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Abstract

We introduce new Lagrangian cycles which encode local contributions of Lef-
schetz numbers of constructible sheaves into geometric objects. We study their
functorial properties and apply them to Lefschetz fixed point formulas with higher-
dimensional fixed point sets.

1 Introduction

The aim of this paper is to study Lefschetz fixed point formulas for morphisms ¢: X — X
of real analytic manifolds X whose fixed point set M = {z € X | ¢(z) = 2} C X
is higher-dimensional (since we mainly consider the case where the fixed point set is a
smooth submanifold of X, we use the symbol M to express it). Since the beginning of
the theory, it is well-known that when X is compact the global Lefschetz number of ¢

tr(¢) = Y _(~1)tr{HI(X;Cx) “ H/(X;Cx)} € C (1.1)

JEZ

is expressed as the integral of a local cohomology class C(¢) € H},;(X;orx) supported
by M, where we set dimX = n and orx is the orientation sheaf of X. See e.g. Dold [4],
5] etc. for the detail of this subject. Let M = | |,.; M; be the decomposition of M into
connected components and

Hy (X;0rx) = @H}\}i(X;OTX), (1.2)
C(¢) = @cw)M (1.3)

the associated direct sum decompositions. Then the integral of the local cohomology
class C(¢)n, € Hj; (X;o0rx) associated with a fixed point component M; is called the
local contribution from M;. In other words, the global Lefschetz number of ¢ is equal
to the sum of local contributions from M;’s. But if the fixed point component M; is
higher-dimensional, it is in general very difficult to compute the local contribution by the
following dimensional reason. Let M; be a fixed point component of ¢ whose codimension
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in X is d > 0. Then the local cohomology group Hj; (X;ory) is isomorphic to the 0-
dimensional Borel-Moore homology group HFM(M;; C) of M; by the Alexander duality,
and the class C'(¢) in it is very hard to deal with. Recall that top-dimensional Borel-
Moore homology cycles in M;, i.e. elements in H>™(M;;C), can be much more easily
studied since they are realized as sections of a relative orientation sheaf on M;.

In this paper, we overcome this difficulty for smooth fixed point components M; by
introducing new Lagrangian cycles in the cotangent bundles T*M;. Since we also want
to study Lefschetz fixed point formulas over singular varieties (and those for intersec-
tion cohomology groups), we consider the following very general setting. Let X, ¢ and
M = |,c; M; be as before, and F' a bounded complex of sheaves of Cx-modules whose
cohomology sheaves are R-constructible in the sense of [13]. Assume that we are given a
morphism ®: ¢~'F — F in the derived category D% _(X). If the support supp(F) of
F is compact, we can define the global trace (Lefschetz number) tr(F, ®) € C of the pair
(F, @) by

tr(F,®) ==Y (=1 te{HI(X; F) = H/(X; F)} € C, (1.4)

JEZ
where the morphisms H7(X; F) 2, H’(X; F) are induced by
F — Ro.¢™'F -2 Ré.F. (1.5)

Also in this very general setting, Kashiwara [12] introduced local contributions ¢(F, @), €
C from the fixed point components M; and proved that

tr(F,®) = > c(F, @)y, (1.6)

el

Therefore the next important problem in the Lefschetz fixed point formula for con-
structible sheaves is to describe these local contributions ¢(F, ®) ..

Now let us take a smooth fixed point component M;. For the sake of simplicity, we
shall denote it also by M. Then there exists a natural morphism

¢ Ty X — Ty X (1.7)

induced by ¢, where T}, X is the normal bundle of M in X. For each point x € M, we
define a finite subset Ev, of C by

Ev, := {the eignevalues of ¢: (TyX), — (TyX),} C C. (1.8)
Assume the condition:
1 ¢ Ev, forany x € supp(F) N M, (1.9)

which means that the graph I'y, = {(¢(z),z) | v € X} C X x X of ¢ intersects cleanly (see
[13, Definition 4.1.5]) with the diagonal set Ay along M C I'yNAx on supp(F)NM. This
condition naturally appears also in the study of Atiyah-Bott type (holomorphic) Lefschetz
theorems by Toledo-Tong [20]. Under the condition (1.9), in Section 4 we shall construct
a new Lagrangian cycle LC(F, ®),, in the cotangent bundle 7*M. In this paper, we call
this cycle LC(F, ®)y the Lefschetz cycle associated with the pair (F,®) and the fixed
point component M. Note that in the more general setting of elliptic pairs a similar
construction of microlocal Lefschetz classes was already given in the pioneering work [9]



by Guillermou. The difference from his construction is that we explicitly realize such
microlocal characteristic classes as geometric objects in the cotangent bundle 7% M. Note
also that if ¢ =idy, M = X and ® = idp, our Lefschetz cycle LC(F, ®),s coincides with
the characteristic cycle CC(F) of F introduced by Kashiwara [11]. For the applications of
characteristic cycles to projective duality, see [6], [15], [16] etc. By Lefschetz cycles, we can
generalize almost all nice properties of characteristic cycles into more general situations.

First, in Section 5 we prove the following microlocal index theorem for the local con-
tribution c¢(F, @)y, from M (see Theorem 5.1).

Theorem 1.1 Assume that supp(F) N M is compact. Then for any continuous section
o: M — T*M of T*M, we have

C(F7®>M = ﬂ([a] n LC(F7 (I))M)> (1'10)

where §([o] N LC(F, ®)yr) is the intersection number of the image of o and LC(F,®)ys in
the cotangent bundle T* M.

Next in Section 6, by using this microlocal index theorem, in many cases we give some
useful formulas, similar to those for characteristic cycles, for the explicit description of
our Lefschetz cycles. In the course of the proof of these results, we obtain in Section
3 and 6 some localization theorems which partially generalize the previous results by
Goresky-MacPherson [7], Kashiwara-Schapira [13] and Braden [3] etc. In particular, to
prove the localization theorem in the case where the set Ev, may vary depending on
x € supp(F) N M, we required some precise arguments on Lefschetz cycles in Section
6 (see also Remark 3.6). As we shall see in Example 3.8 and 3.9, these localization
theorems also have some applications to the explicit descriptions of Lefschetz numbers
over singular varieties. Note that for normal complex algebraic surfaces a complete answer
to this problem was already given by S. Saito [19]. It would be also an interesting problem
to compare these results with the recent development in complex dynamical systems such
as Abate-Bracci-Tovena [1].

In Section 8, we study functorial properties of Lefschetz cycles and prove the direct
and inverse image theorems for them which extend those for characteristic cycles obtained
by Kashiwara-Schapira [13]. Since the sign of the determinant sgn(id — ¢’) = %1 of the
linear map

id—¢": TyX — TyX (1.11)

naturally appears in the inverse image theorem, its proof is much more involved than that
of the direct image theorem. To determine these very subtle signs of the determinant, the
theory of currents with hyperfunction coefficients will be used. Finally, let us mention
that our inverse image theorem has also an application to the explicit description of local
contributions. Indeed, in Corollary 8.6 we prove the localizability of the global trace of
(F, ®) to the fixed point manifold M without assuming any technical condition such as

Ev,NRy; =0 foranyxze M (1.12)

on the map ¢. It seems that if there exists a point z € M such that Ev, N Ry, # ()
the usual methods (see e.g. [13, Section 9.6] and [7] etc.) for localizations do not work.
Namely, our theory of Lefschetz cycles enables us to obtain the localization even when
the map ¢ is expanding in some directions normal to M.



2 Preliminary notions and results

In this paper, we essentially follow the terminology in [13]. For example, for a topologi-
cal space X, we denote by D’(X) the derived category of bounded complexes of sheaves
of Cx-modules on X. From now on, we shall review basic notions and known results
concerning Lefschetz fixed point formulas. Since we focus our attention on Lefschetz
fixed point formulas for constructible sheaves in this paper, we treat here only real an-
alytic manifolds and morphisms. Now let X be a real analytic manifold. We denote by
D% _.(X) the full subcategory of D?(X) consisting of bounded complexes of sheaves whose
cohomology sheaves are R-constructible (see [13, Chapter VIII] for the precise definition).
Let ¢: X — X be an endomorphism of the real analytic manifold X. Then our initial
datum is a pair (F,®) of F € D% __(X) and a morphism ®: ¢ 'F — F in D% __(X). If
the support supp(F') of F is compact, H’(X; F) is a finite-dimensional vector space over
C for any j € Z and we can define the following important number from (F, ®).

Definition 2.1 We set

tr(F,®) == > (~1Yt{H(X; F) = H/(X; F)} € C, (2.1)

jeL
where the morphisms H7(X; F) - HJ(X; F) are induced by
F — Ré.¢ 'F -2 R$,F. (2.2)

We call tr(F, ®) the global trace of the pair (F, ®).

Now let us set
M:={zeX|¢()=c}CX. (2.3)

This is the fixed point set of ¢: X — X in X. Since we mainly consider the case where
the fixed point set is a smooth submanifold of X, we use the symbol M to express it.
If a compact group G is acting on X and ¢ is the left action of an element of GG, then
the fixed point set is smooth by Palais’s theorem [18] (see [8] for an excellent survey of
this subject). Now let us consider the diagonal embedding dx: X «—— X x X of X and
the closed embedding h := (¢,idx): X —— X x X associated with ¢. Denote by Ax
(resp. I'y) the image of X by dx (resp. h). Then M ~ Ax NT'y and we obtain a chain of
morphisms

RHome, (F,F) =~ 6% (FXDF) (2.4)
—  Rlapp(rnax (hi ™ (FRDF))|ay (2.5)

~  Rlupp(rinay (h(¢ ' F @ DF))|ay (2.6)

% Rl upp(rynny (he(F @ DF))|ay (2.7)

—  RIuppr)nay (hewx)|ay (2.8)

= RFsupp(F mM(wX ) (2 9)

where wx ~ orx[dimX] € D% __(X) is the dualizing complex of X and DF = RHomc, (F,wx)
is the Verdier dual of F'. Hence we get a morphism
Hompe(x) (F, F) — HQ o mymn (X5 wx). (2.10)



Definition 2.2 ([12]) We denote by C(F, ®) the image of idp by the morphism (2.10)

in Hsoupp(F)mM(X; wx) and call it the characteristic class of (F, ®).

Theorem 2.3 ([12]) If supp(F') is compact, then the equality

tr(F, &) = / C(F, ®) (2.11)

holds. Here
/ c H}(X;0rx) — C (2.12)
b's

is the morphism induced by the integral of differential (dimX)-forms with compact support.

Let M = | |;.; M; be the decomposition of M into connected components and
ngpp(F)ﬂM <X7 WX) = @ HSupp(F)ﬁMi (X7 wX)? (213)
i€l
C(F, @) =P C(F )y, (2.14)
iel

the associated direct sum decomposition.

Definition 2.4 When supp(F') N M; is compact, we define a complex number ¢(F, @)y,
by

o(F, @)y = /X C(F, )y, (2.15)

and call it the local contribution of (F,®) from M.

By Theorem 2.3, if supp(F') is compact, the global trace of (F,®) is the sum of local
contributions:
tr(F,®) = > c(F, @), (2.16)
iel
Hence one of the most important problems in the theory of Lefschetz fixed point formulas
is to explicitly describe these local contributions. However the direct computation of local
contributions is a very difficult task in general. Instead of local contributions, we usually
consider first the following number tr(F |y, ®|p,) which is much more easily computed.
Let M; be a fixed point component such that supp(F') N M; is compact.

Definition 2.5 We set

) = Y (F1 e H (Mg Fla,) " (M )}, (2.17)

jEZ.

tr(F

Mm(b

, O,
where the morphisms H7(M;; F|p,) Plas H'(M;; F

;) are induced by the restriction
®ar,: Flag, = (07 F)lw, — Flu, (2.18)

of ®.



We can easily compute this new invariant tr(F|y,, ®|a;) € C as follows. Let M; =
Uae 41 M; o be a stratification of M; by connected subanalytic manifolds M;, such that
HI(F)|u, M;... is a locally constant sheaf for any o € A and j € Z. Namely, we assume that
the stratification M; = | | .4 M;,

Definition 2.6 For each a € A, we set

coi= S ()t {HI(F),, "5 HI(F),}  €C, (2.19)

JEZL

where z,, is a reference point of M, .

Then we have the following very useful result due to Goresky-MacPherson.

Proposition 2.7 ([7]) In the situation as above, we have

Mz) = an : Xc(Mz',a)g (220)

a€A

tr(F

M':cI)

(3

where x. 1s the Euler-Poincaré index with compact supports.

