 1,2 we choose an eigenvector f; ., of Ap for \;,, satisfying (4.8) and (4.9). We
note that by Condition (IIT) an eigenvector is determined uniquely up to multiples. Furthermore we know
(e.g., [3]) that o(Ap) = o (A%) and the algebraic multiplicity of A € o(A%) is equal to the one of X € o(Ap).

By gjm, j =1,2,|m| > N, we denote an eigenvector of A} for A; ,, such that

(fim: gim){L20,1))4 # 0-
In fact, gj . is orthogonal to {¢ € {L2(0,1)}*; (Ap — \)*¢ = 0 for some k € N} for any eigenvalue A of
Ap which is different from \; . (e.g., [3]). Therefore if (fjm,gjm)¢r2(0,1)y+ = 0, then Theorem 2.3 implies
that g;., = 0, which is impossible. Hence, for any a € {L?(0,1)}*, we can set

(a;gjm){L2(0,1))4
fiims Gim) {22 (0,1)34

Oéj,’m = (
Moreover we put
9j,m(t) = Oéj,me)\j'mt7 |m| > N, Jj=12.

In the case |m| < N — 1, the eigenvalue A, appears y.,-times according to its algebraic multiplicity ., :
Ag = ... = Ag4xm—1. Then by f; we denote a corresponding eigenvector, and by fo4¢(z),1 <€ < xm—1,a
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Jordan chain of the associated root vectors. That is, fgye, 1 <€ < xpm — 1, satisfy (Ap — Ag) fgre = fore—1-
We denote by gg+y,.—1 an eigenvector of the adjoint operator A% for the eigenvalue A, and by ggty..—s
2 < ¢ < xm we denote a Jordan chain of associated root vectors. Here, (Ap — Aq)Gg+xm—t = Gg+xm—e+1 for
¢ =2,3,--+,Xm. Then we can prove (e.g., Propositions 2.2 and 2.3 in [7]) that (f;1¢,9q+e){z2(0,1)3¢ # 0,

0 << xm — 1. Thus for any a € {L(0,1)}*, we can set

(a, gg+e){z2(0,1)}4
fart, 9are) (L2 0,134

Tkt = | 0< €< xm —1

and

N Xm—4€—1 tk
Ogre(t) =t [ Y- etk |5 0 < < xm — 1.
k=0

Then we renumber { fj m }m|>~,j=1,2 fore, 105,m}m|>N.i=1.2> Og105 195.m Him|>N,j=1,2, Ggre With 0 < j <
Xm — 1 as {fm}mez, {Om}mez and {gm}mez.

In terms of 6, and f,,, we can prove an expansion of the solution to the initial value/boundary value
problem (1.9). The proof is done by arguments similar to Appendix in [7] and Proposition 2.2 in [11], and

is omitted.
Propositon 5.1 Let a € {C?[0,1]}* N D(A?) and up,, satisfy (1.9). Then

u(t,z) = Z Om (t) frn (2),

meZ

where the series converges absolutely and uniformly in =T <t <T and 0 <z < 1.

Now we proceed
Proof of Theorem 1.4. The ”if” part is directly proved. In fact, by (1.19) and (1.20), we see that K =0
satisfies (2.3), (2.4) and (2.7), so that u(t,z) = R(z)u(t,z) satisfies (2.12) with some wi(t) and ws () by
Theorem 2.6. In terms of (1.18) and (1.21), we can conclude that (Q,b) € Mr(P,a).
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Proof of ”only if” part. Let us recall that up, is the solution to (1.9) with coefficient matrix P and
initial value a. Let us suppose that up(t,0) = ugs(t,0) and upq(t,1) = ugp(t,1) for =T < ¢ < T. Then

it follows from Theorem 2.6 that for - T +1 <t <T —1

UQ,b(t7 1) = UP,a(tv 1) = R(l)uP,a(t7 1) + A K(ya 1)UP,a(ta y)dy

We recall that

where R', R? are 2 x 2 matrices. For simplicity, we set

uy(t, x)
_ | owaltx) _( Kb
u(t,.’L‘) = uRa(t,CL‘) = us(t, 7) ) K(y7 1) = ( Ko(y,1) >
uy(t, x)

where K;(y,1) and K»(y,1) are 2 x 4-matrices. Then it follows from ug(¢,1) = u(t,1) and weqo(t,1) =

H[U@(t, 1), {= 1,2 that

~ ul(t,l) o 1
(B2 = R (1) = B (1)) ( e ) - [ Kt vt ay,
7 2 171\ 77 ui(t, 1) _ !
(H—R°(1) - R (1)H) ( ws(t.1) ) —/0 K (y, Dult, y)dy.

