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THE STANDARD (g,K)-MODULES OF Sp(2,R) I
– THE CASE OF PRINCIPAL SERIES –

TAKAYUKI ODA

Abstract. We describe explicitly the whole structures of the (g, K)-modules
of the standard representations of Sp(2,R) obtained by parabolic induction.

Introduction

The real symplectic group of rank 2 Sp(2,R) has three non-trivial standard
parabolic subgroups: the minimal parabolic subgroup Pmin, the maximal parabolic
subgroup PJ associated with the long root, and the maximal parabolic subgroup
PS associated with the short root. In this paper we discuss the case of the parabolic
induction with respect to the minimal parabolic subgroup Pmin.

As far as we know, for some ’small’ semisimple Lie groups G, the strucure of the
standard (g, K)-module of G are completely described. The case G = SL(2,R) is
classical. And for G = SU(n, 1) it has been known from some time ago (Kraljevié
[7], Nishiyama [10], Part III). Here the fact that π|K is multiplicity-free for principal
series π makes the problem quite easy. For SU(n, 1) there are very precise and
deep results on spherical functions utilizing this desription (cf. Tsuzuki [11], for
example). However for ’large’ groups G, we know little about the precise (g,K)-
module strucures of standard representations of G.

For principal series representations π of G = Sp(2,R), since the restriction π|K
is not multiplicity-free, the problem of complete description of their (g,K)-module
structures has been thought to be difficult. Here we can find a simple but new and
effective idea to overcome this difficulty.

A simple notion ”simple K-modules with marking of canonical basis” is crucial,
which consist of pairs (τ, Bτ ) with τ a continuous simple K-module and Bτ a finite
ordered set making up a canonical basis of τ . Here we consider that Bτ is a vector
of size |B| with entires in Bτ .

As K-module, any standard irreducible (g,K)-module is realized as a closed sub-
space of L2(K) by subquotient and subrepresentation theorems of Harish-Chandra
and Casselman. We want to find a natural irreducible decomposition of each iso-
typic componet in L2(K). This is done by building-up a set of canonical basis in
each isotypic component, by using elementary functions obtained as products of
a power of the determinant of the tautological representation K ∼= U(2) and the
entries of the symmetric tensor representations (cf. §3). The vector of canonical
basis, made of elementary functions, takes the values of some vector units at the
identity e of K, and the location of the entry 1 enable us to distinct different ir-
redicible component with marking in an isotypic component. Thus for each simple
K-modules (τ,Bτ ) with marking, the intertwining space HomK(τ, π|K) has induced
’canonical basis’ Cτ consisting of intertwing operators which map Bτ to a canonical
basis made of elementary functions. The description of the gC-action is equivalent
to those of p± actions. Given i ∈ HomK(τ, π|K), we have the canonically induced
K-homomorphism ĩ : p± ⊗ τ → p± · Im(i) ⊂ π|K. The composition of ĩ with
the Clebsh-Gordan theorem p± ⊗ τ ∼= ∑3

a=1 τa, we have three K-homomorphism
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ja : τa → π|K. Then the association i 7→ ja defines a linear map

Γa : HomK(τ, π|K) → HomK(τa, π|K)

vector spaces with markings Cτ and Cτa
respectively for each a (see §4).

In order to determine Γa, the remainig task is to compute the values at e of
derivations of elementary functions with respect to p± in π|K ⊂ L2(K). The
computation is a bit tedious but not difficult. (cf. §5, Proof of Theorems 5.2.A and
5.2.B).

The same idea is applied to investigate the (g,K)-module structures of principal
series of other groups, around the minimal K-type to get explicit formulae of some
spherical functions, say, Whittaker functions ([8]).

The results of this paper include some results in [9] as a small part. Hence
logically speaking it is fundamental to get the differential equations in Iida [4], Ishii
[6, 5] for the odd principal series of Sp(2,R), which are formerly utilized the result
of [9].

Here is the outline of this paper: In §0, we recall the classical case SL(2,R)
shortly. The structure and notation of Sp(2,R) and related subgroups and the
corresponding Lie algebras are recalled in §1. We have to recall basic facts on finite
dimensional continuous simple K-modules in §2. The concept of marking for simple
K-modules given by Definition 2.1 is crucial in this paper. In §3, we construct el-
ementary functions to describe the irreducible decomposition of L2(K) completely
explicitly. The definition and K-types of the principal series representations of
Sp(2,R) is given in §4. §5 is the main body of the paper. We define the notion of
contiguous relations abstractly in the subsection (5.1). The remaining subsections
are devoted for explicit computation of the objets considered here. The main theo-
rems are in the subsection (5.5) as Theorems 5.2.A and 5.2.B. The examples given
in §6 cover the part of the peripheral K-types.

The author thanks to Mr. Tadashi Miyazaki for correction of many typos in the
preliminary draft and for a suggestion to make the proof of Theorems 5.2.A and B
shorter.

0. The standard (g, K)-modules of SL(2,R)

We start with a short review of the most classical case, i.e., the case of the group
SL(2,R).

0.1. The principal series. We write

G0 = SL(2,R), K0 = SO(2), N0 = {
(

1 x
0 1

)
| x ∈ R}

A0 = {a0 = diag(r, r−1)|r ∈ R>0}, M0 = {diag(ε, ε)|ε ∈ {±1}}

For a character σ in M̂0 = {σ0(= 1M0), σ1} of M0 and a linear form ν0 ∈ HomR(a0,C)
(a0 = Lie(A0)), the Hilbert space of the principal series represenation is defined as

H(ν0,σ) = {f : G0 → C|f(n0m0a0x) = σ(m0)e(ν0+ρ0)(log(a0))f(x),

n0 ∈ N0,m0 ∈ M0, a0 ∈ A0, x ∈ G0, and f |K ∈ L2(K0)}.
We have the irreducible decomposition of the K0-module L2(K0):

L2(K0) = ⊕̂m∈ZCχm

where

χm : k0 = rθ ∈ K0 7→ eimθ ∈ C.
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Then we have the natural identification:

H(ν0,σ)
∼=

{
⊕̂m∈2ZCχm if σ = σ0;
⊕̂m∈2Z+1Cχm if σ = σ1.

Recall that

wχm =
√−1mχm for w =

(
0 1
−1 0

)

and the commutation relations

[w, x±] = ±2
√−1x± for x± =

(
1 ±i
±i −1

)
.

And also use the Iwasawa decomposition:

x± = ±2
√−1

(
0 1
0 0

)
+ H12 ∓

√−1w

with H12 = diag(1,−1). Then we have the following.

Proposition 0.1. (0) x+χm ∈ Cχm+2 and x−χm ∈ Cχm−2.
(i) x+χm = (ν0 + ρ0 + m)χm+2 ;
(ii) x−χm = (ν0 + ρ0 −m)χm−2.

0.1.1. The discrete series as sub-quotients of the principal series.

Proposition 0.2. (i) If ν0 + 1 = k, there is an injective homomorphism D±
k ⊂

π(k−1) of (g0, K0) modues. Moreover the quotient (g0,K0)-modules π(k−1)/(D+
k ⊕

D−
k ) is of dimension k − 1. Note that we have sgn(σ) = (−1)k.

(ii) If ν0 = −(k − 1), then

x+χk−2 = 0 and x−χ−(k−2) = 0.

Moreover the k − 1 dimensional space Fk−2 generated by

{χm|m = −(k − 2),m = −(k − 2) + 2, · · · ,m = k − 2}
is the space of the symmetric tensor represenation of degree k− 2 of G0. Moreover
the quotient π−(k−1)/Fk−2 is isomorphic to D+

k ⊕D−
k . We have sgn(σ) = (−1)k.

The proof of Propositions (0.1) and (0.2) are found in any introductory book on
the theory of representations of SL(2,R), or general theory of representations of
real reductive groups (see for example, Wallach [2], §5.6).

In this paper, we are going to show the analogue of Proposition (0.1) for Sp(2,R)
(cf. Theorems 5.2 A and 5.2 B).

1. The structure of Sp(2,R)

1.1. Basic objects. We use the case n = 2, but start from general n. Our whole
group is

G = Sp(n;R) := {g ∈ M2n(R)|tgJng = Jn,det(g) = 1},

where Jn =
(

0 1n

−1n 0

)
. This is a split simple group of rank n of type Cn. We fix

a maximal compact group K by

K := G ∩O(2n) = {g =
(

A B
−B A

)
|A +

√−1B ∈ U(n)}

once for all, which is also defined by using the Cartan involution θ : g ∈ G 7→ tg−1

as

K = Gθ = {g ∈ G|gθ = g}.
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Any maximal compact subgroup of G is conjugate to this standard one. The asso-
ciated Lie algebras are given by

g = {X ∈ M2n(R)|tXJn + JnX = 0, tr(X) = 0}
and

k = {X =
(

A B
−B A

)
|A +

√−1B ∈ u(n)}.

Writing p = g−θ = {X ∈ g|tXθ = −X} we have a Cartan decompotion

g = k + p.

1.2. Iwasawa decompostion. We denote by eij the matrix unit in Mn(C) with
entry 1 at (i, j)-th component and 0 at other entries. Also by Eij the matrix unit
in M2n(C).
For x = tx ∈ Mn(C) we set

p±(x) =
(

x ±√−1x
±√−1x −x

)
.