In terms of the theory of topological integrals of constructible functions developed by
Kashiwara-Schapira [13] and Viro [21] etc., we can restate this result in the following way.
Since we need C-valued constructible functions, we slightly generalize the usual notion of
Z-valued constructible functions.

Definition 2.8 Let Z be a subanalytic set. Then we say that a C-valued function
¢: Z — C is constructible if there exists a stratification Z = | | .4 Zo of Z by sub-
analytic manifolds Z, such that ¢|z, is a constant function for any o € A. We denote by
CF(Z)c the abelian group of C-valued constructible functions on Z.

Let o =3 caCa- 1z, € CF(Z)c be a C-valued constructible function with compact
support on a subanalytic set Z, where Z = | | .4 Z, is a stratification of Z and ¢, € C.
Then we can easily prove that the complex number > _, ¢, - Xc(Z4) does not depend on
the expression ¢ = > _, ¢, -1z, of ¢.

acA
acA

Definition 2.9 For a C-valued constructible function ¢ =" _, ¢o -1z, € CF(Z)c with
compact support as above, we set

/w = o xXe(Za) €C (2.21)

a€cA

and call it the topological integral of ¢.

By this definition, the result of Proposition 2.7 can be rewritten as

tr(F

MNCI)

M) = /M p(F, @), (2.22)

6



where the C-valued constructible function ¢(F, @)y, € CF(M;)c on M; is defined by
. , ®lray
(F, )ar, () = Y (1Y el H(F), N H(F),) (2.23)
jEL

for x € M.

To end this section, let us explain how the C-valued constructible functions discussed
above are related to the theory of Lagrangian cycles in [13, Chapter IX]. Now let Z be a
real analytic manifold and denote by 77 its cotangent bundle. Recall that Kashiwara-
Schapira constructed the sheaf .25 of closed conic subanalytic Lagrangian cycles on T*Z
in [13] (in this paper, we consider Lagrangian cycles with coefficients in C).

Proposition 2.10 ([13]) There exists a group isomorphism

by which the characteristic function 1k of a closed submanifold K C Z of Z 1is sent to
the conormal cycle [TjZ] in T*Z.

We call C'C' the characteristic cycle map in this paper.

3 Localization theorems and their applications

Let X, ¢: X — X, M =|,., M;, F € D%_,(X), ®: ¢~'F — F etc. be as in Section 2.
In this section, we fix a fixed point component M; and always assume that supp(F’) N M;
is compact.

Definition 3.1 We say that the global trace tr(F, ®) is localizable to M; if the equality

c(F, @)y, = tr(F

Mmq)

holds.

By Proposition 2.7, once the global trace is localizable to M;, the local contribution
c(F, @)y, of (F,®) from M; can be very easily computed. Since we always consider the
same fixed point component M; in this section, we denote M;, ¢(F, )y, etc. simply by
M, c(F,®)y etc. respectively. From now on, we shall give a useful criterion for the
localizability of the global trace to M. First let us consider the natural morphism

qbli TMregX e TMregX (32)

induced by ¢: X — X, where M,., denotes the set of regular points in M. Since M,eq
is not always connected in the real analytic case, the rank of Ty, X may vary depending
on the connected components of M.

Definition 3.2 For z € M,,, we set

Ev, := {the eignevalues of ¢} : (T, X)s — (Th,, X )2} C C. (3.3)



We also need the specialization functor
VMreg: Db(X) - Db(TMregX) (34)

along M., C X. In order to recall the construction of this functor, consider the standard
commutative diagram:

Thte X Xy 20 (3.5)

JT J«p /
p
Moy X,

P P

where Xy, is the normal deformation of X along M, and ¢: Xy, — R is the defor-

mation parameter. Recall that 2y is defined by ¢t > 0 in )/(_]\M-; . Then the specialization
UM, (F') Oof F along M, is defined by

Vit (F) = 57 RYF(F). (3.6)

Note that vy, (F) is a conic object in D(Tyy,,,X) whose support is contained in the
normal cone Cly,,, (supp(F)) to supp(F) along M,,. Since F'is R-constructible, vy, (F)
is also R-constructible. By construction, there exists a natural morphism

O () Vit (F) — Vit (F) (3.7)
induced by ®: ¢~'F — F. In the sequel, let us assume the conditions:
(i) supp(F) N M is compact and contained in M.
(ii) 1 ¢ Ev, for any x € supp(F) N Myeg.

The condition (ii) implies that the graph of ¢ in X x X intersects cleanly (see [13, Defi-
nition 4.1.5]) with the diagonal set Ax ~ X in an open neighborhood of supp(F') N M,e,.
It follows also from the condition (ii) that for an open neighborhood U of supp(F') N Myeq
in M,eg the fixed point set of ¢/|,—1py: 77 (U) — 7 1(U) is contained in the zero-
section Myeg of Thy,, X. Set U = 77Y(U), F = vpy, (F)|g and & = &'|5: (¢/|5) ' F —
F. Then also for the pair (F,®), we can define the characteristic class C(F,®) €

ngpp(F)mMreg (U7 C{)ﬁ) ’

Proposition 3.3 In the situation as above, the local contribution c¢(F,®)y from M is

equal to[C(ﬁ,(f).
U

Proof. The proof is similar to that of [13, Proposition 9.6.11]. Since the construction of the
characteristic class C(F, @)y, € Hsoupp(F)mM(X; wy) is local around supp(F) N M (see [13,
Remark 9.6.7]) and X'\ (M \U) is invariant by ¢, we may replace X, M etc. by X\ (M\U),
U etc. respectively. Then the proof follows from the commutativity of the diagram (3.14)
below. Here we denote T3, X simply by G and the morphism h TyX — TyX x TyX
is defined by h = (¢',id). We also used the natural isomorphism Dvy(F) ~ vy (DF).
Let us explain the construction of the morphism A in the diagram (3.14). Consider the

commutative diagram:



Tarsar(X % X) "1 (X X X)ppnt e Qvx —5 X x X (3.8)

oryy XJ O 57]\ O 5 O 5 XJA
s —— J P

TMXC XM ) X X7

e~

where (X X X))« is the normal deformation of X x X along M x M and
t1: (X X X)prxnm — Ris the deformation parameter such that Qx . x is defined by t; > 0

P

in (X X X)axa- Then the morphism A is constructed by the morphisms of functors

& — OxRprpi (3.9)
~  Rp.0'p (3.10)
~  Rp.0' Rjpi (3.11)
. Rp.d susT'Rjnpi (3.12)
~  Rp.s.0p, xs1 Rjnpi - (3.13)

The other horizontal arrows in the diagram (3.14) are constructed similarly.

RHom(F, F) RHom(vp (F), var(F))

8 ¢

RIA, (X x X; FRDF) 2 RIa, (G X G;varxnr (FRDF)) «— RIa, (G X G; v (F) K Duyg (F))
RI(Gih™ wars (F R DF)) — R (G; ¢/~ var(F) © Duag (F))
RFM(X;(b:lF ® DF) —= RFM(Q;VM(¢_1F ® DF)) — RF]M(Q;Z/M((ﬁ_lF) ® DZ/M(F))

P P P

RFM(X,F®DF) ;)RFM(Q,VM(F@)DF)) <—RFM(Q,1/M(F) ®DZ/M(F))

RFM(X;WX)—N>RF]\J(Q;VM(WX)) = RFM(Q;wg)
C C.
(3.14)
O
Theorem 3.4 In the situation as above, assume moreover that
EVJ; N R21 = @ (315)
for any x € supp(F) N M C M,es. Then the localization

holds.



Proof. The proof is similar to that of [13, Proposition 9.6.12]. Since
supp(F) N M C Meg (3.17)

is compact, there exists an open neighborhood U of supp(F) N M in M, such that (3.15)
holds for any x € U.

As in the proof of Proposition 3.3, we may replace X, M etc. by X \ (M \ U), U etc.
respectively. By the homotopy invariance of local contributions ([13, Proposition 9.6.8]),
replacing ¢’ by A¢’ for 0 < X\ < 1 does not affect

Cvm(F),®") € HYppirymns (T X3 w0y, %), (3.18)

Since supp(F') N M is compact, we may take sufficiently small 0 < A < 1 so that the
condition
Ev, C{z€C||z| <1} foranyzeU (3.20)

is satisfied. Then just in the same way as in Step (a) of the proof of [13, Proposition
9.6.12], we can prove

/ Com(F), ) = tr(va(F)|as, @|ar) (3.21)
Ty X
= tr(F|ar, Plar)- (3.22)
Since we have
o(F, B)pr = / Cmi (F), ') (3.23)
T X
by Proposition 3.3, this completes the proof. O

Similarly, in the complex case we have the following.

Theorem 3.5 In the situation as above, assume moreover that X and ¢: X — X are
complex analytic and F € DY%X) i.e. F is C-constructible. Assume also that M or
supp(F) N M C M,eq is smooth and compact (this condition will be removed in Section
6). Then the localization

c(F, @) = tr(F|pr, @) (3.24)

holds.

Proof. By our assumptions, the fixed point component M of ¢ is a complex analytic subset
of X and Ty, X is a holomorphic vector bundle over M,eq. Let supp(F) N M = ||, V;
be the decomposition of supp(F) N M into connected components. Since the set Ev, C C
of eigenvalues depends holomorphically on € Mg, Ev, is constant on each connected
component V;. Hence, by the C*-conicness of vy, (F) € D%(Thy,,,X) and the homotopy
invariance of local contributions, for each j € J we may replace ¢’ by A¢’ for |A — 1| < 1
on an open neighborhood of 771(V;) C Ty, X and assume that

Ev, C {zeC||z|£1, »¢R}U{0} (3.25)

for any x € Vj.

Then with the help of Proposition 3.3 and the arguments in the proof of [13, Propo-
sition 9.6.12], we may argue as in the proof of [13, Proposition 9.6.12]and [13, Corollary
9.6.16]. O

10



Remark 3.6 In Section 6, we will generalize Theorem 3.5 to the case where M nor
supp(F') N M is smooth. To treat this more general case where the set Ev, may vary
depending on = € supp(F) N M, we need some precise arguments on Lefschetz cycles
which will be introduced in the next section. One naive idea to treat this case would
be to cover supp(F') N M by sufficiently small closed subsets Z; C supp(F) N M and
use the local contributions of (vas,,(F));-1z to compute that of vy, (F) by a Mayer-
Vietoris type argument. However this very simple idea does not work, because we cannot
apply [13, Proposition 9.6.2] to constructible sheaves with “non-compact” support such
as (Vate, (F))r-17, to justify the Mayer-Vietoris type argument.

Corollary 3.7 Let X be a complex manifold, ¢: X — X a holomorphic map and V C
X a ¢-invariant compact analytic subset. Assume that the fived point set M = {z €
X | ¢o(x) =2} C X of ¢ satisfies the following conditions.

(i) VN M C Meg,
(i) 1 ¢ Ev, for anyx € VN M,
(i) M or VN M is smooth and compact (this condition will be removed in Section 6).

Then we have

S (~0iu{H (Vi Cy) DL 5 (V;Cy )} = x(V N M), (3.26)

JEZ

Proof. Set F' = Cy € D%(X) and let ®: ¢~'F — F be the natural morphism ¢~'Cy ~
Cy-1(vy — Cy. Then we have

S () {E (X F) 5 (X)) = Y (- 1PV Cy) (Vi)
€T €z
(3.27)
By Theorem 3.5, this number is equal to tr(F |y, P|y) = / ©(F, ®)pr, where

M
O(F,®)p: M — C is the C-valued constructible function on M defined as in (2.23).
Since ¢|y is the identity map of M, (F,®)y = 1y and the result follows. O

Example 3.8 Let G,, = SL,(C) and let B,, C G,, be the Borel subgroup of G,, consisting
of upper triangular matrices. Then the homogeneous space X = G,,/ B, is a flag manifold.
Take an element

g= dlag<)\la 7)\17)\27"' 7)\27"' 7)\167"' 7)\k) (328)
n1-times no-times ng-times

(n =mny 4+ ---+nyg) in B, such that \; # A; for any ¢ # j, where diag(---) denotes a
diagonal matrix. Let ¢: X — X be the left action [,: X — X by g € B,, C G,,. Then

it is easy to see that the fixed point set M of ¢ is a smooth complex submanifold of X.
n!

More precisely, M is isomorphic to the disjoint union of ' copies of the product

nyl---ng!
of flag manifolds

Gny/Bn, X -+ x Gy, /By, (3.29)

Therefore the assumptions of Corollary 3.7 are satisfied for any ¢-invariant analytic subset
Vof X, if 1 ¢ Ev, for any x € M (we expect this is always true). Since g € B, as a
¢-invariant analytic subset V' we can take any Schubert variety in X.

