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Abstract

Let u = u(q) satisfy a hyperbolic equation with impulsive input:

∂2
t u(x, t)−4u(x, t) + q(x)u(x, t) = δ(x1)δ

′(t)

and let u|t<0 = 0. Then we consider an inverse problem of determining

q(x), x ∈ Ω from data u(q)|ST and (∂u(q)/∂ν) |ST . Here Ω ⊂ {(x1, . . . , xn)

∈ Rn|x1 > 0}, n ≥ 2, is a bounded domain, ST = {(x, t); x ∈ ∂Ω,

x1 < t < T + x1}, ν = ν(x) is the unit outward normal vector to ∂Ω

at x ∈ ∂Ω, and T > 0. For suitable T > 0, we prove an estimate:

‖q1 − q2‖L2(Ω) ≤ C

(
‖u(q1)− u(q2)‖H1(ST ) +

‚‚‚‚
∂u(q1)

∂ν
− ∂u(q2)

∂ν

‚‚‚‚
L2(ST )

)
,

provided that q1 satisfies a boundedness condition and q2 satisfies a small-

ness condition in the Sobolev norm of order n + 2.

1 Introduction and main results

We consider an inverse problem of determining a coefficient in a hyperbolic

equation by an impulsive source located outside the domain where a coefficient
∗,∗∗Graduate School of Mathematical Sciences, The University of Tokyo, 3-8-1 Komaba

Meguro Tokyo 153, Japan. Email: ∗lism@ms.u-tokyo.ac.jp, ∗∗myama@ms.u-tokyo.ac.jp
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is unknown. Let x = (x1, ..., xn), n ≥ 2 and t ∈ R. Let u(x, t) solve the Cauchy

problem in (x, t) ∈ Rn+1:

∂2
t u(x, t)−4u(x, t) + q(x)u(x, t) = δ(x1)δ′(t), u|t<0 = 0, (1.1)

where δ and δ′ are the Dirac delta function and the t-derivative:

〈δ(x1), ψ〉 = ψ (0, x2, . . . , xn, t) ,

and

〈δ′(t), ψ〉 = −∂tψ(x, 0), ∀ψ ∈ C∞0
(
Rn+1

)
.

As for the regularity of the solution, see Proposition 2.2 in Section 2.

Let Rn
+ = {(x1, . . . , xn) ∈ Rn|x1 > 0} and let Ω ⊂ Rn

+ be a bounded domain

with C1-piecewise smooth boundary ∂Ω. Furthermore let T > 0 be suitably

given. Set

GT = {(x, t); x ∈ Ω, x1 < t < T + x1} , (1.2)

Σ0 = {(x, t); x ∈ Ω, t = x1 + 0} ,

ΣT = {(x, t); x ∈ Ω, t = T + x1} ,

ST = {(x, t); x ∈ ∂Ω, x1 < t < T + x1} . (1.3)

We consider:

Inverse problem. Let Cauchy data of the solution u to (1.1) be given on ST :

u(x, t) = f(x, t),
∂u

∂ν
(x, t) = g(x, t), (x, t) ∈ ST , (1.4)

where ν = ν(x) is the unit outward normal vector to ∂Ω at x ∈ ∂Ω. Then

determine q(x), x ∈ Ω from given data (1.4).

If we can assume the positivity condition u(·, 0) > 0 on Ω, then the method

on the basis of a Carleman estimate which was discussed first in Bukhgeim

and Klibanov [2], implies the uniqueness. As for the stability, see Imanuvilov

and Yamamoto [5, 6], Khăıdarov [10], Yamamoto [22], and we refer also to

Isakov [7, 8, 9], Klibanov [11], Klibanov and Timonov [12]. In (1.1) we take
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an impulsive input δ(x1)δ′(t) and the initial values can be zero. The impulsive

input is acceptable from the practical viewpoint.

This paper aims at the stability in this inverse hyperbolic problem with-

out positivity of u(·, 0) by a single measurement, which is a longstanding open

problem. Theorem 1.1 stated below is a partial answer to the open problem.