We denote by p± the images of p±, respectively. Either of p± is stable under
the adjoint action of K, and the action Adp± of the element 1+

√−1√
2

in the center
Z(K) ∼= C× of K defines a complex structure. The homomorphism of groups
κ : U(n) → K is the inverse of(

A B
−B A

)
∈ K 7→ A +

√−1B ∈ U(n).

　The induced homomorphisms of their Lie algebras and of their complexifications
are denoted by the same symbol κ.

Lemma 1.1. Put E2ei = Ei,i+n, Eei+ej = Ei,j+n + Ej,i+n, Eei−ej = Ei,j −
Ej+n,i+n, and Hi,n+i = Ei,i − En+i,n+i. Then we have

p±(eii) = ±2
√−1E2ei + Hi,n+i ± κ(eii)

p±(
eij + eji

2
) = (Eei−ej ±

√−1Eei+ej )

{
+κ(eji) if (+)
−κ(eij) if (−)

.

Proof We can show this by direct computation. ¤

1.3. New Notation for n = 2. When n = 2 we use the following notation.

Notation We write

X±,ii := p±(eii) (i = 1, 2),

and

X±,12 := p±(
e12 + e21

2
).

Then we have

p+ = CX+,11 ⊕CX+,12 ⊕CX+,22, and p− = CX−,11 ⊕CX−,12 ⊕CX−,22

to get pC = p+ ⊕ p−. Then Iwasawa decomposition tells that

X±,ii = ±2
√−1E2ei + Hi,i+2 ± κ(eii),

and

X+,12 = Ee1−e2 +
√−1Ee1+e2 + κ(e21), X−,12 = Ee1−e2 −

√−1Ee1+e2 − κ(e12).

Here

Ee1−e2 = E12 − E43, and Ee1+e2 = E14 + E23.
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1.4. The action of K on p±. We denote the isomorphism between U(2) and K
and the associated isomorphism between their Lie algebras or the complexified Lie
algebras by

κ : A +
√−1B ∈ U(2), or ∈ u(2)C →

(
A B
−B A

)
∈ K, or ∈ kC.

Here A,B ∈ M2(C). Via κ, U(2) or u(2)C = gl(2,C) acts on p± through the
adjoint action of K on p±. For p±(x) (x = tx ∈ M2(C)) this reads that

κ(A +
√−1B) · p±(x) =

(
A B
−B A

)(
x ±√−1x

±√−1x −x

) (
A B
−B A

)−1

= p±((A±√−1B)xt(A±√−1B)).

Passing to the Lie algebra we have the following.

Lemma 1.2. For p+ we have

κ(e11)X+,11 = 2X+,11; κ(e11)X+,12 = X+,12; κ(e11)X+,22 = 0.
κ(e12)X+,11 = 0; κ(e12)X+,12 = X+,11; κ(e12)X+,22 = 2X+,12.
κ(e21)X+,11 = 2X+,12; κ(e21)X+,12 = X+,22; κ(e21)X+,22 = 0.
κ(e22)X+,11 = 0; κ(e22)X+,12 = X+,12; κ(e22)X+,22 = 2X+,22.

And for p− we have

κ(e11)X−,11 = −2X−,11; κ(e11)X−,12 = X−,12; κ(e11)X−,22 = 0.
κ(e12)X−,11 = −2X−,12; κ(e12)X−,12 = −X−,22; κ(e12)X−,22 = 0.
κ(e21)X−,11 = 0; κ(e21)X−,12 = −X−,11; κ(e21)X−,22 = −2X−,12.
κ(e22)X−,11 = 0; κ(e22)X−,12 = X−,12; κ(e22)X−,22 = −2X−,22.

Proof By direct computation. ¤

2. K-modules

2.1. The canonical basis for simple K-modules. Since K is a compact group,
any irreducible continuous represenation (τ, Wτ ) of K is of finite dimesion, and
unitary. We refer to such (τ, Wτ ) as a simple K-module. Since K is a connected
Lie group, the category of continuous finite dimensional representations of K is
equivalent to the category of finite dimensional representations of k = Lie(K).
Since the complexification kC of k is isomorphic to gl(2,C), the set of isomorphism
classes of simple k-modules is parametrized by the set L+

K = {(l1, l2) ∈ Z2, l1 ≥ l2}
of dominant integral weights of kC = gl(2,C).

Each irreducible represenation, or simple module τ(m12,m22) of kC = gl(2,C)
associated with the dominant weight (m12,m22) has a basis parametrized by the
Gelfand-Tsetlin patterns M =

(
m12 m22

m11

)
(m12 ≥ m11 ≥ m22).

Proposition 2.1. There exists a basis {f(M)}M∈GZ(m12,m22) in τ(m12,m22) such
that

e11f(M) =m11f(M);

e22f(M) =(m12 −m11 + m22)f(M);

e12f(M) =(m12 −m11)f(M+1);

e21f(M) =(m11 −m22)f(M−1).

with respect to the simple roots ei,i+1, ei+1,i (i = 1, 2) in gl(2,C). Here M+1 =( ∗ ∗
m11+1

)
,M−1 =

( ∗ ∗
m11−1

)
for M =

( ∗ ∗
m11

)
.

Proof This is well-known and classical fact. ¤
Definition 2.1 A simple K-module τ equipped with a canonical basis is called a
marked simple module or a simlple K-module with marking.
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Note that the choice of a canonical basis in a simple K-module is unique up
to scalar multiple by Schur’s Lemma. The same lemma implies that if there is
an isomorphism between K-simple modules with marking then it is unique strictly
(not up to scalar). In particular the only automorphism of a simple K-module with
marking is the identity map.

2.2. The K-modules Adp± .

Lemma 2.2. Up to scalar multiple there are identifications between natural basis:
(i) For the isomorphism p+

∼= τ(2,0) of K-modules,

X+,11 = f

(
2 0
2

)
, X+,12 = f

(
2 0
1

)
, X+,22 = f

(
2 0
0

)
.

(ii) For the isomorphism p− ∼= τ(0,−2) of K-modules,

X−,22 = f

(
0 − 2

0

)
, X−,12 = −f

(
0 − 2
−1

)
, X−,11 = f

(
0 − 2
−2

)
.

Proof By direct computation. ¤
Remark The above lemma tells that

(p+, {X+,11, X+,12, X+,22}) and (p−, {X−,11,−X−,12, X−,22})
are simple K-modules with marking. From now on we always take these marking
for p±.

2.3. The symmetric tensor representations of K. Given a positive integer
d, we define a square matrix Symd(S(k)) of degree d + 1 associated with S(k) as
follows.

For two independent variables U, V we define two linear forms by

U ′ = s11U + s21V and V ′ = s12U + s22V,

or equivalently by

(U ′, V ′) = (U, V ) · S(k).

Then by using homogeneous forms {(U ′)d−i(V ′)i}0≤i≤d of degree d, we define a
(d + 1)× (d + 1) matrix Symd(S(k)) by

((U ′)d, · · · , (U ′)d−i(V ′)i, · · · , (V ′)d) = (Ud, · · · , Ud−iV i, · · · , V d) · Symd(S(k)).

Here is a description of the (i, j)-th entry (0 ≤ i, j ≤ d) of Symd(S(k)).

Lemma 2.3. By the symbols (a1, · · · , ad), (b1, · · · , bd) we denote the sequences of
the elements in the set {1, 2} with length d. For given j, we fix a sequence (1, · · · , 1, 2, · · · , 2)
with 1 in the first d − j entries and 2 at the remaining j entries. For given i, we
denote by Sh(d− i, i) the set of all (d− i, i)-shuffles of two sets {1, · · · , } of cardi-
nality d− i and {2, · · · , } of cardinality i. Obviously the cardinality of Sh(d− i, i)
is

(
d
i

)
. Then the (i, j)-th entry of Symd(S(k)) is given by

∑

(a1,a2,··· ,ad)∈Sh(d−i,i),(b1,··· ,bd)=(1×(d−j),2×j)

sa1,b1 · · · sad,bd
.

Proof The proof is a high-school mathematics. ¤
The d + 1 entries of each row vector of Symd(S(k)) make a canonical basis of

a simple subspace in L2(K) with highest weight (d, 0). In fact the intertwining
property

Symd(S(x · k)) = Symd(S(x))Symd(S(k)) (x, k ∈ K)

implies that the entries of the each row generates a simple submodule of type (d, 0)
and the fact that this is proportional to the caninical basis is checked directly.
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Definition We define a d+1 column vectors {s(d)
i }0≤i≤d of d+1 elementary functions

by

tSymd(S(k)) = (s(d)
0 , s(d)

1 , · · · , s(d)
d ).

Notation (matrices of elementary functions) For even d, we set

S(d)
[0,2,··· ,d] = (s(d)

0 , s(d)
2 , · · · , s(d)

d )

and

S(d)
[1,3,··· ,d−1] = (s(d)

1 , s(d)
3 , · · · , s(d)

d−1).

For odd d, we set

S(d)
[0,2,··· ,d−1] = (s(d)

0 , s(d)
2 , · · · , s(d)

d−1)

and

S(d)
[1,3,··· ,d] = (s(d)

1 , s(d)
3 , · · · , s(d)

d ).

For a column vector t(a0, a1, · · · , ad) of size d + 1, we define ∗-operator by

∗


a0

...

...
ad




=




ad

−ad−1

ad−2

...
(−1)da0




.

Also for the matrix S̄(d)
[d,··· ,0] we set

∗S̄(d)
[d,··· ,0] = (∗s̄(d)

d , · · · , s̄(d)
0 ).