11



Example 3.9 Let us consider a special case of Example 3.8 above. Let X = G3/B3 be
the flag manifold consisting of full flags in C* and ¢ = [,: X — X the left action by the
element
a 0 0
g=10 a 0
0 0 p
where o # [ are non-zero complex numbers. In this case, the fixed point set M C X of
¢ is the disjoint union of 3 copies of CP'’s. Let X = | | .g, BsoBs = | ,cs, Xo be the
Bruhat decomposition of X = G3/Bs. Here an element o of the symmetric group &3 is
identified with the matrix (8;0(j))1<ij<3 € G3 (see e.g. [10] for the detail of this subject),
where d;; is Kronecker’s delta. In this case, X(; 3y is the unique open dense Schubert cell
in X. Set V' = X\ X3 = |, Xo. Then V is a ¢-invariant analytic subset of X and
we can check that the assumptions of Corollary 3.7 are satisfied. For example, let N_ be
a unipotent subgroup of Bs defined by

€ Bs C Gg, (330)

100
N_= a 10 a,b,ce C (3.31)
b ¢ 1
and consider the open embedding

C3 ~ N_ — X = Gg/Bg.

w w w

a 100 100 (3.32)

b — a 1 0 — a 1 0] Bs.

c b ¢ 1 b ¢ 1

We denote the image of this open embedding by U and identify it with C* = {(a,b,c) €
C3}. Then in U ~ C? the fixed point set M = CP! LU CP! U CP! of ¢ is given by

MNU={(a,b,c) €C*| b=c=0} (3.33)

a’a
verified. Moreover in U ~ C? the ¢-invariant analytic subset V = X \ X(1 3y is given by

and 1 ¢ Ev, = {é, @} for any x € M NU. The assumptions of Corollary 3.7 are thus

VNU ={(a,b,c) € C*|bb— ac) =0}. (3.34)

From this, we see that the fixed point component M N U ~ CP! of M is totally embedded
in the singular set of V.

4 Definition of Lefschetz cycles

In this section, we construct certain Lagrangian cycles which encode the local contribu-
tions discussed in previous sections into topological objects. We inherit the notations
in Section 2 and 3. Now assume that the fixed point set M = {x € X | ¢(z) = z} of
¢: X — X is a submanifold of X. However here we do not assume that M is connected.
We also assume that Ax intersects with I'y, = {(¢(z),2) € X x X | x € X} cleanly along
M in X x X. Identifying I, with X by the second projection X x X — X, we obtain a
natural identification M = I'y N Ax. We also identify Tx, (X x X) (resp. Tx (X x X))
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with T'X (resp. T*X) by the first projection T(X x X) ~ TX x TX — TX (resp.
T(X x X) ~T*X xT*X — T*X) as usual. Then, under the above assumptions, we
see that the natural morphism

ToTy — Ta (X x X) ~TX (4.1)

induced by the inclusion map I', —— X x X is injective. Hence the image of this morphism
is a subbundle of M x xT'X (whose rank may vary depending on the connected components
of M).

Definition 4.1 We denote by £ the subbundle of M x x T'X constructed above.

The following lemma will be obvious.

Lemma 4.2 The subset T (X x X) NTX (X x X) of (L'y NAx) xay TA (X x X) =~
M xx T*X consists of covectors which are orthogonal to £ C M xx TX by the natural
perfect pairing (M X x TX) Xy (M xx T*X) — R.

By this lemma, we see that 71t (X x X)NTX (X x X) is a subbundle of M xy T*X
(whose rank may vary depending on the connected components of M).

Definition 4.3 We denote the subbundle 77 (X x X)NTX (X x X) of M xx T"X by
F and call it the Lefschetz bundle associated with ¢: X — X.

The Lefschetz bundles satisfy the following nice property.

Proposition 4.4 The natural surjective morphism p: M Xx T*X — T*M induces an
isomorphism F —— T*M.

Proof. Since the rank of the Lefschetz bundle F is locally constant and equal to that of
T*M, it suffices to show that the morphism
plr: F— T*M (4.2)
is injective. This follows immediately from the equality
TM+E&=MxxTX (4.3)

obtained by our hypothesis. O

From now on, by Proposition 4.4 we shall identify the Lefschetz bundle F with T* M.

Now let F' be an object of D% (X) and ®: ¢~'F — F a morphism in D% __(X).
To these data (F,®), we can associate a conic Lagrangian cycle in the Lefschetz bundle
F ~T*M as follows. Denote by myx: T*X — X the natural projection and recall that
we have the functor

fiay: D'(X x X) — DY(T% (X x X)) (4.4)
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of microlocalization which satisfies
Ritxainy, =~ Oy =~ 0x R A, (4.5)

Recall also that the micro-support SS(F') of F' is a closed conic subanalytic Lagrangian
subset of 7% X and the support of ia, (FRDF) is contained in SS(F) C T X ~ Tx (X x
X). Then we have a chain of natural morphisms:

RHome, (F,F) ~ RI(X;0x(FXDF)) (4.6)
~  Rlssr)(T"X;pay (FXDF)) (4.7)
—  RIssr) (T X; piay (heh ™ (F R DF))) (4.8)
~  RlIssr)(T*X; pay (h(¢7'F @ DF))) (4.9)
2 RIssr)(T°X; pia (he(F @ DF))) (4.10)
e RFSS F) (T X; ,LLAX(h CL)X)). (411)
Lemma 4.5 (i) The support of una, (h.wx) is contained in F.
(ii) The restriction of pia, (hawx) to F =~ T*M is isomorphic to 7y} war, where
s T*M — M is the natural projection.
Proof. (i) By SS(h.wx) =Tt (X x X), we obtain
supp(piay (hvwx)) CIr, (X x X)NTx (X x X) = F. (4.12)
(ii) Let ipr: M —— X be the inclusion map. Since we have
RFAX (h*wX) ~ 5X*iM*wM, (413)
HAx (5X*ZM*WM> ~ W;(liM*wM, (414)
we obtain a morphism
7T;(12'M*(UM >~ Ay (RFAX (h*wx)) (415)
—  piay (hawx). (4.16)

It remains to show that the restriction of this morphism to F C T X is an isomorphism.
Let pe F CT*X ~Tx (X x X) be a point. Then we have

H (piay (hawx)),p l_r)nH (U; howy) (4.17)

for any j € Z, where U (resp. Z) ranges through open (resp. closed) subsets of X x X
such that the point mx(p) € Ax is contained in U (resp. the normal cone Ca (Z)ry(p) C
(TX)ry(p is contained in {v € (T'X)xy(p | (v,p) >0} U{0}).

Slnce Ax intersects with I', cleanly along M = Ax N Ty, for the closed subsets
Z C X x X above we have

ZNsupp(hwwyx) =ZNTy =M = Ax Nsupp(h.wx) (4.18)

in an open neighborhood of 7x(p) € Ay ~ M C Ax ~ X. Namely, for sufficiently small
U we have an isomorphism

sz(U; RFAXUL*W)()) ; sz(U, h*wX). (419)
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This implies that the morphism

pax (REAy (hawx))p — tay (hawx)p (4.20)

is an isomorphism. O

Remark 4.6 By taking the Fourier-Sato transform of Proposition 7.1 below, we can
obtain a more functorial proof of Lemma 4.5. However here we gave another proof in
order to look at the structure of pia (hwwx) more directly.

By Lemma 4.5 there exists an isomorphism

g (hawx) = (ix)omytwnr, (4.21)

where 17: F —— T*X is the inclusion map. In what follows, we sometimes omit the
symbol (ix), in the above identification (4.21). Combining the chain of morphisms (4.6)-
(4.11) with the isomorphism (4.21), we obtain a morphism

Homps (x)(F, F') — HgS(F)mE(]:; TapWar)- (4.22)

Definition 4.7 We denote by LC(F, ®) the image of idr € Hompy(x)(F, F) in
H oy (F5 Ty war) by the morphism (4.22).

Lemma 4.8 SS(F') N F is contained in a closed conic subanalytic Lagrangian subset of
F ~T*M. Here we regard F as a symplectic manifold by using the standard symplectic
structure of T*M.

Proof. Recall that 7 C M xx T*M is identified with T*M by the morphism p: M X x
T*X —» T*M. Now let X = || .4 X, be a p-stratification (see [13, Chapter VIII] for
the definition) adapted to F' € D%__(X) and the closed subset M C X. Then there exists
a subset B C A such that M = | |55 X and SS(F) C |, Tk, X. Since F is contained
in M xx T*X, we have

SS(F)NF C <|_| T}BX> nF. (4.23)
BeB
But for any strata Xz contained in M (<= # € B) the isomorphism
ple: F 25T M (4.24)
induces an isomorphism
Ti X NF 5 Ty M. (4.25)

Hence, via the identification F — T*M, we obtain the inclusion

SS(FyNFc | |T%,M (4.26)

BeB
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Definition 4.9 Choose a closed conic subanalytic Lagrangian subset A of F ~ T*M
such that SS(F) NF C A. We consider LCO(F, ®) as an element of H{(F;m;,wy) and
call it the Lefschetz cycle associated with the pair (F, ®).

As a basic property of Lefschetz cycles, we have the following homotopy invariance.
Let I = [0,1] and let ¢p: X x I — X be the restriction of a morphism of real analytic
manifolds X x R — X. Fort € I, let i;: X — X x I be the injection defined by
x — (z,t) and set ¢, == ¢poi;: X — X. Assume that the fixed point set of ¢,
in X is smooth and does not depend on t € I. We denote this fixed point set by M.
Let F € D% (X) and consider a morphism ®: ¢~ 'F — p~'F in D (X x I), where
p: X X I — X is the projection. We set

Dy = P|xxiy: ¢ ' F — F (4.27)

for t € I. We denote the Lefschetz bundle associated with ¢, by F; >~ T*M.

Proposition 4.10 Assume that supp(F) N M is compact and F; does not depend on
t € I. Then the Lefschetz cycle LC(F,®;) € HSS(F)QT*M(T*M;W;;WM) does not depend
ontel.

Proof. The proof proceeds completely in the same way as that of [13, Proposition 9.6.8].
Hence we omit the detail. O

5 Microlocal index formula for local contributions

In this section, using the Lefschetz cycle LC(F, ®) introduced in Section 4, we prove an
index theorem which expresses local contributions of (F, ®) as intersection numbers of the
images of continuous sections of F ~ T*M and LC(F,®). Here we do not assume that
the fixed point set M of ¢: X — X is smooth. However we assume the condition:

1 ¢ Ev, forany x € M. (5.1)

Also in this more general setting, we can define the Lefschetz bundle F ~ 7™M, over
M, and construct the Lefschetz cycle LC(F, ®) in F by using the methods in Section 4.
Let M = | |,.; M; be the decomposition of M into connected components. Denote (M;)reg
simply by N; and set F; := N; X, F. Then we get a decomposition F = | |,.; Fi ~
| |;c; T*N; of F. By the direct sum decomposition

Hgs(pynr (F; WfﬁegWMreg) &~ @ Hs(pynr, (Fi Ty, N, (5.2)
iel
we obtain a decomposition
LC(F,®) =) LC(F,®)y, (5.3)
iel

of LC(F,®), where LC(F,®)y;, € HgS(F)mE(.E;W;,ilei). Now let us fix a fixed point
component M; and assume that supp(F) N M, is compact and contained in N; = (M;)yeq-
We shall show how the local contribution c¢(F, @)y, € C of (F, ®) from M; can be expressed
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by LC(F,®)y;. In order to state our results, for the sake of simplicity, we denote N; =
(M;)reg, Fi, LO(F, @) ns,, ¢(F, @)y, simply by M, F, LC(F, ®), ¢(F, ®) respectively. Recall
that to any continuous section o: M — F =~ T*M of the vector bundle F, we can
associate a cycle [o] € HY,(T*M; 7, (Cy)) which is the image of 1 € H(M;Cy) by
the isomorphism HS(M)(T*M;WQCM) ~ HO(M; (mpr 0 0)'Cpy) ~ HO(M;Cyy) (see [13,
Definition 9.3.5]). If o(M) N supp(LC(F, ®)) is compact, we can define the intersection
number f([o] N LC(F, ®)) of [¢] and LC(F, ®) to be the image of [¢] @ LC(F, ®) by the

chain of morphisms
Hg(M)<f; Cu) ® HSupp(LC(F,’ID))(‘F; Th W) — Hg(M)msupp(LC(F,q>))(-7:; wr) (5.4)
L) (5.5)
Theorem 5.1 Assume that supp(F) N M is compact. Then for any continuous section
o.M — F ~T*M of F, we have
c(F, @) =t([o] N LC(F, P)). (5.6)
Proof. Our proof is very similar to that of Kashiwara’s microlocal index theorem (see [13,