By Proposition 5.1, we have

for =T +1 <t <T—1. Here f’,, ¢ = 1,2 is the /-th component of f,,. Since the series on the right hand
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converge uniformly by Proposition 5.1, we can change orders of summation and integration :

m

1 2 T 71n(1) !
Xﬁaw%&—Raw%unm< 2U>—Aznmnmwm}:o

meZ
7 2 1 7 f'}n(l) ! —
mze:zem(t) {(H—R ()= R(1)H) ( £2(1) ) —/O Kz(y71)fm(y)dy} =0

for —1 <t < 1. Here we used that —T +1<t<T —1and T > 2 implies —1 <t < 1.

We can prove that for the system S = {6, }mez, there exists another system S C L?(—1,1) such that
for any ¢ € S, we can choose a unique @ € S satisfying (©,%)r2(~1,1) = 0 if and only if ) € g\ {¢}. The
proof is based on Theorem 1.1.1 in Sedletskii [9], and see Appendix C in [11] for the proof. Taking the scalar

products in L2(—1,1) with all ¢ € S, we can obtain

= I '
(&—mm—ﬁmm(ﬁg - [ KW =0, mez,
m 0
7 2 1 r7 frln(]') '
(H - R°(1) - R (1)H) 2oy ) Ks(y,1) fm(y)dy =0, m € Z.
1
J,m
2
Here for sufficiently large |m|, as fp, we see that f;, = J3’m , 7 = 1,2, are two linearly independent
im
4

J,m
eigenvectors corresponding to the eigenvalue A; ,,. We will prove that

S VI W A Y
w1 )7 e\ 2,0

is linearly independent. In order to prove this, it is sufficient to prove that

L(1) 3n1)
b | e | | e
e [N SN COR =) I WEY
L) £a(1)

is linearly independent because of
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By (4.8) and (4.9), we have

(D) ¢y cosh(B1 + p1)

. @) | _ ¢ cosh(By + p2)
mLHEOO ff’,m(D =& c1sinh(fy + pu1)
ff,m(D casinh(fy + pz2)

fam (1) dq cosh(B2 + p1)

: f22m(1) _ dg cosh (B2 + p2)
ml_lgloo f3m(1) =B dy sinh(B2 + p1)
fam (1) dg sinh(B2 + p2)

Since R™1(1) exists and c1da — cady # 0 which is proved for (4.2), we can verify that

c¢1 cosh(B1 + 1

(51 + 2
c1 sinh(By + p1
co sinh(B1 + peo

dy cosh(B2 + w1

¢o cosh ds cosh(B2 + 2

)
R(1) )) , R(1)
)

ds sinh ﬁg + U2

is linearly independent. Thus

is linearly independent.
Furthermore, from Riemann-Lebesgue lemma, we have

1
lim Ki(y, 1) fm(y)dy =0, £=1,2.

m— 00 0

Therefore, we obtain

and

1
/ Ke(y, ) fm(y)dy =0, £=1,2, meZ.
0
Since { fm }mez forms a Riesz basis, it follows that
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Therefore, using a characteristic method, we can prove the uniqueness in the problem (2.3) - (2.4) with (5.2)

(e.g., [10], [12]), and obtain

K(y,z) =0, 0<y<z<L

Consequently, we obtain (1.19), (1.20) and (1.21). Since Hy # +1, we can directly derive R'(1) = E5 and

R%*(1) =0 from (5.1). Thus we obtain (1.18), and the proof of Theorem 1.4 is completed.