Then we have a relation ∗S̄(d)
[d,··· ,0] = d(k)−d · S(d)

[0,··· ,d].

Lemma 2.4. (Maching with the canonical basis) Let < s(d)
i > be the simple K-

module generated by the functions in the entries of the vector s(d)
i for each i (0 ≤

i ≤ d. Then there is a (strictly) unique isomorphism of K-modules from this to
τ(d,0) which maps the (a+1)-th entry of s(d)

i to the canonical basis f
(
d, 0

a

)
in τ(d,0).

Proof The proof is done by direct computation, utlizing Lemma (3.1) and the
Leibniz rule. ¤

2.4. Irreducible decompostion of τ(2,0) ⊗ τ(d,0). In later sections, we need ir-
reducible decompostion of the tensor product p± ⊗ τ(l1,l2) as K-modules. Since
p+

∼= τ(2,0), p− ∼= τ(0,−2)
∼= τ(2,0)[−2] and τ(l1,l2)

∼= τ(l1−l2,0)[l2], it suffices to con-
sider only the irreducible decomposition of τ(2,0) ⊗ τ(d,0).

As we know, Clebsh-Gordan theorem tells that

τ(2,0) ⊗ τ(d,0)
∼= τ(d,2) ⊕ τ(d+1,1) ⊕ τ(d+2,0).

Here the factor τ(d,2) or τ(d+1,1) is dropped if d < 2 or d+1 < 1 respectively. What
we want to have is an explicit description of the injective K-homomorphism, which
is unique up to scalar multiple,

τ(d,2) ⊂ τ(2,0) ⊗ τ(d,0), τ(d+1,1) ⊂ τ(2,0) ⊗ τ(d,0) and τ(d+2,2) ⊂ τ(2,0) ⊗ τ(d,0)

in terms of the canonical basis
7



Lemma 2.5. (i) The image {f ′(d, 2
a

)}2≤a≤d of the canonical basis {f(
d, 2

a

)}2≤a≤d

with respect to τ(d,2) ⊂ τ(2,0) ⊗ τ(d,0) is given by

f ′
(

d, 2
a

)
= f

(
2, 0
2

)
⊗ f

(
d, 0
a− 2

)
− 2f

(
2, 0
1

)
⊗ f

(
d, 0
a− 1

)
+ f

(
2, 0
0

)
⊗ f

(
d, 0
a

)
.

(ii) The image {f ′(d+1, 1
a

)}1≤a≤d+1 of the canonical basis {f(
d+1, 1

a

)}1≤a≤d+1 with
respect to τ(d+1,1) ⊂ τ(2,0) ⊗ τ(d,0) is given by

f ′
(
d+1, 1

a

)
= a−1

d f
(
2, 0
2

)⊗ f
(

d, 0
a−2

)

+ d+2−2a
d f

(
2, 0
1

)⊗ f
(

d, 0
a−1

)

+ a−d−1
d f

(
2, 0
0

)⊗ f
(
d, 0

a

)
.

(iii) The image {f ′(d+2, 0
a

)}0≤a≤d+2 of the canonical basis {f(
d+2, 0

a

)}0≤a≤d+2 with
respect to τ(d+2,0) ⊂ τ(2,0) ⊗ τ(d,0) is given by

f ′
(
d+2, 0

a

)
= a(a−1)

(d+2)(d+1) f
(
2, 0
2

)⊗ f
(

d, 0
a−2

)

+ 2a(d+2−a)
(d+2)(d+1) f

(
2, 0
1

)⊗ f
(

d, 0
a−1

)

+ (d+2−a)(d+1−a)
(d+2)(d+1) f

(
2, 0
0

)⊗ f
(
d, 0

a

)

for 0 ≤ a ≤ d + 2.

Proof One can confirm this by direct computation using Proposition (2.1). ¤

3. Constituents in L2(K)

In later sections, the representation spaces of standard representations of G is
naturally identified with a subsapce of L2. Therefore we have to analyse L2(K),
which is a K ×K bimodule by

f(x) 7→ f(k−1
1 xk2) (f ∈ L2(K), (k1, k2) ∈ K ×K).

Let K̂ be the unitary dual of K, i.e., the set of unitary equivalence classes of finite
dimensional irreducible continuous representations of K. Then the Peter-Weyl
theorem tells that there is a decomposition of K ×K-bimodules

L2(K) = ⊕̂τ∈K̂τ∗ £ τ.

Here τ∗ £ τ is the outer tensor product of τ and its contragradient representation
τ∗. We construct each factor τ∗ £ τ explicitly in this subsection. .

Let (l1, l2) be the dominant weight which is the highest weight of each τ . Then
we may rewrite

L2(K) = ⊕̂(l1.l2)∈L+τ∗(l1,l2)
£ τ(l1,l2).

Thus we have to know each factor τ∗(l1,l2)
£ τ(l1,l2).

Note here that the representation τ(1,0) is the tautological represenation K →
U(2) ⊂ GL(2,C), τ(1,1) is its determinant represenation.　Moreover each τ(l1,l2)

∼=
τ(l2,l2)⊗ τ(l1−l2,0) is the tensor product of τ⊗l2

(1,1) and the symmteric tensor represen-
tation Sym(l1−l2) of the standard representation.

Let us start with small constituents:

τ∗(l1,l2)
£ τ(l1,l2) ((l1, l2) = (1, 0), (0,−1), (2, 0), (0,−2).

Let

x =
(

A B
−B A

)
∈ K 7→ S(x) =

(
s11(x) s12(x)
s21(x) s22(x)

)
= A +

√−1B ∈ U(2)

be the tautological representation. Then 4 entries {sij(x)} constitute a basis of the
space τ(0,−1) £ τ(1,0).

8



Lemma 3.1. Let κ : u(2)C → kC be the differential of κ : U(2) ∼= K. Then
the right regular action of M2(C) = u(2)C = gl(2,C) on {sij}1≤i,j≤2 is given as
follows:

κ(e11)si1 = si1, κ(e11)si2 = 0 (i = 1, 2);
κ(e22)si1 = 0, κ(e22)si2 = si2 (i = 1, 2);
κ(e12)si1 = 0, κ(e12)si2 = si1 (i = 1, 2);
κ(e21)si1 = si2, κ(e21)si2 = 0 (i = 1, 2).

The contragradient representation τ(0,−1)) of the tautological representation τ(1,0)

is the complex conjugation of τ(1,0).

Lemma 3.2. (The dual of the tautological representation) For {s̄ij} we have the
following:

κ(e11)s̄i1 = −s̄i1, κ(e11)s̄i2 = 0 (i = 1, 2);
κ(e22)s̄i1 = 0, κ(e22)s̄i2 = −s̄i2 (i = 1, 2);
κ(e12)s̄i1 = −s̄i2, κ(e12)s̄i2 = 0 (i = 1, 2);
κ(e21)s̄i1 = 0, κ(e21)s̄i2 = −s̄i1 (i = 1, 2).

Proofs The above two Lemmata are proved by direct comptation.
Now let us discuss the case of general (l1, l2):

τ∗(l1,l2)
£ τ(l1,l2) in L2(K).

Notation Put ∆ = detS(k), and leet < s(d)
i ∆m > be the subspace of functions in

L2(K) generated by the (d+1) entries of the vector s(d)
i ∆m = ∆ms(d)

i of elementary
functions on K.

Proposition 3.3. (i) For each i (0 ≤ i ≤ d) the space < s(l1−l2)
i ∆l2 > is a simple

K-module with dominant weight (l1, l2) ∈ L+
K . Moreover the vector s(l1−l2)

i ∆l2 is a
vector of canonical basis in this space.
(ii) The sum

l1−l2∑

i=0

< s(d)
i ∆l2 >

is a direct sum generating the τ(l1,l2)-isotypic component τ∗(l1,l2)
£τ(l1,l2) in the right

K-modules L2(K).
(iii) The value at the identity e ∈ K of the vector s(l1−l2)

i ∆l2 is the (i + 1)-th unit
vector t(0, · · · , 0, 1, 0, · · · , 0).

Proof The statements (i) and (ii) are classical facts. The claim (iii) follows from
the fact that Symd(e) is the identity matrix of size d + 1 and ∆(e) = 1.

Definition The marking on < s(l1−l2)
i ∆l2 > in L2(K) specified by (i) of the above

lemma is called the marking by elementary functions.

4. The principal series represenations and their K-types

4.1. Definition of the principal series representations. In the begining we
have to recall the standard minimal parabolic subgroup Pmin in G = Sp(2,R).
Since G is a split group, this is also a Borel subgroup with split Cartan subgroup
T (A) with identity component

A = Amin = {diag(a1, a2, a
−1
1 , a−1

2 )|ai ∈ R>0}.
The unipotent radical of Pmin is given by Nmin = exp(nmin) with

nmin = ⊕α∈{2e1,2e2,e1−e2,e1+e2}gα.
9



Here for the simple roots {e1 − e2, 2e2} in the positive root system {2e1, 2e2, e1 −
e2, e1 + e2}, we put

ge1−e2 = R(E12 − E43) and g2e2 = RE24.