Proposition 9.5.1]). Set S = supp(F'). Then the result follows from the commutative
diagram:

RHom(F, F)

l

RIA ¢n(sxs5)(X X X5 FRIDF) — RIA yq(s5x5) (X X X5 hawx ) = RIsnn (M;wiy)

l All

RE 1g(T"X; pax (FRIDF)) — RE -1 g(T* X5 pay (hawx)) == RE -1 (00 (F T W)
1

l

! T B
RIss(ry(T* X5 pny (F R DF)) — RIgg(ry (T X5 pay (hewx ) “— RIss(myn s (Fs o wir).
(5.7)

By the commutativity of this diagram, the characteristic class C(F, ®) € Hoy(M;war)
and the Lefschetz cycle LC(F,®) € H§S( mynF(Fi Ty war) are sent to the same element in

H%{l (SM) (F; W&le) by the above morphisms A and B. Hence the proof proceeds just

as in the way as that of [13, Proposition 9.5.1]. O

As an application of Theorem 5.1, we shall give a useful formula which enables us to
describe the Lefschetz cycle LC(F, ®) explicitly in the special case where ¢: X — X is
the identity map of X and M = X. For this purpose, until the end of this section, we
shall consider the situation where ¢ =idy, M = X and &: F' — F' is an endomorphism
of F € D% (X). In this case, LC(F,®) is a Lagrangian cycle in T*X. Now for real
analytic function ¢: Y — I on a real analytic manifold Y (I is an open interval in R)
we define a section o,: Y — T*Y of T*Y by o,(y) := (y; de(y)) (y € V) and set

Ay = 0,(Y) ={(y;dp(y)) |y € Y} (5.8)

Note that A, is a Lagrangian submanifold of 7*Y Then we have the following analogue
of [13, Theorem 9.5.3].
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Theorem 5.2 LetY be a real analytic manifold, G an object of D% _ (V) and ¥: G — G
an endomorphism of G. For a real analytic function ¢: Y — I, assume that the following
conditions are satisfied.

(i) supp(G)N{y €Y | ¢(y) <t} is compact for any t € I.
(ii) SS(G) N Ay is compact.
Then the global trace
(G, 0) = Y (~1Y{H (Y;G) — HI(Y;G)} (5.9)
jez

of (G, W) is equal to §([o,) N LC(G,¥)).

Proof. Since the fixed point set of ¢ = idy is Y itself, LC(G, V) is a Lagrangian cycle in
T*Y . Moreover, since any open subset of Y is invariant by ¢ = idy, we can freely use the
microlocal Morse lemma ([13, Corollary 5.4.19]) to reduce the computation of the global
trace tr(G, V) on Y to that of

V|,

> (=1t H(Q; G) — HY(Q; G)} (5.10)

JEL.

for sufficiently large t > 0 in I, where we set ; := {y € Y | ¢(y) < t}. Then the proof
proceeds essentially in the same way as that of [13, Theorem 9.5.3]. O

Theorem 5.3 Let X, F € D% (X) and ®: F — F be as above. For a real analytic
function ¢: X — R and a point xq € X, assume the condition

Ay NSS(F) € { (a0 dio(ao)) }. (5.11)

Then the intersection number §([o,] N LC(F,®)) (at the point (x¢;dp(xg)) € T*X) is
equal to

. . o
Z(_l)]tr{Hi@Zw(ﬂco)} (F)ao — HfsonO(wo)} (F)ao }- (5.12)

JET

Proof. The proof is very similar to that of [13, Theorem 9.5.6]. For a sufficiently small open
ball B(xg,e) = {x € X | |z — x| < €} centered at zg, set Fy = RI'p(, ) (F) € Db_.(X).
Then @ induces a natural morphism ®q: Fy — Fy in D%__(X). Moreover by the proof
of [13, Theorem 9.5.6], we have

A, NSS(Fy) € 73 (Q-y) U {(wo; dp(wo))} (5.13)

for sufficiently small ¢ > 0, where we set Q1= {z € X | ¢(x)—p(zo) < k} for k € R. Then
applying Theorem 5.2 to the case where [ = (—00,0), Y = Qy, G = Fylg, € D% _(Y)
and U = ®g|q,: G — G, we obtain
2(lo] N LC(Fo, @o) N7y ()
= Y (10 {HI(B(xo,e) N Qo3 F) — H'(B(wo,€) N Qs F)}. (5.14)

jEz
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On the other hand, since supp(Fp) is compact in X, by Theorem 5.1 we have
i(loy] N LC(Fy, ®0)) = > _(—1)te{H(B(xo,¢); F) = H’(B(xp,¢); F)}.  (5.15)
JEZ

Comparing (5.14) with (5.15) in view of (5.13), we see that the intersection number of
lo,] and LC(Fy, ®o) at (zo; de(z)) is equal to

D IV H sy (Flao = Hi oty (Faa (5.16)

jEL
Since LC(F,®) = LC(Fy, g) in an open neighborhood of (zg; dp(xg)) in T* X, this last

intersection number f([o,] N LC(Fy, @g)) (=(5.16)) is equal to §([o,] N LC(F, ®)). This
completes the proof. O

By Theorem 5.3, we can explicitly describe the Lefschetz cycle LC(F, @) € I'(T*X; ZLx)

as follows. Let X =[] ., Xo be a p-stratification of X such that

supp(LC(F, ®)) C SS(F |_| Ty X (5.17)
a€cA

Then A := | |, T%, X is a closed conic subanalytic Lagrangian subset of 7" X. Moreover
there exists an open "dense smooth subanalytic subset Ag of A whose decomposition Ag =
| |;c; A into connected components satisfies the condition

“For any i € I, there exists a; € A such that A; C Tk X.7 (5.18)

Definition 5.4 For i € I and «a; € A as above, we define a complex number m; € C by
mi 1= Y (D HY ooy (F)e = Hjgs oy (F)a}, (5.19)

JET
where the point z € mx(A;) C X,, and the R-valued real analytic function p: X — R
(defined in an open neighborhood of z in X') are defined as follows. Take a point p € A;

and set © = mx(p) € X,,. Then ¢: X — R is a real analytic function which satisfies the
following conditions:

(i) p = (x;dp(x)) € As.

(ii) The Hessian Hess(p|x, ) of ¢|x, is positive definite.

Corollary 5.5 In the situation as above, for any i € I there exists an open neighborhood
U; of A; in T*X such that
LO(F,®) =m, - [Tk, X| (5.20)

Now let us define a C-valued constructible function ¢(F, ®) on X by
. , Dlay
P(F,®)(z) = S (~1Y e {HI(F), " HI(F),} (5.21)
€z
for x € X. We will show that the characteristic cycle CC(p(F,®)) of o(F,®P) (see

Proposition 2.10) is equal to the Lefschetz cycle LC(F, ®). For this purpose, we need the
following.
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Definition 5.6 ([16]) Let p: X — Z be a Z-valued constructible function on X and
U a relatively compact subanalytic open subset in X. We define the topological integral

/gpofgooverUby
U

| o= - x(rrw:ex)), (5.22)

aEZ
where ¢ = Y _4calx, (ca € Z) is an expression of ¢ with respect to a subanalytic
stratification X = | | _, X, of X.

aEA

We can extend C-linearly this integral / : CF(X) — Z and obtain a C-linear map
U

/ : CF(X)c — C. (5.23)
U
On the other hand, since any relatively compact subanalytic open subset U of X is
invariant by ¢ = idy, the global trace on U
. . 3|y .
tr(Flu, ®ly) = > _(=1)tr{H/(U; F) =% H(U; F)} (5.24)
JEZ

is well-defined.
Lemma 5.7 For any relatively compact subanalytic open subset U of X, we have

HWW@@zLﬂR@- (5.25)

The proof of this lemma being completely similar to that of [7, Proposition 11.6], we
omit the proof.

Theorem 5.8 In the situation ¢ =idx, ®: F' — F etc. as above, we have the equality
LC(F,®) = CC(p(F,P)) (5.26)

as Lagrangian cycles in T*X.

Proof. Let X = ., X be a p-stratification of X such that

supp(LC(F, @), supp(CC(p(F,®))) C A= | | T X. (5.27)

acA

Take an open dense smooth subanalytic subset Ay of A whose decomposition A = | |,.; A;
into connected components satisfies the condition (5.18). Let us fix A; and X, such that
A; € Tk, X. It is enough to show that LC(F,®) and C'C(¢(F,®)) coincide in an open
neighborhood of A; in T*X. By Corollary 5.5, in an open neighborhood U; of A; in T*X
we have

LC(F,®) = m; - [Tk, X], (5.28)
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where m; € C is defined by (5.19) for p € A;, x = 7x(p) € Xu,, p: X — R oas in
Definition 5.4. Let U be a sufficiently small open ball in X centered at z € X,,. Set
V:=UnN{e < ¢(x)}. Then we have

) . & )

mi = Z(_l)]tr{Hioz@(x)}(U; F)— Hisoz%’(x)}(U; F)} (5.29)
JEZ

== tI’(F|U, (I)’U) — tI‘(F|V, (I)lv) (530)

- /Uw(F@)_/V@(F@). (5.31)

This last number coincides with the coeflicient of [T X]|y, in CC(p(F,®))|y,. This
completes the proof. O

6 Explicit description of Lefschetz cycles

In this section, we explicitly describe the Lefschetz cycle LC(F, ®) introduced in Section
4 in many cases. Let M be a possibly singular fixed point component of ¢: X — X.
Throughout this section, we assume the condition

“1 ¢ Ev, for any x € supp(F) N Meg.” (6.1)

Then there exists an open neighborhood U of supp(F) N M,e, in M, such that T'y
intersects with Ay cleanly along U C M C I'y, N Ax. Namely, there exists a Lefschetz
bundle 7 = U x {Iy, (X x X)NTX (X x X)} over U which is isomorphic to T*U. As
in the same way as in Section 4, we can define a Lagrangian cycle in F associated with
(F, ®). We still denote it by LC(F, ®) and want to describe it explicitly. Replacing X, M
etc. by X \ (M \ U), U etc. respectively, we may assume that M is smooth and 1 ¢ Ev,
for any & € M from the first. In this situation, the fixed point set of ¢': Tpy X — Ty X
is the zero-section M. Let I'y = {(¢'(p),p) | p € TuX} C T X x T)yX be the graph of
¢ and Arp,,x ~ Ty X the diagonal subset of T)y X x T);X. Then

= Tli<¢/ (TMX % TMX) N TZTMX (TMX X TMX) (62)

is a vector bundle over the zero-section M =~ I'y N Ap,, x of T)yX. Since F' is also
isomorphic to T*M by our assumptions, we shall identify it with the original Lefschetz
bundle 7 =Ty (X x X) NT (X x X). Now consider the natural morphism

O (¢ o (F) — vy (F) (6.3)

induced by ®: ¢~'F — F. Then from the pair (vy(F),®’), we can construct the
Lefschetz cycle LC(vp (F), @) in F' ~ F.

