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A NONTRIVIAL ALGEBRAIC CYCLE IN THE JACOBIAN
VARIETY OF THE FERMAT SEXTIC

YUUKI TADOKORO

ABSTRACT. We compute some value of the harmonic volume for the Fermat
sextic. Using this computation, we prove that some special algebraic cycle
in the Jacobian variety of the Fermat sextic is not algebraically equivalent to
7€ro.

1. INTRODUCTION

B. Harris [5] defined the harmonic volume for the compact Riemann surface
X of genus g > 3, using Chen’s iterated integrals [2]. Let J(X) be the Jacobian
variety of X. By the Abel-Jacobi map X — J(X), X is embedded in J(X). By a
consideration of the special harmonic volume, Harris [6] proved that the algebraic
cycle F'(4) — F(4) is not algebraically equivalent to zero in J(F'(4)). Here, F'(4)
is the Fermat quartic, which is a compact Riemann surface of genus 3. Ceresa [1]
showed that the algebraic cycle X — X~ is not algebraically equivalent to zero in
J(X) for a generic X. We know few explicit nontrivial examples except for F'(4).
Harris [7] used the special feature of F'(4) that its normalized period matrix has
entries in a discrete subring of C. The Fermat sextic F'(6) has the same feature.
We use this and prove

Theorem 4.3. Let F(6) be the Fermat sextic. Then, the algebraic cycle F(6) —
F(6)~ is not algebraically equivalent to zero in J(F(6)).

We compute iterated integrals with some common base point of F(6). This
is a similar computation of Tretkoff and Tretkoff [10]. In order to compute the
Poincaré dual of F'(6), we use the result of Kamata [8] for the intersection number
of the first integral homology class of the Fermat curves. It is difficult to apply
Harris’ method to other Fermat curves. We [9] proved the same fact as the Klein
quartic, but we did not use the above special feature.

Now we describe the contents of this paper briefly. In §2, we recall the definition
and fundamental properties of the harmonic volume and algebraic cycle in J(X).
§3 is devoted to the computation of iterated integrals of the Fermat curves. In
the latter half of this section, we prove that iterated integrals on those curves are
represented by some special values of the generalized hypergeometric function
3Fy. It was introduced in [9] but not proved. In §4, we prove Main Theorem,

using the numerical calculation by the MATHEMATICA program.
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2. HARMONIC VOLUMES AND ALGEBRAIC CYCLES

Let R be a discrete subring of C. We suppose that all the entries of the period
matrix of the compact Riemann surface X can be reduced to elements of R.
Harris [7] pointed out that we may replace Z[/—1] for the Fermat quartic in
Harris” method in [6] with R. We recall the harmonic volume for such X as
follows. Let H;E’U denote the space of homolophic 1-forms on X with R-periods.
It is a g-dimensional C-vector space. We choose a basis { K7, Ks, ..., Ky} of the
first integral homology group H(X;Z) of X.

Definition 2.1 ([7]). The harmonic volume is defined to be the homomorphism
(Hz")®»% — C/R by

29
TR(w @wy @uws) = Zar/ wiwy mod R.
r=1 Cr

Here w; ® wy ® ws is an element of (H}z’o)@’R?’, C, is a loop in X at the fixed base
point g whose homology class is K,, and the Poincaré dual of wy is equal to

29
Z a. K, (a, € C). The integral / wiwe is Chen’s iterated integral [2], that is,
r=1 Cr

/ Wiy = / fi(t1) f;(t2)dt 1 dty for Crw; = fi(t)dt, i = 1,2, where t is the
c, 0<t; <to<1

coordinate in the unit interval [0, 1].

We remark that Ir dose not depend on the choice of the base point x,. It is a
modified version of the original harmonic volume I. See Harris [5] for I.

Let J = J(X) be the Jacobian variety of X. By the Abel-Jacobi map X —
J(X), X is embedded in J(X). The algebraic 1-cycle X — X~ in J(X) is homol-
ogous to zero. Here we denote by X~ the image of X under the multiplication
map by —1. We recall the relation between the harmonic volume and algebraic
l-cycle X — X~ in J. We say the algebraic cycle X — X~ is algebraically equiva-
lent to zero in J if there exists a topological 3-chain W such that OW = X — X~
and W lies on S, where S is an algebraic (or complex analytic) subset of J of
complex dimension 2 (Harris [7]). The chain W is unique up to 3-cycles. Harris
proved the key theorem.