To specify a quasi-character eν : A → C∗ of A, we have to choose its logarithm
ν ∈ HomR(a,C) = a ∗C. Here a = Lie(A). For

log a = diag(log a1, log a2,− log a1,− log a2) = diag(t1, t2,−t1,−t2)

with ti = log ai ∈ R (i = 1, 2), we define the coordinates (ν1, ν2) ∈ C2 of ν by
ν(log a) = ν1t1 + ν2t2. Then the half sum ρ of the postive roots

ρ =
1
2
{2e1 + 2e2 + (e1 − e2) + (e1 + e2)} = 2e1 + e2

has the coordinates (2, 1).
We also have to prepare another data, i.e., a character σ of

M = ZA(K) = T (A) ∩K = {diag(ε1, ε2, ε1, ε2)|εi ∈ µ2 = {±1} (i = 1, 2)} ∼= (Z/(2))⊕2.

The outer tensor product of the quasi-character eν+ρ of A and σ ∈ M̂ defines a
1-dimensional representation of the product AM and which is in turn extended to
Pmin via the natural surjection Pmin → AM = Pmin/Nmin.

With these data (σ, ν) given above, the parabolic induction

π(Pmin;σ,ν) := IndG
Pmin

(σ ⊗ eν+ρ)

is a Hilbert represenation of G by the right quasiregular action on the Hilbert space

Hπ := { f : G → C, locally integrable
| f(nmax) = σ(m)eν+ρ(a)f(x), x ∈ G, n ∈ Nmin,m ∈ M,a ∈ A∫

K
|f(k)|2dk < ∞}.

with inner product

(f1, f2) =
∫

K

f1(k)f̄2(k)dk.

Here dk is the Haar measure of K.

Definition The principal series representation π(Pmin;σ,ν) is called even, if σ(−14) =
+1, and odd, if σ(−14) = −1.

4.2. Canonical basis in the subpace Hπ,K of K-finite vectors. Restricting
each function f in Hπ to the subgroup K, we have an element in L2(K). Thus Hπ

is identified with a subspace of L2(K).

Proposition 4.1. (i) By the restriction map to K, the Hilbert space HPmin,σ,ν is
identified with a closed subspace of L2(K):

L2
(M,σ)(K) := { f : K → C in L2(K) |

f(mx) = σ(m)f(x) for a.e. m ∈ M, x ∈ K}.
(ii) Moreover as a unitary representation of K, it has an irreducible decomposition
:

L2
(M,σ)(K) ∼= ⊕̂τ∈K̂{(τ∗|M)[σ] £ τ}.

Here (τ∗|M)[σ] is the [σ]-isotypic component in (τ∗|M), which is considered as a
trivial K-module here.
Proof The first claim is well-known fact. The second follows from the irreducible
decomposition of L2(K) and the definition of L2

(M,σ)(K).

Definition When σ(−14) = +1, the principal series representation π(Pmin;σ,ν) is
called even; otherwise, i.e., if σ(−14) = −1, it is called odd.
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5. The shifts of K-types and contiguous relations

This section is the main result of this paper. We explain our problem concep-
tullay in the first subsection. After that in the following sections, we compute the
necessary data explicitly.

5.1. General setting. The K-finite part Hπ,K of the representation space Hπ of
the principal series π is also a k-module. Because of the Cartan decomposition
g = k⊕p, in order to describe the action of g = Lie(G) or gC = g⊗RC it suffices to
investigate the action of p or pC = p+ ⊕ p−. Here p+ and p− are the holomorphic
part and antiholomorpic part of pC, respectively.

Given a non-zero K-homomorphism i : τ = τ(l1,l2) ⊂ Hπ,K from a simple K-
module τ to Hπ,K . Then the subspace p+Im(i) in Hπ,K is the image of the canonical
surjection

p+ ⊗C τ → p+Im(i),

which is a K-homomorphism with p+ endowed with the adjoint action Ad of K.
Since (Ad, p+) ∼= τ(2,0), the Clebsh-Gordan theorem implies that there are three
injective K-homomorphisms

ia : τa ⊂ p+ ⊗C τ (a = 1, 2, 3)

τ1
∼= τ(l1+2,l2), τ2

∼= τ(l1+1,l2+1), τ3
∼= τ(l1,l2+2)

for general (l1, l2). Then the composition:

τa ⊂ p+ ⊗ τ → p+Im(i) → Hπ,K

gives an element ja ∈ HomK(τa,Hπ) determined by i ∈ HomK(τ,Hπ). Hence we
have 3 C-linear maps

Γa : HomK(τ, Hπ) → HomK(τa,Hπ).

We replace τ ’s by simple K-modules τ ’s endwowed with markings of canonical basis
{f(

(
l1 l2

k

)
)} in the above setting (we may say this is a kind of rigidification), then

HomK(τ, Hπ) etc have induced canonical basis derived from the distinguished set
of canonical basis by the entries of the vectors s(l1−l2)

i ∆l2 (0 ≤ i ≤ l1 − l2) in the
τ -isotypic component Hπ([τ ]).

Thus we have settle two problems:
Problem 5. A Describe ia’s in terms of canonical basis.
Problem 5. B Determine the matrix representations of the linear homomorphisms

Γa : HomK(τ, Hπ) → HomK(τa,Hπ).

with respect to the induced basis.
The first problem is setteld in the next subsection of Dirac-Schmid operator, and

the second problem is setted after that. As a result, we have infinite number of
’contiguous relation’, a kind inifite system of differential-difference relations among
vectors in Hπ([τ ])’s and Hπ([τa]).

5.2. The canonical blocks of elementary functions. We define certain a ma-
trix of elementary functions correpondinng to each τ(l1,l2)-isotypic component in
our Pmin principal series.

Definition 5.1 The following matrices are called the canonical block of elementary
functions for τ(l1.l2)-isotypic component:
When π(Pmin;σ,ν) is even, we consider the matrices

S(d)
[0,··· ,d]∆

l2 if ((−1)l1 , (−1)l2) = (ε1, ε2);

S(d)
[1,··· ,d−1]∆

l2 if ((−1)l1 , (−1)l2) = (−ε1,−ε2).
11



When π(Pmin;σ,ν) is odd, we consider the matrices

S(d)
[0,··· ,d−1]∆

l2 if ((−1)l1 , (−1)l2) = (ε1, ε2);

S(d)
[1,··· ,d]∆

l2 if ((−1)l1 , (−1)l2) = (−ε1,−ε2).

The above definition amounts to fix basis in the image of the evaluation map of
the τ(l1,l2)-isotypic compnent:

τ(l1,l2) ⊗C HomK(τ(l1,l2),Hπ) → Hπ,

compatible with the tensor product decomposition.

5.3. The chirality operators or Dirac-Schmid operators. We settle Problem
5A in this subsection. This means that we describe the injective K-homomorphisms
ia : τa ⊂ p±⊗Cτ explicitly in term of the canonical basis. There are 6 such matrices.

5.3.1. Construction of the operators. Firstly we have to introduce a notation to
denote various diagonal matrices in the blocks of some matrices.

Notation 5.C Let the letteres a, b, a1, a2 be integral variables. Given two integers
c0, c1 such that c0 ≤ c1, and let f(a) be a (polynomial or rational) function in the
variable a. Then by

diagc0≤a≤c1
(f(a)),

we denote the diagonal matrix of size c1 − c0 + 1 with the number f(a) at the
((a−c0)+1, (a−c0)+1)-th entry. This notation is used not only to denote a single
(square) matrix, but also to denote some blocks of a (non-square) matrices.

Definition 5.2 (i)+ : We define a matrix C+;(−2) of size (d−1)× (d+1) with entries
consisting of elements in p+ by

C+;(−2) = L0 ⊗X+,22 − 2L1 ⊗X+,12 + L2 ⊗X+,11

with three constant matrices of size (d− 1)× (d + 1)

L0 := (Ed−1,0(d−1)×1,0(d−1)×1),

L1 := (0(d−1)×1, Ed−1,0(d−1)×1),

L2 := (0(d−1)×1,0(d−1)×1, Ed−1).

(ii)+: Secondly we define a matrix C+;(0) of size (d + 1) × (d + 1) with entries
consisting of elements in p+ by

C+;(0) = −1
d
M0 ⊗X+,22 − 1

d
M1 ⊗X+,12 +

1
d
M2 ⊗X+,11

with 3 matrices M0,M1, M2 of size (d + 1)× (d + 1):

M0 :=
[

01,d 0
daig1≤a≤d(a) 0d,1

]
,

M1 := diag0≤a≤d(d− 2a),

M2 :=
[
0d,1 diag1≤≤d(d + 1− a)
0 01,d

]
.

Remark We have a relation

(M0 + M1 + M2)




1
·
·
1


 = 0.
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(iii)+: Thirdly we define 3 (d + 1)× (d + 1) diagonal matrices

Nred
0 = diag0≤a≤d((a + 1)(a + 2)),

Nred
1 = diag0≤a≤d((d + 1− a)(a + 1))

and

Nred
2 = diag0≤a≤d((d + 1− a)(d + 2− a)).

Then we put

C+;(+2) =
1

(d + 1)(d + 2)
{N0 ⊗X+,22 + 2N1 ⊗X+,12 + N2 ⊗X+,11}.

with

N0 =




0
0

Nred
0


 , N1 =




0
Nred

1

0


 , and N2 =




Nred
2

0
0


 .

Remark We have a relation

1
(d + 1)(d + 2)

· {(N0 + 2N1 + N2} ·




1
·
·
1


 =




1
·
·
1




Replacing the elements X+,11, X+,12 and X+,22 by the elements X−,22, X−,12

and X−,11 in p−, we define three matrices with entries in p− by

C−;(−2) := L0 ⊗X−,11 + 2L1 ⊗X−,12 + L2 ⊗X−,22

C−;(0) := − 1
dM0 ⊗X−,11 + 1

dM1 ⊗X−,12 + 1
dM2 ⊗X−,22

C−;(+2) := 1
(d+1)(d+2){N0 ⊗X−,11 − 2N1 ⊗X−,12 + N2 ⊗X−,22}.