A  Proof of Lemma 2.4

We set

1

ng}(yax) = Kk,e(y,x) - KkJrn,EJrn(y,I)
1

Ll(c,z-&-n(ywr) = Ky t4n (Y, %) = Kitne(y, ) k0192 n
2 st by 4y 3

LE@Z(% I) = Kkyf(yvx) + Kk+n,€+n<y7 $>
2

Ll(f,z+n(y’ QZ‘) = Kk,lJrTL(y:x) =+ Kk+n)£(ya QZ‘),

and

frely, ) = (K(y,2)P(z) = Q@) K(y,2))ke, K €=1,2,---,2n.

From (2.3), we obtain

) )

Fr Bktn,e + 3_ka,€+n = fre

o] K o] _

32 Ktn,e4n + 5, K0 = frot )
6(,;” " g 9y " inQ, k{=1,2,--- n.
95 k.0 + 5, Kk t4n = fran.e

o] o]
5o Bk ppn + 3—ka+n,£ = fhtn,t+n,

Hence we obtain the following system for k,/ =1,2,--- ,n:

0 0 ~

%LS; - a_nglz = fre = frtne — frptn (A1)
0 .« 0 ~

or I(chrn - a*yLz(c,ern = fretn = frotnt4n — fie (A.2)
0 0 ~

%L& + @Lg = Jretnt = fron + frrn (A.3)
0 0 ~

%Ll(quLn + a_ngszrn = fk-‘rn,@-‘rn = fk+n,€+n + fk,é' (A4)
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By (2.5), we have

Ll(it)j(x,x) =bre(z), O<a<l, k=12, n (A.5)
L,(;’Ln(x,x) =ape(x), O<z<l, kl=1,2,--- n. (A.6)

Moreover from (2.4), we have

L3)(0,2) = Kp(0,2) + Kpine4n(0,2) = Kp0(0,2) — hiEKpin (0, 2)
L§€22+7‘L(07 9:) = Kk7g+n (0, :L') + K}g+n’z(0, :U) = 7thk,g(0, l‘) + KkJrn’Z(O, 9:)

Since
L,(Clzg(oyl“) = K 0(0,2) — Kiqn,e40n(0,2) = K 0(0,2) + h Kpyn e (0, x)
L,(Clern(O,x) = Ki04n(0,2) — Ky e(0,2) = —htKr 0(0, ) — Kiyne(0, ),
we have

{ Kro(0,2) = h2 L(l)(O,x)—i— ﬁ; ngﬂ(o z)

1 1
Kione(0,2) = — L (0,0) = T L, (0,0).
Consequently we have
2 1+ h2 2hy 1
Li0.2) = T L0(0,0) + 7=z L, 000) (AT)
k
Qhk 1 1 + h 1
L) (0.2) = == e Li(0.2) = 1= h’; L), 0,2). (A.8)

Here, we introduce the other variables

Then, we integrate (A.1) and (A.2) for v with (A.5) and (A.6) and we have

Liy(y. / Fual €+x+y§)d£+bke< ;y> (o) €Q 1<kl<n  (A9)
Lo d Tty O, 1<k (<n. (A10
lirn fk@-‘rn §+x+y£)€+aké 9 ) (y,!L‘)E ) = R, _n( . )

Integrating (A.3) and (A.4) for u, we have

L)y, / Froana(€ —x+9,0)dE + L)0,2 —y), (y,2) €Q1<kL<n, (A.11)
LY., / Froin(€ = +y,)dE + L) (0,2 —y),  (y,2) € Q1< kL <n. (A12)
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y (A.7) - (A.10), we have

L3y / Frimi(€ — @+ y,6)de

b [ {o B o= 0.9 4 Bfsen(-€ o - p O de

2

T — ~ xr —
+ grbr.e < 5 y> + ka0 < 5 y) ) (A.13)
Ll(fern / Frtin(E — x4y, €)dE

T—y " _
+[P {_gvlﬂfk,f(_§+x_ya§)_gkfk,@rn(_f"'il?—y,f)}df

~ T — Xr —
— Jrbr,e <Ty> — GkQk,e (Ty) (A.14)

for (y,z) € Q and k,£=1,2,--- ,n. Here we set

_1+hi 2Ny
gk—l_h%a gk_l—hi

Therefore we obtain Volterra integral eqations (A.9), (A.10), (A.13) and (A.14) of the second kind, which are

equivalent to (2.3) - (2.5). Using the iteration method, we can complete the proof. O