Proposition 6.1 In F ~ F', we have

LO(F,®) = LO(vy(F), ). (6.4)

Proof. The proof is similar to those of [13, Proposition 9.6.11] and Proposition 3.3. Indeed,
the proof follows from the commutativity of Diagram 6.a, which is a microlocal version
of Diagram (3.14).
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((Pm*y) vl 5.1) STy ~ ((Xo)Waxy) °Vil 6., 1) S 1Y

A§3N\<k ﬁ.um.v uS Ty

(X y) XVl x, 1)STY

() 7aq @ ()7 ) ) V1 :5,1) T ———— (A @ L)) V5. D) ST (1A ® ) *4) V1 X L)S 1Y

] P

(D) Maa @ (g,-9)7) ) V11 5., L) ST ——— (A D o (@) Y)Yl 5. L) ST —5— (A © T (~9)*Y) V1 X D)1

(D) Paq@ @ (o) 0) ) V1 2 5..1) ST —— (TA R )Ty g y) Vil 2 5,.1) S 1Y
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() Maa® (1)) 5, 1) S 1 —— (TA R )V N) V1 5, 1) ST 5 (TAR ) VX L) ST

l

((o7) 70 (o) W) mOHY

t

(oA ‘A )oYy

Diagram 6.a
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Here we denote Ty X, SS(F) and Cr;, x(SS(F)) by G, S and S’ respectively. Note that
we have natural isomorphisms

T (T X) = T* (T35 X) = Trs x(T°X) (6.5)

(see [13, (6.2.3)] and (6.19) below) and the normal cone S" = Cr: x(SS(F)) can be
considered as a subset of T*(Ty,X) = T*G. We also used a conic isotropic subset S” =
(SNF)U (S NF) of F~ F ~ T*M and the morphism h: TyyX — Ty X x Ty X
is defined by h = (¢',idr,, x). Moreover we used the natural isomorphism Dy (F) =~
vy (DF') to obtain Diagram 6.a. Let us explain the construction of the morphism A in
Diagram 6.a. First consider the commutative diagram:

Tarnr (X X X) "= (X x X)prenr ——2xxx — X x X (6.6)

5y XJ O gfj O 3 0 5{
B j P

Ty X€ . Xy (x » X

which already appeared in the proof of Proposition 3.3. Denote the image of 5 (resp. N)
by A X0 (resp. Aq, ). Then we see that the following morphisms are isomorphisms.

o Aqy XAy TZX(X x X) — TZQXQXxXa (6.7)
i Ay Xag Tzﬁ[((X X X)mxm) — TZQX Qxxx, (6.8)
tsl’ : ATMX XAXNM TZXE<<X X X)MXM) — TZTMX (TMXM(X X X)) (69)
Now let us set
S1 o= P (Aay xay S), (6.10)
Sy = tj1,_1<51)7 (6~11)
53 = S2 HTKTMX (TMXM(X X X)) (612)

Then we have the following morphisms

RIss(p)(TA (X x X); puay (F R DF))

—  RIss(r)(Th (X X X); pay (Rpr.py ' (F BDF))) (6.13)
— RIs,(T3, Qxxx;tiag, (01 (FRDF))) (6.14)
e RIs, (TA o (X X X)arxar)s pa g (Rji.p1 ' (FRDF))) (6.15)

— RIs, (TR _ (X % X)arxn)i pag (suesy ' Rjupy (FRDF)))  (6.16)

XM
— RIs,(T%,,  (Taxar(X % X))i piag,, (51 Rjnpy” (FRDF)))  (6.17)
— RIG(T"G; sy (varas (F EIDF)), (6.13)
where we used [13, Theorem 4.3.2 and Proposition 3.3.9] (see also the arguments in [13,
page 192-193]) to prove that the morphism (6.15) is an isomorphism. Let us show that Ss

is equal to S’. Let (z/, 2”) be a local coordinate system of X such that M = {2’ = 0} and
(', 2", &, &) the associated coordinates of T*X. Then by the Hamiltonian isomorphism
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etc., we can naturally identify T*(Ty;X) =~ TZTMX<TM><M(X x X)) with T x (T*X) as
follows (see [13, (6.2.3)]).

T(TyX) =~  THTyX) =~ T x(TX).
w W W (6.19)

(x/,x//;£/,€//> - (5/’1,//;_3:./75//) — ($/,$//;€/7f//)
Under this identification, we can prove that S3 C T*(TX) =~ TZTMX(TMxM(X x X)) is
equal to the normal cone S" = Cr: x(SS(F)) C Tz, x(T*X) as follows. In the associated

—~——

local coordinates (a/, 2", t; €', £") (t > 0) of Aq, XA TZ%((X X X)mxar) (22 Aqy Xay

Tx, (X x X) ~Qy xx T*X), its subset LT (Mg, Xay S) is expressed by

{(«',2",t;£,¢") € Aq, XA TZ;?]\}((X x X)arxar) | (b, 2”671 €7) € SS(F)}. (6.20)
Hence we have

(:L‘/,ZL‘”; 5/,5//) € Sg = S9N TKTMX (TMXM(X X X))

< F(a), 20 tn; €, 80 € Aqy XAe TZXT\}((X X X)) arsar)

n»rnr

@t 6,60 " (@, 27,0:€,€7),
S.T.
(b, s €0, €1) € SS(F)

n»nr’n n

(6.21)

< F(z), 2l tn; €, 80) € Aqy XAg TZXTW((X X X)) arsar)

(l’l ,l‘”,tn; / ’gu) Tﬂf (%l, LL'”, 0;51’ 5//)’
s.t. neen en 6.22
{(tnx;,x;;; 1 tnl) € SS(F) 022

= @ T E &) ) € SS(F) x Rag
) (/I'Vn/, /:L‘\;”; gl/7 é;ll) n—op (07 2" ¢ 0)7
S.T. ~
(cndin's enn ) "= (!, €")

<~ (33/,.1'”; 5/,6”) €S = CT]’(/IX(SS(F)) C TT]’\‘JXT*X (624)

(6.23)

We thus obtained the morphism A:
RIG(T* X5 pia (FRIDF)) — RIs(T*G; pag (Vs (F X DF))). (6.25)
We can construct also the morphism B in Diagram 6.a as follows.

RIs(T*X; piay (hi(¢™'F @ DF)))
— RIs(T*G; piag (Virxar(he(¢7'F @ DF)))) (6.26)
—  RIs(T*G; ping (havar(¢7'F @ DF))), (6.27)

where the first morphism is constructed in the same way as A and we used [13, Proposition
4.2.4] to construct the second morphism. This completes the proof. O

Since we have

bly = &'\ = idyy, (6.28)
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(M is identified with the zero-section of Ty, X), the Lefschetz cycle LC(var(F)|ar, ®|ar)
in T*M is the same as LC(F|yr, ®|ar). In what follows, we shall identify F ~ F’ with
T*M and compare LC(F,®) = LC(vpy (F), @) with LC(F|ar, ®|ar)-

Since our result holds for any conic object on any vector bundle over M, let us consider
the following general setting. Let m: G —» M be a real vector bundle over M and
1 G — G an endomorphism of the vector bundle G. Assume that the fixed point set of
1 is the zero-section M of G. For each point € M we define a finite subset Ev, of C by

Ev, = { the eigenvalues of ¥,: G, — G,} C C (6.30)

as in the case of G = Ty X and ¢ = ¢': Ty X — Ty X (see Definition 3.2). Then
the above assumption on the fixed point set of ¢ implies that 1 ¢ Ev, for any x € M.
Suppose that we are given a conic R-constructible object G € D% (G) on G and a

morphism W: " !G — G in D%_(G). From these data, we can construct the Lefschetz
bundle Fy >~ T*M associated with ¢ and the Lefschetz cycle LC(G, V) in it.

Proposition 6.2 Let xg € M be a point of M such that
EV;BO N Rzl = @ (631)

Then we have

LO(G, V) = LO(Glar, ¥lu) (6.32)
in an open neighborhood of 7y} (wo) in Fo ~ T*M.

Proof. Take an open neighborhood W of 2 in M such that Ev,NR>; = () for any z € W.
Then there exists a closed ball

7 = B(xg,e0) ={z € M | |x — x| < &0} (g0 >0) (6.33)
in W centered at . Consider the conic object Gr-1(z) € D%_.(G) and the morphism
\Dﬂfl(Z)Z @D_l(Gﬂfl(Z)) — Gﬂfl(z) (634)

induced by W. Since the construction of LC(G,¥) and LC(G|y, ¥|a) is local and
ro € IntZ, we may replace (G,V¥) by (Gr-1(z), ¥z-1(z)). By the homotopy invariance
of LC(G, V) (see Proposition 4.10), replacing 1 by A for 0 < A < 1 does not af-
fect LC(G,W¥) nor LC(G|y,¥|y). Hence by replacing ¢ by Ay for sufficiently small
0 < A < 1, we may assume also that

Ev, C{zeC||z| <1} (6.35)

for any x € 7(supp(G)). Then there exists an open tubular neighborhood D of the
zero-section M in G such that ¢»~'(D) D D, and we can construct a morphism

RIp(W): ' RIH(G) — RIp(G) (6.36)

induced by ¥: ¢ 'G — G. Since LO(RI'p(G), RI['n(V)) = LC(G,¥), we may replace
the pair (G, V) by (RI'p(G), RI'p(V)) and assume that supp(G) is compact. Let us take
a p-stratification G = | |, . 4 G of G which satisfies the following three conditions.

(i) There exists a subset B C A such that the zero-section M C G of G is |_|5€B Gs.
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(i) SS(G) C ,en TG in T*G.
(i) SS(G|ar) C Ugep T, M in T*M.

For 8 € B, we shall denote Gz C M by Mg. Namely M = LlﬁeB Mjg is a p-stratification
of M. Set A =| g5 T3, M C T"M. By the conditions above, we obtain

supp(LC(G,¥)), supp(LC (G|, ¥|ym)) C A. (6.37)

Therefore it suffices to show that LC(G,¥) coincides with LC(G|ar, ¥|ar) on an open
dense subset of A. Let Ag be an open dense smooth subanalytic subset of A whose
decomposition Ag = | |,.; A; into connected components satisfies the condition

“For any ¢ € I, there exists 3; € B such that A; C Ty, M. (6.38)

Let us fix A; and Mpg, as above and compare LC(G, V) with LC(G|a, Va) on A;. Take
a point p € A; and set © = my(p) € Mg, where mp: T*M — M is the projection. Let
¢: M — R be a real analytic function (defined in an open neighborhood of ) which
satisfies that p = (z;dp(x)) € Ai, p(x) = 0 and the Hessian Hess(¢|n, ) is positive
definite. Then by Corollary 5.5, we have

in an open neighborhood of A; in T*M, where m; € C is defined by

my = S (1Pt H] oy (B(,8); Glar) "% HY o\ (B(x,8);Glar)} (6.40)

{p>0}
jez

for sufficiently small 6 > 0. Set U := B(z,¢) and V := U N {p < 0} in M. Then we have

Set also U := 7 (U), V :=n4(V) C G and $ := pom: G — R. Since G is conic in an
open neighborhood of the zero-section M C G, we have

RIG(G)|m ~ RIy(G|u), (6.42)

Now let us set
A, ={(z;dp(x)) |z e M} CT*M, (6.44)
Ag = {(g:do(9)) | g € G} CT"G. (6.45)

Then by Theorem 3.4, it follows from our assumption (6.31) for z € supp(G) N M that

(R (Glar), RIv(¥]3r) = tr(RI5(G), RIG (V). (6.47)

Applying Theorem 5.1 to the pair (RI5(G), RI5(V)), we obtain

tr(RIY(Clar), RIy (W) = #(lo,) N LO(RIG(G), RIG(W)).  (6.48)
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Now by the condition (i) and the definition of A we have

supp(LC(RIH(G), RIH(¥))) C SS(RIH(G))NFo (6.49)
C {SS(G) U (S5(G) +T;59)} N Fo (6.50)
C AUA+THM) =N (6.51)

Since A’ is isotropic, by the microlocal Bertini-Sard theorem ([13, Proposition 8.3.12]) for
0 < a <1 we have
AN NnA, N ({0 < o] < a}) =0. (6.52)

By the proof of [13, Theorem 9.5.6] (use [13, (9.5.12) and (9.5.13)]) and the estimate
(6.49)-(6.51) and (6.52), shrinking U = B(x, d) if necessary, we may assume from the first
that

A, Nsupp(LC(RIH(G), RI5(9))) C 7y ({¢ < —eo}) U {p} (6.53)

for sufficiently small £y > 0. Hence from (6.48) we deduce
tI‘(RFU(G|M), RFU<\I/|M))
= #my (e < —eo}) N [oy] N LO(RIG(G), RIG(V))} + [oy] - LO(G, ¥), (6.54)

where [0,] - LO(G, W) is the local intersection number of [0,] and LC(G,¥) at p € A,.
p
The other term tr(RIv(G|um), RIV(¥Y|am)) = tr(RIH(G), RIH(V)) can be calculated as

follows. For e > 0, set Vo :=V N{p < —e} and V. := VN {F < —e} = x1(12).
Lemma 6.3 For sufficiently small ¢ > 0, we have
tr(RI(G), Ry (W) = tr(RI(G), RT (W)). (6.55)
Proof. Set ¥ := SS(RI7(G)) C T*G. Then by the microlocal Bertini-Sard theorem ([13,
Proposition 8.3.12]) there exists € > 0 such that
YNAzNT H({—e<p<0})=0. (6.56)
Hence by [13, Corollary 5.4.19], we obtain
RI({(F < 0} RI3(G)) > RI({ < —e}; RI(G)). (6.57)
(I

Let us continue the proof of Proposition 6.2. By Lemma 6.3 and Theorem 5.1, we
obtain

tr(RIv(Glar), RIv (Y]ar)) = #([og] N LO(RIG(G), RIG (7)) (6.58)

for sufficiently small ¢ > 0. Moreover it follows from the condition (i) and the definition
of A that

supp(LC(RIT(G), RIy(V))) C SS(RI(g<—ap(RIF(G))) N Fy (6.59)
C A +ReoA,. (6.60)

Comparing this last estimate with (6.52), we obtain

A, Nsupp(LO(RT(G), RT3 (W) € w3 ({1 < —eo}) (6.:61)
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for 0 < e <« g¢. Since
LC(RI;(G), RI (V) = LO(RIH(G), RI(W)) (6.62)
on my ({¢ < —&p}), from (6.58) we obtain
tr(RIv(Glu), RIv(®|ar)) = t{my ({ < —€0}) N [0,] N LC(RIH(G), RIH(V))}. (6.63)
Putting (6.54) and (6.63) into (6.41), we finally obtain

m; = [o,] - LC(G,¥), (6.64)
p
which shows
LC(G, V) = LC(G|n, V|n) (6.65)
on A;. This completes the proof. O

Combining Proposition 6.1 and 6.2 with Theorem 5.8, we can obtain explicit de-
scriptions of the Lefschetz cycle LC(F, ®) as follows. Let o(F |y, ®|y) be a C-valued
constructible function on M defined by

: : By
P(Flar, ®[a) (@) = > (=10 {HI(F), — H'(F),} (6.66)
JEZ
for x € M.
Theorem 6.4 Let xg € M be a point of M such that
vao N RZl = @ (667)

Then we have
LC(F,®) = LO(F|u, @|m) = CC(o(F |, P|ar)) (6.68)

in an open neighborhood of my, (o) in T*M.
In the complex case, we have the following stronger result.