In order to state the main result, we introduce notations. Let r =(diam

Ω)/2. Assume that

Ω ⊆ B
(
x0, r

)
=

{
x ∈ Rn;

∣∣x− x0
∣∣ < r

}

where x0 =
(
x0

1, 0, . . . , 0
) ∈ Rn

+ and x0
1 > r > 0.

(1.5)

Set

K = K
(
x0, T, r

)
=

{
(x, t); |x1| < t <

(
T + x0

1 + 2r
)− ∣∣x− x0

∣∣} .

Noting that x1 > 0 and T + x1 ≤ T + x0
1 + r ≤ (

T + x0
1 + 2r

) − ∣∣x− x0
∣∣ for

x ∈ Ω, we see that GT ⊆ K. Denote by

P = P
(
x0, T, r

)
=

{
x ∈ Rn; |x1| <

(
T + x0

1 + 2r
)−

∣∣x− x0
∣∣}

the projection of K on the space Rn. Throughout this paper, H1(ST ), Hn+2(P ),

etc. denote usual Sobolev spaces (e.g. Adams [1]), and [α] denotes the greatest

integer not exceeding α. We set

U(Q) =
{
q ∈ Hn+2(P )

∣∣‖q‖Hn+2(P ) ≤ Q
}

(1.6)

for any fixed Q > 0. Furthermore, we take a constant β such that

0 < β < 1 and 0 < β
(
rβ + x0

1 + 2r
)2

< (x0
1 − r)2. (1.7)

Now we state the main result.

Theorem 1.1. Assume that Ω satisfies (1.5). Let M > 0 and

T > 2r +
4(x0

1 + 2r)
β

(1.8)
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where β satisfies (1.7). Suppose that q1 ∈ U(M) and q2 ∈ U(ε) for ε > 0. Fur-

thermore, let uk be the solution to (1.1) with q = qk, fk and gk Cauchy data in

(1.4) for u = uk, k = 1,2. Then there exist constants ε0 = ε0

(
Ω, T, x0, r,M, β

)
>

0 and C = C
(
Ω, T, x0, r,M, β, ε0

)
> 0 such that for any 0 < ε ≤ ε0 the following

estimate

‖q1 − q2‖L2(Ω) ≤ C
(
‖f1 − f2‖H1(ST ) + ‖g1 − g2‖L2(ST )

)
(1.9)

holds for any q1 ∈ U(M), q2 ∈ U(ε).

Estimate (1.8) establishes the Lipschitz stability which is the best possible

for the inverse problem, but we need the smallness for either of q1 and q2. We

can interpret the setting of the theorem as the determination of not necessarily

small q1 around fixed but small q2 (i.e., q2 ∈ U(ε)).

If we can be allowed to repeat infinitely many measurements, then the Dirich-

let to Neumann map can guarantee the uniqueness and the stability with the

zero initial condition (e.g., Sun [21]).

The above referred results by a Carleman estimate or the Dirichlet to Neu-

mann map, hold without smallness assumptions of unknown coefficients or the

spatial domain Ω under consideration. However, the Dirichlet to Neumann map

requires the infinitely many repeats of the measurements, which is not realistic.

On the other hand, the positivity of the initial displacement which an approach

by Carleman estimate needs, may be difficult to be realized in practise even

though a single measurement can guarantee the uniqueness and the stability in

the inverse problem.

In the case where the spatial dimension is greater than 1, it is a hard open

problem whether in the inverse problem for (1.1), one can establish the unique-

ness without any smallness conditions on the coefficients or Ω. In Romanov

and Yamamoto [18], if both ‖q1‖Hn+2(P ) and ‖q2‖Hn+2(P ) are sufficiently small,

then with suitable T , we can prove the Lipschitz stability for ‖q1 − q2‖L2(Ω) by

means of the boundary data. As related results, see Glushkov [3], Glushkov and
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Romanov [4], Romanov [14, 15, 16, 17], Romanov and Yamamoto [18, 19, 20].

In Li [13], assuming that q2 ≡ 0, the stability is proved, which means an L2-size

estimate of a coefficient by the boundary measurement.