B Proof of Theorem 2.5

According to the general theory of the ordinary differential equation, equation (2.9) possesses a unique
solution in {C[0,1]}2". Let us denote the right hand side of (2.10) by t(z, ). Hence it suffices to verify

that ¢ satisfies (2.9). Clearly, initial conditions of (2.9) are satisfied.

‘We have
Ban S0, 0) + Q) ) — M,
= BQnR(x)%(x,)\) + { B2, R () + Bon K (z,2) + Q(2)R(2)} (2, A) — AR(z)d(2, \)
+ /OTan%K (,2)6(y, Ny + (Q / K (y,2)6(y, \)dy.
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Using (2.3) in Lemma 2.4 and (2.8), we obtain by integration by parts,

Ban 2 (2,3) + Q@) (2, 3) — Az,
= BgnR(x)fl—j(x, A) + {Bon R (z) + B2n K (z,2) + Q(z)R(z) } ¢(z, A) — AR(z)¢(z, \)

+ K(0,2)Ban¢(0,\) — K(x,2)Band(x, N).
Here (2.4) and the condition in (2.8) at z = 0, yield
K(0,2)Band(0,\) = 0.
Hence
dip

BQn%('% )‘) + Q(.Z‘)’(E(.’L‘, )‘) - /\'(Z(ma /\)

= BQnR(«I)%(I7)\) — AR(z)¢(z,A) + {B2n R (z) + Q(x)R(x) — (K (2,%)Bay, — Bon K (z,3)) } p(, \).

R' R?
By the differential equation in (2.8) and R = , we have

R R
BQ,LR(:C)%(;C, A) = R(x)Bgn%(x, A) = R@)(—P(@) + \o(@, ),
so that
an‘fg (#,2) + Q)i A) = Xb(z, \)

= {BanR'(2) + Q(z)R(z) — R(x)P(x) — (K(x,2)Ban — Ban K (x,2))} ¢(2, A).

By (2.6) and (2.7), we can directly verify that the right hand side of this equation is zero. Then J(x, A) =

¥(x, ). Thus the proof is completed. O

C Proof of Lemma 3.2

We set

=~ B )e;0N, =12
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Here, ¢;(z,\), j = 1,2 satisfies

By%2(2,\) + P(2)¢; (2, A) = Ayj(, \),
1 0
0 1
¢1(07)‘) = hy ’ ¢2(0a)‘) = 0

0 ha
Then we have

det®(A) = det ( fi(A) fo() )

Let £y € N U {0} be the smallest number in

2, 0 p
{e eNU{0}; rank ( TH0) 48 (M) ) + o}.
We consider two cases separetely ; Case I: {g > 1 and Case II: ¢, = 0.

If £y = 0, then we can argue similarly to the Case I-B stated below. Thus we argue only for the Case I.

Case I: Let /5 > 1. Then

74 1
@—{mi[—;m(g), 0<0<to—1. (1)

In particular, we have fi(Ao) = fa(Xo) = 0, that is, (—H Ea)¢;(1, ) =0, j = 1,2, which means that ¢;,
j = 1,2 satisfies the boundary condition at = 1 in (1.10). Therefore ¢1,¢2 € D(Ap).

