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Abstract

We consider an inverse problem of determining a coefficient matrix and an initial value for a first order

hyperbolic system. Assuming that the boundary values over a time interval are known, we characterize

coefficient matrices and initial values, and prove the uniqueness of some components of the matrix

function. The proof is based on a transformation formula and the spectral properties of the corresponding

nonsymmetric ordinary differential operator.

1 Introduction and the main result

We will consider the following initial value / boundary value problem:

∂u

∂t
(t, x) = B2n

∂u

∂x
(t, x) + P (x)u(t, x) − T < t < T, 0 < x < 1 (1.1)

with boundary conditions

uℓ+n(t, 0) = hℓuℓ(t, 0) ℓ = 1, 2, · · · , n, − T ≤ t ≤ T (1.2)

uℓ+n(t, 1) = Hℓuℓ(t, 1) ℓ = 1, 2, · · · , n, − T ≤ t ≤ T (1.3)

and with initial conditions

u(0, x) = a(x) 0 ≤ x ≤ 1. (1.4)
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Here, let n ∈ N, hℓ,Hℓ ∈ R \ {−1, 1}, ℓ = 1, 2, · · · , n, and let

u(t, x) =




u1(t, x)

u2(t, x)
...

u2n(t, x)



, B2n =

(
0 En

En 0

)
, En =




1 0
. . .

0 1


 ,

P (x) =




p1,1(x) p1,2(x) . . . p1,2n(x)

p2,1(x) p2,2(x) . . . p2,2n(x)
...

...
. . .

...

p2n,1(x) p2n,2(x) . . . p2n,2n(x)



, a(x) =




a1(x)

a2(x)
...

a2n(x)



,

and uℓ, pk,ℓ, 1 ≤ k, ℓ ≤ 2n be real-valued. Henceforth 0 denotes zero matrices whose sizes may change line

by lne, and (M)k,ℓ denotes the (k, ℓ) -component of a matrix M . Moreover we assume also the compatibility

condition:

{
aℓ+n(0) = hℓaℓ(0)

aℓ+n(1) = Hℓaℓ(1)
ℓ = 1, 2, · · · , n, − T ≤ t ≤ T. (1.5)

System (1.1) describes some vibrating system. For example, we consider a governing equation of an

electric oscillation in parallel n transmission lines:

(
L(x) 0

0 C(x)

)
∂

∂t

(
I

V

)
+

(
0 En

En 0

)
∂

∂x

(
I

V

)
+

(
R(x) 0

0 G(x)

)(
I

V

)
= 0. (1.6)

Here I = I(t, x) and V = V (t, x) are vector-valued functions whose j-th components are respectively

the current and the voltage of the j-th transmission line. Moreover we assume that the electromagnetic

properties of the n lines are not homogeneous in x and the coefficients R, L, C, G depend on x ∈ (0, 1).

The parameters R, L, C, G are called a resistance matrix, an inductance matrix, a capacity matrix and a

conductance matrix respectively. If there exists a scalar function r(x) > 0 such that

L(x)C(x) = r(x)En , (1.7)

we can reduce system (1.6) to (1.1). In fact, in terms of (1.7), we can reduce (1.6) to a equation in the form

∂

∂t

(
I

V

)
= − 1

r(x)

(
0 C(x)

L(x) 0

)
∂

∂x

(
I

V

)
+

(
R̃(x) 0

0 G̃(x)

)(
I

V

)
. (1.8)
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Changing variables as

z ≡
∫ x

0

√
r(y)dy, s ≡ t,

and

u(s, z) ≡ V (t, x(z))

v(s, z) ≡ − 1√
r(x(z))

L(x(z))I(t, x(z)),

we obtain the following system:

∂

∂t

(
u

v

)
= B2n

∂

∂z

(
u

v

)
+ P̃ (z)

(
u

v

)
.

We will investigate

Inverse Problem

Determine a coefficient matrix P (x) and an initial value a(x) from the boundary values u(t, 0), u(t, 1),−T ≤

t ≤ T .

For inverse problems for one-dimensional first-order system such as (1.1), the method of characteristics

is applicable (e.g. Chapter 5 in Romanov [8]). However such a method cannot characterize coefficients and

initial values yielding the same boundary values, although boundary data u(t, 0), u(t, 1), −T ≤ t ≤ T , can

simultaneously identify a coefficient matrix and an initial value. For inverse problems for first-order systems,

see also Blagoveshchenskii [1]. For the corresponding inverse spectral problems with n = 1, see Ning [6],

Ning and Yamamoto [7], Trooshin and Yamamoto [11], Yamamoto [12].
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In this paper, we will study the uniqueness in our inverse problem. Here, we will only consider the case

of n = 2. The basic properties for n = 2 such as the asymptotic behaviour of eigenvalues, are very different

from n = 1, and already the case n = 2 needs essentially different treatments.

In general, the uniqueness does not hold, as the following example shows.

Example

Let

P (x) =




0 0 1 0

0 0 0 0

1 0 0 0

0 0 0 0


 , a(x) =




e−x

1

0

0




Q(x) =




0 0 2x 0

0 0 0 0

2x 0 0 0

0 0 0 0


 , b(x) =




e−x
2

1

0

0


 ,

and hℓ = Hℓ = 0, ℓ = 1, 2. Then we can verify that the solution to





∂u
∂t

(t, x) = B4
∂u
∂x

(t, x) + P (x)u(t, x) − T < t < T, 0 < x < 1

u3(t, 0) = u4(t, 0) = 0, −T ≤ t ≤ T

u3(t, 1) = u4(t, 1) = 0, −T ≤ t ≤ T

u(0, x) = a(x)

is

u(t, x) =




e−x

1

0

0


 ,

while the solution to





∂eu
∂t

(t, x) = B4
∂eu
∂x

(t, x) +Q(x)ũ(t, x) − T < t < T, 0 < x < 1

ũ3(t, 0) = ũ4(t, 0) = 0, −T ≤ t ≤ T

ũ3(t, 1) = ũ4(t, 1) = 0, −T ≤ t ≤ T

ũ(0, x) = b(x)

is

ũ(t, x) =




e−x
2

1

0

0


 .
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Therefore we obtain the same boundary value:

u(t, 0) = ũ(t, 0) =




1

1

0

0


 , u(t, 1) = ũ(t, 1) =




e−1

1

0

0


 .

Consequently, the uniqueness does not hold, even though we restrict the coefficient matrices P (x) in (1.1)

to a form

(
0 P1(x)

P1(x) 0

)
with 2 × 2 matrix P1(x). �

We will find a condition for the uniqueness to our inverse problem, and the condition should be sufficiently

general. Here and henceforth, by u = uP,a(t, x) we denote the solution to





∂u
∂t

(t, x) = B4
∂u
∂x

(t, x) + P (x)u(t, x) − T < t < T, 0 < x < 1

uℓ+2(t, 0) = hℓuℓ(t, 0) ℓ = 1, 2 − T ≤ t ≤ T

uℓ+2(t, 1) = Hℓuℓ(t, 1) ℓ = 1, 2 − T ≤ t ≤ T

u(0, x) = a(x),

(1.9)

provided that hℓ,Hℓ ∈ R\{−1, 1} are fixed.

Throughout this paper, we assume that the solution uP,a(t, x) is sufficiently smooth. By using an energy

estimate we can prove that there exists at most one solution. Moreover the existence of the solution can be

proved, and the sufficient smoothness can be proved by compatibility conditions of a and P . We will omit

details of the unique existence of uP,a in order to concentrate on the inverse problem.

Henceforth L2(0, 1) and H1(0, 1) are the usual Lebesgue space and Sobolev space of complex-valued

functions.

We set

MT (P, a) ≡
{
(Q, b) ∈ {C1[0, 1]}20 ; uQ,b(t, 0) = uP,a(t, 0), uQ,b(t, 1) = uP,a(t, 1) − T < t < T

}

for arbitrarily fixed (P, a) guaranteeing the unique existence of smooth uP,a. We can immediately see that

(P, a) ∈ MT (P, a). If MT (P, a) has only one element (P, a), then uniqueness in our inverse problem would

be true. Thus it is sufficient to characterize the set MT (P, a).
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Definition 1.1 We define an operator AP acting from {L2(0, 1)}4 to {L2(0, 1)}4, by

{
(AP u)(x) = B4

du
dx

(x) + P (x)u(x), 0 < x < 1

D(AP ) = {u ∈ {H1(0, 1)}4;uℓ+2(0)− hℓuℓ(0) = 0, uℓ+2(1)−Hℓuℓ(1) = 0, ℓ = 1, 2}. (1.10)

Definition 1.2 For an eigenvalue λ of AP , we call φ 6= 0 a root vector of an operator AP for λ if (AP −

λ)kφ = 0 for some k ∈ N. We call dim{φ; (AP −λ)kφ = 0 for some k ∈ N} and dim{φ; (AP − λ)φ = 0} the

algebraic multiplicity and the geometric multiplicity of λ, respectively.

In order to state the main result, we assume the following three conditions:

(I): For each root vector f∗ of the adjoint operator A∗
P for AP , the fixed initial value a(x) satisfies

(a, f∗){L2(0,1)}4 6= 0. (1.11)

(II): The following quadratic equation in α has two distinct roots:

det

{
αE2 −

(
e−2ν1 0

0 e−2ν2

)
G(θ̃P )(1)

(
e−2µ1 0

0 e−2µ2

)
G(θP )(1)−1

}
= 0 (1.12)

where hℓ = tanhµℓ, Hℓ = − tanh νℓ, and

θP (x) = (θPk,ℓ(x))k,ℓ=1,2 =

(
1

2
(pk,ℓ(x) + pk,ℓ+2(x) + pk+2,ℓ(x) + pk+2,ℓ+2(x))

)

k,ℓ=1,2

, (1.13)

θ̃P (x) = (θ̃Pk,ℓ(x))k,ℓ=1,2 =

(
1

2
(−pk,ℓ(x) + pk,ℓ+2(x) + pk+2,ℓ(x) − pk+2,ℓ+2(x))

)

k,ℓ=1,2

, (1.14)

and by G(Θ)(x) for a 2 × 2 -matrix Θ = Θ(x), we denote the solution to

d

dx
(G(Θ)(x)) + Θ(x)G(Θ)(x) = 0, 0 < x < 1 (1.15)

with the condition G(Θ)(0) = E2.

(III): For an arbitrary eigenvalue λ of AP , we assume that the geometric multiplicity of λ is 1.
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Remark 1.3 Since Condition (II) holds if the determinant of quadratic equation (1.12) in α, is not zero,

we can assert that the condition holds generically. Condition (III) is always true for n = 1. By Theorem 2.1

stated in Section 2, if Condition (II) holds, then the geometric multiplicities of the eigenvalues is one except

for a finite number of eigenvalues. Moreover we can assert that Condition (III) holds also generically. In

fact, let ϕ and ψ be the solutions to (AP − λ)u = 0 with conditions at x = 0

ϕ(0) =




1

0

h1

0


 , ψ(0) =




0

1

0

h2


 ,

respectively. Let u 6= 0 satisfy (AP − λ)u = 0. Then u = αϕ + βψ with some α, β ∈ C. Since u ∈ D(AP ),

we have

(ϕ3(1) −H1ϕ1(1))α+ (ψ3(1) −H1ψ1(1))β = 0

and

(ϕ4(1) −H2ϕ2(1))α + (ψ4(1)−H2ψ2(1))β = 0.

If either of ϕ3(1) − H1ϕ1(1), ψ3(1) − H1ψ1(1), ϕ4(1) − H2ϕ2(1) and ψ4(1) − H2ψ2(1) is not zero, then

α = γβ or β = γα where γ is independent of α and β. Hence u = β(γϕ + ψ) or u = α(ϕ + γψ).

That is, {u; (AP − λ)u = 0} is spanned by one vector, which means that the geometric multiplicity of λ is

one. Therefore Condition (III) breaks only if ϕ3(1) − H1ϕ1(1) = ψ3(1) − H1ψ1(1) = ϕ4(1) − H2ϕ2(1) =

ψ4(1)−H2ψ2(1) = 0. Thanks to the transformation formula (2.10) (Theorem 2.5) with P = 0, the condition

ϕ(1) can be described by

ϕ(1) = R(1)ϕ0(1, λ) +

∫ 1

0

K(y,1)ϕ0(y, λ)dy

where

ϕ0(x,λ) =




h1+1
2 eλx − h1−1

2 e−λx

0
h1+1

2 eλx + h1−1
2 e−λx

0


 .
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Thus ϕ3(1) −H1ϕ1(1) = ϕ4(1) −H2ϕ2(1) = 0 are given by two equations involving λ and K, R. We note

that K and R are determined by h1, h2 and P . From ψ3(1) − H1ψ1(1) = ψ4(1) − H2ψ2(1) = 0, we can

obtain similar equations. Hence for given h1, h2,H1,H2, if (λ,P ) does not satisfy those four equations, then

Condition (III) holds true. In this sense, Condition (III) holds generically.

Let P (x) and Q(x) be 4 × 4 -matrix functions. Here let 4 × 4-matrix function

R(x) =

(
R1(x) R2(x)

R2(x) R1(x)

)
(1.16)

with 2 × 2 -matrix functions Rj(x), j = 1, 2, satisfy the following system of eight ordinary differential

equations

{
(B4R

′(x) +Q(x)R(x) −R(x)P (x))k,ℓ + (B4R
′(x) +Q(x)R(x) −R(x)P (x))k+2,ℓ+2 = 0

(B4R
′(x) +Q(x)R(x) −R(x)P (x))k,ℓ+2 + (B4R

′(x) +Q(x)R(x) −R(x)P (x))k+2,ℓ = 0,
(1.17)

0 < x < 1, k, ℓ = 1, 2

and R(0) = E4. Here and henceforth we set R′(x) = dR
dx

(x). By the theory of ordinary differential equations,

we can prove that such an R(x) exists uniquely.

Now we are ready to state our main result characterizing MT (P, a).

Theorem 1.4 Let (P, a) satisfy Conditions (I), (II) and (III) and let a ∈ {C3[0, 1]}4 ∩D(A2). We assume

that T ≥ 2. Then

(Q, b) ∈MT (P, a)

if and only if the following conditions hold:

R(1) = E4 (1.18)

(B4R
′(x) +Q(x)R(x) −R(x)P (x))k,ℓ = 0, k, ℓ = 1, 2 0 < x < 1 (1.19)

(B4R
′(x) +Q(x)R(x) −R(x)P (x))k,ℓ+2 = 0, k, ℓ = 1, 2 0 < x < 1 (1.20)

b(x) = R(x)a(x). (1.21)
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The theorem gives the uniqueness for some components. For example, we can prove obtain the following

result by verifying that (1.19) and (1.20) yield p1,ℓ = q1,ℓ, 1 ≤ ℓ ≤ 4 when pk,ℓ = qk,ℓ = 0 for 2 ≤ k ≤ 4 and

1 ≤ ℓ ≤ 4.