5.3.2. Another description of the operators. The above definition of the matrix
operators C∗;(∗) is a bit difficult to grasp. We give here another row-wise description
to understand these matrices and for the later use in the proofs.

Observation 5.D

(i) For each a (1 ≤ a ≤ d−1), the a-th row of the (d+1)× (d−1) matrix C+;(−2)

is given by
(0, · · · , 0︸ ︷︷ ︸

a−1

, X+22,−2X+12, X+11, 0, · · · , 0︸ ︷︷ ︸
(d−1)−a

).

(ii) The a-th row (1 ≤ a ≤ d + 1) of the (d + 1)× (d + 1) matrix C+;(0) is given by

(0, · · · , 0︸ ︷︷ ︸
a−2

,−a− 1
d

X+22,−d− 2a + 2
d

X+12,
d− a + 1

d
X+11, 0, · · · , 0︸ ︷︷ ︸

(d−a)

).

Here the segment 0, · · · , 0︸ ︷︷ ︸
−1

with the negative length means that it erases the

first subsquent entry or the last proceeding entry of the middle segment of
the length three of the row vector given above.

(iii) The a-th row (1 ≤ a ≤ d + 3) of the (d + 1)× (d + 1) matrix C+;(0) is given by

(0, · · · , 0︸ ︷︷ ︸
a−3

, (a−2)(a−1)
(d+1)(d+2)X+22, 2 (d+3−a)(a−1)

(d+1)(d+2) X+12,

(d+2−a)(d+3−a)
(d+1)(d+2) X+11, 0, · · · , 0︸ ︷︷ ︸

(d+1−a)

).
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Here the segment 0, · · · , 0︸ ︷︷ ︸
−m

with the negative length −m means that it erases

the first m subsquent entries or the last m proceeding entries of the middle
segment of the length three of the row vector given above to get a row vector
of length (d + 1).

(i) For each a (1 ≤ a ≤ d−1), the a-th row of the (d+1)× (d−1) matrix C−;(−2)

is given by
(0, · · · , 0︸ ︷︷ ︸

a−1

, X−11, 2X−12, X−22, 0, · · · , 0︸ ︷︷ ︸
(d−1)−a

).

(ii) The a-th row (1 ≤ a ≤ d + 1) of the (d + 1)× (d + 1) matrix C−;(0) is given by

(0, · · · , 0︸ ︷︷ ︸
a−2

,−a− 1
d

X−11,
d− 2a + 2

d
X−12,

d− a + 1
d

X−22, 0, · · · , 0︸ ︷︷ ︸
(d−a)

).

Here the segment 0, · · · , 0︸ ︷︷ ︸
−1

with the negative length means that it erases the

first subsquent entry or the last proceeding entry of the middle segment of
the length three of the row vector given above.

(iii) The a-th row (1 ≤ a ≤ d + 3) of the (d + 1)× (d + 1) matrix C−;(0) is given by

(0, · · · , 0︸ ︷︷ ︸
a−3

, (a−2)(a−1)
(d+1)(d+2)X−11, −2 (d+3−a)(a−1)

(d+1)(d+2) X−12,

(d+2−a)(d+3−a)
(d+1)(d+2) X−22, 0, · · · , 0︸ ︷︷ ︸

(d+1−a)

).

Here the segment 0, · · · , 0︸ ︷︷ ︸
−m

with the negative length −m means that it erases

the first m subsquent entries or the last m proceeding entries of the middle
segment of the length three of the row vector given above to get a row vector
of length (d + 1).

5.4. Preparation for contiguous relations. Now we can introduce the constant
matrices which represent the homomorphisms Γa of Problem 5B.

The case of even principal series

Lemma 5.1.A (even principal series, p+-side)
(i) (even,+): We have an equation with some constant matrix Γ+;(−2);00(d, l2) of
size d

2 × (d
2 + 1)

C+;(−2){S(d)
[0,··· ,d]∆

l2} = {S(d−2)
[0,··· ,d−2]∆

l2+2} · Γ+;(−2);00(d, l2).

Similarly we have an equation

C+;(−2){S(d)
[1,··· ,d−1]∆

l2} = {S(d−2)
[1,··· ,d−3]∆

l2+2} · Γ+;(−2);11(d, l2).

with some constant matrix Γ+;(−2);11 of size (d
2 − 1)× d

2 .
(ii) (even,+): For some constant matrix Γ+;(0);01(d, l2) and Γ+;(0);10(d, l2) of sizes
d
2 × (d

2 + 1) and (d
2 + 1)× d

2 respectively, we have

C+;(0){S(d)
[0,··· ,d]∆

l2} = {Sd
[1,··· ,d−1]∆

l2+1}Γ+;(0);01(d, l2), if (−1)d = sgn(σ),

and

C+;(0){S(d)
[1,··· ,d−1]∆

l2} = {S(d)
[0,··· ,d]∆

l2+1}Γ+;(0);10(d, l2), if (−1) 6= sgn(σ).
14



(iii) (even,+): For some constant matrix Γ+;(+2);00(d, l2) of size (d
2 + 2)× (d

2 + 1),
we have

C+;(+2){S(d)
[0,··· ,d]∆

l2} = {S(d+2)
[0,··· ,d+2]∆

l2}Γ+;(+2);00(d, l2).

Moreover for some constant matrix Γ+;(+2);11(d, l2) of size (d
2 + 1)× d

2 , we have

C+;(+2){S(d)
[1,··· ,d−1]∆

l2} = {S(d+2)
[1,··· ,d+1]∆

l2}Γ+;(+2);11(d, l2).

(even case, p−-side)
(d even, p−)
(i) (even,-): With some contant matrix Γ−;(−2);00(d, l2) of size 1

2d × 1
2 (d + 2), we

have

C−;(−2){S(d)
[0,··· ,d]∆

l2} = {S(d−2)
[0,··· ,d−2]∆

l2−2} · Γ−;(−2);00(d, l2).

and with some contant matrix Γ−;(−2);11(d, l2) of size 1
2 (d− 2)× 1

2d, we have

C−;(−2){S(d)
[1,··· ,d−1]∆

l2} = {S(d−2)
[1,··· ,d−3]∆

l2−2} · Γ−;(−2);11(d, l2).

(ii) (even,-): For some constant matrix Γ−;(0);00(d, l2) and Γ−;(0);01(d, l2) of sizes
1
2d× 1

2 (d + 2) and 1
2 (d + 2)× 1

2d respectively, we have

C−;(0){S(d)
[0,··· ,d]∆

l2} = {Sd
[1,··· ,d−1]∆

l2−1}Γ−;(0);00(d, l2), if (−1)d = sgn(σ(εi)),

and

C−;(0){S(d)
[1,··· ,d−1]∆

l2} = {S(d)
[0,··· ,d]∆

l2−1}Γ−;(0);01(d, l2), if (−1) 6= sgn(σ(εi)).

(iii) (even,-): For some constant matrix Γ−;(+2);00(d, l2) of size 1
2 (d + 4)× 1

2 (d + 2),
we have

C−;(+2){S(d)
[0,··· ,d]∆

l2} = {S(d+2)
[0,··· ,d+2]∆

l2}Γ−;(+2);00(d, l2).

and for some constant matrix Γ−;(+2);11(d, l2) of size 1
2 (d + 2)× 1

2d, we have

C−;(+2){S(d)
[0,··· ,d]∆

l2} = {S(d+2)
[0,··· ,d+2]∆

l2}Γ−;(+2);11(d, l2).

Remark If the size of the matrix consider above is impossible, say, if d = 0 then
d
2 − 1 = −1, the correponding matrices do not exist and the equation also does not
exist.

We have similar formulation for the case of odd principal series.
The case of odd principal series
Lemma 5. 1. B (odd principal series, p+-side)
(i) (odd,+): We have an equation with some constant matrix Γ+;(−2);01(d, l2) of
size 1

2 (d− 1)× 1
2 (d + 1)

C+;(−2){S(d)
[0,··· ,d−1]∆

l2} = {S(d−2)
[0,··· ,d−3]∆

l2+2} · Γ+;(−2);01(d, l2).

Similarly we have an equation

C+;(−2){S(d)
[1,··· ,d]∆

l2} = {S(d−2)
[1,··· ,d−2]∆

l2+2} · Γ+;(−2);10(d, l2).

with some constant matrix Γ+;(−2);10 of size 1
2 (d + 1)× 1

2 (d + 1).
(ii) (odd,+): For some constant matrix Γ+;(0);01(d, l2) and Γ+;(0);10(d, l2) of size
1
2 (d + 1)× 1

2 (d + 1) respectively, we have

C+;(0){S(d)
[0,··· ,d−1]∆

l2} = {Sd
[1,··· ,d]∆

l2+1}Γ+;(0);01(d, l2), if (−1)d = sgn(σ),

and

C+;(0){S(d)
[1,··· ,d]∆

l2} = {S(d)
[0,··· ,d−1]∆

l2+1}Γ+;(0);10(d, l2), if (−1) 6= sgn(σ).
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(iii),(odd,+): For some constant matrix Γ+;(+2);01(d, l2) of size 1
2 (d + 3) × (

d + 1),
we have

C+;(+2){S(d)
[0,··· ,d−1]∆

l2} = {S(d+2)
[0,··· ,d+1]∆

l2}Γ+;(+2);01(d, l2).