Let us define {¢V9(x)}j=1.2.¢=12... ¢, as follows:

60 () = 61 (2, Mo) 901 (2) = a(z, do)

¢(1,2) (z) = %%(%/\0) ¢(2=2)(az) — %83\2 (2, M0)

019 (@) = 553 (2. 20) 039 (@) = 5 54 (2 20) (C2)
0 —1 ) lo—1

¢ (2) = b Gt (2, M), ¢ () = oty Gt (25 Mo)-

Now by (C.1) we can easily check that ¢(¥) € D(Ap) for all j = 1,2 and £ = 1,2,--- ,£y. Moreover
(Ap — )\O)qg(jyf) = ¢t

holds for all j = 1,2 and £ = 1,2,--- , ¢y where ¢(:) =0, j = 1,2. This fact is checked by differentiating
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the equation
Apgj(z,A) = Apj(, A)

with respect to A\ successively.
By (C.2), we can check that {¢U)(x)};j—12=12... 4 is a linearly independent system. In fact, let
50:1 > =12 a; 00U = 0. Applying (Ap — \o) successively and using (Ap — A\o)pWO) = ¢U*=1) for
2<{¢</{yand (Ap — )\o)¢(j’1) = 0, we see by the linear independence of (;5(171) and (;5(271) that aj, = 0.
Therefore, the algebraic multiplicity of the eigenvalue \g is at least 2¢y.

Moreover, by (C.1) and the linearity of the determinant, we have
S det®(N)| =0, 0<£<20—1.

for ¢y > 1. Hence, for £y > 1, the multiplicity of a zero A\ of det ®(\) is at least 24.

Therefore, we proved that the algebraic multiplicitiy of A\¢g and the multiplicity of a zero Ao of det ®(\)
are at least 2/.

We separately discuss the following two cases :

Case I-A: The case of

£, £
rank( ‘Z:Z;l (Mo) dd;),zfog (M) ) =2.

Case I-B: The case of

14 £
rank( SE) G2 () ) =1

Case I-A: Let

14 £
rank( (M) 52 (M) ) =2.

We will prove that the algebraic multiplicity of the eigenvalue A\ is 2¢y.
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The set of all the solutions to

(Ap = X0)0(2) =2251 5 =12, 4y a0 ()
~ 0
( —h E, )¢(O) =\ o

with given a;, € C, is written as

, 1 9%
{ Z aj’e¢(176+1)(:c) + al,,gOK—O!W;bol(z,Ao)

J=1,2, £=1,2, £o—1

1 9%
+a2,eog—o,wjiz($,/\o) +b1¢1(x, o) + bagpa(z, Xo) 5 b1,b2 € C}-

Then there exists a solution to
(AP = 20)¢(®) =225 12 1=12. 4o a0 ()

(- B )o = 8 (C.4)

~ 0
(-7 B )¢(1>—<0>
if and only if

d’ fy d f 0
ai e, W(/\O) + as ¢, W(/\O) = 0/

Because of

2, 14
rank (2901 (x) DL (n) ) =2,

this condition holds if and only if a1, = a2, = 0. Therefore for j = 1,2, there exist no solutions to
(Ap — Xo)¢p = ¢Uf0). Hence the Jordan block corresponding ¢U:) is of size £y x £y, and the algebraic

multiplicities of A\g is 2¢.

Because of (C.1) and the linearity of the determinant, we have

d?to (250)! dto 20 ¢
- — f1 d0fs
T B = g de ((9h) W) ) #0,

that is, the multiplicity of the zero Ao of det ®()) is 2¢y. Therefore, the algebraic multiplicity of Ag is equal

to the multiplicity of a zero Ao of det ®(\).
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Case I-B: Let

14 £
rank( ‘Z;Zg (o) (fi;\)'ifog (M) ) =1

Without the loss of generality, we assume that there exists some ¢ € C such that

dbo dbo
d/\g? (o) = ¢ d)\f (Xo) (C.5)
and we assume that
dto 0
—d)\f (M) # < 0 ) : (C.6)
Now we define {¢U-9)(2)}j=1.2, ¢=1.2.. 4, as follows:
F0D(@) = pAD(2) — g () Fe(@) = 620 ()
F09(2) = 609(a) - e (z) F22(a) = 92 (z)
g(lﬂo)(l‘) — ¢(17€0)<x) _ c¢(2750)(x), g(lfo) (.Z’) — ¢(27@0)_

We can easily check that (Ap —Xo)pU0) = ¢U-L=D for j = 1,2 and £ € {1,2,--- , £y} and that ¢U-) € D(Ap)

forall j=1,2 and £ € {1,2,--- ,lo}. Here we set ("0 =0, j =1,2.