Corollary 1.5 If we restrict a class of coefficient matrices to the matrix with the form








a(x) b(x) c(x) d(x)

0 0 0 0

0 0 0 0

0 0 0 0


 ; a, b, c, d ∈ C1[0, 1]





and the initial value is known, then the solution to the inverse problem is unique under Conditions (I) - (III).

In Section 2, we state spectral properties of the operator AP and in Sections 3-4, we prove them. Section

5 is devoted to the proof of Theorem 1.4.

2 Spectral property of AP and transformation formulae

In this section, we will first present the spectral property of AP defined by (1.10), and such properties

are necessary for the proof of Theorem 1.4. There are very few works concerning spectral properties for

a nonsymmetric operator of ordinary differential equations and Theorems 2.1 and 2.3 may be independent

interests. On the other hand, there are many results on the spectral properties for the classical Sturm-

Liouville problem and readers can consult Levitan and Sargsjan [4], Naimark [5] as monographs. For n = 1,

see Trooshin snd Yamamoto [10].

Let σ(AP ) denote the spectrum of the operator AP and let i =
√
−1.

We present the asymptotic behaviour of σ(AP ).

Theorem 2.1 There exist N ∈ N and Σ1,Σ2 ⊂ σ(AP ) such that

σ(AP ) = Σ1 ∪ Σ2, Σ1 ∩ Σ2 = ∅.
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(1) Let equation (1.12) possess distinct roots α1 and α2. Then the following (a) and (b) hold.

(a): Σ1 consists of 2(2N − 1) eigenvalues by taking the algebraic multiplicities into consideration, and is

included in

{
λ ; |Imλ− α̃| < Nπ − π

2

}
.

Here and henceforth we set

α̃ =
1

4
Im logα1 +

1

4
Im logα2

and we take the principal value of the logarithm : −π < Im logαj ≤ π, j = 1, 2.

(b): All the elements of Σ2 are eigenvalues whose algebraic multiplicities are one, and

Σ2 ⊂
{
λ
∣∣ |Imλ− α̃| > Nπ − π

2

}

and with suitable numbering {λj,m}j=1,2,|m|≥N,m∈Z of σ(A), the eigenvalues have an asymptotic behaviour

λj,m =
1

2
logαj +mπi+O

(
1

|m|

)
(2.1)

as |m| → ∞.

(2) Let (1.12) possess the multiple root α1 = α2 ≡ α. Then Σ1 has the same property as in Case (1) and

we can number all the eigenvalues of Σ2 by {λj,m}j=1,2,|m|≥N,m∈Z such that λ1,m = λ2,m may happen, but

λj,m 6= λj′,m′ for j, j ′ = 1, 2 if m 6= m′, and

λj,m =
1

2
logα+mπi+O

(
1√
|m|

)
(2.2)

as |m| → ∞. Moreover for sufficiently large |m|, the algebraic multiplicities of λ1,m and λ2,m are one if

λ1,m 6= λ2,m and are two if λ1,n = λ2,n.

The asymptotic behaviour in the case of α1 6= α2 has two branches whose real parts are close to 1
2 Re logα1

and 1
2 Re logα2, and is very different from the case of n = 1.
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Next we discuss the completeness of eigenvectors.

Definition 2.2 We call {bm}m∈Z a Riesz basis in {L2(0, 1)}4 if each u ∈ {L2(0, 1)}4 has a unique expansion

u =
∑

m∈Z

cmbm, cm ∈ C

and there exists a positive number M , which is independent of the choice of u, such that

M−1
∑

m∈Z

|cm|2 ≤ ||u||2{L2(0,1)}4 ≤M
∑

m∈Z

|cm|2.

We state the completeness of the root vectors.

Theorem 2.3 Let (1.12) have two distinct roots. Then the set of all the root vectors of AP is a Riesz basis

in {L2(0, 1)}4.

In Theorem 2.3, we note that we need not assume Condition (III).

In order to state transformation formulae, which are basic tools for our inverse problem, we prove the

following lemma. Until the end of section 2, we will consider general n ∈ N, not necessarily n = 2.

Lemma 2.4 Assume that P (x) and Q(x) are 2n× 2n-matrix functions whose elements are in C1[0, 1]. Let

ak,ℓ(x), bk,ℓ(x),1 ≤ k, ℓ ≤ n be real valued functions. Let hk, 1 ≤ k ≤ n be constants and |hk| 6= 1, 1 ≤ k ≤ n.

Moreover we set

Ω =
{
(y, x) ∈ R2 ; 0 < y < x < 1

}

Then there exists a unique solution K(y, x) ∈ {C1(Ω̄)}2n×2n to

B2n
∂K

∂x
(y, x) +Q(x)K(y, x) = K(y, x)P (y) − ∂K

∂y
(y, x)B2n in Ω (2.3)

{
Kk,ℓ+n(0, x) = −hkKk,ℓ(0, x)

Kk+n,ℓ+n(0, x) = −hkKk+n,ℓ(0, x)
, k, ℓ = 1, 2, · · · , n, 0 ≤ x ≤ 1 (2.4)

{
Kk,ℓ+n(x,x) −Kk+n,ℓ(x,x) = ak,ℓ(x)

Kk,ℓ(x,x) −Kk+n,ℓ+n(x,x) = bk,ℓ(x)
k, ℓ = 1, 2, · · · , n, 0 ≤ x ≤ 1. (2.5)
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The proof is given in Appendix A.

Transformation formulae are given as follows. Let P (x), Q(x) be fixed 2n × 2n -matrix functions with

C1[0, 1]-elements. Here, let 2n× 2n-matrix function R(x)

R(x) =

(
R1(x) R2(x)

R2(x) R1(x)

)

with n× n matrix functions Rj(x), j = 1, 2, satisfy system of 2n2 ordinary differential equations:

{
(B2nR

′(x) +Q(x)R(x) −R(x)P (x))k,ℓ + (B2nR
′(x) +Q(x)R(x) −R(x)P (x))k+n,ℓ+n = 0

(B2nR
′(x) +Q(x)R(x) −R(x)P (x))k,ℓ+n + (B2nR

′(x) +Q(x)R(x) −R(x)P (x))k+n,ℓ = 0,
(2.6)

0 < x < 1, k, ℓ = 1, 2, · · · , n

and

R(0) = E2n.

By a classical theory of ordinary differential equations, we can prove that there exists a unique solution

R = R(x) to this system of ordinary differential equations.

Theorem 2.5 (Transformation formula in the stationary case)

Let τ1, τ2, · · · , τn ∈ R and let K = K(y, x) be the solution to (2.3), (2.4) and

{
Kk,ℓ+n(x,x) −Kk+n,ℓ(x,x) = (B2nR

′(x) +Q(x)R(x) −R(x)P (x))k,ℓ

Kk,ℓ(x,x) −Kk+n,ℓ+n(x,x) = (B2nR
′(x) +Q(x)R(x) −R(x)P (x))k,ℓ+n

, k, ℓ = 1, 2, · · · , n. (2.7)

Assume that φ(x, λ) =




φ1(x,λ)
...

φ2n(x,λ)


 and ψ(x,λ) =




ψ1(x,λ)
...

ψ2n(x,λ)


 are R2n-valued functions and satisfy





B2n
dφ
dx

+ P (x)φ = λφ, 0 < x < 1

φ1(0, λ) = τ1, · · · , φn(0, λ) = τn

φn+1(0, λ) = h1τ1, · · · , φ2n(0, λ) = hnτn

(2.8)





B2n
dψ
dx

+Q(x)ψ = λψ, 0 < x < 1

ψ1(0, λ) = τ1, · · · , ψn(0, λ) = τn

ψn+1(0, λ) = h1τ1, · · · , ψ2n(0, λ) = hnτn.

(2.9)
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Then,

ψ(x,λ) = R(x)φ(x,λ) +

∫ x

0

K(y, x)φ(y,λ)dy, 0 < x < 1. (2.10)

The proof of Theorem 2.5 is given in Appendix B.

Next we consider the following Cauchy problems:

{
∂u
∂t

(t, x) = B2n
∂u
∂x

(t, x) + P (x)u(t, x), x > 0, − T + x < t < T − x

uℓ(t, 0) = ωℓ(t), un+ℓ(t, 0) = hℓωℓ(t), ℓ = 1, 2, · · · , n (2.11)

and

{
∂eu
∂t

(t, x) = B2n
∂eu
∂x

(t, x) +Q(x)ũ(t, x), x > 0, − T + x < t < T − x

ũℓ(t, 0) = ωℓ(t), ũn+ℓ(t, 0) = hℓωℓ(t), ℓ = 1, 2, · · · , n (2.12)

for given ωℓ ∈ C1[−T, T ].

We can prove the transformation formula for these Cauchy problems.

Theorem 2.6 Between the solution to (2.11) and the solution to (2.12), the following relation holds :

ũ(t, x) = R(x)u(t, x) +

∫ x

0

K(y, x)u(t, y)dy, x > 0, − T + x < t < T − x,

where R(x) and K(y, x) are defined in Theorem 2.5.

Theorem 2.6 can be proved similarly to Theorem 2.5, by verifying that the right hand side satisfies (2.12)

and using the uniqueness for the Cauchy problem (2.12). We omit the proof.

3 The proof of Theorem 2.1

Step 1. We shall prove the following lemma.

Lemma 3.1 The spectrum σ(AP ) consists entirely of countable isolated eigenvalues with finite algebraic

multiplicities.
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Proof of Lemma 3.1. Let U(x,λ) = (Uk,ℓ(x,λ))k,ℓ=1,2,3,4 be the solution to

{
B4

dU
dx

+ P (x)U = λU, 0 < x < 1

U(0, λ) = E4.
(3.1)

We set

h̃ =

(
h1 0

0 h2

)
, H̃ =

(
H1 0

0 H2

)
,

B
(0)
4 =

(
−h̃ E2

0 0

)
, B

(1)
4 =

(
0 0

−H̃ E2

)
.

We note that 0 means a zero matrix whose sizes may change line by line and for example, in the above, 0

means the 2 × 2 zero matrix. Then we have

γ =




γ1

γ2

γ3

γ4


 ∈ D(AP )

if and only if

γ ∈ {H1(0, 1)}4, B
(0)
4 γ(0) +B

(1)
4 γ(1) = 0.

For given f ∈
{
L2(0, 1)

}4
, let us consider the following equation:

(
B4

d

dx
+ P (x) − λ

)
γ = f.

By the variation of constants, a general solution to this equation is

γ(x,λ) = U(x,λ)η + U(x,λ)

∫ x

0

U(y, λ)−1B4f(y)dy,

where U(x,λ) is the fundamental solution and η ∈ C4 is arbitrary. In order to satisfy the condition

γ ∈ D(AP ) for fixed λ, we choose η such that

B
(0)
4 γ(0) +B

(1)
4 γ(1) = 0,

14



that is to say,

(B
(0)
4 +B

(1)
4 U(1, λ))η +B

(1)
4 U(1, λ)

∫ 1

0

U(y, λ)−1B4f(y)dy = 0.

If det(B
(0)
4 +B

(1)
4 U(1, λ)) 6= 0, then

η = −(B
(0)
4 +B

(1)
4 U(1, λ))−1B

(1)
4 U(1, λ)

∫ 1

0

U(y, λ)−1B4f(y)dy

satisfies this condition. Moreover we can write

γ(x,λ) = −U(x,λ)(B
(0)
4 +B

(1)
4 U(1, λ))−1B

(1)
4 U(1, λ)

∫ 1

0

U(y, λ)−1B4f(y)dy

+ U(x,λ)

∫ x

0

U(y, λ)−1B4f(y)dy.

Therefore, if det(B
(0)
4 + B

(1)
4 U(1, λ0)) 6= 0 for some λ0 ∈ C, then (AP − λ0)

−1 is a compact operator from

{L2(0, 1)}4 to itself. By Kato [3], this implies that σ(AP ) consists of isolated eigenvalues with finite algebraic

multiplicities. Hence it is sufficient to show that there exists λ0 ∈ C such that det(B
(0)
4 +B

(1)
4 U(1, λ0)) 6= 0.

Since

U0(x,λ) =

(
E2 coshλx E2 sinhλx

E2 sinhλx E2 coshλx

)

is the solution to

{
B4

d
dx
U0(x,λ) = λU0(x,λ), 0 < x < 1

U0(0, λ) = E4,

by the transformation formula, we can write

U(x,λ) = R(x)U0(x,λ) +

∫ x

0

K(1)(y, x)

(
E2 coshλy 0

E2 sinhλy 0

)
dy

+

∫ x

0

K(2)(y, x)

(
0 E2 sinhλy

0 E2 coshλy

)
dy. (3.2)

Here, we recall that the 4 × 4-matrix

R(x) =

(
R1(x) R2(x)

R2(x) R1(x)

)
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with 2 × 2-matrix functions Rj , j = 1, 2, satisfies

{
(B4R

′(x) + P (x)R(x))k,ℓ + (B4R
′(x) + P (x)R(x))k+2,ℓ+2 = 0

(B4R
′(x) + P (x)R(x))k,ℓ+2 + (B4R

′(x) + P (x)R(x))k+2,ℓ = 0,
k, ℓ = 1, 2, 0 ≤ x ≤ 1

and R(0) = E4. Let K(1) be the solution to




B4
∂K(1)

∂x
(y, x) + P (x)K(1)(y, x) = −∂K(1)

∂y
(y, x)B4 in Ω

K
(1)
k,ℓ+2(0, x) = 0, k = 1, 2, 3, 4, ℓ = 1, 2

K
(1)
k,ℓ+2(x,x) −K

(1)
k+2,ℓ(x,x) = [B4R

′(x) + P (x)R(x)]k,ℓ , 0 ≤ x ≤ 1 k, ℓ = 1, 2

K
(1)
k,ℓ (x,x) −K

(1)
k+2,ℓ+2(x,x) = [B4R

′(x) + P (x)R(x)]k,ℓ+2 , 0 ≤ x ≤ 1 k, ℓ = 1, 2,

(3.3)

and K(2) be the solution to




B4
∂K(2)

∂x
(y, x) + P (x)K(2)(y, x) = −∂K(2)

∂y
(y, x)B4 in Ω

K
(2)
k,ℓ (0, x) = 0, k = 1, 2, 3, 4, ℓ = 1, 2

K
(2)
k,ℓ+2(x,x) −K

(2)
k+2,ℓ(x,x) = [B4R

′(x) + P (x)R(x)]k,ℓ , 0 ≤ x ≤ 1 k, ℓ = 1, 2

K
(2)
k,ℓ (x,x) −K

(2)
k+2,ℓ+2(x,x) = [B4R

′(x) + P (x)R(x)]k,ℓ+2 , 0 ≤ x ≤ 1 k, ℓ = 1, 2.