Our proof is inspired by the argument in §4.1 in [17] and [18], but we will

use an inequality of novel Carleman type.

2 Proof of Theorem 1.1

First we show a new Carleman inequality estimating also the solution on the

characteristics, which is an independent interest. For T > 0, x0
1 > 0 and

β ∈ (0, 1), we define a function ϕ = ϕ(x, t) by

ϕ(x, t) =
1
4
|x|2 − 1

8
β

(
t− x0

1 −
T

2

)2

. (2.1)

Furthermore, we set

∂t =
∂

∂t
, ∂j =

∂

∂xj
, 1 ≤ j ≤ n, ∇x = (∂1, . . . , ∂n) ,

∇x,t = (∂1, . . . , ∂n, ∂t) , ∇x′ = (∂2, . . . , ∂n) , ¤y = ∂2
t y −4y.

Proposition 2.1 ([13]). Let v ∈ H2(GT ). Assume (1.5), (1.7) and (1.8).

Then there exists a constant ϑ > 0 such that for T ∈ (
2r + 4

(
x0

1 + 2r
)
/β ,

2r + 4
(
x0

1 + 2r
)
/β + ϑ

)
there exist s0 > 0 and C1 = C1(s0, T, x0, r, β) > 0

such that
∫

GT

(
s |∇x,tv|2 + s3v2

)
e2sϕdxdt

+
∫

Σ0∪ΣT

(
s (∂tv + ∂1v)2 + s |∇x′v|2 + s3v2

)
e2sϕdx

≤ C1

{∫

GT

(¤v)2 e2sϕdxdt +
∫

ST

(
s |∇x,tv|2 + s3v2

)
e2sϕdσdt

}
(2.2)

for all s ≥ s0.

An estimate on Σ0 ∪ ΣT is given by Romanov [17] (Lemma 4.1.4), but in

[17] any weight function with large parameter s, is not considered. On the other

5



hand, Proposition 2.1 is attached by a weight function with a large parameter,

which is an inequality of Carleman’s type. In Li [13], the proof of Proposition

2.1 is given, and for the completeness of statement, we will prove Proposition

2.1 in the appendix.

In [17, 18], the following proposition is proved.

Proposition 2.2 ([17, 18]). . Let q ∈ U(Q). Then the solution to (1.1) can be

represented in the form

u(x, t) =
1
2
δ (t− |x1|) + û(x, t)θ0 (t− |x1|) (2.3)

where û ∈ Hm(K), m =
[

n+1
2

]
+1, θ0(t) is the Heaviside step function: θ0(t) = 1

if t ≥ 0 and θ0(t) = 0 if t < 0. Moreover

û(x, |x1|+ 0) = −1
4
(sign x1)

∫ x1

0

q(ξ, x′)dξ, x ∈ P (2.4)

with x′ = (x2, . . . , xn), and there exists a constant C2 = C2(T, x0, r,Q) > 0 such

that

|û(x, t)| ≤ C2Q, (x, t) ∈ K. (2.5)

The constant C2 is a non-decreasing function of parameters T , r, Q.

Remark 2.1. The representation (2.3) means that the regular part of the

solution u(x, t) coincides with û(x, t) for (x, t) ∈ K. Moreover u ∈ H1(ST ) and

∂u/∂ν ∈ L2(ST ) by the trace theorem (e. g., [1]), because ∂Ω is piecewise C1

smooth and u ∈ Hm(K) with m ≥ 2.

Now we prove Theorem 1.1.

Proof of Theorem 1.1. For any T > 0 satisfying (1.8), we set

T̃ = min

{
T, 2r +

4
(
x0

1 + 2r
)

β
+

ϑ

2

}
, (2.6)

where ϑ is given by Proposition 2.1. Therefore, estimate (2.2) holds in GeT .