Moreover for some constant matrix Γ+;(+2);10(d, l2) of size 1
2 (d + 3)× 1

2 (d + 1), we
have

C+;(+2){S(d)
[1,··· ,d]∆

l2} = {S(d+2)
[1,··· ,d+2]∆

l2}Γ+;(+2);10(d, l2).

(the case of odd principal series, i.e., d even, p−-side)
(i) (odd,-): With some contant matrix Γ−;(−2);01(d, l2) of size 1

2 (d− 1)× 1
2 (d + 1),

we have

C−;(−2){S(d)
[0,··· ,d−1]∆

l2} = {S(d−2)
[0,··· ,d−3]∆

l2−2} · Γ−;(−2)(d, l2).

and with some contant matrix Γ−;(−2);10(d, l2) of size 1
2 (d− 1)× 1

2 (d + 1), we have

C−;(−2){S(d)
[1,··· ,d]∆

l2} = {S(d−2)
[1,··· ,d−2]∆

l2−2} · Γ−;(−2);10(d, l2).

(ii) (odd,-): For some constant matrix Γ−;(0);01(d, l2) and Γ−;(0);10(d, l2) of size
1
2 (d + 1)× 1

2 (d + 1) and 1
2 (d + 1)× 1

2 (d + 1) respectively, we have

C−;(0){S(d)
[0,··· ,d−1]∆

l2} = {Sd
[1,··· ,d]∆

l2−1}Γ−;(0);01(d, l2), if (−1)d = sgn(σ(εi)),

and

C−;(0){S(d)
[1,··· ,d]∆

l2} = {S(d)
[0,··· ,d−1]∆

l2−1}Γ−;(0);10(d, l2), if (−1) 6= sgn(σ(εi)).

(iii) (odd,-): For some constant matrix Γ−;(+2);01(d, l2) of size 1
2 (d + 3)× 1

2 (d + 1),
we have

C−;(+2){S(d)
[0,··· ,d−1]∆

l2} = {S(d+2)
[0,··· ,d+1]∆

l2}Γ−;(+2);01(d, l2).

and for some constant matrix Γ−;(+2);10(d, l2) of size 1
2 (d + 3)× 1

2 (d + 1), we have

C−;(+2){S(d)
[1,··· ,d]∆

l2} = {S(d+2)
[1,··· ,d+2]∆

l2}Γ−;(+2);10(d, l2).

5.5. Contiguous equations: Determination of intertwining constants. Now
we can decide the homomorphism Γa of Problem 5B. We have to compute the matri-
ces Γ∗∗;(∗)(d,m) of intertwining constants explicitly. These are basically generalized
di-diagonal matrices, which are expressed as a sum of two blocks of square diagonal
matrices; the sizes of two blocks are the same or different up to ±1. Each diagonal
square blocks of size q − p + 1 is written in the forms: diagp≤a≤q(l(a)), where the
diagonal entries l(a) are linear functions in the variable integer a.

This is the main result of this paper.

The case of even principal series
Theorem 5.2.A The matrices of constants of the 12 equalities in Lemma (5.1.A)
are given as follows:
(p+-side)
(i) (even, +):

Γ+;(−2);00(d,m) =
[
diag0≤a≤(d−2)/2(ν2 + ρ2 + m + 2a),0

]

+
[
0,diag0≤a≤(d−2)/2(ν1 + ρ1 + m− d + 2a)

]
.

Γ+;(−2);11(d,m) =
[
diag0≤a≤(d−4)/2(ν2 + ρ2 + m + 2a + 1),0

]

+
[
0,diag0≤a≤(d−4)/2(ν1 + ρ1 + m− d + 2a + 1)

]
.
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(ii) (even,+):

Γ+;(0);01(d,m) =[diag1≤a≤d/2(−
2a− 1

d
{(ν2 + ρ2) + m + 2(a− 1)}),0]

+[0,diag1≤a≤d/2(
d + 1− 2a

d
{(ν1 + ρ1) + m + 2(a− 1)})]

Γ+;(0);10(d,m) =
[
diag1≤a≤d/2−1(

d+2−2a
d {(ν1 + ρ1) + m + 2a− 3})

0

]

+
[

0
diag1≤a≤d/2−1(− 2a

d {(ν2 + ρ2) + m + 2a− 1})
]

(iii) (even,+):

Γ+;(+2);00(d, m) =

[
diag0≤a≤d/2(

(d+1−2a)(d+2−2a)
(d+1)(d+2) (ν1 + ρ1 + m + d + 2a))

01×(d/2+1)

]

+

[
01×(d/2+1)

diag0≤a≤d/2(
(2a+1)(2a+2)
(d+1)(d+2) (ν2 + ρ2 + m + 2a))

]

Γ+;(+2);11(d,m) =

[
diag0≤a≤ d−2

2
( (d−2a)(d+1−2a)

(d+1)(d+2) (ν1 + ρ1 + m + d + 2a + 1))
01×(d/2)

]

+

[
01×(d/2)

diag0≤a≤ d−2
2

( (2a+2)(2a+3)
(d+1)(d+2) (ν2 + ρ2 + m + 2a + 1))

]

(p−-side)
(i) (even,-): We have

Γ−;(−2);00(d,m) =
[
diag0≤a≤(d−2)/2((ν1 + ρ1)− (m + d + 2a + 2)),0

]

+
[
0,diag0≤a≤(d−2)/2((ν2 + ρ2)− (m + 2a + 2))

]
.

Γ−;(−2);11(d,m) =
[
diag0≤a≤(d−4)/2((ν1 + ρ1)− (m + d + 2a + 3)),0

]

+
[
0,diag0≤a≤(d−4)/2((ν2 + ρ2)− (m + 2a + 3))

]
.

(ii) (even,-): We have

Γ−;(0);01(d,m) =
[
diag1≤a≤d/2(− 2a−1

d {(ν1 + ρ1)−m− 2a}),0d/2±∗×1

]

+
[
0d/2±∗×1,diag1≤a≤d/2(

d+1−2a
d {(ν2 + ρ2)−m− 2a})]]

Γ−;(0);10(d,m) =
[
diag1≤a≤d/2(

d+2−2a
d {ν2 + ρ2)− (m + 2a− 1)})

0

]

+
[

0
diag1≤a≤d/2(− 2a

d {(ν1 + ρ1)− (m + 2a + 1)})
]

(iii) (even,-):

Γ−;(+2);00(d,m) =

[
diag0≤a≤d/2(

(d+1−2a)(d+2−2a)
(d+1)(d+2) {(ν2 + ρ2)− (d + m) + d− 2a})

01×(d/2+1)

]

+

[
01×(d/2+1),

diag0≤a≤d/2(
(2a+1)(2a+2)
(d+1)(d+2) {(ν1 + ρ1)− (d + m) + 2d− 2a})

]
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Γ−;(+2);11(d,m) =

[
diag0≤a≤ d−2

2
( (d−2a)(d+1−2a)

(d+1)(d+2) {(ν2 + ρ2)− (m + 2a + 1)})
01×(d/2)

]

+

[
01×(d/2),

diag0≤a≤ d−2
2

( (2a+2)(2a+3)
(d+1)(d+2) {(ν1 + ρ1)− (m + 2a + 1) + d})

]

The case of odd principal series
Theorem 5.2.B The matrices of constants of the 12 equalities in Lemma (5.1.B)
are given as follows:
(p+-side)
(i) (odd,+):

Γ+;(−2);01(d,m) =
[
(diag0≤a≤(d−3)/2(ν2 + ρ2 + m + 2a),0)

]

+
[
0,diag0≤a≤(d−3)/2(ν1 + ρ1 + m− d + 2a)

]
.

Γ+;(−2);10(d,m) =
[
diag0≤a≤(d−3)/2(ν2 + ρ2 + m + 1 + 2a),0

]

+
[
0,diag0≤a≤(d−3)/2(ν1 + ρ1 + m− d + 1 + 2a)

]
.

(ii) (odd,+):

Γ+;(0);01(d, m) = diag0≤a≤ d−1
2

(−2a + 1
d

(ν2 + ρ2 + m + 2a))

+
[
0, diag0≤a≤ d−3

2
(d−2a−1

d (ν1 + ρ1 + m + 2a))
0, 0

]

Γ+;(0);10(d,m) = diag0≤a≤ d−1
2

(
d− 2a

d
(ν1 + ρ1 + m + 2a− 1))

+
[

0, 0
diag1≤a≤ d−1

2
(− 2a

d (ν2 + ρ2 + m + 2a− 1)), 0

]

(iii) (odd,+) :

Γ+;(+2);01(d,m) =

[
diag0≤a≤ d−1

2
( (d+1−2a)(d+2−2a)

d+1)(d+2) (ν1 + ρ1 + m + d + 2a))
0

]

+

[
0

diag0≤a≤ d−1
2

( (2a+1)(2a+2)
(d+1)(d+2) (ν2 + ρ2 + m + 2a))

]

Γ+;(+2);10(d,m) =

[
diag0≤a≤ d−1

2
( (d−2a)(d+1−2a)

d+1)(d+2) (ν1 + ρ1 + m + d + 2a + 1))
0

]

+

[
0

diag0≤a≤ d−1
2

( (2a+2)(2a+3)
(d+1)(d+2) (ν2 + ρ2 + m + 2a + 1))

]

(odd, p−-side)
(i) (odd,-):

Γ−;(−2);01(d,m) =
[
(diag0≤a≤(d−3)/2{(ν1 + ρ1)− (m + d + 2a + 2)}, 0)

]

+
[
0, diag0≤a≤(d−3)/2{(ν2 + ρ2)− (m + 2a + 2)}] .