(3.4)

We can prove by a usual method of characteristics that K(1) and K(2) exist uniquely.

Let us consider the second term on the right hand side of (3.2). By integration by parts, we obtain

∫ x

0

K(1)(y, x)

(
E2 coshλy 0

E2 sinhλy 0

)
dy =

1

λ

∫ x

0

K(1)(y, x)
d

dy

(
E2 sinhλy 0

E2 coshλy 0

)
dy

=
1

λ





[
K(1)(y, x)

(
E2 sinhλy 0

E2 coshλy 0

)]y=x

y=0

−
∫ x

0

∂

∂y
K(1)(y, x)

(
E2 sinhλy 0

E2 coshλy 0

)
dy



 .

Therefore, for any C > 0, there exists a constant C0 > 0, which is dependent on C and is independent of λ,

such that

sup
0≤x≤1

∣∣∣∣∣

∫ x

0

K(1)(y, x)

(
E2 coshλy 0

E2 sinhλy 0

)
dy

∣∣∣∣∣ ≤
C0

|λ| if |Reλ| ≤ C.

Here, for a 4 × 4-matrix M , we define a matrix norm |M | by

|M | = max
k,ℓ=1,2,3,4

|Mk,ℓ|.

Similarly, we can verify that there exists a constant C0 = C0(C) > 0 such that

sup
0≤x≤1

∣∣∣∣∣

∫ x

0

K(1)(y, x)

(
E2 coshλy 0

E2 sinhλy 0

)
dy +

∫ x

0

K(2)(y, x)

(
0 E2 sinhλy

0 E2 coshλy

)
dy

∣∣∣∣∣ ≤
C0

|λ| (3.5)

if | Re λ| ≤ C .
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Setting λ = β + 2mπi with β ∈ C and m ∈ Z, we can write

det(B
(0)
4 +B

(1)
4 U(1, λ)) = det

(
B

(0)
4 +B

(1)
4 R(1)

(
E2 cosh β E2 sinhβ

E2 sinhβ E2 cosh β

))
+O

(
1

|m|

)
.

Let us calculate

B
(0)
4 +B

(1)
4 R(1)

(
E2 coshβ E2 sinhβ

E2 sinhβ E2 coshβ

)
.

By the definition of R(x), we can write

R′
k,ℓ(x) = −1

2

2∑

m=1

(Pk,m+2(x) + Pk+2,m(x))Rm,ℓ(x)

− 1

2

2∑

m=1

(Pk,m(x) + Pk+2,m+2(x))Rm,ℓ+2(x), k, ℓ = 1, 2

R′
k,ℓ+2(x) = −1

2

2∑

m=1

(Pk,m(x) + Pk+2,m+2(x))Rm,ℓ(x)

− 1

2

2∑

m=1

(Pk,m+2(x) + Pk+2,m(x))Rm,ℓ+2(x), k, ℓ = 1, 2

Rk,ℓ(0) = δkℓ, k, ℓ = 1, 2, Rk,ℓ+2(0) = 0, k, ℓ = 1, 2.

Here and henceforth we set δkk = 1 and δkℓ = 0 if k 6= ℓ. Setting

{
rk,ℓ(x) = Rk,ℓ(x) +Rk,ℓ+2(x)

r̃k,ℓ(x) = Rk,ℓ(x) −Rk,ℓ+2(x),
k, ℓ = 1, 2

we can reduce the preceding differential equation into





r′k,ℓ(x) +
∑2
m=1 θ

P
k,m(x)rm,ℓ(x) = 0

r̃′k,ℓ(x) +
∑2
m=1 θ̃

P
k,m(x)r̃m,ℓ(x) = 0

rk,ℓ(0) = r̃k,ℓ(0) = δkℓ,

k, ℓ = 1, 2.

Recalling the definition of G(θP )(x) and G(θ̃P )(x), we can write

R(x) =
1

2

(
G(θP )(x) +G(θ̃P )(x) G(θP )(x) −G(θ̃P )(x)

G(θP )(x) −G(θ̃P )(x) G(θP )(x) +G(θ̃P )(x)

)
. (3.6)
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Hence

B
(0)
4 +B

(1)
4 R(1)

(
E2 cosh β E2 sinhβ

E2 sinhβ E2 cosh β

)

=

(
−h̃ E2

0 0

)
+

1

2

(
0 0

−H̃ E2

)(
eβG(θP )(1) + e−βG(θ̃P )(1) eβG(θP )(1) − e−βG(θ̃P )(1)

eβG(θP )(1) − e−βG(θ̃P )(1) eβG(θP )(1) + e−βG(θ̃P )(1)

)

=

(
−h̃ E2

eβ(E2− eH)G(θP )(1)−e−β(E2+ eH)G(fθP )(1)
2

eβ(E2− eH)G(θP )(1)+e−β(E2+ eH)G(eθP )(1)
2

)
.

Therefore we have

det

(
B

(0)
4 +B

(1)
4 R(1)

(
E2 coshβ E2 sinhβ

E2 sinhβ E2 coshβ

))

=
1

2
det

(
0 E2

eβ
{

(E2 − H̃)G(θP )(1)(E2 + h̃) − e−2β(E2 + H̃)G(θ̃P )(1)(E2 − h̃)
}

∗

)
.

This determinant is not zero if and only if

det
(
eβ
{
(E2 − H̃)G(θP )(1)(E2 + h̃) − e−2β(E2 + H̃)G(θ̃P )(1)(E2 − h̃)

})
6= 0.

By hj 6= ±1 and Hj 6= ±1 for j = 1, 2, detG(θP )(1) 6= 0 and the continuity of the determinant, for sufficiently

large Reβ > 0, the preceding determinant is not equal to zero. Here we used that detG(θP )(1) 6= 0. In fact,

for y ∈ (0, 1), by G(θ)(x;y) we denote the solution to (1.15) such that G(θ)(y; y) = E2. Then the uniqueness

of the initial value problem for (1.15) yields G(θ)(x;y)G(θ)(y;x) = E2, which implies det G(θ)(x;y) 6= 0 for

any x, y ∈ (0, 1). Since G(θP )(1) = G(θP )(1; 0) by the definition, we have detG(θP )(1) 6= 0.

Consequently we can choose sufficiently large |m| and sufficiently large Reβ > 0 such that

det(B
(0)
4 +B

(1)
4 U(1, λ)) 6= 0

for λ 6= β + 2mπi.

Therefore, the proof of Lemma 3.1 is completed. �
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Step 2. Let a 4 × 2-matrix function φ(x, λ) be the solution to the following equations:





B4
d
dx
φ(x, λ) + P (x)φ(x,λ) = λφ(x, λ), 0 < x < 1

φ(0, λ) =

(
E2

h̃

)
.

Then, λ ∈ C is an eigenvalue of AP if and only if the determinant of

Φ(λ) =
(

−H̃ E2

)
φ(1, λ)

is equal to zero. Henceforth we call det Φ(λ) the characteristic function for AP . In fact, if ψ is an eigenfunction

of AP , then we can choose (c1, c2) 6= (0, 0) such that

ψ(x,λ) = c1φ1(x,λ) + c2φ2(x,λ),

where φℓ is the ℓ-th column vector of φ(x, λ), ℓ = 1, 2. Since

(
−H̃ E2

)
ψ(1, λ) = 0,

we have

(
−H̃ E2

)
ψ(1, λ) =

(
−H̃ E2

)
c1φ1(1, λ) +

(
−H̃ E2

)
c2φ2(1, λ) = 0.

Hence

{(
−H̃ E2

)
φ1(1, λ) ,

(
−H̃ E2

)
φ2(1, λ)

}

is linearly dependent, so that detΦ(λ) = 0 follows.

Conversely, if

(
−H̃ E2

)
φℓ(1, λ), ℓ = 1, 2

are linearly dependent, then there exists (c1, c2) 6= (0, 0) such that

(
−H̃ E2

)
(c1φ1(1, λ) + c2φ2(1, λ)) = 0.
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Then ψ(x,λ) = c1φ1(x,λ) + c2φ2(x,λ) is an eigenfunction of AP , that is, λ is an eigenvalue of AP . Thus we

have proved that λ is an eigenvalue of AP if and only if detΦ(λ) = 0.

Moreover we can prove

Lemma 3.2 The algebraic multiplicity of an eigenvalue λ0 is equal to the multiplicity of λ0 as zero of

det Φ(λ).

The proof is given in Appendix C.

Let us calculate Φ(λ). Using the transformation formula, we have

φ(x, λ) = R(x)




coshλx+ h1 sinhλx 0

0 coshλx+ h2 sinhλx

sinhλx+ h1 coshλx 0

0 sinhλx+ h2 coshλx




+

∫ x

0

K(1)(y, x)




coshλy 0

0 coshλy

sinh λy 0

0 sinhλy


 dy

+

∫ x

0

K(2)(y, x)




h1 sinhλy 0

0 h2 sinh λy

h1 coshλy 0

0 h2 coshλy


dy. (3.7)

Here K(1)(y, x) and K(2)(y, x) are defined by (3.3) and (3.4).

For simplicity, by φ̃(λ) we denote the integral terms on the right hand side of (3.7) with x = 1. Setting

hℓ = tanhµℓ, we can write

φ(1, λ) = R(1)




cosh(λ + µ1) 0

0 cosh(λ+ µ2)

sinh(λ + µ1) 0

0 sinh(λ + µ2)




(
1

coshµ1
0

0 1
coshµ2

)
+ φ̃(λ). (3.8)

By (3.6), we have

φ(1, λ) =
1

2

(
(Ak,ℓe

λ+µℓ +Bk,ℓe
−λ−µℓ )k,ℓ=1,2

(Ak,ℓe
λ+µℓ −Bk,ℓe

−λ−µℓ )k,ℓ=1,2

)(
1

coshµ1
0

0 1
coshµ2

)
+ φ̃(λ),

where G(θP )(1) = (Ak,ℓ)k,ℓ=1,2, G(θ̃P )(1) = (Bk,ℓ)k,ℓ=1,2.
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Multiplying
(

−H̃ E2

)
from the left, we obtain

Φ(λ) =
1

2

(
1

cosh ν1
0

0 1
cosh ν2

)
(Ak,ℓe

λ+µℓ+νk −Bk,ℓe
−(λ+µℓ+νk))k,ℓ=1,2

×
(

1
coshµ1

0

0 1
coshµ2

)
+ Φ̃(λ) ≡ Φ0(λ) + Φ̃(λ), (3.9)

where Hℓ = − tanhνℓ and Φ̃(λ) =
(

−H̃ E2

)
φ̃(λ).

Let us calculate Φ̃(λ). By integration by parts,

Φ̃(λ) =
(

−H̃ E2

) 1

λ

×


K

(1)(y,1)




sinhλy 0

0 sinhλy

coshλy 0

0 coshλy


+K(2)(y,1)




h1 coshλy 0

0 h2 coshλy

h1 sinhλy 0

0 h2 sinhλy







y=1

y=0

−
(

−H̃ E2

) 1

λ

∫ 1

0

∂

∂y
K(1)(y,1)




sinhλy 0

0 sinhλy

coshλy 0

0 coshλy


 dy

−
(

−H̃ E2

) 1

λ

∫ 1

0

∂

∂y
K(2)(y,1)




h1 coshλy 0

0 h2 coshλy

h1 sinhλy 0

0 h2 sinhλy


 dy.

Hence

|Φ̃(λ)| ≤ C

|λ|e
|Reλ|, (3.10)

where we recall that |Φ̃(λ)| denotes the matrix norm of Φ̃(λ) and C > 0 is a positive constant which is

independent of λ.

We show that there exists a positive constant K satisfying

|Re λ| ≤ K for any λ ∈ σ(AP ). (3.11)

If not, then there exists a sequence {λm}m∈N ⊂ σ(AP ) such that limm→∞ |Reλm| = ∞. Without loss of

generality, we suppose that there exists a subsequence {λjm}m∈N ⊂ {λm}m∈N satisfying limm→∞ Reλjm =
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∞. Since λjm are eigenvalues, by (3.9) we have

0 = |det Φ(λjm)|

=

∣∣∣∣∣det

(
1

2

(
1

cosh ν1
0

0 1
cosh ν2

)
(Ak,ℓe

λjm+µℓ+νk −Bk,ℓe
−(λjm+µℓ+νk))k,ℓ=1,2

×
(

1
coshµ1

0

0 1
coshµ2

)
+ Φ̃(λjm)

)∣∣∣∣∣.

Here, using (3.10), we have

0 = |det Φ(λjm)| =

∣∣∣∣∣det

(
1

2

(
1

cosh ν1
0

0 1
cosh ν2

)
(Ak,ℓe

i Imλjm+µℓ+νk −Bk,ℓe
−2Re λjm−i Imλjm−µℓ−νk )k,ℓ=1,2

×
(

1
coshµ1

0

0 1
coshµ2

)
+ εm

)∣∣∣∣∣e
2 Reλjm

where lim|m|→∞ |εm| = 0. Here we have detG(θP )(1) 6= 0, which is derived at the end of Step 1. Hence,

since det(Ak,ℓe
µℓ+νk)k,ℓ=1,2 = eµ1+µ2+ν1+ν2 det G(θP )(1) 6= 0. Then taking |m| → ∞, the right hand side

tends to ∞, because of the continuity of the determinant. Thus this yields a contradiction and the proof of

(3.11) is completed.

Step 3. We choose sufficiently large K > 0 satisfying (3.11) and

∣∣∣∣
1

2
Re logαj

∣∣∣∣ < K, j = 1, 2.

We further choose K > 0 large enough, so that

|det Φ(λ) − det Φ0(λ)| < |det Φ0(λ)|

for all λ with |Re λ| = K. Here we recall taht Φ0 = Φ − Φ̃. It is possible because (3.10) holds and

det(Ak,ℓe
µℓ+νk)k,ℓ=1,2 6= 0, det(Bk,ℓe

−µℓ−νk)k,ℓ=1,2 6= 0 in (3.9).

Then we set

Km =
{
λ ; −K − 1 < Reλ < K + 1, α̃+mπ − π

2
< Imλ < α̃+mπ +

π

2

}
, m ∈ Z,
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using the constant α̃ defined in the statement of Theorem 2.1.