We set

y = u1 − u2, p = q1 − q2. (2.7)
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Then by

¤uk(x, t) + qk(x)uk(x, t) = 0, (x, t) ∈ GeT ,

we have

¤y(x, t) + q1(x)y(x, t) + p(x)u2(x, t) = 0, (x, t) ∈ GeT . (2.8)

By q1 ∈ U(M) and the embedding theorem, we see that q1 ∈ C(P ) and there

exists a constant C0 = C0(T, x0, r,Ω) > 0 such that

‖q1‖C(P ) ≤ C0‖q1‖Hn+2(P ) ≤ C0M. (2.9)

By q2 ∈ U(ε) and (2.5) in Proposition 2.2, we have

|u2(x, t)| ≤ C2ε, (x, t) ∈ GeT , (2.10)

It follows from (2.8), (2.9) and (2.10) that

(¤y(x, t))2 ≤ 2C2
0M2y2(x, t) + 2C2

2ε2p2(x), (x, t) ∈ GeT .

Then, by Proposition 2.1, there exists s0 > 0 such that
∫

G eT

(
s |∇x,ty|2 + s3y2

)
e2sϕdxdt

+
∫

Σ0∪Σ eT

(
s (∂ty + ∂1y)2 + s |∇x′y|2 + s3y2

)
e2sϕdx

≤ C1

(∫

G eT

(¤y)2 e2sϕdxdt +
∫

S eT

(
s |∇x,ty|2 + s3y2

)
e2sϕdσdt

)

≤ C1

(
2C2

0M2

∫

G eT

y2e2sϕdxdt + 2C2
2ε2

∫

G eT

p2e2sϕdxdt

+
∫

S eT

(
s |∇x,ty|2 + s3y2

)
e2sϕdσdt

)

(2.11)

for all s > s0, where ϕ = ϕ(x, t) is defined by (2.1).

By (2.4) in Proposition 2.2, we have

∂ty + ∂1y = −1
4
p(x), (x, t) ∈ Σ0. (2.12)
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It follows from (2.11) and (2.12) that
∫

G eT

(
s |∇x,ty|2 +

(
s3 − 2C1C

2
0M2

)
y2

)
e2sϕdxdt

+
s

16

∫

Ω

p2(x)e2sϕ(x,x1)dx

≤ 2C1C
2
2ε2

∫

G eT

p2e2sϕdxdt + C1

∫

S eT

(
s |∇x,ty|2 + s3y2

)
e2sϕdσdt

(2.13)

for all s > s0. We take s1 > max
{
s0,

3
√

2C1C2
0M2

}
and fix it. Then using

(2.13) and noting GeT ⊆ Ω×
(
0, T̃ + x0

1 + r
)
, we have

1
16

s1e2s1Φ1

∫

Ω

p2dx ≤ C1e2s1Φ2

{
2C2

2ε2
(
T̃ + x0

1 + r
)∫

Ω

p2dx

+
∫

S eT

(
s1 |∇x,ty|2 + s3

1y
2
)

dσdt

}
,

(2.14)

where Φ1 = inf(x,t)∈G eT
ϕ(x, t) and Φ2 = sup(x,t)∈G eT

ϕ(x, t). We choose ε0 > 0

such that
1
16

s1e2s1Φ1 > 2C1C
2
2ε2

0

(
T̃ + x0

1 + r
)

e2s1Φ2

and fix ε0. Then it follows from (2.14) that, for any ε ∈ (0, ε0], there exists a

constant C∗ = C∗(T , x0
1, r, Ω, M , β, ε0) such that

∫

Ω

p2dx ≤ C∗

∫

S eT

(
|∇x,ty|2 + y2

)
dσdt (2.15)

for any q1 ∈ U(M), q2 ∈ U(ε). By (1.3), (1.4), (2.6), (2.7), and (2.15), we obtain

(1.9). The proof of Theorem 1.1 is completed. ¤
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Appendix. Proof of Proposition 2.1

The proof is inspired by Lemma 4.1.4 in [17], but we have to treat the weight

function carefully. First of all, we note that the following inequalities hold:

0 < x0
1 − r ≤ x1 ≤ x0

1 + r, 0 < |x|2 ≤ (
r + x0

1

)2
, x ∈ Ω, (A.1)

and − r − T

2
≤ t− x0

1 −
T

2
≤ T

2
+ r, (x, t) ∈ GT . (A.2)

In fact, the first inequality in (A.1) follows from (1.5). The second inequality in

(A.1) can be proved as follows:

|x|2 = |x−x0|2 +x2
1−(x1−x0

1)
2 ≤ r2 +2x1x

0
1−(x0

1)
2 ≤ r2 +2x0

1(x
0
1 +r)−(x0

1)
2.