Γ−;(−2);10(d, m) =
[
diag0≤a≤(d−3)/2{(ν1 + ρ1)− (m + d + 2a + 3)}, 0

]

+
[
0, diag0≤a≤(d−3)/2{(ν2 + ρ2)− (m + 2a + 3)}] .
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(ii) (odd, -) : We have

Γ−;(0);01(d,m) = diag0≤a≤ d−1
2

(−2a + 1
d

{(ν1 + ρ1)− (m + 2a + 2)}

+
[
0, diag0≤a≤ d−3

2
(d−2a−1

d {(ν2 + ρ2)− (m + 2a; 2)}
0, 0

]

Γ−;(0);10(d,m) = diag0≤a≤ d−1
2

(
d− 2a

d
{(ν2 + ρ2)− (m + 2a + 1)})

+
[

0, 0
diag1≤a≤ d−1

2
(− 2a+2

d {(ν1 + ρ1)− (m + 2a + 3)}) 0

]

(iii) (odd,-) :

Γ−;(+2);01(d, m) =

[
diag0≤a≤ d−1

2
( (d+1−2a)(d+2−2a)

(d+1)(d+2) (ν2 + ρ2 −m− 2a))
0

]

+

[
0

diag0≤a≤ d−1
2

( (2a+1)(2a+2)
(d+1)(d+2) (ν1 + ρ1 −m + d− 2a))

]

Γ+;(+2);10(d,m) =

[
diag0≤a≤ d−1

2
( (d−2a)(d+1−2a)

(d+1)(d+2) (ν2 + ρ2 −m− 2a− 1))
0

]

+

[
0

diag0≤a≤ d−1
2

( (2a+2)(2a+3)
(d+1)(d+2) (ν1 + ρ1 −m + d− 2a− 1))

]

Proof (of the contiguous relations) We have to determine the constant matrices
Γ±;(∗);∗∗ of the contiguous equations. For this purpose, it suffices to evaluate the
both sides of the equations in question at e ∈ K.

We can compute the matrices Γ+;(−2),00(d,m) and Γ+;(−2),11(d,m) for m = l2
in the same time by the following merging procedure.

Merging: The matrices S(d)
[0,··· ,d]∆

l2 and S(d)
[1,··· ,d−1]∆

l2 are derived from a single

matrix of elemnatry functions S(d)
[0,1,··· ,d−1,d] of size (d + 1)× (d + 1); the former is

collection of column vectors at odd row indices and the latter of column vectors
with even row indices, respectively. In the same way, we can consider that the two
matrices Γ+;(−2),00(d,m) and Γ+;(−2),11(d,m) are derived from a single ”merged”
matrix Γ̃+;(−2)(d,m).

Therefore the real task of the proof is to compute the left sides

{C+;(−2)S
(d)
[0,··· ,d]}(e)

which are equal to Γ̃+;(−2)(d, m). To compute each column of this matrix, we have
to compute the column vector

{C±;(−2)s
(d)
i ∆m}(e)

for each i, utilizing the Iwasawa decomposition of X±;k,l (k, l = 1, 2). Each row
vector of C±;(−2) have entries which are constant multiple of X±;k,l, and each entries
of the vector s(d)

i is of the form
∑

α µα with α runs over the shuffles of certain type,
and each µα a monomial in sij associated with some shuffle α.

Claim 1 Here is the formula of the (a + 1)-th entry of the vector ∆ms(d)
i :

∆m
∑
α

µα = ∆m
a∑

b=0

(
d− a

i− b

)(
a

b

)
s
(d−a)−(i−b)
11 si−b

21 sa−b
12 sb

22.

19



Proof of Claim 1 This follows almost immediately from the definition of the shuffle
product. ¤

Firstly we prepare the computation of the values

{E2ek
(µα∆m)}(e), {Ee1±e2(µα∆m)}(e), {Hk(µα∆m)}(e),

and {κ(ekl)(s
(d)
a,i∆

m)}(e) (k, l = 1, 2).

Claim 2 Let k = 1 or k = 2.
(i) {E2ek

(µα∆m)}(e) = {Ee1±e2(µα∆m)}(e) = 0. Accordingly we have

{E2ek
(s(d)

a,i∆
m)}(e) = {Ee1±e2(s

(d)
a,i∆

m)}(e) = 0.

(ii) {Hk(µα∆m)}(e) = (νk + ρk)(µα∆m)(e) with

(µα∆m)(e) =

{
1, if w12(µα) + w21(µα) = 0,

0, otherwise.

Here for each (i, j) ∈ {(1, 1), (1, 2)}, we set

wij(µα) = the number of the factor sij in the monimial µα.

Therefore we have,

Hk(s(d)
a,i∆

m)(e) = (νk + ρk)δa,i.

(iii)

κ(e22)(s
(d)
a,i∆

m)(e) = (m + i)δa,i, and κ(e11)(s
(d)
a,i∆

m)(e) = (m + d− i)δa,i,

(iv)

κ(e21)(s
(d)
a,i∆

m)(e) = aδa−1,i and κ(e12)(s
(d)
a,i∆

m)(e) = (d− a)δa+1,i.

Proof of Claim 2 (i) and (ii): by direct computation. But for (ii) note that
a∑

b=0

(
d− a

i− b

)(
a

b

)
δi,bδa,b = δa,i.

(iii) and (iv): since {s(d)
a,i∆

m|0 ≤ a ≤ d} is a system of canonical basis, we have

κ(e22)s
(d)
a,i∆

m = (m + i)s(d)
a,i∆

m, κ(e11)s
(d)
a,i∆

m = (m + d− i)s(d)
a,i∆

m,

κ(e21)s
(d)
a,i∆

m = as
(d)
a−1,i∆

m, κ(e12)s
(d)
a,i∆

m = (d− a)s(d)
a+1,i∆

m.

Then evaluation at e gives the proof. ¤
After the above preparation, let us start the substantial computation. The (a1 +

1)-th row vector of C+;(−2) is

(0, · · · , 0︸ ︷︷ ︸
a1

, X+22.− 2X+12, X+,11, 0, · · · , 0︸ ︷︷ ︸
d−a1

).

The value at e ∈ K of the inner product of this row vector of operators and the
column vector ∆ms(d)

i of elementary functions is the sum

{X+,22s
(d)
a1,i∆

m}(e)− 2{X+,12s
(d)
a1+1,i∆

m}(e) + {X+,11s
(d)
a1+2,i∆

m}(e).

Claim 3 (i) We have the following:

{X+22s
(d)
a1,i∆

m}(e) = (ν2 + ρ2 + m + i)δa1,i

{X+11s
(d)
a1+2,i∆

m}(e) = (ν1 + ρ1 + m + d− i)δi,a1+2

−2{X+,12s
(d)
a1+1,i∆

m}(e) = −2{d− (a1 + 1)}δa1+1,i−1

Proof of Claim 3 By Iwasawa decompostion, this follows immediately from Claim
2. ¤
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Thus

ca1+1{s(d)
i }(e) =





0, unless either a1 = i or a1 = i− 2.

ν2 + ρ2 + m + i, if a1 = i.

ν1 + ρ1 + m− d + i + 2, if a1 = i− 2.

This implies the following.

Claim 4 (i)

{C+;(−2)s
(d)
i ∆m}(e) =




0
...
0

ν1 + ρ1 + m− d + i + 2
0

ν2 + ρ2 + m + i
0
...
0




.

Thus we have finished the computation of the matrices Γ+;(−2),00(d,m) and Γ+;(−2),11(d,m).
The remaining cases are treated similarly. ¤

6. Examples of contiguous relations and of their composites

Here are some examples of the contiguous relations at the peripheral K-types.
Theses examles cover the former comuptation of the contiguous relations at the
peripheral K-types of odd prinicipal series, which was obtained in [9] by using
Harish-Chandra hypergeometric functions. Note that there is a similar computation
by Hayata [3] for the peripheral K-types of the principal series representations of
SU(2, 2). In both cases, the K-types occur with multiplicity one.

6.1. the case of even principal series:the p+-side. We assume that sgn(σ) =
(+1,+1) or = (−1,−1) for σ ∈ M̂ . Then there is a unique injective K-homomorphism
τ(m,m) ⊂ πPmin;σ,ν when (−1)m = sgn(σ). The generator of τ(m,m) is given by
∆m. The multiplicity [π, τ(m+2,m)] equals to 2. The τ(m+2,m)-isotypic component
π([τ(m+2,m)]) is realized by the subspace generated by two normalized set of ba-
sis {s2

11∆
m, s11s12∆m, s2

12∆
m} and {s2

21∆
m, s21s22∆m, s2

22∆
m}. Therefore, by the

Dirac-Schmid operator

pr(2,0) · ∇+ : π([τ(m,m)]) → π([τ(m+2,m)])

the normalized set of basis

{ X+,11(∆m), X+,12(∆m), X+,22(∆m)}
is mapped to a linear combination of these two sets.