Now we will prove the following Assertion :

There exists N ∈ N such that in Km there are exactly 2 zeros of det Φ by taking the algebraic multiplicities

into consideration for |m| ≥ N .

Noting

Km = {λ+mπi ; λ ∈ K0},

and

Φ0(λ) =
(

−H̃ E2

)
R(1)




cosh(λ + µ1) 0

0 cosh(λ+ µ2)

sinh(λ + µ1) 0

0 sinh(λ + µ2)




(
1

coshµ1
0

0 1
cosh µ2

)
,

by definition (3.9) of Φ0, we have

min
λ∈∂Km

|detΦ0(λ)| = min
λ∈∂K0

|detΦ0(λ)| ≡ L.

For sufficiently large N ∈ N, we have

sup
λ∈∂Km

|det Φ(λ) − det Φ0(λ)| < L, N ≤ |m|

by (3.10) and the linearity of the determinant in each column. Therefore

|det Φ(λ)− det Φ0(λ)| < |det Φ0(λ)|, on λ ∈ ∂Km. (3.12)
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On the other hand,

det Φ0(λ) = 0

⇐⇒ det

(
1

2

(
1

cosh ν1
0

0 1
cosh ν2

)
(Ak,ℓe

λ+µℓ+νk −Bk,ℓe
−(λ+µℓ+νk))k,ℓ=1,2

×
(

1
coshµ1

0

0 1
coshµ2

))
= 0

⇐⇒ det
(
(Ak,ℓe

λ+µℓ+νk −Bk,ℓe
−(λ+µℓ+νk))k,ℓ=1,2

)
= 0

⇐⇒ det

(
e2λ

(
eν1 0

0 eν2

)
G(θP )(1)

(
eµ1 0

0 eµ2

)

−
(
e−ν1 0

0 e−ν2

)
G(θ̃P )(1)

(
e−µ1 0

0 e−µ2

))
= 0

⇐⇒ det

(
e2λE2 −

(
e−2ν1 0

0 e−2ν2

)
G(θ̃P )(1)

(
e−2µ1 0

0 e−2µ2

)
G(θP )(1)−1

)
= 0.

Therefore, from the definition of α1 and α2, the zeros of detΦ0 are

1

2
logαj +mπi, m ∈ Z.

By the Rouché theorem, all Km contains exactly 2 zeros of det Φ by taking into consideration the multiplic-

ities. Thus the proof of Assertion is completed.

Setting

K(0) ≡
{
λ ; −K − 1 < Reλ < K + 1, α̃−Nπ +

π

2
< Imλ < α̃+Nπ − π

2

}
,

we have

|det Φ(λ) − det Φ0(λ)| < |det Φ0(λ)| on ∂K(0),

by (3.12). Hence, since detΦ0(λ) = 0 possesses 2(2N − 1) zeros in K(0), the Rouché theorem yields that

K(0) contains exactly 2(2N − 1) zeros of det Φ by taking into consideration the multiplicities.

According to the argument of this step, in terms of Lemma 3.2, we see:
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There exists N ∈ N such that Km contains exactly 2 eigenvalues of AP for all |m| ≥ N and K(0) contains

2(2N − 1) eigenvalues of AP by taking into consideration the algebraic multiplicities.

Step 4. We will show the asymptotic behaviour of the eigenvalues. Here let N ≤ |m|. We note that

two zeros of detΦ are included in Km with the multiplicities. Now we consider det Φ(λ) = 0 in Km. By

(3.9) and (3.10), using the linearity of the determinant in each column, we see that detΦ(λ) = 0, λ ∈ Km,

is rewritten as

det
(
(Ak,ℓe

λ+µℓ+νk −Bk,ℓe
−(λ+µℓ+νk))k,ℓ=1,2

)
= O

(
1

|m|

)
, λ ∈ Km.

By |Reλ| < K + 1, we can rewrite the left hand side to obtain

det

{
e2λE2 −

(
e−2ν1 0

0 e−2ν2

)
G(θ̃P )(1)

(
e−2µ1 0

0 e−2µ2

)
G(θP )(1)−1

}
= O

(
1

|m|

)
, λ ∈ Km.

We rewrite this equation as

(e2λ)2 + a1e
2λ + a0 = O

(
1

|m|

)
, λ ∈ Km, (3.13)

where a1 and a0 are constants. That is, λ is a root of

e4λ + a1e
2λ + a0 + κm = 0, κm = O

(
1

|m|

)
.

We set ζm = 1
2 logα1 +mπi ∈ Km. Then α1 = e2ζm and by the definition of α1, we have

det

{
e2ζmE2 −

(
e−2ν1 0

0 e−2ν2

)
G(θ̃P )(1)

(
e−2µ1 0

0 e−2µ2

)
G(θP )(1)−1

}
= 0,

that is, ζm is a root of the equation in λ :

e4λ + a1e
2λ + a0 = 0.

Using the Rouché theorem, we will estimate the difference between ζm and a root of (3.13). First, for

sufficiently large |m|, we consider a circle Sζm,rm
centred at ζm with radius rm. For large |m|, we will find
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rm such that

|κm| < |e4λ + a1e
2λ + a0| on Sζm,rm

. (3.14)

We set ρ(λ) = e4λ+a1e
2λ+a0 and η = a1 +2α1. Let us calculate |ρ(λ)| under |λ− ζm| = rm. By ρ(ζm) = 0,

we have

|e4λ + a1e
2λ + a0| = |{(e2λ − α1) + α1}2 + a1{(e2λ − α1) + α1} + a0|

= |(e2λ − α1)
2 + 2(e2λ − α1)α1 + a1(e

2λ − α1)| = |(e2λ − α1)
2 + η(e2λ − α1)|.

Case 1: (1.12) possesses distinct roots α1 and α2.

Then η 6= 0 and we have

|ρ(λ)| = |e2λ − α1|
∣∣(e2λ − α1) + η

∣∣ ≥ C0r
∣∣(e2λ − α1) + η

∣∣ on Sζm,r.

At the last inequality, we used ζm = 1
2 logα1 +mπi and |e2λ − α1| = |α1||e2(λ−ζm) − 1|. Taking sufficiently

small d < 1, by |η| > 0 we can estimate

∣∣(e2λ − α1) + η
∣∣ ≥ |η| − C0r ≥ C > 0 on Sζm,r, for all r < d,

where d and C are dependent on aj , α1, and independent of m. Hence

|ρ(λ)| ≥ Cr.

Therefore, since |κm| = O
(

1
|m|

)
, for sufficiently large C ′ > 0, we set rm = C′

|m| , so that Crm ≥ |κm|, that is,

(3.14) holds on S
λ

(1)
m ,rm

.

Moreover ρ(λ) possesses a unique zero in {λ; |λ − ζm| < rm} for sufficiently large |m|. Applying the

Rouché theorem, in terms of (3.14), we see that e4λ + a1e
2λ + a0 + κm = 0 possesses a unique zero denoted

by λ1,m in {λ; |λ− ζm| < rm} and

λ1,m =
1

2
logα1 +mπi +O

(
1

|m|

)
.
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For α2, we can argue similarly. Thus the proof of (2.1) is completed in Case 1.

Case 2: (1.12) possesses the multiple root α1 = α2. Then η = 0, and

|ρ(λ)| = |e2λ − e2ζm |2 ≥ C2
0r

2 on Sζm,r

and for sufficiently large |m|, the function ρ(λ) possesses exactly two zeros in {λ ; |λ− ζm| < rm} including

the multiplicity. Choosing rm = C′√
|m|

with large C ′ > 0, we can argue similarly to Case 1, in terms of the

Rouché theorem to see that e4λ+a1e
2λ+a0+κm = 0 possesses two zeros λ1,m and λ2,m in {λ; |λ−ζm| < rm}

by taking into consideration the multiplicities, and

|λj,m − ζm| = O

(
1√
|m|

)
, j = 1, 2

as |m| → ∞. Thus the proof of Theorem 2.1 is completed. �

4 The proof of Theorem 2.3

In this section, we prove Theorem 2.3. For this, we apply the Bari theorem (e.g., Gohberg and Krĕın

[2]).

Let α1, α2 be the solutions to (1.12). Because of the assumption α1 6= α2, for sufficiently large |m|, we

see that

Km =
{
λ ; −K − 1 < Reλ < K + 1, α̃+mπ − π

2
< Imλ < α̃+mπ +

π

2

}

contains two eigenvalues each of whose algebraic multiplicity is one.

Let us set βj = 1
2 logαj , j = 1, 2. Now we prove that

rank
(

−H̃ E2

)
R(1)




cosh (β1 + µ1) 0

0 cosh (β1 + µ2)

sinh (β1 + µ1) 0

0 sinh (β1 + µ2)


 = 1.

27



By (3.6), this ranks is equal to

rank

{
e2β1E2 −

(
e−2ν1 0

0 e−2ν2

)
G(θ̃P )(1)

(
e−2µ1 0

0 e−2µ2

)
G(θP )(1)−1

}
.

By the assumption that α1 = e2β1 is the solution to (1.12), the rank is not equal to 2. We assume

rank

{
e2β1E2 −

(
e−2ν1 0

0 e−2ν2

)
G(θ̃P )(1)

(
e−2µ1 0

0 e−2µ2

)
G(θP )(1)−1

}
= 0.

Then because each column of this matrix is equal to 0, we have

d

dα

[
det

{
αE2 −

(
e−2ν1 0

0 e−2ν2

)
G(θ̃P )(1)

(
e−2µ1 0

0 e−2µ2

)
G(θP )(1)−1

}]∣∣∣∣∣
α=e2β1

= 0.

This contradicts the assumption that quadratic equation (1.12) has distinct roots. Therefore we obtain

rank
(

−H̃ E2

)
R(1)




cosh (β1 + µ1) 0

0 cosh (β1 + µ2)

sinh (β1 + µ1) 0

0 sinh (β1 + µ2)


 = 1.

Then there exists (c1, c2) 6= (0, 0) such that

(
−H̃ E2

)
R(1)




cosh (β1 + µ1) 0

0 cosh (β1 + µ2)

sinh (β1 + µ1) 0

0 sinh (β1 + µ2)




(
c1

c2

)
=

(
0

0

)
.

Without loss of generality, we can assume that

(
−H̃ E2

)
R(1)




0

cosh (β1 + µ2)

0

sinh (β1 + µ2)


 6=

(
0

0

)
. (4.1)

Then we have c1 6= 0.

Similarly, we can take (d1, d2) 6= (0, 0) such that

(
−H̃ E2

)
R(1)




cosh (β2 + µ1) 0

0 cosh (β2 + µ2)

sinh (β2 + µ1) 0

0 sinh (β2 + µ2)




(
d1

d2

)
=

(
0

0

)
,
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and we can assume that

(
−H̃ E2

)
R(1)




0

cosh (β2 + µ2)

0

sinh (β2 + µ2)


 6=

(
0

0

)

without loss of generality. Then we can directly verify that d1 6= 0.

By S(x), we denote a 4 × 4 matrix

S(x) = R(x)




c1 cosh(β1x+ µ1) d1 cosh(β2x+ µ1) c1 sinh(β1x+ µ1) d1 sinh(β2x+ µ1)

c2 cosh(β1x+ µ2) d2 cosh(β2x+ µ2) c2 sinh(β1x+ µ2) d2 sinh(β2x+ µ2)

c1 sinh(β1x+ µ1) d1 sinh(β2x+ µ1) c1 cosh(β1x+ µ1) d1 cosh(β2x+ µ1)

c2 sinh(β1x+ µ2) d2 sinh(β2x+ µ2) c2 cosh(β1x+ µ2) d2 cosh(β2x+ µ2)


 .

Since the property of the determinant yields

det

(
A B

B A

)
= det

(
A −B B − A

B A

)

= det

(
A −B 0

B A+B

)
= det(A−B) det(A+B)

for 2 × 2-matrices A,B, we have

detS(x) = detR(x) det

(
c1 exp (β1x+ µ1) d1 exp (β2x+ µ1)

c2 exp (β1x+ µ2) d2 exp (β2x+ µ2)

)

× det

(
c1 exp (−β1x− µ1) d1 exp (−β2x− µ1)

c2 exp (−β1x− µ2) d2 exp (−β2x− µ2)

)
.

If c1d2 − c2d1 6= 0, then the inverse matrix S−1(x) exists. We will prove c1d2 − c2d1 6= 0. If not, then we

can take a constant γ such that

(
d1

d2

)
= γ

(
c1

c2

)
.

Hence β1 and β2 are the solution to the following equation in λ:

(
−H̃ E2

)
R(1)




cosh (λ+ µ1) 0

0 cosh (λ+ µ2)

sinh (λ+ µ1) 0

0 sinh (λ+ µ2)




(
c1

c2

)
= 0, (4.2)

which implies

{
d1,1e

λ + d1,2e
−λ = 0

d2,1e
λ + d2,2e

−λ = 0

29



with some dk,ℓ ∈ C, k, ℓ = 1, 2. Then there exists dk,ℓ 6= 0. Otherwise all λ ∈ C is the solution to (4.2),

which means that Φ0(λ) = 0 for all λ ∈ C. This is a contradiction.

Therefore dividing some dk,ℓ 6= 0, we obtain e2β1 = e2β2. Hence 2β1 − 2β2 = 2kπi with some k ∈ Z, that

is,

logα1 = logα2 + 2kπi.

This contradicts that α1 6= α2. Thus we proved that c1d2 − c2d1 6= 0.

By the definition of S, we have

S(x)




cosmπx

0

i sinmπx

0


 = R(x)




c1 cosh (β1x+mπix+ µ1)

c2 cosh (β1x+mπix+ µ2)

c1 sinh (β1x+mπix+ µ1)

c2 sinh (β1x+mπix+ µ2)


 ,

S(x)




0

cosmπx

0

i sinmπx


 = R(x)




d1 cosh (β2x+mπix+ µ1)

d2 cosh (β2x+mπix+ µ2)

d1 sinh (β2x+mπix+ µ1)

d2 sinh (β2x+mπix+ µ2)


 .

We set

e1,m := R(x)




c1 cosh (β1x+mπix+ µ1)

c2 cosh (β1x+mπix+ µ2)

c1 sinh (β1x+mπix+ µ1)

c2 sinh (β1x+mπix+ µ2)


 , e2,m := R(x)




d1 cosh (β2x+mπix+ µ1)

d2 cosh (β2x+mπix+ µ2)

d1 sinh (β2x+mπix+ µ1)

d2 sinh (β2x+mπix+ µ2)


 .