(A.2) can be proved by (1.2) and (A.1).

By (1.7), there exists a constant ϑ such that

0 <
1
16

β3

(
4r +

4
(
x0

1 + 2r
)

β
+ ϑ

)2

< (x0
1 − r)2. (A.3)

By (1.8), we can assume that T ∈ (
2r + 4

(
x0

1 + 2r
)
/β, 2r + 4

(
x0

1 + 2r
)
/β + ϑ

)
.

Then we have

4r +
4

(
x0

1 + 2r
)

β
< T + 2r < 4r +

4
(
x0

1 + 2r
)

β
+ ϑ. (A.4)

It follows from (A.3) and (A.4) that

(x0
1 − r)2 >

1
16

β3 (T + 2r)2 .

Therefore we can take a constant ρ > 0 such that

0 < 2β < ρ < min

{
2,

64
(
x0

1 − r
)2

β2 (T + 2r)2
− 2β

}
. (A.5)

Furthermore, by (1.8), we can obtain

β2

16

(
T

2
− r

)2

>
1
4

(
2r + x0

1

)2
and

βT

4
− βr

2
− x0

1 > 2r. (A.6)
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Let s > 0, w = esϕv and Lw = esϕ¤ (e−sϕw). Then we obtain that

Lw =
{

¤w + s2
(
(∂tϕ)2 − |∇xϕ|2

)
w + 1

4sρw
}

+s
{(−¤ϕ− 1

4ρ
)
w − 2 (∂tϕ) (∂tw) + 2 (∇xϕ · ∇xw)

}

=
(
¤w + s2dw + 1

4sρw
)

+ s (cw + b (∂tw) + a · ∇xw)

where a = 2∇xϕ = x, b = −2 (∂tϕ) = β
(
t− x0

1 − T/2
)
/2, c = −¤ϕ − ρ/4 =

β/4+n/2−ρ/4 and d = (∂tϕ)2−|∇xϕ|2 = β2
(
t− x0

1 − T/2
)2

/16−|x|2/4. We

note that c is a constant. Furthermore, by ρ < 2, we have

c >
β

4
+

n

2
− 1

2
≥ β

4
.

Using the inequality: (α + γ)2 ≥ 2αγ, we have

(Lw)2 ≥ 2s

(
¤w + s2dw +

1
4
sρw

)
(cw + b (∂tw) + a · ∇xw) . (A.7)

Noting that

a = x, b =
1
2
β

(
t− x0

1 −
T

2

)
, and c =

β

4
+

n

2
− ρ

4
, (A.8)

we can verify that

2 (¤w) (cw + b (∂tw) + a · ∇xw) = ∂tP +∇x ·Q + R

where

P = b
(
(∂tw)2 + |∇xw|2

)
+ 2 (∂tw) (a · ∇xw + cw) , (A.9)

Q =
(
|∇xw|2 − (∂tw)2

)
a− 2 (a · ∇xw + b (∂tw) + cw) (∇xw) , (A.10)

R =
1
2
(ρ− 2β) (∂tw)2 +

1
2
(4− ρ) |∇xw|2 . (A.11)

Therefore,

2
∫

GT

(¤w) (cw + b (∂tw) + a · ∇xw) dxdt

=
∫

ΣT

(P −Q1) dx +
∫

Σ0

(Q1 − P ) dx +
∫

ST

Q · νdσdt +
∫

GT

Rdxdt.