Formula 6.1. (horizontal to the right) We have



X+,11(∆m)
X+,12(∆m)
X+,22(∆m)


 =




s2
11∆

m s2
21∆

m

s11s12∆m s21s22∆m

s2
12∆

m s2
22∆

m


 ·

(
ν1 + ρ1 + m
ν2 + ρ2 + m

)

Formula 6.2. (vertical, up) We have

(
X+,22, −2X+,12, X+,11

) ·



s2
11∆

m s2
21∆

m

s11s12∆m s21s22∆m

s2
12∆

m s2
22∆

m




21



= ∆m+2
(
ν2 + ρ2 + m, ν1 + ρ1 + m− 2

)

Formula 6.3. (Composite of the above two operators) We have

{X+,11X+,22 −X2
+,12}(∆m) = (ν1 + m + 1)(ν2 + m + 1)∆m+2.

6.2. the case of even principal series:the p−-side. The τ(m,m−2)-isotypic com-
ponent π([τ(m,m−2)]), i.e., the image of the evaluation map:

τ(m,m−2) ⊗HomK(τ(m,m−2), π) → π

is realized by the subspace generated by two normalized set of basis

{s̄2
11∆

m, s̄11s̄12∆m, s̄2
12∆

m} and {s̄2
21∆

m, s̄21s̄22∆m, s̄2
22∆

m}.
Note here the relations:


s̄2
12

−s̄11s̄12

s̄2
11


∆m =




s2
21

s21s22

s2
22


∆m−2,




s̄2
22

−s̄21s̄22

s̄2
21


 ∆m =




s2
11

s11s12

s2
12


 ∆m−2

Formula 6.4. (vertical, down) We have



X−,22(∆m)
X−,12(∆m)
X−,11(∆m)


 = (ν1 + ρ1 −m)




s̄2
12∆

m

−s̄11s̄12∆m

s̄2
11∆

m


 + (ν2 + ρ2 −m)




s̄2
22∆

m

−s̄21s̄22∆m

s̄2
21∆

m




Proof This is quite similar to the case of p−.

Formula 6.5. (horizontal to the left) We have

X−,11(s̄2
12∆

m)− 2X−,12(s̄11s̄12∆m) + X−,22(s̄2
11∆

m) = (ν2 + ρ2 −m)∆m−2;

X−,11(s̄2
22∆

m)− 2X−,12(s̄21s̄22∆m) + X−,22(s̄2
21∆

m) = (ν1 + ρ1 −m− 2)∆m−2;

Formula 6.6. (Composite of the above two operators) We have

{X−,11X−,22 −X2
−,12}(∆m) = (ν1 + ρ1 −m− 1)(ν2 + ρ2 −m)∆m−2

= (ν1 −m + 1)(ν2 −m + 1)∆m−2.

6.3. the case of odd principal series:the p+-side. We investigate the shift
operator:

pr(1,1) · ∇+ : π([τ(m+1,m)]) → π([τ(m+2,m+1)]).

A set of normalized basis in π([τ(m+1,m)) is given by

either {s11∆m, s12∆m}, or {s21∆m, s22∆m}
depending on the product of the parity of σ and m. Similarly for π([τ(m+2,m+1)]),
we can take a set of normalized basis by

either {s21∆m+1, s22∆m+1}, or {s11∆m+1, s12∆m+1}.

Formula 6.7. (slant up) We have

(i):
(−X+,12(s11∆m) + X+,11(s12∆m)
−X+,22(s11∆m) + X+,12(s12∆m)

)
= −(ν2 + ρ2 + m)

(
s21∆m+1

s22∆m+1

)

(ii):
(−X+,12(s21∆m) + X+,11(s22∆m)
−X+,22(s21∆m) + X+,12(s22∆m)

)
= (ν1 + ρ1 + m− 1)

(
s11∆m+1

s12∆m+1

)

22



Formula 6.8. (Successive composition of the above operators) We have

(i): {X+,11X+,22 −X2
+,12}

(
s11∆m

s12∆m

)
= (ν1 + m + 2)(ν2 + m + 1)

(
s11∆m+2

s12∆m+2

)
.

(ii): {X+,11X+,22 −X2
+,12}

(
s21∆m

s22∆m

)
= (ν1 + m + 1)(ν2 + m + 2)

(
s21∆m+2

s22∆m+2

)
.

Remark
(ν1 + m + 2)(ν2 + m + 1) = (ν1 + ρ1 + m)(ν2 + ρ2 + m),
(ν1 + m + 1)(ν2 + m + 2) = (ν1 + ρ1 + m− 1)(ν2 + ρ2 + m + 2).

6.4. the case of odd principal series:the p−-side. We investigate the shift
operator:

pr(−1,−1) · ∇+ : π([τ(m+1,m)]) → π([τ(m,m−1)]).

A set of normalized basis in π([τ(m+1,m)) is given by

either {s11∆m, s12∆m}, or {s21∆m, s22∆m}
depending on the product of the parity of σ and m. Similarly for π([τ(m,m−1)]), we
can take a set of normalized basis by

either {s21∆m−1, s22∆m−1}, or {s11∆m−1, s12∆m−1}.

Formula 6.9. (slant down) We have

(i):
(

X−,12(s11∆m) + X−,22(s12∆m)
−X−,11(s11∆m)−X−,12(s12∆m)

)
= −(ν1 + ρ1 −m− 2)

(
s21∆m−1

s22∆m−1

)

(ii):
(

X−,12(s21∆m) + X−,22(s22∆m)
−X−,11(s21∆m)−X−,12(s22∆m)

)
= (ν2 + ρ2 −m− 1)

(
s11∆m−1

s12∆m−1

)

Formula 6.10. (Successive composition of the above operators) We have

(i): {X−,11X−,22 −X2
−,12}

(
s11∆m

s12∆m

)
= −(ν1 −m + 1)(ν2 −m)

(
s11∆m−2

s12∆m−2

)
.

(ii): {X−,11X−,22 −X2
−,12}

(
s21∆m

s22∆m

)
= −(ν1 −m)(ν2 −m + 1)

(
s21∆m−2

s22∆m−2

)
.

Remark. The formulae in this section for the odd principal series is already
obtained in Miyazaki-Oda [9] by using Harish-Chandra’s hypergeometric series.

6.5. Casimir operators. The action of Casimir operators are described as the
composites of the contiguous relations, at least substancially.

The contiguous equation for τ(m,m) → τ(m+2,m) is given by



X+11(∆m)
X+12(∆m)
X+22(∆m)


 = (ν1 + ρ1 + m)




s2
11∆

m

s11s12∆m

s2
12∆

m


 + (ν2 + ρ2 + m)




s2
21∆

m

s21s22∆m

s2
22∆

m


 .

The contiguous equations for τ(m.m) ← τ(m+2,m) are given by

(X−11, 2X−12, X−22)




s2
21∆

m

s21s22∆m

s2
22∆

m


 = {ν2 + ρ2 − (m + 2)}∆m = {ν2 − (m + 1)}∆m.

(X−11, 2X−12, X−22)




s2
11∆

m

s11s12∆m

s2
12∆

m


 = {ν1 + ρ1 − (m + 4)}∆m = {ν1 − (m + 2)}∆m.
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The composition of these equations is

(X−11, 2X−12, X−22)
(

X+11

X+12X+22

)
∆m = {ν2

1 + ν2
2 − (m + 2)2 − (m + 1)2}∆m.

Taking the ∗-conjugate equations of the above contiguous equations, we also have

(X+11,−2X+12, X+22)
(

X−11

−X−12X−22

)
∆m = {ν2

1 + ν2
2 − (m− 2)2 − (m− 1)2}∆m.

The sum of the above two equation is the equation comming from the Casimir
operator.

6.6. Generation of the peripheral K-types.

6.6.1. Down-shift operator, up-shift operator:det(C±). We have

(X−,11X−,22 −X2
−,12)∆

m = (ν1 + ρ1 −m− 1)(ν2 + ρ2 −m)∆m−2

(X+,11X+,22 −X2
+,12)∆

m = (ν1 + ρ1 −+m− 1)(ν2 + ρ2 + m)∆m+2

(X+,11X+,22 −X2
+,12)∆

m−2 = (ν1 + ρ1 + m− 3)(ν2 + ρ2 + m− 2)∆m.

Consequently we have

det(C+) · det(C−)∆m = (ν1 + m− 1)(ν2 + m− 1)(ν1 + 1−m)(ν2 + 1−m)∆m

= {ν2
1 − (m− 1)2}{ν2

2 − (m− 1)2}∆m.

We have

∆m−2 =
1

(ν1 + 1−m)(ν2 + 1−m)
det(C−)∆m;

and

∆m+2 =
1

(ν1 + 1 + m)(ν2 + 1 + m)
det(C+)∆m.

6.6.2. Generation of the part d = l1 − l2 = 2. We define two vectors of elements in
p± by

X (1)
+ =




X+,11

X+,12

X+,22


 , X (1)

− =




X−,11

X−,12

X−,22


 .

We have to define also ∗X (1)
− by

∗X (1)
− =




X−,22

±X−,12

X−,11


 .

Then we have contiguous equations:

X (1)
+ ∆m = (ν1 + ρ1 + m)∆ms(2)

0 + (ν2 + ρ2 + m)∆ms(2)
2 .

∗X (1)
− ∆m+2 = (ν2 + ρ2 −m− 2)∆m+2∗s̄(2)

2 + (ν1 + ρ1 −m− 2)∆m+2∗s̄(2)
0 .
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