Since S(x) is invertible and








cosmπx

0

i sinmπx

0


 ,




0

cosmπx

0

i sinmπx







m∈Z

is a Riesz basis in {L2(0, 1)}4, we see that {e1,m, e2,m}m∈Z is a Riesz basis in {L2(0, 1)}4
(e.g., Gohberg and

Krĕın [2]).
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We can write an eigenfunction corresponding to λ1,m as

R(x)




cosh(λ1,mx+ µ1) 0

0 cosh(λ1,mx+ µ2)

sinh(λ1,mx+ µ1) 0

0 sinh(λ1,mx+ µ2)




(
c̃
(m)
1

c̃
(m)
2

)

+
(
φ̃1(λ1,m, x) φ̃2(λ1,m, x)

)( c̃
(m)
1

c̃
(m)
2

)
. (4.3)

from (3.7). Here, φ̃1(λ1,m, x), φ̃2(λ1,m, x), m ∈ Z correspond to the integral terms on (3.7) and c̃
(m)
1 , c̃

(m)
2 ,m ∈

Z are constants such that

(
−H̃ E2

)
R(1)




cosh(λ1,m + µ1) 0

0 cosh(λ1,m + µ2)

sinh(λ1,m + µ1) 0

0 sinh(λ1,m + µ2)




(
c̃
(m)
1

c̃
(m)
2

)

+
(

−H̃ E2

)(
φ̃1(λ1,m, 1) φ̃2(λ1,m, 1)

)( c̃
(m)
1

c̃
(m)
2

)
=

(
0

0

)
. (4.4)

Such c̃
(m)
1 , c̃

(m)
2 , m ∈ Z exist because λ1,m are eigenvalues. By (2.1) and (3.10), we choose C > 0 such that

|φ̃k(λ1,m, x)| ≤
C

|m| , m ∈ Z, 0 < x < 1. (4.5)

Now we prove that for sufficiently large |m|, we can take c̃
(m)
1 , c̃

(m)
2 such that c̃

(m)
1 = c1 and c̃

(m)
2 − c2 =

O
(

1
|m|

)
.

Because we assume (4.1), we have

(
−H̃ E2

)
R(1)




0

cosh (λ1,m + µ2)

0

sinh (λ1,m + µ2)


 6=

(
0

0

)
(4.6)

for sufficiently large |m|. Then, by (4.4) and (4.5), we have c̃
(m)
1 6= 0 for sufficiently large |m|. Multiplying

c̃
(m)
1 , c̃

(m)
2 with c1ec(m)

1

, we can take (c1, c̃
(m)
2 ) as (c̃

(m)
1 , c̃

(m)
2 ).

Now let us prove c2 − c̃
(m)
2 = O

(
1

|m|

)
. For this purpose, we will first prove that c̃

(m)
2 = O (1). Equation
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(4.4) yields

(
−H̃ E2

)
R(1)




cosh(λ1,m + µ1) 0

0 cosh(λ1,m + µ2)

sinh(λ1,m + µ1) 0

0 sinh(λ1,m + µ2)




(
c1

c̃
(m)
2

)

+
(

−H̃ E2

)(
φ̃1(λ1,m, 1) φ̃2(λ1,m, 1)

)( c1

c̃
(m)
2

)
=

(
0

0

)
, (4.7)

that is,

c1

(
−H̃ E2

)
R(1)




cosh(λ1,m + µ1)

0

sinh(λ1,m + µ1)

0


+ c1

(
−H̃ E2

)
φ̃1(λ1,m, 1)

+c̃
(m)
2

(
−H̃ E2

)
R(1)




0

cosh(λ1,m + µ2)

0

sinh(λ1,m + µ2)


+ c̃

(m)
2

(
−H̃ E2

)
φ̃2(λ1,m, 1) =

(
0

0

)
.

By using (4.6) and φ̃k(λ1,m, 1) = O
(

1
|m|

)
, we obtain c̃

(m)
2 = O(1).

We will estimate c2 − c̃
(m)
2 . Because of (4.7) and λ1,m = β1 +mπi + δm with δm = O

(
1

|m|

)
, we have

(
−H̃ E2

)
R(1)




cosh(β1 + µ1) 0

0 cosh(β1 + µ2)

sinh(β1 + µ1) 0

0 sinh(β1 + µ2)


 cosh δm

(
c1

c̃
(m)
2

)

+
(

−H̃ E2

)
R(1)




sinh(β1 + µ1) 0

0 sinh(β1 + µ2)

cosh(β1 + µ1) 0

0 cosh(β1 + µ2)


 sinh δm

(
c1

c̃
(m)
2

)

+
(

−H̃ E2

) (
φ̃1(λ1,m, 1) φ̃2(λ1,m, 1)

)( c1

c̃
(m)
2

)
=

(
0

0

)
.

From this equation, we subtract the following:

(
−H̃ E2

)
R(1)




cosh(β1 + µ1) 0

0 cosh(β1 + µ2)

sinh(β1 + µ1) 0

0 sinh(β1 + µ2)


 cosh δm

(
c1

c2

)
=

(
0

0

)
,

which follows from (4.2). Then, since the second and the third terms on the left hand side are bounded by
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O
(

1
|m|

)
in terms of δm = O

(
1

|m|

)
and (4.5), we obtain

cosh δm
(

−H̃ E2

)
R(1)




0

cosh(β1 + µ2)

0

sinh(β1 + µ2)


 (c2 − c̃

(m)
2 ) = O

(
1

|m|

)
.

Therefore, by (4.1) we have

c2 − c̃
(m)
2 = O

(
1

|m|

)
.

Thus for sufficiently large |m|, we can choose an eigenfunction f1,m corresponding to λ1,m such that

f1,m(x) = R(x)




cosh(λ1,mx+ µ1) 0

0 cosh(λ1,mx+ µ2)

sinh(λ1,mx+ µ1) 0

0 sinh(λ1,mx+ µ2)




(
c1

c2 +O
(

1
|m|

)
)

+O

(
1

|m|

)
. (4.8)

For the eigenvalue λ2,m for sufficiently large |m|, we can argue similarly and can choose an eigenfunction

f2,m corresponding to λ2,m such that

f2,m(x) = R(x)




cosh(λ2,mx+ µ1) 0

0 cosh(λ2,mx+ µ2)

sinh(λ2,mx+ µ1) 0

0 sinh(λ2,mx+ µ2)




(
d1

d2 +O
(

1
|m|

)
)

+O

(
1

|m|

)
. (4.9)

Supplementing root vectors to fj,m, j = 1, 2 for sufficiently large |m|, we can obtain the totality of all

the root vectors which can be denoted by {fj,m}j=1,2, m∈Z without fear of confusion such that

|ej,m(x) − fj,m(x)| = O

(
1

|m|

)
, 0 < x < 1.

Therefore we have

∑

j=1,2

∑

m∈Z

||ej,m − fj,m||2{L2(0,1)}4 <∞.

If {fj,m}j=1,2,m∈Z is linearly independent, then we can complete the proof of the theorem by the Bari

theorem (e.g., [2]). Let us prove the linear independence of {fj,m}j=1,2,m∈Z. For this purpose, we renumber

the eigenvalues of AP and the root vectors {fj,m}j=1,2,m∈Z as follows. In terms of Theorem 2.1, we number

the eigenvalues {λj,m}j=1,2,m∈Z as

σ(AP ) = {µk}k∈Z ∪ {νℓ}1≤ℓ≤N ,
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where µk, k ∈ Z are the eigenvalues with algebraic multiplicity one, νℓ, 1 ≤ ℓ ≤ N are the eigenvalues with

algebraic multiplicity χℓ ≥ 2 and

µk1 6= µk2 , νℓ1 6= νℓ2 , k1 6= k2, ℓ1 6= ℓ2.

We renumber the root vectors {fj,m}j=1,2,m∈Z as

{fj,m}j=1,2,m∈Z = {gk}k∈Z ∪ {hℓ,j}1≤ℓ≤N,1≤j≤χℓ
,

where gk is an eigenfunction corresponding to the eigenvalue µk, and {hℓ,j}1≤j≤χℓ
is a basis of {φ; (AP −

νℓ)
kφ = 0 for some k ∈ N}.

Now we verify that

∑

ℓ=1,2,··· ,N, j=1,2,··· ,χℓ

αℓ,jhℓ,j +
∑

k∈Z

βkgk = 0, αℓ,j , βk ∈ C (4.10)

implies αℓ,j = 0, 1 ≤ ℓ ≤ N , 1 ≤ j ≤ χℓ and βk = 0, k ∈ Z. We define

Pk =
1

2πi

∫

Γk

(µ− AP )−1dµ, k ∈ Z

where Γk, k ∈ Z is a sufficiently small circle centred at µk including no other points of σ(AP ). By Theorem

2.1, such Γk exists. Then

Pkgk = gk, Pkgk1 = 0, Pkhℓ,j = 0 if k 6= k1, 1 ≤ ℓ ≤ N , 1 ≤ j ≤ χℓ

hold (e.g., Kato [3]). Applying Pk to (4.10), we have βk = 0, k ∈ Z. Since {hℓ,j}1≤ℓ≤N,1≤j≤χℓ
is a linearly

independent system, we obtain αℓ,j = 0, 1 ≤ ℓ ≤ N , 1 ≤ j ≤ χℓ. Thus the proof of Theorem 2.3 is completed.
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5 The proof of Theorem 1.4

We denote the adjoint operator of AP by A∗
P . We can easily see that

(A∗
P u)(x) = −B4

du

dx
(x) + P t(x)u(x) 0 < x < 1

D(A∗
P ) = {u ∈ {H1(0, 1)}4 ; uℓ+n(0) + hℓuℓ(0) = 0, uℓ+n(1) +Hℓuℓ(1) = 0, ℓ = 1, 2}.

Here P t denotes the transpose matrix of P . By Theorem 2.1, we can number all the eigenvalues of AP

as {λm}|m|≤N−1 ∪ {λj,m}|m|≥N,j=1,2 such that the algebraic multiplicity of λj,m is one for |m| ≥ N and

j = 1, 2, and the value λm, |m| ≤ N − 1 appears as many times as its algebraic multiplicity. According to

the numbering of the eigenvalues, we number the eigenvectors and the associated root vectors. That is, in

the case |m| ≥ N , for j = 1, 2 we choose an eigenvector fj,m of AP for λj,m satisfying (4.8) and (4.9). We

note that by Condition (III) an eigenvector is determined uniquely up to multiples. Furthermore we know

(e.g., [3]) that σ(AP ) = σ(A∗
P ) and the algebraic multiplicity of λ ∈ σ(A∗

P ) is equal to the one of λ ∈ σ(AP ).

By gj,m, j = 1, 2, |m| ≥ N , we denote an eigenvector of A∗
P for λj,m such that

(fj,m, gj,m){L2(0,1)}4 6= 0.

In fact, gj,m is orthogonal to {φ ∈ {L2(0, 1)}4; (AP − λ)kφ = 0 for some k ∈ N} for any eigenvalue λ of

AP which is different from λj,m (e.g., [3]). Therefore if (fj,m, gj,m){L2(0,1)}4 = 0, then Theorem 2.3 implies

that gj,m = 0, which is impossible. Hence, for any a ∈ {L2(0, 1)}4, we can set

αj,m =
(a, gj,m){L2(0,1)}4

(fj,m, gj,m){L2(0,1)}4

.

Moreover we put

θj,m(t) = αj,me
λj,mt, |m| ≥ N, j = 1, 2.

In the case |m| ≤ N − 1, the eigenvalue λm appears χm-times according to its algebraic multiplicity χm :

λq = ... = λq+χm−1. Then by fq we denote a corresponding eigenvector, and by fq+ℓ(x),1 ≤ ℓ ≤ χm − 1, a
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Jordan chain of the associated root vectors. That is, fq+ℓ, 1 ≤ ℓ ≤ χm − 1, satisfy (AP − λq)fq+ℓ = fq+ℓ−1.

We denote by gq+χm−1 an eigenvector of the adjoint operator A∗
P for the eigenvalue λq, and by gq+χm−ℓ,

2 ≤ ℓ ≤ χm we denote a Jordan chain of associated root vectors. Here, (AP − λq)gq+χm−ℓ = gq+χm−ℓ+1 for

ℓ = 2, 3, · · · , χm. Then we can prove (e.g., Propositions 2.2 and 2.3 in [7]) that (fq+ℓ, gq+ℓ){L2(0,1)}4 6= 0,

0 ≤ ℓ ≤ χm − 1. Thus for any a ∈ {L2(0, 1)}4, we can set

γq+ℓ =
(a, gq+ℓ){L2(0,1)}4

(fq+ℓ, gq+ℓ){L2(0,1)}4

, 0 ≤ ℓ ≤ χm − 1

and

θq+ℓ(t) = eλqt

(
χm−ℓ−1∑

k=0

tk

k!
γq+ℓ+k

)
, 0 ≤ ℓ ≤ χm − 1.

Then we renumber {fj,m}|m|≥N,j=1,2, fq+ℓ, {θj,m}|m|≥N,j=1,2, θq+ℓ, {gj,m}|m|≥N,j=1,2, gq+ℓ with 0 ≤ j ≤

χm − 1 as {fm}m∈Z, {θm}m∈Z and {gm}m∈Z.

In terms of θm and fm, we can prove an expansion of the solution to the initial value/boundary value

problem (1.9). The proof is done by arguments similar to Appendix in [7] and Proposition 2.2 in [11], and

is omitted.

Propositon 5.1 Let a ∈ {C3[0, 1]}4 ∩D(A2) and uP,a satisfy (1.9). Then

u(t, x) =
∑

m∈Z

θm(t)fm(x),

where the series converges absolutely and uniformly in −T ≤ t ≤ T and 0 ≤ x ≤ 1.

Now we proceed

Proof of Theorem 1.4. The ”if” part is directly proved. In fact, by (1.19) and (1.20), we see that K = 0

satisfies (2.3), (2.4) and (2.7), so that ũ(t, x) = R(x)u(t, x) satisfies (2.12) with some ω1(t) and ω2(t) by

Theorem 2.6. In terms of (1.18) and (1.21), we can conclude that (Q, b) ∈MT (P, a).

36



Proof of ”only if” part. Let us recall that uP,a is the solution to (1.9) with coefficient matrix P and

initial value a. Let us suppose that uP,a(t, 0) = uQ,b(t, 0) and uP,a(t, 1) = uQ,b(t, 1) for −T ≤ t ≤ T . Then

it follows from Theorem 2.6 that for −T + 1 ≤ t ≤ T − 1

uQ,b(t, 1) = uP,a(t, 1) = R(1)uP,a(t, 1) +

∫ 1

0

K(y,1)uP,a(t, y)dy.