We set
Foy=(—H B )divan, j=12
Then
det (i) B ) =det( i) (V) ) =det®(N).
Because
d'f; 0 .
d)\Z(AO)_<0>7 j:1727£:17277€0_15 (07)
we obtain
d'f; 0 .
d)\Z(/\O)_<O>, i=12 £=1,2--- £y—1. (C.8)

47



By the definition of (1) and ¢V, and from (C.5) and (C.6), we have

dofy .. (0 d f 0
e (Mo) = ( 0 > B eaCCal W R (C.9)
Therefore, we obtain
2[0
— @ =
N2 det D(\) . 0,

that is, the multiplicity of a zero A of det ®()) is at least 20y + 1. Now we define ¢(1-40+1) (z) by

~ 1 [0%¢ g
(1,60+1) . 1 _ 2
¢ (z) = 7 (8)\40 (w,X0) — ¢ G (x,)\o)> .

Then ¢(140+) € D(Ap) and (Ap — Ag)p(-fotD) = g(Llo),
According to the following respective cases, we proceed:
Case I-B-a: the multiplicity of a zero Ag of det ®(\) is 2¢p + 1.

Case I-B-b: the multiplicity of a zero Ag of det ®(\) is 2¢g + ¢1 with ¢ > 2.

Case I-B-a: Let the multiplicity of a zero A of det ®(X\) be 2¢y + 1, that is,

d2€0+1¢
ThaterT (Po) # 0.

Then by (C.8) and (C.9), we have

Z, ra Lo 7.
det (40rL0(n) E0F(n) ) #0. (C.10)

The set of all the solutions to
(Ap — Xo)d(z) = Ze:1,2,--~ JLo+1 all‘;(l’e) (z) + 25:1,2,... Lo a2,£<z(2’€)(33)

(—E E2)¢(0)_<0

0
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with a1, € C, £ € {1,2,--- ,¢p+1} and azy € C, £ € {1,2,--- 4o}, is written as

{ oo adM @)+ Y as® ()

0=1,2,- Lo 0=1,2, Lo—1
1 8€0+1¢1 8€0+1¢2
+ 16041 o+ 1! (8/\4 (%, 20) —CW(%)\O))
9% ¢y

+a zeog | O (z,0) + b1d1(z, Ao) + badpa(z, o) ; b1,ba € C}

Then there exists a solution to

(Ap = X0)8(x) = X190 o1 W00 (@) + 0y 5 g 02,0030 (2)

(—E E2)¢(0)=<0

(- 2 Yoy )

if and only if

1 dbtif 1 dbf, 0
A1,00+1 7,77 o+ 1)l dabot (Mo) +a2,eog—o!m(x\o) = 0 )

(C.11)

(C.12)

y (C.10), this condition holds if and only if a; ¢,+1 = a2, = 0. Therefore, by an argument similar to Case

I-A, the algebraic multiplicities of Ay is 2¢p + 1. Hence we see that the algebraic multiplicity of Ag is 2€p + 1

which is equal to the multiplicity of a zero Ay of det ®(\).

Case I-B-b: Let the multiplicity of a zero Ao of det ®(\) be 2¢p+¢; with £1 > 2. Let us define ¢1, ca, - - -

as follows.
(a):The definition of ¢;.

We define ¢; by

1 dofy 1 detlf

Zo!'t dnbo (Ao) = (€o + 1)! dA\bot1 (Ro)-

det () = 0, by means of (C.8) and (C.9), we have

A=X\o

Such ¢; exists. In fact, since d}\zzoﬂ

Lo+1 7 Lo 7.
det (4020 (h) Eof () ) =0,
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Recalling