Theorem 6.5 In the situation as above, assume moreover that X and ¢: X — X are
complex analytic and F € Db(X) i.e. F is C-constructible. Then we have

LC(F,®) = LO(F|u, @|m) = CC(o(F|ar, |ar)) (6.69)
globally on T* M.

Proof. By Proposition 6.1, we have only to prove
LC(vy(F),®") = LC(F|ar, ®|ur)- (6.70)

Since these cycles are considered as sections of the sheaf of £, of Lagrangian cycles on
T*M, it suffices to prove (6.70) locally. Namely, for each zy € M we have only to prove
(6.70) in an open neighborhood of 7/ (7o) in F ~ T*M. This local statement can be
proved along the same line as the proof of Proposition 6.2. Since vy (F') admits the action
of C* in the complex case, we may use the arguments in the proof of [13, Corollary 9.6.16]
for this purpose. This completes the proof. O
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By Theorem 6.5 above, we can drop the assumption of the smoothness of M or
supp(F) N M in Theorem 3.5 (we can also drop the assumption (iii) of Corollary 3.7).

Corollary 6.6 Let X, ¢ and M be as above and Fy —— F, EN Fy — +1 a distinguished
triangle in DY (X). Assume that we are given a morphism of distinguished triangles

,10( —1 -1
R ANy NSy R G o (6.71)

l@'l J‘I)Q J/Cbg J((DI [].]
B

F = Fy F3 L Fl[l]

in D% _(X). Then for any xo € M such that Ev,, NR>; = 0, we have
LO(Fy, &) = LO(Fy, ®1) + LC(Fy, ) (6.72)

in an open neighborhood of 7y, (o) in T*M.

7 Another construction of Lefschetz cycles

In this section, we shall introduce another construction of Lefschetz cycles which slightly
differs from the previous one. Moreover we prove that the difference is expressed by the
sign +1 of the determinant of id — ¢ : (T X), — (T X), for x € M. Since (except
Proposition 7.1 below) the results in this section will be used only in the proof of our
inverse image theorem in Section 8, the readers who do not require the inverse image
theorem can skip this section.

7.1 New construction of Lefschetz cycles

In this subsection, we inherit the situation and notations in previous sections and consider
the problem in an open neighborhood U of a smooth point of M for which the condition

1¢Ev, foranyxeMnNU (7.1)

is satisfied. Then we can construct locally the Lefschetz bundle F over M. Before
introducing another construction of Lefschetz cycles, first let us study the structure of the
object

G = I/Ax<h*wX>’M><XTX € D%icU\/[ X x TX) (72)

Let g: I'y —— X x X be the inclusion map of the graph of ¢. Then we obtain an injective

map
g TyuX ~Tyly — Ta (X x X) ~TX (7.3)

induced by g. Recall that in Section 4 we defined a subbundle & C M x x T'X to be the
image of this map. Let ig: &€ —— M X x T'X be the inclusion map.

Proposition 7.1 In the situation as above, we have an isomorphism

G ~ (ig).we. (7.4)
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Proof. Consider the following standard commutative diagram for the normal deformation

—_—

(Fy)ar of Ty along M ~ Ay C Ty

J PQJ -
p2
M ~ AM(—> F¢,

—_—

where t5: (I'y) ;s — R is the deformation parameter. Then we have the following Carte-
sian diagrams

TMF¢( (F¢)M Qr & F¢ (76)

Ta (X X X)—— (X x X)a, 20 P X x X

induced by g: I'y —— X x X. From this we obtain an isomorphism

(9")vmr(wr,) = vay(gewr,) = vay (hawx). (7.7)
6 6
Since we have vy (wr,) =~ wr,r, and Ty Ty is identified with & by ¢', the result follows.

|

From now on, we shall introduce another construction of Lefschetz cycles. Let t: TM ——
M xx TX be the natural injection and p: M xXx T*"X — T*M ~ F its dual. Let
19: M —— T'M be the zero-section embedding. Then we have an isomorphism

| L
Rpl(G/\) ~ (L.CMXXTX X L_lG)/\ (78)

in D% (T*M) by [13, Proposition 3.7.14], where ( - )" stands for the Fourier-Sato trans-
form. Note that we have G" ~ pa (h«wx)|mxy7+x and p is proper on supp(G") = F.
The structure of the right hand side of the isomorphism (7.8) is given by the next lemma.

Lemma 7.2 We have a natural isomorphism
! Lo 1A o 1
(L CMXXTX Xt G) =Ty WM (79)

Proof. Since 1™ (supp(G)) = +71(€) is the zero-section M of T M, we have

LilG ~ ZQ*(G’M) ~ iO*{(h*wX)|AM} >~ i0*<wX|M>, (710)

where M ~ A, is identified with the zero-section of M X x T'X ~ Ay Xa, Ta, (X x X).
Hence we obtain

L L
L!CMX;(TX ®L*1G2i0*(wM/X®wX|M) Eio*u)M (711)
and
! Lo 1A : A 1
(CChrrxyrx @7 G)" = (igewpr)" =~ Ty wa. (7.12)
O

30



By Lemma 7.2, we have a chain of morphisms

RHomc, (F,F) =~ Rlsgr)(T"X;pa(FXRDF)) (7.13)
e REssr) (T X sy (hoiox) (7.14)

~  RlIssimnr(M xx T X;G") (7.15)

~  RIgspnr(T*M; Rpi(G")) (7.16)

~  Rlsspynr(T"M;my wy), (7.17)

where for the construction of the second (resp. last) morphism we used the morphisms
(4.6)-(4.11) in the construction of LC(F,®) of Section 4 (resp. Lemma 7.2 and the
isomorphism (7.8)). By taking the 0-th cohomology groups of both sides, we obtain a
morphism

Hompe(x) (F, F) — Hg(pynz (T*M; wy war). (7.18)

Definition 7.3 We denote by LC(F, ®) the image of idr € Hompy(x)(F, F) in
Hgs(p)m]:(T*M; Ty war) by the morphism (7.18).

7.2 Relations between LC(F,®) and LC(F, )

In this subsection, we shall compare LC(F,®) with LC(F, ®). For this purpose, we first
consider the isomorphism
Rp.(G") ~ (L 'G)" (7.19)

obtained by [13, Proposition 3.7.14]. The right hand side is calculated as follows. Since
we have

G~ g (R (G)|wr) (7.20)
~ do(RIA, (Vay (hawx)) ) (7.21)
= io*(VAX (RFAX(h*wX))|AJM) (722)

we obtain an isomorphism
(GO = (igewns)" =~ mrtwnr. (7.24)

By using the isomorphism
Rp.(G") ~ (V'O ~ myfwnr (7.25)

thus obtained to change the construction of the morphism from (7.16) to (7.17), we obtain
also a morphism
Hompe () (F, F)) — HgS(F)mf(T*MS T Wn)- (7.26)

Then the image of idp by this morphism is LC(F, ®). Since supp(G) =& C M xx TX
and t: TM — M x x T'X is non-characteristic for GG, we obtain an isomorphism

L ~
v L!(CMXXTX ®.'G =G (7.27)
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by [13, Proposition 5.4.13]. Note that we have the following commutative diagram.

Ron(Gh) = (UCpperx & 171G (7.28)
ZJ( ZJW
Rp,(G") - (LGN

Recall that for the constructions of LC(F,®) and LC(F, ®) we used the isomorphisms
! Lo~
a: tCuyxyrx @G — ipuwar, (7.29)
B: 'G5 dgewn (7.30)

obtained in (7.11) and (7.20)-(7.23) respectively. However the diagram

L a .
VChrxyrx ® 171G — =~ tosWn (7.31)
ZJW /
VG
is not commutative in general. Hence our new Lefschetz cycle LC(F, ®) may be different

from the original one LC'(F, ®). In order to describe the difference, from now on we shall
assume that M is connected. Then the following definition makes sense.

Definition 7.4 Define a number sgn(id — ¢') € {1} to be the sign of the determinant
of
id—o¢l: (TyX)e — (TyX)a, (7.32)

where x is a point in M.

Proposition 7.5 The following diagram is commutative.

L «a .
UChrxyrx ® TIG —~ sy (7.33)
ZlW {sgn(id—qﬁ’) X
B .
L!G ~ LoxWH -

For the proof of Proposition 7.5, we need some refined arguments on orientation
sheaves. For this purpose, we first prepare two key lemmas (Lemma 7.6 and 7.7 below)
concerning orientation sheaves. Now let Y be an n-dimensional real analytic manifold
and N C Y a submanifold of codimension d. Then we have the canonical isomorphism

orny =~ H?V(Ory)‘]\/ (734)

for orientation sheaves. Let us describe this isomorphism more explicitly in terms of
differential forms with hyperfunction coefficients.
First recall that for an open subset U C N there exists an isomorphism

ory(U) ~ [H"(U;Cy)]*. (7.35)
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Therefore to an orientation oy of N we can associate a section 1,, € ory(U) which
corresponds to the linear map

H?idaj;(:]v) — (C,

v v (7.36)

[w] — 1w
Uy

where w is a C*°-differential (n — d)-form with compact support on U and / stands

Uoy

for the integration over U with respect to the orientation oy.

On the other hand, a section of the sheaf H% (ory )|y over U C N can be explicitly
expressed as follows. Let Bg) be the sheaf of differential i-forms on Y with hyperfunction
coefficients. Then we have a flabby resolution of ory:

0 — ory — ory Q¢ Bﬁ” — ory ®c Bg/l) — ory ®c Bg) e (7.37)

By taking an open subset UinY such that UNN =U , we obtain an isomorphism

Hi (ory)|n (U)
~ HY0 — (ory ®c TnBY)(0) — o (ory ®c B {T) — ---1(7.38)
In this way, a section of H% (ory )|y over U can be represented by an element of (ory ®c
FNB@)(&). Now let y = (y1, -+ ,yn) be a local coordinate system of ¥ such that N =
{y1 = - =ya = 0}. Set ¢ = (y1,--- ,yq) and denote by §(y/) € FNB§9) Dirac’s delta
function on Y supported by N. Then we have the following.