We recall that

R(1) =

(
R1(1) R2(1)

R2(1) R1(1)

)
, H̃ =

(
H1 0

0 H2

)
,

where R1, R2 are 2 × 2 matrices. For simplicity, we set

u(t, x) = uP,a(t, x) =




u1(t, x)

u2(t, x)

u3(t, x)

u4(t, x)


 , K(y,1) =

(
K1(y,1)

K2(y,1)

)

where K1(y,1) and K2(y,1) are 2 × 4-matrices. Then it follows from uQ,b(t, 1) = u(t, 1) and uℓ+2(t, 1) =

Hℓuℓ(t, 1), ℓ = 1, 2 that

(E2 −R1(1)−R2(1)H̃)

(
u1(t, 1)

u2(t, 1)

)
=

∫ 1

0

K1(y,1)u(t, y)dy,

(H̃ −R2(1) −R1(1)H̃)

(
u1(t, 1)

u2(t, 1)

)
=

∫ 1

0

K2(y,1)u(t, y)dy.

By Proposition 5.1, we have

(E2 −R1(1) −R2(1)H̃)
∑

m∈Z

θm(t)

(
f1
m(1)

f2
m(1)

)

=

∫ 1

0

K1(y,1)
∑

m∈Z

θm(t)fm(y)dy,

(H̃ −R2(1)−R1(1)H̃)
∑

m∈Z

θm(t)

(
f1
m(1)

f2
m(1)

)

=

∫ 1

0

K2(y,1)
∑

m∈Z

θm(t)fm(y)dy

for −T + 1 ≤ t ≤ T − 1. Here fℓm, ℓ = 1, 2 is the ℓ-th component of fm. Since the series on the right hand
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converge uniformly by Proposition 5.1, we can change orders of summation and integration :

∑

m∈Z

θm(t)

{
(E2 −R1(1) −R2(1)H̃)

(
f1
m(1)

f2
m(1)

)
−
∫ 1

0

K1(y,1)fm(y)dy

}
= 0

∑

m∈Z

θm(t)

{
(H̃ −R2(1) −R1(1)H̃)

(
f1
m(1)

f2
m(1)

)
−
∫ 1

0

K2(y,1)fm(y)dy

}
= 0

for −1 ≤ t ≤ 1. Here we used that −T + 1 ≤ t ≤ T − 1 and T ≥ 2 implies −1 ≤ t ≤ 1.

We can prove that for the system S = {θm}m∈Z, there exists another system S̃ ⊂ L2(−1, 1) such that

for any ϕ ∈ S, we can choose a unique ϕ̃ ∈ S̃ satisfying (ϕ,ψ)L2(−1,1) = 0 if and only if ψ ∈ S̃ \ {ϕ̃}. The

proof is based on Theorem 1.1.1 in Sedletskii [9], and see Appendix C in [11] for the proof. Taking the scalar

products in L2(−1, 1) with all ψ ∈ S̃, we can obtain

(E2 −R1(1) −R2(1)H̃)

(
f1
m(1)

f2
m(1)

)
−
∫ 1

0

K1(y,1)fm(y)dy = 0, m ∈ Z,

(H̃ −R2(1) −R1(1)H̃)

(
f1
m(1)

f2
m(1)

)
−
∫ 1

0

K2(y,1)fm(y)dy = 0, m ∈ Z.

Here for sufficiently large |m|, as fm, we see that fj,m =




f1
j,m

f2
j,m

f3
j,m

f4
j,m


, j = 1, 2, are two linearly independent

eigenvectors corresponding to the eigenvalue λj,m. We will prove that

{
lim
m→∞

(
f1
1,m(1)

f2
1,m(1)

)
, lim

m→∞

(
f1
2,m(1)

f2
2,m(1)

)}

is linearly independent. In order to prove this, it is sufficient to prove that





lim
m→∞




f1
1,m(1)

f2
1,m(1)

f3
1,m(1)

f4
1,m(1)


 , lim

m→∞




f1
2,m(1)

f2
2,m(1)

f3
2,m(1)

f4
2,m(1)








is linearly independent because of

f3
j,m(1) = H1f

1
j,m(1), f4

j,m(1) = H2f
2
j,m(1), j = 1, 2.
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By (4.8) and (4.9), we have

lim
m→+∞




f1
1,m(1)

f2
1,m(1)

f3
1,m(1)

f4
1,m(1)


 = R(1)




c1 cosh(β1 + µ1)

c2 cosh(β1 + µ2)

c1 sinh(β1 + µ1)

c2 sinh(β1 + µ2)


 ,

lim
m→+∞




f1
2,m(1)

f2
2,m(1)

f3
2,m(1)

f4
2,m(1)


 = R(1)




d1 cosh(β2 + µ1)

d2 cosh(β2 + µ2)

d1 sinh(β2 + µ1)

d2 sinh(β2 + µ2)


 .

Since R−1(1) exists and c1d2 − c2d1 6= 0 which is proved for (4.2), we can verify that




R(1)




c1 cosh(β1 + µ1)

c2 cosh(β1 + µ2)

c1 sinh(β1 + µ1)

c2 sinh(β1 + µ2)


 , R(1)




d1 cosh(β2 + µ1)

d2 cosh(β2 + µ2)

d1 sinh(β2 + µ1)

d2 sinh(β2 + µ2)


 .





is linearly independent. Thus

{
lim
m→∞

(
f1
1,m(1)

f2
1,m(1)

)
, lim

m→∞

(
f1
2,m(1)

f2
2,m(1)

)}

is linearly independent.

Furthermore, from Riemann-Lebesgue lemma, we have

lim
m→∞

∫ 1

0

Kℓ(y,1)fm(y)dy = 0, ℓ = 1, 2.

Therefore, we obtain

E2 −R1(1) −R2(1)H̃ = 0, H̃ −R2(1)−R1(1)H̃ = 0 (5.1)

and

∫ 1

0

Kℓ(y,1)fm(y)dy = 0, ℓ = 1, 2, m ∈ Z.

Since {fm}m∈Z forms a Riesz basis, it follows that

K1(y,1) = K2(y,1) = 0, 0 ≤ y ≤ 1. (5.2)
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Therefore, using a characteristic method, we can prove the uniqueness in the problem (2.3) - (2.4) with (5.2)

(e.g., [10], [12]), and obtain

K(y, x) = 0, 0 ≤ y ≤ x ≤ 1.

Consequently, we obtain (1.19), (1.20) and (1.21). Since Hℓ 6= ±1, we can directly derive R1(1) = E2 and

R2(1) = 0 from (5.1). Thus we obtain (1.18), and the proof of Theorem 1.4 is completed.

A Proof of Lemma 2.4

We set




L
(1)
k,ℓ(y, x) = Kk,ℓ(y, x) −Kk+n,ℓ+n(y, x)

L
(1)
k,ℓ+n(y, x) = Kk,ℓ+n(y, x) −Kk+n,ℓ(y, x)

L
(2)
k,ℓ(y, x) = Kk,ℓ(y, x) +Kk+n,ℓ+n(y, x)

L
(2)
k,ℓ+n(y, x) = Kk,ℓ+n(y, x) +Kk+n,ℓ(y, x),

k, ℓ = 1, 2, · · · , n

and

fk,ℓ(y, x) = (K(y, x)P (x) −Q(x)K(y, x))k,ℓ , k, ℓ = 1, 2, · · · , 2n.

From (2.3), we obtain





∂
∂x
Kk+n,ℓ + ∂

∂y
Kk,ℓ+n = fk,ℓ

∂
∂x
Kk+n,ℓ+n + ∂

∂y
Kk,ℓ = fk,ℓ+n

∂
∂x
Kk,ℓ + ∂

∂y
Kk+n,ℓ+n = fk+n,ℓ

∂
∂x
Kk,ℓ+n + ∂

∂y
Kk+n,ℓ = fk+n,ℓ+n,

in Ω, k, ℓ = 1, 2, · · · , n.

Hence we obtain the following system for k, ℓ = 1, 2, · · · , n :

∂

∂x
L

(1)
k,ℓ −

∂

∂y
L

(1)
k,ℓ = f̃k,ℓ ≡ fk+n,ℓ − fk,ℓ+n (A.1)

∂

∂x
L

(1)
k,ℓ+n − ∂

∂y
L

(1)
k,ℓ+n = f̃k,ℓ+n ≡ fk+n,ℓ+n − fk,ℓ (A.2)

∂

∂x
L

(2)
k,ℓ +

∂

∂y
L

(2)
k,ℓ = f̃k+n,ℓ ≡ fk,ℓ+n + fk+n,ℓ (A.3)

∂

∂x
L

(2)
k,ℓ+n +

∂

∂y
L

(2)
k,ℓ+n = f̃k+n,ℓ+n ≡ fk+n,ℓ+n + fk,ℓ. (A.4)
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By (2.5), we have

L
(1)
k,ℓ(x,x) = bk,ℓ(x), 0 < x < 1, k, ℓ = 1, 2, · · · , n. (A.5)

L
(1)
k,ℓ+n(x,x) = ak,ℓ(x), 0 < x < 1, k, ℓ = 1, 2, · · · , n. (A.6)

Moreover from (2.4), we have

{
L

(2)
k,ℓ(0, x) = Kk,ℓ(0, x) +Kk+n,ℓ+n(0, x) = Kk,ℓ(0, x) − hkKk+n,ℓ(0, x)

L
(2)
k,ℓ+n(0, x) = Kk,ℓ+n(0, x) +Kk+n,ℓ(0, x) = −hkKk,ℓ(0, x) +Kk+n,ℓ(0, x).

Since

{
L

(1)
k,ℓ(0, x) = Kk,ℓ(0, x) −Kk+n,ℓ+n(0, x) = Kk,ℓ(0, x) + hkKk+n,ℓ(0, x)

L
(1)
k,ℓ+n(0, x) = Kk,ℓ+n(0, x) −Kk+n,ℓ(0, x) = −hkKk,ℓ(0, x) −Kk+n,ℓ(0, x),

we have

{
Kk,ℓ(0, x) = 1

1−h2
k

L
(1)
k,ℓ(0, x) + hk

1−h2
k

L
(1)
k,ℓ+n(0, x)

Kk+n,ℓ(0, x) = − hk

1−h2
k

L
(1)
k,ℓ(0, x) − 1

1−h2
k

L
(1)
k,ℓ+n(0, x).

Consequently we have

L
(2)
k,ℓ(0, x) =

1 + h2
k

1 − h2
k

L
(1)
k,ℓ(0, x) +

2hk
1 − h2

k

L
(1)
k,ℓ+n(0, x) (A.7)

L
(2)
k,ℓ+n(0, x) = − 2hk

1 − h2
k

L
(1)
k,ℓ(0, x) −

1 + h2
k

1 − h2
k

L
(1)
k,ℓ+n(0, x). (A.8)

Here, we introduce the other variables

{
u = x+y

2

v = x−y
2 .

Then, we integrate (A.1) and (A.2) for v with (A.5) and (A.6) and we have

L
(1)
k,ℓ(y, x) =

∫ x

x+y
2

f̃k,ℓ(−ξ + x+ y, ξ)dξ + bk,ℓ

(
x+ y

2

)
, (y, x) ∈ Ω, 1 ≤ k, ℓ ≤ n (A.9)

L
(1)
k,ℓ+n(y, x) =

∫ x

x+y
2

f̃k,ℓ+n(−ξ + x+ y, ξ)dξ + ak,ℓ

(
x+ y

2

)
, (y, x) ∈ Ω, 1 ≤ k, ℓ ≤ n. (A.10)

Integrating (A.3) and (A.4) for u, we have

L
(2)
k,ℓ(y, x) =

∫ x

x−y

f̃k+n,ℓ(ξ − x+ y, ξ)dξ + L
(2)
k,ℓ(0, x− y), (y, x) ∈ Ω, 1 ≤ k, ℓ ≤ n, (A.11)

L
(2)
k,ℓ+n(y, x) =

∫ x

x−y

f̃k,ℓ+n(ξ − x+ y, ξ)dξ + L
(2)
k,ℓ+n(0, x− y), (y, x) ∈ Ω, 1 ≤ k, ℓ ≤ n. (A.12)
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By (A.7) - (A.10), we have

L
(2)
k,ℓ(y, x) =

∫ x

x−y

f̃k+n,ℓ(ξ − x+ y, ξ)dξ

+

∫ x−y

x−y
2

{
gk f̃k,ℓ(−ξ + x− y, ξ) + g̃kf̃k,ℓ+n(−ξ + x− y, ξ)

}
dξ

+ gkbk,ℓ

(
x− y

2

)
+ g̃kak,ℓ

(
x− y

2

)
, (A.13)

L
(2)
k,ℓ+n(y, x) =

∫ x

x−y

f̃k,ℓ+n(ξ − x+ y, ξ)dξ

+

∫ x−y

x−y
2

{
−g̃kf̃k,ℓ(−ξ + x− y, ξ) − gkf̃k,ℓ+n(−ξ + x− y, ξ)

}
dξ

− g̃kbk,ℓ

(
x− y

2

)
− gkak,ℓ

(
x− y

2

)
(A.14)

for (y, x) ∈ Ω and k, ℓ = 1, 2, · · · , n. Here we set

gk =
1 + h2

k

1 − h2
k

, g̃k =
2hk

1 − h2
k

.

Therefore we obtain Volterra integral eqations (A.9), (A.10), (A.13) and (A.14) of the second kind, which are

equivalent to (2.3) - (2.5). Using the iteration method, we can complete the proof. �

B Proof of Theorem 2.5

According to the general theory of the ordinary differential equation, equation (2.9) possesses a unique

solution in {C1[0, 1]}2n. Let us denote the right hand side of (2.10) by ψ̃(x,λ). Hence it suffices to verify

that ψ̃ satisfies (2.9). Clearly, initial conditions of (2.9) are satisfied.

We have

B2n
dψ̃

dx
(x,λ) +Q(x)ψ̃(x,λ) − λψ̃(x,λ)

= B2nR(x)
dφ

dx
(x,λ) +

{
B2nR

′(x) +B2nK(x,x) +Q(x)R(x)
}
φ(x, λ) − λR(x)φ(x,λ)

+

∫ x

0

B2n
∂K

∂x
(y, x)φ(y,λ)dy + (Q(x) − λ)

∫ x

0

K(y, x)φ(y,λ)dy.
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Using (2.3) in Lemma 2.4 and (2.8), we obtain by integration by parts,

B2n
dψ̃

dx
(x,λ) +Q(x)ψ̃(x,λ) − λψ̃(x,λ)

= B2nR(x)
dφ

dx
(x,λ) +

{
B2nR

′(x) +B2nK(x,x) +Q(x)R(x)
}
φ(x, λ) − λR(x)φ(x,λ)

+K(0, x)B2nφ(0, λ) −K(x,x)B2nφ(x, λ).