%{}(Ao) # ( 8 ) )
from (C.9) we can obtain ¢; such that (C.13) holds.
(b): The definition of ¢z, c¢3,- -+ ,cp—1.
We define co, cs, - - , ¢, —1 in an inductive way as follows. For k = 2,3, ..., ¢1 — 2, assume that ¢1,c¢a,- -+, cx—1

are already defined. Then we will define ¢ such that

1 dbof, 1 deo+kf kol dtotk=af,
“ano M= q:Z:l lo +k q)! d\fotk—a (Ro) (C.14)

ol s P0) (lo + k)! N+ ¢

holds. Now we prove that such cj exists and that there does not exist ¢y, such that

1 dfof; 1 dblotta fl - dfoJrel*qf;
ey —22 = . 1
N (o) RSB d)\éoJer Ao) g > +£1 — ) ANt (Xo) (C.15)

Let us calculate

d2€g+k

A detd())

dNZloTk N
2otk 2£0 + k‘)

= dlf; d2totk—a
=2 dn st H00 fkon )

30+k
(260 + k)' 49 1 dq2totk—a g
- ; A+ kg (Hh00) b))
q={o+1

I
™=

(20p + k)! o+, to+k—a F,
ol (FEE 00 Garko) ).

q

Here we used (C.8) and (C.9).
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Now we eliminate Cfi\ozr—oié()\o) for g € {1,2,--- ,k — 1} by (C.14). Using (C.14), we have

d2€g+k‘
————det ()
d\2lo+Fk .

_ 2€0+k) c to+a—pF otk
Z EO + q EO + k- ) (EO * Q)' det ( Zgzl (%-H;—P)! (il)(\)foﬂrfpg ()‘0) dd;)ZO‘Fk*j; (/\0) )
q=1

(200 + k)! .
et ot 2t (SR 00) SR )
PO)) for f: Lo+k—q 7
= Jlo+a—p Jfoth—a
= (250 + k)‘ Z Z Cp det ( (ZOJ’»}pr)! d)\140+q_);2 ()\0) (ZoJrIlch)! d/\fo-*-k—{? ()\0) )
q=1p=1
(200 + k)! A o
e et (SR 00 B )

Then changing orders of the summations, we have

dZZ()Jrk‘
det ®())

200+k
dA?to A /\0

k—1 —
£o+aq p lo+k q
= (20 + )1 :CPE det( R IR (M) ey vtz (M) )
p=1  q=p

(200 + k)! dot gy o
m det( “d\fotk ()‘0) axio (/\o) )

k—1 k—p—1
1’0+q Lo+k—p— q
= Lo+ k)Y e D det (ot ek o) rritpman Saeesk o) )

(260 -+ k)' otk 7, 20 F
o+ ittt (B 00) 500 )

Now we prove that

p
1 dlotef 1 dfotk—raf,
Z det( ToFr d)\goﬂ 2 (o) Cotk—p—q)! drEoFF—p—a ()\0) )

B | o 1 dlotk—p F
= det( 7ol d}\g{f (>\0) (Lo+k—p)! dXFoTF—P ()‘0) ) :

1 d£0+q
In fact, let b, = [oxq) dxfota

o1

()\0) forq=1,2,--- ,k—p—1. Let k—p—1 be odd. Then the left hand side



of the above equation is

i det( by br—p—q )
=det( by br—p )+ det( by br_p—1 )+det( by bp_p_o )+ ---+det( bp_p_1 b1 )
=det( by br—p )+{det( b1 bg—p—1 )+ det( by_p_1 b )}

—|—{det( be br_p—o ) +det( by_p_o by )} +

+{det( bip y binyy ) tdet( bisyy bia )}+det( biy by )

20 7. Lo+k p
=det( by br—p ):det( g%g‘fl,(\)—z%(/\o) (go.;_i p)ntil;tzo% 7 (Ao) )

For even k — p — 1, the argument is similar.

Therefore, we obtain

q2bot+k
—————det ®(X)
d2lo+F .
k—1 L -
: o
_ (2£O+k)!2cpdet< LR (M) ek S () )
p=1
(200 + k)! a0tk &0,
o it ot (00 B0 )

qtotk 7

_ c Lo+k 20 7.
= (200 + k)! det( (@Co+k)! +k)| )\fo+k (o) — ZI;:% @tk d,(\)ffoJrkpp (Ao) ZL&%(AO) ) - (C.16)

Now, since Ag is a zero of det ®(\) with multiplicity 2¢g + ¢1, we have

A det®(N)| =0 if1<k<f -1
A=Xo

DT det®(N)| A0 it k=4
A=Xo

Then there exists ¢, satistying (C.14) for k = 2,3,--- ,¢1 — 1, and there is no ¢, satisfying (C.15).