Theorem 2.2 (Section 2.7 in [7]). If the algebraic cycle X — X~ is algebraically
equivalent to zero in J, then 2Iz(w) = 0 modulo R for each w € (H )%,



A NONTRIVIAL ALGEBRAIC CYCLE IN THE JACOBIAN VARIETY 3

See Harris [6, 7] for details. In §4, we find some element w € (Hy")®?* such
that 2/p(w) # 0 modulo R for the Fermat sextic.

3. ITERATED INTEGRALS OF THE FERMAT CURVES

In this section we compute iterated integrals of the Fermat sextic. Let H'0
denote the space of holomorphic 1-forms on X We choose a basis {wy,ws, ..., w,}
of HY. Let v be a loop in X at some base point. We remark that the iterated

integral / w;w; depends on the choice of the base points and is invariant under

gl
homotopy relative a fixed base point. This iterated integral and the quadratic
period defined by Gunning [4] are essentially same except for the sign.

For N € Zs3, let F(N) = {(X : Y : Z) € CP%; XN + YN = ZN} denote
the Fermat curve of degree N, which is a compact Riemann surface of genus
(N —1)(N —2)/2. Let x and y denote X/Z and Y/Z respectively. The equation
XN + VN = ZN induces ¥ + ¢y = 1. Using this coordinate (z,y) € F(N),
the holomorphic map 7 : F(N) — CP' is defined by 7(z,y) = z. It is clear
that 7 is an N-sheeted covering F/(N) — CP', branched over N branch points
{¢&}izon,..n—1 C CP'. Here (y denotes exp(2my/—1/N). Holomorphic auto-
morphisms « and 3 of F(N) are defined by a(X : Y : Z) = ((§3X : Y : Z) and
BX Y :Z)= (X :(yY : Z) respectively. We have that af = fa and the
subgroup of the holomorphic automorphisms of F(N) which is generated by «
and f is isomorphic to (Z/NZ) x (Z/NZ). Let P; and Q; denote o*(1,0) and
B40,1), i = 0,1,..., N — 1 respectively. We define a simply connected domain
Q by C\ U;iévfl{tgj; |t| > 1, € R}. Then 7 *(Q) consists of N path-connected
components and we denote by Q; a connected component of 7—!(€2) which con-
tains Q;, i = 0,1,..., N — 1. Let 7o be a path [0,1] > t — (¢, V1 — tV) € F(N),
where /1 — ¢V is a real nonnegative analytic function on [0,1]. A loop in F(N)
is defined by

Ko =" - (B7%) " - (afy0) - () ',
where the product ¢, - /5 indicates that we traverse ¢, first, then /5. We con-
sider a loop /(Ko as an element of the first homology group H,(F(N);Z) of

F(N). Kamata obtained the following lemma for the intersection number of
H,(F(N);Z).

Lemma 3.1 (Section 5 in [8]). We have

(ko,akg) = 1 = —(akg, Ko)
(ko, Bko) = 1 = —(Bko, ko)
(f@o,aﬁfﬁo) = -1 = —(aﬁfﬁo, Ko)
(Ko, af ko) = 0 = (af™ ko, ko)

From this lemma, it is to show
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Proposition 3.2 (Section 5 in [8]). We have {&'7Ko}izo1,. . N-3j=01,..N—2 iS @
basis of Hi(F(N);Z).

Remark 3.3. Intersection matrix of {37 kg }i—o.1

,1,..,N—3,j=0,1,....N—2 is given by K
in case (i) in [8].

It is a known fact that {w], = 2" 'y* 'dz/y" '}, s> 104s<n-1 is @ basis of '
of F(N). It is clear that

1 Air+gs o ir+st(r/N7 S/N)
o wr,s — SN wr,s — SN N '
a*Bivo Yo

The integral of w, ; along o/ 37k is obtained as follows.

Proposition 3.4 (Appendix in [3]). We have

/ . e = B /N /N1 = ) (L= GIGE™/N.

We denote the 1-form Nw, /Bl by w,,. Here, BN, = B(r/N,s/N). This
implies / Wy,s € Z[CN]-
alBiko

Let f,s be a real 1-form on [0,1] defined by vjw,, = "~ (V1 — tN)s_th for
r,s > 1,r+s < N—1. The iterated integral/ W sWim = N? / fr,sfl,m/(Bi,VsBz]Ym)
v

Y0 o
is denoted by x, ;. Iterated integrals of w, s along the loop o'’k can be com-

puted.
Lemma 3.5. We consider o'’ky as a loop at the base point Q. Then the

iterated integral / Wy sWim 1S given by

aiBI ko

NI = G = Gt + (L= GO + ™ =GR — G }-

Proof. Tt is clear that / Wy Wi = ]l;(,r+l)+j(s+m)/ Wy sWy.m- We have only to

o' BI ko Ko

Compute/ Wy sWim- We denote (/ +/>w,ﬂ,swl,m = / wr,swl,m—i—/ Wy sWi,m
Ko 14 12 £ £2

only here.