Here (2.4) and the condition in (2.8) at x = 0, yield

K(0, x)B2nφ(0, λ) = 0.

Hence

B2n
dψ̃

dx
(x,λ) +Q(x)ψ̃(x,λ) − λψ̃(x,λ)

= B2nR(x)
dφ

dx
(x,λ) − λR(x)φ(x,λ) +

{
B2nR

′(x) +Q(x)R(x) − (K(x,x)B2n −B2nK(x,x))
}
φ(x, λ).

By the differential equation in (2.8) and R =

(
R1 R2

R2 R1

)
, we have

B2nR(x)
dφ

dx
(x,λ) = R(x)B2n

dφ

dx
(x,λ) = R(x)(−P (x) + λ)φ(x,λ),

so that

B2n
dψ̃

dx
(x,λ) +Q(x)ψ̃(x,λ) − λψ̃(x,λ)

=
{
B2nR

′(x) +Q(x)R(x) −R(x)P (x) − (K(x,x)B2n −B2nK(x,x))
}
φ(x, λ).

By (2.6) and (2.7), we can directly verify that the right hand side of this equation is zero. Then ψ̃(x,λ) =

ψ(x,λ). Thus the proof is completed. �

C Proof of Lemma 3.2

We set

fj(λ) =
(

−H̃ E2

)
φj(1, λ), j = 1, 2.
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Here, φj(x,λ), j = 1, 2 satisfies





B4
dφj

dx
(x,λ) + P (x)φj(x,λ) = λφj(x,λ),

φ1(0, λ) =




1

0

h1

0


 , φ2(0, λ) =




0

1

0

h2


 .

Then we have

det Φ(λ) = det
(
f1(λ) f2(λ)

)
.

Let ℓ0 ∈ N ∪ {0} be the smallest number in

{
ℓ ∈ N ∪ {0} ; rank

(
dℓf1
dλℓ (λ0)

dℓf2
dλℓ (λ0)

)
6= 0
}
.

We consider two cases separetely ; Case I: ℓ0 ≥ 1 and Case II: ℓ0 = 0.

If ℓ0 = 0, then we can argue similarly to the Case I-B stated below. Thus we argue only for the Case I.

Case I: Let ℓ0 ≥ 1. Then

dℓf1

dλℓ
(λ0) =

dℓf2

dλℓ
(λ0) =

(
0

0

)
, 0 ≤ ℓ ≤ ℓ0 − 1. (C.1)

In particular, we have f1(λ0) = f2(λ0) = 0, that is, (−H̃ E2)φj(1, λ0) = 0, j = 1, 2, which means that φj,

j = 1, 2 satisfies the boundary condition at x = 1 in (1.10). Therefore φ1, φ2 ∈ D(AP ).

Let us define {φ(j,ℓ)(x)}j=1,2,ℓ=1,2,··· ,ℓ0 as follows:





φ(1,1)(x) = φ1(x,λ0)

φ(1,2)(x) = 1
1!
∂φ1

∂λ
(x,λ0)

φ(1,3)(x) = 1
2!
∂2φ1

∂λ2 (x,λ0)
...

φ(1,ℓ0)(x) = 1
(ℓ0−1)!

∂ℓ0−1φ1

∂λℓ0−1 (x,λ0),





φ(2,1)(x) = φ2(x,λ0)

φ(2,2)(x) = 1
1!
∂φ2

∂λ
(x,λ0)

φ(2,3)(x) = 1
2!
∂2φ2

∂λ2 (x,λ0)
...

φ(2,ℓ0)(x) = 1
(ℓ0−1)!

∂ℓ0−1φ2

∂λℓ0−1 (x,λ0).

(C.2)

Now by (C.1) we can easily check that φ(j,ℓ) ∈ D(AP ) for all j = 1, 2 and ℓ = 1, 2, · · · , ℓ0. Moreover

(AP − λ0)φ
(j,ℓ) = φ(j,ℓ−1)

holds for all j = 1, 2 and ℓ = 1, 2, · · · , ℓ0 where φ(j,0) = 0, j = 1, 2. This fact is checked by differentiating
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the equation

APφj(x,λ) = λφj(x,λ)

with respect to λ successively.

By (C.2), we can check that {φ(j,ℓ)(x)}j=1,2,ℓ=1,2,··· ,ℓ0 is a linearly independent system. In fact, let

∑ℓ0
ℓ=1

∑
j=1,2 aj,ℓφ

(j,ℓ) = 0. Applying (AP − λ0) successively and using (AP − λ0)φ
(j,ℓ) = φ(j,ℓ−1) for

2 ≤ ℓ ≤ ℓ0 and (AP − λ0)φ
(j,1) = 0, we see by the linear independence of φ(1,1) and φ(2,1) that aj,ℓ = 0.

Therefore, the algebraic multiplicity of the eigenvalue λ0 is at least 2ℓ0.

Moreover, by (C.1) and the linearity of the determinant, we have

dℓ

dλℓ
det Φ(λ)

∣∣∣∣∣
λ=λ0

= 0, 0 ≤ ℓ ≤ 2ℓ0 − 1.

for ℓ0 ≥ 1. Hence, for ℓ0 ≥ 1, the multiplicity of a zero λ0 of det Φ(λ) is at least 2ℓ0.

Therefore, we proved that the algebraic multiplicitiy of λ0 and the multiplicity of a zero λ0 of detΦ(λ)

are at least 2ℓ0.

We separately discuss the following two cases :

Case I-A: The case of

rank
(

dℓ0f1
dλℓ0

(λ0)
dℓ0f2
dλℓ0

(λ0)
)

= 2.

Case I-B: The case of

rank
(

dℓ0f1
dλℓ0

(λ0)
dℓ0f2
dλℓ0

(λ0)
)

= 1.

Case I-A: Let

rank
(

dℓ0f1
dλℓ0

(λ0)
dℓ0f2
dλℓ0

(λ0)
)

= 2.

We will prove that the algebraic multiplicity of the eigenvalue λ0 is 2ℓ0.
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The set of all the solutions to





(AP − λ0)φ(x) =
∑

j=1,2, ℓ=1,2,··· ,ℓ0
aj,ℓφ

(j,ℓ)(x)
(

−h̃ E2

)
φ(0) =

(
0

0

)

with given aj,ℓ ∈ C, is written as

{
∑

j=1,2, ℓ=1,2,··· ,ℓ0−1

aj,ℓφ
(j,ℓ+1)(x) + a1,ℓ0

1

ℓ0!

∂ℓ0φ1

∂λℓ0
(x,λ0)

+ a2,ℓ0

1

ℓ0!

∂ℓ0φ2

∂λℓ0
(x,λ0) + b1φ1(x,λ0) + b2φ2(x,λ0) ; b1, b2 ∈ C

}
. (C.3)

Then there exists a solution to




(AP − λ0)φ(x) =
∑

j=1,2, ℓ=1,2,··· ,ℓ0
aj,ℓφ

(j,ℓ)(x)
(

−h̃ E2

)
φ(0) =

(
0

0

)

(
−H̃ E2

)
φ(1) =

(
0

0

) (C.4)

if and only if

a1,ℓ0

dℓ0f1

dλℓ0
(λ0) + a2,ℓ0

dℓ0f2

dλℓ0
(λ0) =

(
0

0

)
.

Because of

rank
(

dℓ0f1
dλℓ0

(λ0)
dℓ0f2
dλℓ0

(λ0)
)

= 2,

this condition holds if and only if a1,ℓ0 = a2,ℓ0 = 0. Therefore for j = 1, 2, there exist no solutions to

(AP − λ0)φ = φ(j,ℓ0). Hence the Jordan block corresponding φ(j,1) is of size ℓ0 × ℓ0, and the algebraic

multiplicities of λ0 is 2ℓ0.

Because of (C.1) and the linearity of the determinant, we have

d2ℓ0

dλ2ℓ0
detΦ(λ)

∣∣∣∣
λ=λ0

=
(2ℓ0)!

(ℓ0!)2
det
(

dℓ0f1
dλℓ0

(λ0)
dℓ0f2
dλℓ0

(λ0)
)
6= 0,

that is, the multiplicity of the zero λ0 of det Φ(λ) is 2ℓ0. Therefore, the algebraic multiplicity of λ0 is equal

to the multiplicity of a zero λ0 of det Φ(λ).
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Case I-B: Let

rank
(

dℓ0f1
dλℓ0

(λ0)
dℓ0f2
dλℓ0

(λ0)
)

= 1.

Without the loss of generality, we assume that there exists some c ∈ C such that

dℓ0f1

dλℓ0
(λ0) = c

dℓ0f2

dλℓ0
(λ0) (C.5)

and we assume that

dℓ0f2

dλℓ0
(λ0) 6=

(
0

0

)
. (C.6)

Now we define {φ̃(j,ℓ)(x)}j=1,2, ℓ=1,2,··· ,ℓ0 as follows:





φ̃(1,1)(x) = φ(1,1)(x) − cφ(2,1)(x)

φ̃(1,2)(x) = φ(1,2)(x) − cφ(2,2)(x)
...

φ̃(1,ℓ0)(x) = φ(1,ℓ0)(x) − cφ(2,ℓ0)(x),





φ̃(2,1)(x) = φ(2,1)(x)

φ̃(2,2)(x) = φ(2,2)(x)
...

φ̃(2,ℓ0)(x) = φ(2,ℓ0).

We can easily check that (AP −λ0)φ̃
(j,ℓ) = φ̃(j,ℓ−1) for j = 1, 2 and ℓ ∈ {1, 2, · · · , ℓ0} and that φ̃(j,ℓ) ∈ D(AP )

for all j = 1, 2 and ℓ ∈ {1, 2, · · · , ℓ0}. Here we set φ̃(j,0) = 0, j = 1, 2.

We set

f̃j(λ) =
(

−H̃ E2

)
φ̃(j,1)(1, λ), j = 1, 2.

Then

det
(
f̃1(λ) f̃2(λ)

)
= det

(
f1(λ) f2(λ)

)
= det Φ(λ).

Because

dℓfj

dλℓ
(λ0) =

(
0

0

)
, j = 1, 2, ℓ = 1, 2, · · · , ℓ0 − 1, (C.7)

we obtain

dℓf̃j

dλℓ
(λ0) =

(
0

0

)
, j = 1, 2, ℓ = 1, 2, · · · , ℓ0 − 1. (C.8)
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By the definition of φ̃(1,1) and φ̃(2,1), and from (C.5) and (C.6), we have

dℓ0 f̃1

dλℓ0
(λ0) =

(
0

0

)
,

dℓ0 f̃2

dλℓ0
(λ0) 6=

(
0

0

)
. (C.9)

Therefore, we obtain

d2ℓ0

dλ2ℓ0
det Φ(λ)

∣∣∣∣
λ=λ0

= 0,

that is, the multiplicity of a zero λ0 of det Φ(λ) is at least 2ℓ0 + 1. Now we define φ̃(1,ℓ0+1)(x) by

φ̃(1,ℓ0+1)(x) =
1

ℓ0!

(
∂ℓ0φ1

∂λℓ0
(x,λ0) − c

∂ℓ0φ2

∂λℓ0
(x,λ0)

)
.

Then φ̃(1,ℓ0+1) ∈ D(AP ) and (AP − λ0)φ̃
(1,ℓ0+1) = φ̃(1,ℓ0).

According to the following respective cases, we proceed:

Case I-B-a: the multiplicity of a zero λ0 of det Φ(λ) is 2ℓ0 + 1.

Case I-B-b: the multiplicity of a zero λ0 of det Φ(λ) is 2ℓ0 + ℓ1 with ℓ1 ≥ 2.

Case I-B-a: Let the multiplicity of a zero λ0 of detΦ(λ) be 2ℓ0 + 1, that is,

d2ℓ0+1Φ

dλ2ℓ0+1
(λ0) 6= 0.

Then by (C.8) and (C.9), we have

det
(

dℓ0+1 ef1
dλℓ0+1 (λ0)

dℓ0 ef2
dλℓ0

(λ0)
)
6= 0. (C.10)

The set of all the solutions to





(AP − λ0)φ(x) =
∑

ℓ=1,2,··· ,ℓ0+1 a1,ℓφ̃
(1,ℓ)(x) +

∑
ℓ=1,2,··· ,ℓ0

a2,ℓφ̃
(2,ℓ)(x)

(
−h̃ E2

)
φ(0) =

(
0

0

)
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with a1,ℓ ∈ C, ℓ ∈ {1, 2, · · · , ℓ0 + 1} and a2,ℓ ∈ C, ℓ ∈ {1, 2, · · · , ℓ0}, is written as

{
∑

ℓ=1,2,··· ,ℓ0

a1,ℓφ
(1,ℓ+1)(x) +

∑

ℓ=1,2,··· ,ℓ0−1

a2,ℓφ
(2,ℓ+1)(x)

+ a1,ℓ0+1
1

(ℓ0 + 1)!

(
∂ℓ0+1φ1

∂λℓ0+1
(x,λ0) − c

∂ℓ0+1φ2

∂λℓ0+1
(x,λ0)

)

+ a2,ℓ0

1

ℓ0!

∂ℓ0φ2

∂λℓ0
(x,λ0) + b1φ1(x,λ0) + b2φ2(x,λ0) ; b1, b2 ∈ C

}
. (C.11)

Then there exists a solution to




(AP − λ0)φ(x) =
∑
ℓ=1,2,··· ,ℓ0+1 a1,ℓφ̃

(1,ℓ)(x) +
∑

ℓ=1,2,··· ,ℓ0
a2,ℓφ̃

(2,ℓ)(x)
(

−h̃ E2

)
φ(0) =

(
0

0

)

(
−H̃ E2

)
φ(1) =

(
0

0

) (C.12)

if and only if

a1,ℓ0+1
1

(ℓ0 + 1)!

dℓ0+1f̃1

dλℓ0+1
(λ0) + a2,ℓ0

1

ℓ0!

dℓ0 f̃2

dλℓ0
(λ0) =

(
0

0

)
.

By (C.10), this condition holds if and only if a1,ℓ0+1 = a2,ℓ0 = 0. Therefore, by an argument similar to Case

I-A, the algebraic multiplicities of λ0 is 2ℓ0 + 1. Hence we see that the algebraic multiplicity of λ0 is 2ℓ0 + 1

which is equal to the multiplicity of a zero λ0 of detΦ(λ).

Case I-B-b: Let the multiplicity of a zero λ0 of detΦ(λ) be 2ℓ0+ℓ1 with ℓ1 ≥ 2. Let us define c1, c2, · · · , cℓ1−1

as follows.

(a):The definition of c1.