Now we define ¢(1:40+2) §(Lo+3) .. 5(LLo+0) a5 follows:
~ 1 d£g+k—1¢ d£0+k—1¢)
1,00+k _ 1 2
qb( 0 )(-T) - (EO T k- 1)| < ! (iC,)\O) - Cid)\eo-i-k—l ({L‘7)\0)>

kol dfo“rk 1 q¢2
Z fo—&-k—l—q)l d\bo+k—1—¢ (@, o)
q=1
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for k € {2,3, -+ ,¢1}. Then, for all k € {2,3,--- ,¢1}, we have 5(1’40““) € D(Ap) and

(Ap = X)o7 (z)

= oMot D () + (ali bination of éa(. Ao}, 202 (2. h0).- - o920 )
= T a linear combination of ¢2(x, \g), B\ z,\o), " Gl T,\) | .

We define C(l’l)(z% 4(172) (I), e ’<(1750+21)(x)’ <(271)7C(272)7 e 7<(2720) by

4(17(04-@1)(:5) — 5(17@0-5-51)(37)

(Ot (@) = (Ap ~ 2)30H(2)
COD(a) = (Ap - 220 04)(2)
.C(llo-i-l)(m) _ (AP_)\O)Zl—l(g(l,fo-&-h)(x)
CHE) = (Ap a1 gt
(@) = (Ap =)o IFr )
(V@) = (Ap— At ),
(B(z) = @) (x)

CEOD() = Ee-D()

(@) = FeNw)

Then we can see that {CM9 () o109, g6, U{CPP} =19, 4, is a linearly independent system.

For fixed a1 0 € C, j € {1,2,--- ,lo+ {1} and ass € C, £ € {1,2,---,{p}, the set of all the solutions to
(Ap = 20)0(@) = 210 o0y ar,e¢ M0 (@) + 2 0=1,2, o az,0¢* (@)

(—E E2)¢(0)_<0

0

is written as

{ Yoo alMT@ Y ()
E_

=1,2,-+ Lo+L1—1 0=1,2,- Lo—1
1 afo-i-h ¢1 6€0+€1 ¢2

+ a0+, Gt 00 <6)\40+41 (z,0) v (x,Ao))

il Co-+01—

C ofotti—q

- Z ! ) _(bQ (2, M)

2 (o + 6 — )l DAFTs

1 9%y

+ @260 5 1 oAk (@, Ao) + brg1(z, Ao) + baga(z, Xo) 5 b1,b2 € C . (C.17)
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Then there exists a solution to
(Ap — Ao)d(x) =32, 1,2, Lo+L1 ay,e¢™0 (z) + 2521,2,.-- o az,¢¢>") (x)

(-7 E2)¢(0):<0

0 (C.18)
(-7 )¢<1>:(3)

if and only if

1 dé()-‘rfl fl £1—1 d€0+e1_q:f\/2
A
a1,09+0,1 ((EO +€1)| d/\fo-‘r@l qz:; EO +€1 _q l dM\o+ti—q ( 0)

‘o fa 0
" QZOK'dAEO(A):(())-

Because there is no ¢, satisfying (C.15), this condition holds if and only if a1 ¢y+e, = a2, = 0.
Therefore, if the solution to (C.18) exists, then it is in the space spanned by {¢"9(z)}r=12... ro+e, U
{¢®D}_15... 4. Hence, by an argument similar to Case I-A, the algebraic multiplicity of an eigenvalue Ao

of Ap is 2¢y + ¢1. This is equal to the multiplicity of a zero A\ of det ®(A).

Thus in all the cases, we have seen that the algebraic multiplicity of A\g is equal to the multiplicity of a

zero Ao of det ®(\), that is, the proof is completed. O
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