Proposition 3.4, the equation / wrs =1, and
0

/ Wr sWim +/ ) Wy, sWi,m +/ wr,s/ ) Wi,m :/ ) Wr sWim = 0
Y0 Yo Y0 Yo Y00

0
give us the equation

/ Wy sWim = (/ +/ +/ +/ )wr,swl,m
Ko Yo (Byo)~1t aByo (o)™t
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RS VA B )ww/m (/am /m )

T,s a

04570 (ayo)~—t

(/ _|_<'S+m i _|_<'T‘+S+l+m/ _+_CT"H\/ )wr,swl,m

/w( cN/ +cl+m/%—cN/%)wz,m—c;lowr,s( ”m/ @/)wlm
- < zrv+s/ wrs> CN/ Wi,m

{(1+<r+s+l+m> /%—( 1 4 () /%}w”wm iy (i /w /wm

o CN + CH»m CN s+l+m s+ r+s+l

— (1 . r+l)(1 . s+m)/ W sWim _|_( o CN)( T+l Cl+m o CN _ CN) O

Y0

We define a path v; by 70+ (#77)~". Let 7;; denote the loop ;- (o 37kg) - 7;
Using the above lemma, we have iterated integrals of w, ; along the loop v; ; at
the common base point ().

Theorem 3.6. The iterated integml/ Wy sWim 1S given by
Yi,j

C]Z'\(,r+l)+j(s+m){(1 — l+r)(1 — ﬁ”)%szm + (1 _ C]sv)( ﬁr <z+m Cﬁ _ dv)}
+H(1 = (1= (1= CGOCRT™ = (1= ¢M) (1 = R (1 = RN

Tretkoff and Tretkoff [10] computed the quadratic periods with another base
point by similar computation.

Proof. We have

/ wr,swl,m :/ wr,swl,m+/ wr’s/\l ) wl,m_/l . wr,s/ wl,m-
Yij aifirg Vi a*Bl Ko a* Bl ko Vi

2] J J

From this equation and Lemma 3.5, the result follows. 0

For the numerical calculation of z, ;; ,, we recall the generalized hypergeomet-
o0
ric function 3F,. Let I'(7) denote the gamma function / e " dt for 7 > 0.

0
We define (a,n) by I'(a + n)/I'(«) for n € Zsy. For v € {z € C;|2| < 1} and
ay, (o, g, 81, B > —1, the generalized hypergeometric function 3F5 is defined by

aq, G, Qi3 _ - (alvn)(a%n)(a?nn) n
B M ) —2% (Br.m) (B ) (L)
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Proposition 3.7. Let A be a 1-simplex {(u,v) € R%;0<v < 1,0 <u <o} If
a,b,p,q > 0,0 <1, then we have

B
uafl(l_u)bflvpfl(1_,U)qfldudv _ (Cl—|—p, q)
A a t— 7

( a,1 —b,a+p -t)
l+a,a+p+q )

Proof. Using the equation

/OU Wt (L — ) = / f%ua—l < bt ) (—u)"du

we compute as follows:
1 v
/ P (1 — U)q_l/ w1 — u)*" dudv
0 0

1 v
:/ ,Up—l(l - ,U)q—l (1 - b? n) / un-l—a—ldu
0 (1,7n) 0

0 1
— Z/ va+p+n71(1 _ U)qfl (1 - ba n) 1 dv
“— Jo (1,n) a+n

(1-0b,n) 1
(I,n) a+n

WE

3
Il
o

:ZB(a+p+n,q)

(a+p+n)l'(qg) (1—-bn) 1
(a+p+qg+n) (L,n) a+n

r
r

Mo 1

n=0

_Fa+p)F(q)i a I'a+p+q) T(a+p+n)(l—>0bn)