We define c1 by

1

ℓ0!
c1
dℓ0 f̃2

dλℓ0
(λ0) =

1

(ℓ0 + 1)!

dℓ0+1f̃1

dλℓ0+1
(λ0). (C.13)

Such c1 exists. In fact, since d2ℓ0+1

dλ2ℓ0+1 detΦ(λ)

∣∣∣∣∣
λ=λ0

= 0, by means of (C.8) and (C.9), we have

det
(

dℓ0+1 ef1
dλℓ0+1 (λ0)

dℓ0 ef2
dλℓ0

(λ0)
)

= 0.
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Recalling

dℓ0 f̃2

dλℓ0
(λ0) 6=

(
0

0

)
,

from (C.9) we can obtain c1 such that (C.13) holds.

(b): The definition of c2, c3, · · · , cℓ1−1.

We define c2, c3, · · · , cℓ1−1 in an inductive way as follows. For k = 2, 3, ..., ℓ1−2, assume that c1, c2, · · · , ck−1

are already defined. Then we will define ck such that

1

ℓ0!
ck
dℓ0 f̃2

dλℓ0
(λ0) =

1

(ℓ0 + k)!

dℓ0+kf̃1

dλℓ0+k
(λ0) −

k−1∑

q=1

cq

(ℓ0 + k − q)!

dℓ0+k−qf̃2

dλℓ0+k−q
(λ0) (C.14)

holds. Now we prove that such ck exists and that there does not exist cℓ1 such that

1

ℓ0!
cℓ1

dℓ0 f̃2

dλℓ0
(λ0) =

1

(ℓ0 + ℓ1)!

dℓ0+ℓ1 f̃1

dλℓ0+ℓ1
(λ0) −

ℓ1−1∑

q=1

cq

(ℓ0 + ℓ1 − q)!

dℓ0+ℓ1−qf̃2

dλℓ0+ℓ1−q
(λ0). (C.15)

Let us calculate

d2ℓ0+k

dλ2ℓ0+k
detΦ(λ)

∣∣∣∣
λ=λ0

=

2ℓ0+k∑

q=0

(2ℓ0 + k)!

q!(2ℓ0 + k − q)!
det
(

dq ef1
dλq (λ0)

d2ℓ0+k−q ef2
dλ2ℓ0+k−q (λ0)

)

=

ℓ0+k∑

q=ℓ0+1

(2ℓ0 + k)!

q!(2ℓ0 + k − q)!
det
(

dq ef1
dλq (λ0)

d2ℓ0+k−q ef2
dλ2ℓ0+k−q (λ0)

)

=
k∑

q=1

(2ℓ0 + k)!

(ℓ0 + q)!(ℓ0 + k − q)!
det
(

dℓ0+q ef1
dλℓ0+q (λ0)

dℓ0+k−q ef2
dλℓ0+k−q (λ0)

)
.

Here we used (C.8) and (C.9).
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Now we eliminate dℓ0+q ef1
dλℓ0+q (λ0) for q ∈ {1, 2, · · · , k − 1} by (C.14). Using (C.14), we have

d2ℓ0+k

dλ2ℓ0+k
detΦ(λ)

∣∣∣∣
λ=λ0

=
k−1∑

q=1

(2ℓ0 + k)!

(ℓ0 + q)!(ℓ0 + k − q)!
(ℓ0 + q)! det

( ∑q
p=1

cp

(ℓ0+q−p)!
dℓ0+q−p ef2
dλℓ0+q−p (λ0)

dℓ0+k−q ef2
dλℓ0+k−q (λ0)

)

+
(2ℓ0 + k)!

(ℓ0 + k)!ℓ0!
det
(

dℓ0+k ef1
dλℓ0+k (λ0)

dℓ0 ef2
dλℓ0

(λ0)
)

= (2ℓ0 + k)!
k−1∑

q=1

q∑

p=1

cp det
(

1
(ℓ0+q−p)!

dℓ0+q−p ef2
dλℓ0+q−p (λ0)

1
(ℓ0+k−q)!

dℓ0+k−q ef2
dλℓ0+k−q (λ0)

)

+
(2ℓ0 + k)!

(ℓ0 + k)!ℓ0!
det
(

dℓ0+k ef1
dλℓ0+k (λ0)

dℓ0 ef2
dλℓ0

(λ0)
)
.

Then changing orders of the summations, we have

d2ℓ0+k

dλ2ℓ0+k
detΦ(λ)

∣∣∣∣
λ=λ0

= (2ℓ0 + k)!
k−1∑

p=1

cp

k−1∑

q=p

det
(

1
(ℓ0+q−p)!

dℓ0+q−p ef2
dλℓ0+q−p (λ0)

1
(ℓ0+k−q)!

dℓ0+k−q ef2
dλℓ0+k−q (λ0)

)

+
(2ℓ0 + k)!

(ℓ0 + k)!ℓ0!
det
(

dℓ0+k ef1
dλℓ0+k (λ0)

dℓ0 ef2
dλℓ0

(λ0)
)

= (2ℓ0 + k)!
k−1∑

p=1

cp

k−p−1∑

q=0

det
(

1
(ℓ0+q)!

dℓ0+q ef2
dλℓ0+q (λ0)

1
(ℓ0+k−p−q)!

dℓ0+k−p−q ef2
dλℓ0+k−p−q (λ0)

)

+
(2ℓ0 + k)!

(ℓ0 + k)!ℓ0!
det
(

dℓ0+k ef1
dλℓ0+k (λ0)

dℓ0 ef2
dλℓ0

(λ0)
)
.

Now we prove that

k−p−1∑

q=0

det
(

1
(ℓ0+q)!

dℓ0+q ef2
dλℓ0+q (λ0)

1
(ℓ0+k−p−q)!

dℓ0+k−p−q ef2
dλℓ0+k−p−q (λ0)

)

= det
(

1
ℓ0!

dℓ0 ef2
dλℓ0

(λ0)
1

(ℓ0+k−p)!
dℓ0+k−p ef2
dλℓ0+k−p (λ0)

)
.

In fact, let bq = 1
(ℓ0+q)!

dℓ0+q ef2
dλℓ0+q (λ0) for q = 1, 2, · · · , k − p− 1. Let k − p− 1 be odd. Then the left hand side

51



of the above equation is

k−p−1∑

q=0

det( bq bk−p−q )

= det( b0 bk−p ) + det( b1 bk−p−1 ) + det( b2 bk−p−2 ) + · · · + det( bk−p−1 b1 )

= det( b0 bk−p ) +
{
det( b1 bk−p−1 ) + det( bk−p−1 b1 )

}

+
{
det( b2 bk−p−2 ) + det( bk−p−2 b2 )

}
+ · · ·

+
{
det( bk−p

2 −1 bk−p
2 +1 ) + det( bk−p

2 +1 bk−p
2 −1 )

}
+ det( bk−p

2
bk−p

2
)

= det( b0 bk−p ) = det
(

1
ℓ0!

dℓ0 ef2
dλℓ0

(λ0)
1

(ℓ0+k−p)!
dℓ0+k−p ef2
dλℓ0+k−p (λ0)

)
.

For even k − p− 1, the argument is similar.

Therefore, we obtain

d2ℓ0+k

dλ2ℓ0+k
det Φ(λ)

∣∣∣∣
λ=λ0

= (2ℓ0 + k)!
k−1∑

p=1

cp det
(

1
ℓ0!

dℓ0 ef2
dλℓ0

(λ0)
1

(ℓ0+k−p)!
dℓ0+k−p ef2
dλℓ0+k−p (λ0)

)

+
(2ℓ0 + k)!

(ℓ0 + k)!ℓ0!
det
(

dℓ0+k ef1
dλℓ0+k (λ0)

dℓ0 ef2
dλℓ0

(λ0)
)

= (2ℓ0 + k)! det
(

1
(ℓ0+k)!

dℓ0+k ef1
dλℓ0+k (λ0) −

∑k−1
p=1

cp

(ℓ0+k−p)!
dℓ0+k−p ef2
dλℓ0+k−p (λ0)

1
ℓ0!

dℓ0 ef2
dλℓ0

(λ0)
)
. (C.16)

Now, since λ0 is a zero of det Φ(λ) with multiplicity 2ℓ0 + ℓ1, we have





d2ℓ0+k

dλ2ℓ0+k det Φ(λ)

∣∣∣∣
λ=λ0

= 0 if 1 ≤ k ≤ ℓ1 − 1

d2ℓ0+k

dλ2ℓ0+k det Φ(λ)

∣∣∣∣
λ=λ0

6= 0 if k = ℓ1.

Then there exists ck satisfying (C.14) for k = 2, 3, · · · , ℓ1 − 1, and there is no cℓ1 satisfying (C.15).

Now we define φ̃(1,ℓ0+2), φ̃(1,ℓ0+3), · · · , φ̃(1,ℓ0+ℓ1) as follows:

φ̃(1,ℓ0+k)(x) =
1

(ℓ0 + k − 1)!

(
dℓ0+k−1φ1

dλℓ0+k−1
(x,λ0) − c

dℓ0+k−1φ2

dλℓ0+k−1
(x,λ0)

)

−
k−1∑

q=1

cq

(ℓ0 + k − 1 − q)!

dℓ0+k−1−qφ2

dλℓ0+k−1−q
(x,λ0)
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for k ∈ {2, 3, · · · , ℓ1}. Then, for all k ∈ {2, 3, · · · , ℓ1}, we have φ̃(1,ℓ0+k) ∈ D(AP ) and

(AP − λ0)φ̃
(1,ℓ0+k)(x)

= φ̃(1,ℓ0+k−1)(x) +

(
a linear combination of φ2(x,λ0),

∂φ2

∂λ
(x,λ0), · · · ,

∂ℓ0−1φ2

∂λℓ0−1
(x,λ0)

)
.

We define ζ(1,1)(x), ζ(1,2)(x), · · · , ζ(1,ℓ0+ℓ1)(x), ζ(2,1), ζ(2,2), · · · , ζ(2,ℓ0) by





ζ(1,ℓ0+ℓ1)(x) = φ̃(1,ℓ0+ℓ1)(x)

ζ(1,ℓ0+ℓ1−1)(x) = (AP − λ0)φ̃
(1,ℓ0+ℓ1)(x)

ζ(1,ℓ0+ℓ1−2)(x) = (AP − λ0)
2φ̃(1,ℓ0+ℓ1)(x)

...

ζ(1,ℓ0+1)(x) = (AP − λ0)
ℓ1−1φ̃(1,ℓ0+ℓ1)(x)

ζ(1,ℓ0)(x) = (AP − λ0)
ℓ1 φ̃(1,ℓ0+ℓ1)(x)

ζ(1,ℓ0−1)(x) = (AP − λ0)
ℓ0+1φ̃(1,ℓ0+ℓ1)(x)

...

ζ(1,1)(x) = (AP − λ0)
ℓ0+ℓ1−1φ̃(1,ℓ0+ℓ1)(x),





ζ(2,ℓ0)(x) = φ̃(2,ℓ0)(x)

ζ(2,ℓ0−1)(x) = φ̃(2,ℓ0−1)(x)
...

ζ(2,1)(x) = φ̃(2,1)(x).

Then we can see that {ζ(1,ℓ)(x)}ℓ=1,2,··· ,ℓ0+ℓ1 ∪ {ζ(2,ℓ)}ℓ=1,2,··· ,ℓ0 is a linearly independent system.

For fixed a1,ℓ ∈ C, j ∈ {1, 2, · · · , ℓ0 + ℓ1} and a2,ℓ ∈ C, ℓ ∈ {1, 2, · · · , ℓ0}, the set of all the solutions to





(AP − λ0)φ(x) =
∑
ℓ=1,2,··· ,ℓ0+ℓ1

a1,ℓζ
(1,ℓ)(x) +

∑
ℓ=1,2,··· ,ℓ0

a2,ℓζ
(2,ℓ)(x)

(
−h̃ E2

)
φ(0) =

(
0

0

)

is written as

{
∑

ℓ=1,2,··· ,ℓ0+ℓ1−1

a1,ℓζ
(1,ℓ+1)(x) +

∑

ℓ=1,2,··· ,ℓ0−1

a2,ℓζ
(2,ℓ+1)(x)

+ a1,ℓ0+ℓ1

[
1

(ℓ0 + ℓ1)!

(
∂ℓ0+ℓ1φ1

∂λℓ0+ℓ1
(x,λ0) − c

∂ℓ0+ℓ1φ2

∂λℓ0+ℓ1
(x,λ0)

)

−
j1−1∑

q=1

cq

(ℓ0 + ℓ1 − q)!

∂ℓ0+ℓ1−qφ2

∂λℓ0+ℓ1−q
(x,λ0)

]

+ a2,ℓ0

1

ℓ0!

∂ℓ0φ2

∂λℓ0
(x,λ0) + b1φ1(x,λ0) + b2φ2(x,λ0) ; b1, b2 ∈ C

}
. (C.17)
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Then there exists a solution to




(AP − λ0)φ(x) =
∑

ℓ=1,2,··· ,ℓ0+ℓ1
a1,ℓφ̃

(1,ℓ)(x) +
∑

ℓ=1,2,··· ,ℓ0
a2,ℓφ̃

(2,ℓ)(x)
(

−h̃ E2

)
φ(0) =

(
0

0

)

(
−H̃ E2

)
φ(1) =

(
0

0

) (C.18)

if and only if

a1,ℓ0+ℓ1

(
1

(ℓ0 + ℓ1)!

dℓ0+ℓ1 f̃1

dλℓ0+ℓ1
(λ0) −

ℓ1−1∑

q=1

cq

(ℓ0 + ℓ1 − q)!

dℓ0+ℓ1−qf̃2

dλℓ0+ℓ1−q
(λ0)

)

+ a2,ℓ0

1

ℓ0!

dℓ0 f̃2

dλℓ0
(λ0) =

(
0

0

)
.

Because there is no cℓ1 satisfying (C.15), this condition holds if and only if a1,ℓ0+ℓ1 = a2,ℓ0 = 0.

Therefore, if the solution to (C.18) exists, then it is in the space spanned by {ζ(1,ℓ)(x)}ℓ=1,2,··· ,ℓ0+ℓ1 ∪

{ζ(2,ℓ)}ℓ=1,2,··· ,ℓ0. Hence, by an argument similar to Case I-A, the algebraic multiplicity of an eigenvalue λ0

of AP is 2ℓ0 + ℓ1. This is equal to the multiplicity of a zero λ0 of detΦ(λ).

Thus in all the cases, we have seen that the algebraic multiplicity of λ0 is equal to the multiplicity of a

zero λ0 of detΦ(λ), that is, the proof is completed. �
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