Lemma 7.6 By the isomorphism ory(U) ~ H% (ory)|n(U), the section 1,, € ory(U)
corresponds to [w] € H(ory)|n(U), where w € (ory ®c FNBgfl))(U) is defined by

W = Lagnndygnoy @0y )dys A -+ A dyg. (7.39)

The proof of this lemma follows from the definition of orientation sheaves (the proof
of the Poincaré-Verdier duality theorem). Since it seems that this lemma is well-known
to specialists, we omit the proof here. Similarly we have

Lemma 7.7 By the isomorphism ory,y(U) ~ H%(Cy)|n(U), the section
Lon @ (Layynendyanon )2 € ornyy (U) corresponds to [wo] € Hy(Cy)|n(U), where wy €
IwB(U) is defined by

wo = 6(y)dyy A -+ A dyg. (7.40)

Proof of Proposition 7.5

Let x = (x1, - ,x,) be a local coordinate system of X such that M = {z; = --- =
xqg = 0} and (x;€) the associated coordinate system of TX. Set 2’/ = (x1, -+ ,xq),
' = (xqy1, -+ ,xn) and z = (2, 2").
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By identifying (oryar/arx «Tx| ) with oryyx as usual and using the isomorphism
G|am[—n] =~ orx|ar, we see that the isomorphism « induces isomorphisms

H%M(CMXXTX”M ®c (orx|m) =~ (orrmmxxrx|m) @c (orx|ar) (7.41)

~ ory/x @c (orx|u) (7.42)

~ ory (7.43)

on M. Via these isomorphisms, the section ug = 14,7 = laz,, A -Adz, € OTar cOTTESPONdS
to the one

Uy = [5<§,)d§1 ARRENAN déd] ® 1da:1/\~~-Ad:cn (744)

of H&/(Carsxrx)|ar @c (orx|ar) by Lemma 7.7. Now let us set L = Ge[—dimX]| ~ org.
Then L is a locally constant sheaf of rank one on £ C M x x T'X whose restriction to the
zero-section M C & satisfies L]y ~ orx|ay. Moreover by the flabby resolution

of L, we obtain an isomorphism

Hi (L) |u
~ H0 — (L@ TuB )|y — -+ — (Lae IyBY)y — -] (7.46)

Therefore, a section of H%,(L)|,s is represented by that of

(L @c DB ar = (Llar) ©c (DB |ar) = (orx|ar) ©c (DneBE ). (7.47)

Let (£, 2") be the coordinate system of £ induced by that of M x y TX. Then the image
of the section u; by the isomorphism

HE 0 (Crrsexrx) v ®c (orx|ar) — Hi(L)|w (7.48)

induced by 7 is represented by
Lz ponday, @ 8(E)dEL A -+ Adég € (L]ar) ©c (DB ap). (7.49)

Here 144, a.-ndz, 18 considered as a section of L]y, by the isomorphism L|y ~ orx|.
Let us set
Uy = [Lauynndwy, @ 0(E)dEL A -+ N dEq] € Hi (L) ar. (7.50)

Then it remains to show that the section wuy is sent to
sgn(id — @) « 1gpr = sgn(id — ¢') - ug € oryy (7.51)

by (. In order to look at the isomorphism § more precisely, consider the standard com-
mutative diagram

Tay (X X X)—" (X % X)a, 0 = {tg > 0} (7.52)
l’rx lpo -
po
AxC X x X,
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where (X x X)a, is the normal deformation of X x X along Ay and ¢y: (X X X)a, —

—~——

R is the deformation parameter. Also, let Q be an open subset of (X x X)a, defined by
to # 0 and py: © — X x X the restriction of py to Q. Then the closure of py 'Ax in

(X x X)a, is a closed submanifold of (X x X)a,, which we shall denote by Ay. Note
that the isomorphism (3|y)~! is the restriction of

Uny (h«(RIy(wx))) =~  vay(RIay (hawx)) (7.53)
= 50 'Rijoupo ' RIa, (hawx) (7.54)
~ sy 'RI5(Rjoupo hawx) (7.55)
= RIa, (vay(hwx)) (7.56)

to M ~ Ay C Ax (Ax is the zero-section of Th, (X x X)). Now let us consider

also the following commutative diagram for the normal deformation (I'y)y of I', along
M~ Ay C F¢I

Tl (T )y 0 = {t2 > 0} (7.57)

M ~ Ay 1Ty,

—_— —_—

where t: (I'y)yy — R is the deformation parameter. Set Or == {t, £ 0} C (I'y)n and
P2 := pa|g:- Then we obtain a closed submanifold M by taking the closure of 7 (M) in

—_—~—

(I'y) - Since there exists an isomorphism

givnm(wr,) ~ vay(gawr,) = vay, (hawx) (7.58)

see (7.3) and the Proof of Proposition 7.1), the isomorphism (3|5;)~! is the restriction of
(see (

va(ROv(wr,)) =~ s3'Rjsupo  RIy(wr,) (7.59)
~ SQ_IRFM(RJQ*@_IWF¢) (7.60)
L RFM(I/M(WF¢)) (761)

to the zero-section M of T)/I'y. Note that here we are identifying T,I', with its image £ C
MxxTX by g : Tyl'y — Tay (X xX) ~TX. Now let us set L' := vy (wr,)[—dimX] ~
orry,r,. Then L’ is alocally constant sheaf of rank one on T),I';, and via the identification
TyI'y ~ € we have an isomorphism L' ~ L. Note also that we have L'|y; >~ L|y =~ orx|p
by identifying I', with X. As a consequence, from (7.59)-(7.61) we obtain isomorphisms

ory % HS;(orr, ) m (7.62)
S H (763
R o (7.69)

induced by (3|) . Identify 'y, with X as usual and use the local coordinates x = (2, 2")
also for I'y so that we have M ~ Ay = {2’ = 0} in I'y. Let (1;2”) be the associated
local coordinates of Ty I',. Then by the local coordinate system (n';z") (resp. (&;2"))
of TyI'y (resp. £) the isomorphism T)I'y ~ £ is given by

(s 2") — <(id - g‘i} x/:o) (n’);x”) : (7.65)
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where we set ¢(z) = (¢1(x), pa()), ¢1(x) € R ¢o(x) € R in the local coordinate
system x = (2/,2”) of X. In particular, via the isomorphism Ty I'y >~ & the differential
form 6(n")dm A- - -Adng on Ty, ', corresponds to the one sgn(id—¢')-0(&")déy A+ - -AdEg on €.
From now on, we shall determine the image of ug = 1g,» € orpr by (Bly) ' =RoQoP
in H$,(L)|ys and compare it with the previous one uy € H$,(L)|y;. First, by Lemma
7.6, via the isomorphism P the section uy € ory, corresponds to the one of H{,(orr, )|
represented by

1d:v1/\~~-/\dacn ® 5(1”)d1‘1 VANEIIRIVAN dl‘d € (OTF¢|M) ®(C (FMBI(:?lM) (766)
~ (orx|u) @c (DB |u). (7.67)

It is also easy to see that via the isomorphism Q this section is sent to the one of H%,(L')|as
represented by

1dz1/\~~~/\dxn Y (5(7]’)d7]1 JANREIVAN dT}d S (L/|M) Sc (FMB%\Z[FAM) (768)

Here we used the isomorphism L'|y; =~ orx|y to regard 1gz,a..nde, aS a section of L'|;.
Finally by the isomorphism R, this last section is sent to the one of H%,(L)|s represented
by

sgn(id — @) - Lyg, nnde, ® 6(E)dEL A -+ Ad€q € (L|ar) @ur (TarBY |as), (7.69)

where we used L|y ~ orx|y. The section of H%,(L)|ys thus obtained differs from uy by
sgn(id — ¢') as expected. This completes the proof. O

To conclude, we obtained the following result.

Proposition 7.8 In the situation as above, we have

LC(F,®) = sgn(id — ¢') - LC(F, ®). (7.70)

8 Functorial properties of Lefschetz cycles

In this section, we study functorial properties of our Lefschetz cycles. We obtain direct and
inverse image theorems for Lefschetz cycles, which extend naturally those for Kashiwara’s
characteristic cycles proved in [13, Chapter IX].

8.1 Direct image theorem
Let f: Y — X be a morphism of real analytic manifolds. Assume that we are given two

morphisms ¢x: X — X and ¢y : Y — Y such that the diagram

Tx (8.1)

Y
d)YJ( dx
v f

4>X

commutes. Consider also an object G of D% __.(Y) such that f is proper on supp(G) and
a morphism

dy: ¢'G — G (8.2)
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in D% (V). Then Rf.G € D% _.(X) and we obtain a natural morphism
dx: o' Rf.G — Rf.G (8.3)

induced by ®y. Our aim in this subsection is to compare the Lefschetz cycle of (G, ®y)
with that of (Rf.G,®x). Let M be a smooth fixed point component of ¢x such that
f(supp(G)) N M is compact. Also let {N;};er be the set of all fixed point components
N; of ¢y such that N; C f~1(M) and supp(G) N N; # 0. Note that I is a finite set by
our assumptions. Set N :=| |,., NV; and assume that N is smooth. We also assume that
gy € X xX (resp. 'y, CY xY) intersects with Ay in X x X (resp. Ay in Y xY)
cleanly along M (resp. N) as in previous sections. For the sake of simplicity, denote
MXX{TF¢X(XXX)QTZX(X xX)} ~T*M, ny{TI’fW(YxY)ﬂTgy(YXY)} ~T*N
simply by F, G respectively. Then we obtain two Lefschetz bundles

FCT§¢X(XXX)HTZX(XXX), (8.4)
G C TFW (Y xY)NTx, (Y xY) (8.5)
and the Lefschetz cycles
LC(G, Py)n € Hggeyng(G Ty i), (8.6)
LC(Rf.G,®x)m € HSs(ny.cpnr (F5 Tar wir) (8.7)

in them. Note that by setting G; := N; Xy G we have the direct sum decompositions
G =le; G ~ ;e T°N; and
LC(G,®y)y = Y LC(G, @y ), (8.8)
i€l
where LC(G, Py )y, € HgS(G)ﬂgi(gi; Tyiwy,). Nowletusset g = fly: N =|],c; Ny — M
and consider the natural morphisms
T*N & N xp T*M 25 T M (8.9)

induced by g. Take a closed conic subanalytic Lagrangian subset A = | |,., A; of T*N =
| |;c; T N; such that SS(G) NG C A and g, is proper on tg " (A). Set A =g’ '(A) and
A" = g-(A"). Then there exists a morphism

gt HY(T*N; mytwy) — HY (T M; 7yt wa) (8.10)

of Lagrangian cycles induced by g (see [13, Proposition 9.3.2 (i)]).
Note that by the commutativity of the diagram

vy 1o x (8.11)
JiN JiM
N— M
we have a commutative diagram
N XM F po_) g (812)

where py is the restriction of the natural morphism ‘f’: Y x x T*X — T*Y to N Xy F C
Y xx T*X.
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Theorem 8.1 In the situation as above, we have
in T*M. More precisely, for the morphism

(gi)s: Hﬁi(T*Ni;w];iji) — H(T*M; 7yt war) (8.14)

of Lagrangian cycles induced by g; = f|n,: Ni — M we have

LO(Rf.G, @x)a = ) (9)+(LC(G, ®y)x,). (8.15)

iel

Proof. The proof is similar to that of [13, Proposition 9.4.2]. Let 6: Y —— X X Y be a
morphism defined by y — (f(y),y). Then the image of ¢ is the graph A =1y C X x Y
of f. Let 6x: X — X x X and dy: Y —— Y x Y be the diagonal embeddings of X and

Y respectively. Then we obtain a commutative diagram

Y xY X xy 2o X xX (8.16)
5Y/£ 61 O 5)!{
idy f
Yy—Y ——— X,
where we set f; := f x idy and f, :=idx x f. We also need the commutative diagram
Y xY o X xy 2o xxX (8.17)
hyl hE (Il hxl
idy f
Yy —Y ——— X,

where the morphisms hy, hy and h are defined by z — (¢x (), z), y — (év(y), y) and
y— ((6x o f)(y),y) = ((f o dy)(y),y) respectively. Set I' := h(Y) C X x Y. Since the
morphism f is decomposed as

ye—2 X xY (8.18)

X

and there exists a commutative diagram

ye—2 o xxy 22— x (8.19)

J(Jﬁy l(bx X oy J(ﬁx

vy xxy -2 X,

we may reduce the problem to the case of closed embeddings and that of smooth maps.

First, let us consider the case where f: Y — X is smooth and proper on supp(G).
Then we have the following lemma whose proof is similar to that of Lemma 4.5 (use also
the proof of Proposition 7.1).

Lemma 8.2 Assume that f is smooth. Then
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(i) By identifying A with Y, we have

INA~f(M). (8.20)

(ii) By identifying TX(X X Y) with Y xx T*X, we have

TEHX X Y)NTLUX X Y) ~ M) % F. (8.21)

(iii) The support of pa(hwy) is fH(M) xpr F C Y xx T*X and there exists an iso-
morphism
,uA(h*wYfol(M)XM]: ~ 7T0_1u)f71(M), (822)

where mg: fTHM) xpar F =~ f7Y M) xp T*M — f~1(M) is the projection.

Now consider also the natural morphisms
Ty Ly sy x Inorrx (8.23)

induced by f. For short, let us set S = SS(G), S’ = tf’fl(S) and S” = f.(S"). Then by
Lemma 8.2 and the morphisms of functors

‘RN o ay — pa o Rfu, (8.24)
Rforiopua — pay © Rfa (8.25)

obtained by [13, Proposition 4.3.4] we obtain the commutative diagram Diagram 8.a (we
omit the symbols R of right derived functors etc. to simplify the notation). Here the
middle vertical arrows are induced by

h(f'f.G ® DG) — h.(G ® DG) — h,wy. (8.26)

Consider the commutative diagram

G TN ON iy Fe by M) 5y F (8.27)
\ lﬁ O on
NS fH M),

where 7: N X F — N (resp. k: N xp; F — f~1(M) x5, F) is the projection (resp.
the inclusion map). Then the morphism A is decomposed as follows.