(A.12)
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By (A.9) and (A.10), we can obtain that

P −Q1 = (b + a1) (∂tw + ∂1w)2 + (b− a1) |∇x′w|2

+2 (∂tw + ∂1w) (a′ · ∇x′w + cw) ,
(A.13)

where a′ = (a2, . . . , an). Then by x0
1 > 0 and the inequality: |(a′ · ∇x′w)| ≤

|a′| |∇x′w|, we have

P −Q1 ≥ (b + a1) (∂tw + ∂1w)2 + (b− a1) |∇x′w|2

−2x0
1 (∂tw + ∂1w)2 − 1

2x0
1

(a′ · ∇x′w)2 + 2c (∂tw + ∂1w)w

≥ (
b + a1 − 2x0

1

)
(∂tw + ∂1w)2 +

(
b− a1 − 1

2x0
1

|a′|2
)
|∇x′w|2

+2c (∂tw + ∂1w)w.

By (A.1) and (A.6), we have

b + a1 − 2x0
1 =

1
2
β

(
x1 − x0

1 +
T

2

)
+ x1 − 2x0

1

≥ 1
2
β

(
T

2
− r

)
+ x0

1 − r − 2x0
1 =

1
4
βT − 1

2
βr − x0

1 − r

> r, (x, t) ∈ ΣT .

By (1.5), (A.1) and (A.6), we have

b− a1 − 1
2x0

1

|a′|2 =
1
2
β

(
x1 − x0

1 +
T

2

)
− x1 − 1

2x0
1

n∑

j=2

xj
2

≥ 1
2
β

(
T

2
− r

)
− x0

1 − r − r2

2r
=

1
4
βT − 1

2
βr − x0

1 −
3
2
r

>
r

2
, (x, t) ∈ ΣT .

Therefore,

P −Q1 ≥ r (∂tw + ∂1w)2 +
1
2
r |∇x′w|2 +∂1

(
cw2

∣∣
ΣT

)
, (x, t) ∈ ΣT . (A.14)

Similarly, by (A.13), we have

Q1 − P = (−b− a1) (∂tw + ∂1w)2 + (a1 − b) |∇x′w|2

−2 (∂tw + ∂1w) (a′ · ∇x′w + cw)

≥
(
−b− a1 − r

2

)
(∂tw + ∂1w)2 +

(
a1 − b− 2

r
|a′|2

)
|∇x′w|2

−2c (∂tw + ∂1w)w.
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By (A.1) and (A.6), we have

−b− a1 − r

2
=

1
2
β

(
x0

1 − x1 +
T

2

)
− x1 − r

2

≥ 1
2
β

(
T

2
− r

)
− x0

1 − r − r

2
=

1
4
βT − 1

2
βr − x0

1 −
3
2
r

>
r

2
, (x, t) ∈ Σ0.

By (1.5), (A.1) and (A.6), we have

a1 − b− 2
r
|a′|2 = x1 − 1

2
β

(
x1 − x0

1 −
T

2

)
− 2

r

n∑

j=2

xj
2

≥ x0
1 − r − 1

2
β

(
x0

1 + r − x0
1 −

T

2

)
− 2

r
r2 =

1
4
βT − 1

2
βr + x0

1 − 3r

≥ (
2r + x0

1

)
+ x0

1 − 3r = 2x0
1 − r > r, (x, t) ∈ Σ0.

Therefore,

Q1−P ≥ 1
2
r (∂tw + ∂1w)2 + r |∇x′w|2− ∂1

(
cw2

∣∣
Σ0

)
, (x, t) ∈ Σ0. (A.15)

By (A.10), we have

Q · ν =
(
|∇xw|2 − (∂tw)2

)
(a · ν)− 2 (a · ∇xw + b (∂tw) + cw) ((∇xw) · ν) .

Then by (A.1), (A.2) and (A.8), we have

|Q · ν| ≤ C3

(
|∇x,tw|2 + w2

)
, (x, t) ∈ ST . (A.16)