“al(a+p+q) Za+nlla+p+g+n) Tla+p) (L,n)
_B(a+p,q) .. a,l1—ba+p
4 tLliTlﬁF?( l+a,a+p+gq ’t)'
teR
O
From this proposition, we have
Lemma 3.8.
N [ fufin
) - I dm NBY, i F( r/N,1—s/N,(r+1)/N -t)
nekm BﬁsBle _TBTJ‘YSBlet?elﬁog i 1+7”/N,(r—|—l—|—m)/N v
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4. A NONTRIVIAL ALGEBRAIC CYCLE IN J(F(6))

In this section, we consider only the case N = 6. We compute some value
of the harmonic volume for the Fermat sextic F'(6). This tells the nontrivi-
ality of the algebraic cycle F(6) — F(6)~ in J(F(6)). We have the genus of
F(6) is equal to 10 and {wy,s}rs>1,+5<5 is a basis of H"? of F(6). For the
rest of this paper, we denote ( = (4 and R = Z[(]. Proposition 3.2 gives that

a set of 100DPS {70,0, 70,1+ - + s V0,45 V1,05 VLLs - -+ > V1> V2,0 - - - » V3,05 V3,1 - - - » V3,4 ) MAY
be considered as a basis of the integral homology group H,(F(6);Z) of F(6). Let

P.D.: H'(F(6);C) — H,(F(6); C) be the Poincaré¢ dual.

Lemma 4.1. Let Ly, be a linear combination Y. _o ("™, ., in H,(F(6); C). Then
we have

P.D.(wi,) = é{(GO—lSC)LO,l—(15—49§)L1,1—(43—51C)L2,1—(50—21C)L3,1}.

Proof. Since B,(7;;) = 7ij+1 as a homology class, we obtain

BiLij = ¢ Lig.
We have
B.(P.D.(w11)) = P.D.((B7")*wi1) = ¢°P.D.(wy ).

Since 8,L;1 = (°L;;, there exist constants Ay, ..., A3 € C such that P.D.(w; ;) =
E?:o AiL;i 1. The result follows from Proposition 3.4 and the equations

3
/ wi,r = (P.D.(wi1),%0) = Z Ai(Lig,7v00) = (¢ = QAo+ (¢ = 1Ay,
0,0 i=0

3
/ w1 = (P.D.(w11),710) = Z)\i(Li,h’Yl,o) =1-Ql+ (C5 —OM 4 (C—=1)Ag,

71,0 1=0

3
w1 = (P.D.(wi1),720) = Z Ni(Lix, v20) = (1 = QA + (C5 — A+ (C—1)As,
i=0

S~

2,0

3
wiy = (P.D.(wi1),730) = Z Ai(Lig,v30) = (1= QAe + (C5 = Q) As.
i=0

2
w

0

5
nk
Let/ Wy sWi,m denoteg q / W sWi,m-
L

n=0 Yi,n

Lemma 4.2. For:=0,...,3, we have

/ wipwi 3 =6 {C%(l + ) (z1213—1) — Ci} .
L;1
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Proof. By Theorem 3.6, it is easy to compute
/ wipwiz = CTHIHC) (1,20 3= 1) +2(1—¢*") (1) = (1-¢*") ¢ (1-2().

Yi,n
Using this equation, we obtain the result in a straightforward way. 0

Theorem 4.3. Let F(6) be the Fermat sextic. Then, the cycle F(6) — F(6)~ is
not algebraically equivalent to zero in J(F(6)).

Proof. By the definition of the harmonic volume Iz, we have

3
Ip(Wia@uwis QW) = Z )\i/ wyowi 3 mod R.
i=0

L; 1
Using Lemma 4.1 and 4.2, we obtain
6
QIR(WLQ X wl’g X wlyl) = a (42 — 3C)l‘1’2’1’3 — 95 + 46(} mod R,
and denote it by ov. By Lemma 3.8 and the numerical calculation (Figure 1 in
Appendix), we obtain the value

6
2R(a) = 6—1(811‘1’2’1’3 —144) = 0.74286 £ 1 x 10~° mod Z.
The result follows from Theorem 2.2 and the lemma

2R(o) € Z = o & Z[(].

5. APPENDIX

We introduce the MATHEMATICA program [11] in the proof of Theorem 4.3.

x[r , s ,1 ,m ] :=(6xBeta[(r+1)/6,m/6])/ (r«Beta[r/6, s/ 6] xBeta[l/6, m/6])
HypergeometricPFQ[{r/6, 1-s/6, (r+1)/6}, {1+xr/6, (r+1+m)/6}, 1]
N[2 * FullSimplify[6 /61 (81 x[1, 2, 1, 3] - 144)], 20] +22

FIGURE 1. A numerical calculation program in the proof of The-
orem 4.3
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