—1

RIsng(G;mytwy) 2= R 1506y (N Xu F; 7 twy) (8.28)

J - _
5 RTsinip-1myx ) (F TH(M) X g Fimg ' wi-1any). - (8.29)

Moreover we can easily show that the morphism B is induced by the topological integra-
tion morphism

/: Rqq'wy ~ Rqwp-1(m) — Wyt (8.30)

q

for q: 7Y (M) — M.
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.A~\<3 Ny, ME*HV..\C:m‘erN -«

—

dq

AC\EHJ?JHIO.K ME*& W x AEj\KvA,&.EXAE:\bC\mﬂNm -— AZSWVNK MZ*rvacmer

v

((Ae*&y) AVl t x*D)S 1y

(Xoo*Xy) XVl Ly, 1) ST

(A=) Vil X, 1 XX X)STY

(ofaeo*f)xy) Vil ix, p)S 1+ (DA @ O L)YV X L XX X)ST4

X

X

(oae o Xe)xy) Vil x 1)1 «——— (A © 9 Xo ) )V X . L Xx 1) STy

(Ofam o)V ix . 0)ST1y

l

(b ® p)*Ay) Vil i 15 1)ST1Yq
AP

(0@ @ o Ae)*Ay) Vil x*)S 1y

(bam o)V x . L Xx X)ST4

l

(ham o) Vi x..L0)ST14

l

(ODARDA X X)VIY

(DAR O A X X)VIY

(oYfar o ix x xX)*VIy

l

l

(5 ‘H)moy

(5% ‘Ho*f )ywoyy

Diagram 8.a
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Therefore the composite of A and B is factorized as follows

t 1—1
g

Rl 506(G: it wy) ———2— R 1506y (N X F - lwy) (8.31)
BoA lfg
RFS//m]:(f; 7T]T/[1CUM).

This implies that the morphism B o A is the push-forward of Lagrangian cycles (8.10).
Next, consider the case where f: Y — X is a closed embedding. Then similarly we
have the following.

Lemma 8.3 Assume that f is a closed embedding. Then
(i) By identifying A with Y, we have
'NA~fYM)=N. (8.32)
(ii) By identifying TA(X xY) with Y xx T*X, we have
THX xY)NTLUX xY) ~=tf'g (8.33)
and'f'7'G D fAF ~ N xy F.
(iii) The support of pua(hwwy) is 'f''G C Y xx T*X and there exists an isomorphism
pa(hawy)|epr1g =~ oy, (8.34)
where m: LG ~ LTI TN — N is the projection.

Now, by Lemma 8.3 we obtain a new commutative diagram by replacing the bottom
horizontal arrows in Diagram 8.a by

RIsng(T*Nimyton) —= REgeipmig(tf Gy twy) (8.35)
2 RIsnr(T*M; 7yt wn). (8.36)

Here the morphism C is induced by id — R!f’, ot f’ ~!. Moreover the morphism D is
decomposed as

Rl g pr1g(* PG wn) - REgnvwym) (N xu T*M;mlwy)  (8.37)
L RFSHQ]:<T*M;7T]T/[IWM), (838)

where the morphism « (resp. 3) is induced by the restriction to N x5, T*M C *f’ g
(resp. by the natural morphism fg: gswn ~ RIywy — wyr). Hence the composite of C
and D is factorized as in the diagram (8.31). This completes the proof. a

Since via the characteristic cycle maps C'C' (see Proposition 2.10) the push-forward g.
of Lagrangian cycles corresponds to the topological integral

/: CF(N)c — CF(M)c (8.39)
g
of constructible functions, by Theorem 5.1 we obtain the following result.

Corollary 8.4 (see also [17]) For the local contributions c¢(G, @y )y, and ¢(Rf.G, Px)ur,
we have

C(Rf*G, CDX)M = ZC(G, (I)y)]vi. (840)

il
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8.2 Inverse image theorem

In this subsection, we establish the inverse image theorem for Lefschetz cycles. We mainly
inherit the notations and the situation treated in Section 8.1. However, here M and N are
smooth fixed point components of ¢x and ¢y respectively satisfying just the condition
f(N) C M. Consider an object F of D% __(X) and a morphism

Ox: o' F — F (8.41)
in D% _.(X). Then f7'F € D% __(Y) and we obtain a natural morphism
Oy ¢y fIF — fIF (8.42)

induced by ®x. Assuming the same conditions on ¢y, ¢y etc. and keeping the same
notations for F, G etc. as in Section 8.1, we obtain the Lefschetz cycles

LC(F, ®x)n € Hggpynr(F3 mypwnr), (8.43)
LC(f_lF, CI)Y)N € Hgs(f—lp)mg<g; 71'K/IWN)- (8.44)

Set g = f|y: N — M as before and consider the natural morphisms
T*N < N xp T*M 25 T*M (8.45)
induced by g. Let A C SS(F)NF C F ~ T*M be the support of LC(F,®x)y and set
N =g '(A) and A" =t¢/(N). If '¢’ is proper on A’ (e.g. if f is non-characteristic for F
on an open neighborhood of N), then there exists a morphism
g*: HY(T*M;myfwy) — Hy (TNt wn) (8.46)

of Lagrangian cycles induced by ¢ (see [13, Proposition 9.3.2 (ii)]).

Theorem 8.5 In the situation as above, assume moreover that f is non-characteristic
for F on an open neighborhood of N. Then we have

LO(f™'F, ®y)n = sgn(id — ¢y) - sgn(id — ¢y) - g"(LC(F, ®x)m) (8.47)
in T*N, where sgn(id— ¢’y ) = £1 (resp. sgn(id— ¢}, ) = £1) is the sign of the determinant
ofid — ¢y : Ty X — Ty X (resp. id — ¢y : TyY — TNY ).

Proof. The proof is similar to that of [13, Proposition 9.4.3]. By Proposition 7.8, it suffices
to show that

LO(f'F, @y)n = g"(LC(F, ©x)u)- (8.48)

We use almost the same notations as in the proof of Theorem 8.1 except the ones for ¢ and
h etc. In particular, here we define a morphism §: Y < Y x X by y — (y, f(y)) and set
A:=4§(Y)CY x X. Also we define a morphism h: Y — Y x X by y — (év (v), f(v))
and set [' := h(Y) C Y x X. Then we have the following commutative diagrams.

Yxy -y x o xxx (8.49)
5YAL ({ O 5XE
idy f
Yy—Y —— X,
Y xy oy xx I xxx (8.50)
hY/L hT hXE
idy f
y—-—y L ¥
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(N Nt 1) VS 1y

l

((Aem*&y) AVt g, 1) S Ty

(I —fae g ) Ay) Vi L, 1) ST (TA—f @ A ) U)X WL XX K) ST ((da ® )*Xy) ¥Vl i x . )Ty

AP

(A —f A ® T f 20)Ay) Vi L D) S 1Y «—— (A A —f @ - f 20) )V X, L X% X) ST+ (1A ® I X9)*Xy) Vil X, 1)ST1y

(X, _f*y) Vil ix . [ Xx X) STy

AP

(- FAR A - F) V1 2 L) ST (FAR A ) VT

l

(- fAR T -F XX X)VIY

l

l

~

(AAR A f

X X A)VIY

X XX X)STY

(Wen Nty 1) 298 1Y

l

(X X)XVl x . D)S Ty

X

(TaAX )V X .D) ST

l

(AR A:X X X) Iy

l

(A ‘) woy

(d1_f ‘Ad,_f)woH

Diagram 8.b
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Note that A is not always injective. Now by using the natural morphisms

Ty Iy o X L Trx (8.51)
induced by f, set for short S := SS(F), S’ := f~!(S) and S” := *f’(S’). Then by the
morphisms of functors

fir o piay — pao fi (8.52)
R'fy o pa — pay (wyyx @ f57), (8.53)

obtained by [13, Proposition 4.3.5] we obtain the commutative diagram (similar to [13,
Diagram 9.4.6]) Diagram 8.b. Here we omit the symbols R of right derived functors etc.
to simplify the notation. Let us explain the construction of the bottom square in Diagram
8.b. We consider the commutative diagram:

Of: RIG(T"X; pay (hxwwx)) — RIsn(T*Y; piay, (hywy)) (8.55)
be a morphism obtained by
RIs(T*X; iy (hxwwx)) — RIs(Y xx T°X; fi;! pay (hxawx)) (8.56)
— RIs(Y xx T*X; pa(fi thxawx)) (8.57)
— RI(Y xx T*X; pa(Rhy ftwy)) (8.58)
(8.59)
(8.60)
)

(8.54)

Let

— RIsu(T*Y; R fy'\pa(Rhy f lwy))
— RFS//(T*Y, KAy (wy/X X fQ_IRh*f_le))
— RIsn(T™Y; iy (hy.wy)), (8.61

where we used [13, Proposition 4.3.5] to construct the second and fifth morphisms. More-
over we used the assumption that f is non-characteristic for F' to construct the forth one.
The morphism Oy is the composite of A and B in Diagram 8.b. Let §,: N — N x M
be a morphism defined by y — (y,¢(y)) and note that hx|y = o, hy|nv = oy and
h|ny = 0,. If we paraphrase the construction of © by using the commutative diagram

NxN-2Z2NxM-2+MxM (8.62)
6N/E 591\ 51»11
Ne—= Ny 9% M

instead of the one (8.50), we obtain a morphism
Og: RIgnr(T"M; piay (Oawnr)) — Ry 107 (TN pay (Onswn)).- (8.63)

By the proof of [13, Proposition 9.3.2 (ii) and Proposition 9.4.3], there exists a commu-
tative diagram

Oy *
RFSO}'(T*M; 127NY; (5M*WM)) I Rng’g;l(sr}}') (T N; HAN (5N*WN)) (864)
¢ l

RIsnr(T*M;myfwn) —— > RI 1 (g0 (TN 73 ).
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Since we have ‘¢'g-*(SNF) C S"NG, by ©, we obtain also a morphism
RFSQ]:(T*M; KA (6M*WM)) e RFSNQQ(T*N; ,LLAN((SN*CUN)). (865)
We still denote it by ©,4. In the same way, we can construct also morphisms

Oi,, 0 RIS(T* X5 puny (hxawx)) — RLsar (T M; pn,, (Sprswnr)), (8.66)
G)iN . RFSII (T*Y, HAy (hy*u)y)) — RFS//ﬁg(T*N; HA N (5]\[*&)]\/)), (867)

where we used the fact that the support of pa, (hx.wx) (resp. pay (hy.wy)) is contained
in F (resp. G) and “ip," (vesp. Yiy’) is proper on SNF (resp. S”NG). Now recall that the
morphism f is the composite of the graph embedding §: Y —— Y x X and the projection
px:Y x X —» X. Then we may assume that f is a graph embedding or a projection.
In both cases, since the constructions of the morphisms ©;, ©,4, ©;,, and ©;, are similar,
we obtain the following commutative diagram:

Oy

RFS(T*X, HAx (hX*wX)) RFS// (T*Y, ,LLAY(hy*u)y)) (868)

®¢Ml2 GiNJ(l
(C]

R sz (T M; pun (Oasswns)) ——————— RIsung(T* N piay (On+wn )

l

R o7 (T*M; w3t war)

l

RFS//mg(T*N; 7T;[1(UN).

The bottom square in Diagram 8.b is obtained in this way. Moreover, by the construction
of the morphism ©;,, (resp. ©;,) the image of idp (resp. ids-15) by the left vertical arrows
(resp. the right vertical arrows) in Diagram 8.b is LC(F, ®x )y (vesp. LC(f~1F, ®y)y).
Hence the desired formula (8.48) follows from the commutativity of Diagram 8.b. This
completes the proof. O

As a special case of this theorem, we obtain the following result which drops the
condition (6.67) of Theorem 6.4.

Corollary 8.6 In the situation as Theorem 6./, instead of assuming the condition (6.67),
assume that the inclusion map iy : M —— X of the fized point manifold M is non-
characteristic for F. Then we have

LC(F,®) 5 = sgn(id — ¢') - LC(F|ar, ®|ar)ar (8.69)

inT*M . In particular, if supp(EF)NM is compact, the local contribution c(F, ®)y of (F, D)
from M is expressed by the topological integral of the constructible function (F|ar, ®|ar)
on M:

o(F, )y = sgu(id — ) - / o(Flars ®ar). (3.70)

M

Remark 8.7 Corollary 8.6 is not true if we do not assume that ip,: M —— X is non-
characteristic for F. See e.g. [13, Example 9.6.18].
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