Here and henceforth, Ck(k = 3, 4, . . . ) denote generic positive constants which

may depend on x0
1, r, T , n, β, ρ, s0, and s1, but are independent of s. It follows

from (A.11), (A.12), (A.14), (A.15) and (A.16) that

2
∫

GT

(¤w) (cw + b (∂tw) + a · ∇xw) dxdt

≥ 1
2
r

∫

Σ0
S

ΣT

(
(∂tw + ∂1w)2 + |∇x′w|2

)
dx

−c

∫

∂Σ0
S

∂ΣT

w2dσ − C3

∫

ST

(
|∇x,tw|2 + w2

)
dσdt

+
1
2

∫

GT

(
(ρ− 2β) (∂tw)2 + (4− ρ) |∇xw|2

)
dxdt,

12



where ∂Σ0 and ∂ΣT denote the boundaries of Σ0 and ΣT , respectively, and dσ

is an area element of ∂Ω. Furthermore, as (4.1.40) in [17], we can show that

∫

∂Σ0
S

∂ΣT

w2dσ ≤ T

∫

ST

(
w2

t +
3

T 2
w2

)
dσdt.

Therefore,

2
∫

GT

(¤w) (cw + b (∂tw) + a · ∇xw) dxdt

≥ 1
2
r

∫

Σ0
S

ΣT

(
(∂tw + ∂1w)2 + |∇x′w|2

)
dx

−C4

∫

ST

(
|∇x,tw|2 + w2

)
dσdt

+
1
2

∫

GT

(
(ρ− 2β) (∂tw)2 + (4− ρ) |∇xw|2

)
dxdt.

(A.17)

Moreover, we can verify that

2dw (cw + b (∂tw) + a · ∇xw)

= ∇x ·
(
dw2a

)
+ ∂t

(
dbw2

)− w2 (∇x · (da))− w2∂t (bd) + 2dcw2.

Then we have

2
∫

GT

dw (cw + b (∂tw) + a · ∇xw) dxdt

=
∫

ΣT

dw2 (b− a1) dx +
∫

Σ0

dw2 (a1 − b) dx

+
∫

ST

dw2 (a · ν) dσdt +
∫

GT

w2 (2dc−∇x · (da)− ∂t (bd)) dxdt.

(A.18)

By (1.5), (A.1) and (A.6), we have

d =
1
16

β2

(
x1 − x0

1 +
T

2

)2

− 1
4
|x|2 ≥ 1

16
β2

(
T

2
− r

)2

− 1
4

(
r + x0

1

)2

>
1
4

(
2r + x0

1

)2 − 1
4

(
r + x0

1

)2
=

1
4

(
3r2 + 2x0

1r
) ≥ 5

4
r2, (x, t) ∈ ΣT .

By (A.1) and (A.6), we have

b− a1 =
1
2
β

(
x1 − x0

1 +
T

2

)
− x1 ≥ 1

2
β

(
T

2
− r

)
− (

x0
1 + r

)
> r, (x, t) ∈ ΣT .

(A.19)

Therefore,

dw2 (b− a1) ≥ 5
4
r3w2, (x, t) ∈ ΣT . (A.20)
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Similarly, we have

d =
1
16

β2

(
x1 − x0

1 −
T

2

)2

− 1
4
|x|2

≥ 1
16

β2

(
T

2
− r

)2

− 1
4

(
r + x0

1

)2 ≥ 5
4
r2, (x, t) ∈ Σ0,

and

a1 − b = x1 − 1
2
β

(
x1 − x0

1 −
T

2

)
≥ (

x0
1 − r

)− 1
2
β

(
r − T

2

)

>
(
x0

1 − r
)

+
(
2r + x0

1

)
= 2x0

1 + r ≥ 3r, (x, t) ∈ Σ0.

(A.21)

Therefore,

dw2 (a1 − b) ≥ 15
4

r3w2, (x, t) ∈ Σ0. (A.22)

Furthermore we can verify that

2dc−∇x · (da)− ∂t (bd)

=
1
2

(
|x|2 − 1

16
ρβ2

(
t− x0

1 −
T

2

)2

+
1
4
ρ|x|2 − 1

8
β3

(
t− x0

1 −
T

2

)2
)

.

Then by (A.1), (A.2) and (A.5), we have

2dc−∇x · (da)− ∂t (bd)

≥ 1
2

{
(
x0

1 − r
)2 − 1

16
β2

(
T

2
+ r

)2
(

64
(
x0

1 − r
)2

β2(T + 2r)2
− 2β

)

+
1
4
ρ

(
x0

1 − r
)2 − 1

8
β3

(
T

2
+ r

)2
}

=
1
8
ρ

(
x0

1 − r
)2

, (x, t) ∈ GT .

(A.23)

It follows from (A.18), (A.20), (A.22) and (A.23) that

2
∫

GT

dw (cw + b (∂tw) + a · ∇xw) dxdt

≥ 5
4
r3

∫

Σ0
S

ΣT

w2dx +
1
8
ρ

(
x0

1 − r
)2

∫

GT

w2dxdt− C5

∫

ST

w2dσdt.
(A.24)

Furthermore, by (A.8), (A.18), (A.19) and (A.21), we have

2
∫

GT

w (cw + b (∂tw) + a · ∇xw) dxdt

=
∫

ΣT

(b− a1) w2dx +
∫

Σ0

(a1 − b)w2dx

+
∫

ST

w2 (a · ν) dσdt +
∫

GT

(2c−∇x · a− ∂tb)w2dxdt

≥ r

∫

Σ0
S

ΣT

w2dx− 1
2
ρ

∫

GT

w2dxdt− C6

∫

ST

w2dσdt.

(A.25)
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Hence, by (A.7), (A.17), (A.24) and (A.25), there exists s1 > 0 such that,

for all s ≥ s1,
∫

GT

(¤v)2 e2sϕdxdt =
∫

GT

(Lw)2 dxdt

≥ min
(

r

2
,
5
4
r3

) ∫

Σ0
S

ΣT

(
s (∂tw + ∂1w)2 + s |∇x′w|2 + s3w2

)
dx

+
1
2

∫

GT

(
(ρ− 2β)s (∂tw)2 + (4− ρ)s |∇xw|2

+
1
8
ρ

(
x0

1 − r
)2

s3w2

)
dxdt− C7

∫

ST

(
s |∇x,tw|2 + s3w2

)
dσdt.

(A.26)

Furthermore, by (1.5) and (A.5), we see that

min
(

r

2
,
5
4
r3

)
> 0, ρ− 2β > 0, 4− ρ > 0, and ρ

(
x0

1 − r
)2

> 0. (A.27)

On the other hand, by w = esϕv, we have

∇x,tw = sesϕv (∇x,tϕ) + esϕ (∇x,tv) = s (∇x,tϕ)w + esϕ (∇x,tv) .

Therefore, we have

(∂tv + ∂1v)2 e2sϕ ≤ 2s2 (∂tϕ + ∂1ϕ)2 w2 + 2 (∂tw + ∂1w)2 ,

(∂tv)2 e2sϕ ≤ 2s2 (∂tϕ)2 w2 + 2 (∂tw)2 ,

|∇xv|2 e2sϕ ≤ 2s2 |∇xϕ|2 w2 + 2 |∇xw|2 ,

|∇x′v|2 e2sϕ ≤ 2s2 |∇x′ϕ|2 w2 + 2 |∇x′w|2 ,

and

|∇x,tw|2 ≤ 2 |∇x,tv|2 e2sϕ + 2s2 |∇x,tϕ|2 e2sϕv2.

15



Using (A.26), (A.27), and the above inequalities, we have
∫

GT

(
s |∇x,tv|2 + s3v2

)
e2sϕdxdt

+
∫

Σ0
S

ΣT

(
s (∂tv + ∂1v)2 + s |∇x′v|2 + s3v2

)
e2sϕdx

≤ C8

{∫

GT

(
s |∇x,tw|2 + s3w2

)
dxdt

+
∫

Σ0
S

ΣT

(
s (∂tw + ∂1w)2 + s |∇x′w|2 + s3w2

)
dx

}

≤ C9

{∫

ST

(
s |∇x,tw|2 + s3w2

)
dσdt +

∫

GT

(¤v)2 e2sϕdxdt

}

≤ C10

{∫

ST

(
s |∇x,tv|2 + s3v2

)
e2sϕdσdt +

∫

GT

(¤v)2 e2sϕdxdt

}

We have completed the proof of Lemma 2.1. ¤
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