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CALCULUS OF PRINCIPAL SERIES WHITTAKER FUNCTIONS
ON GL(3,C)

MIKI HIRANO AND TAKAYUKI ODA

ABSTRACT: In this paper, we discuss the Whittaker functions for the non-spherical principal series

representations of GL(3,C). In particular, we give explicit formulas for these functions.

1. Introduction

The global Whittaker function of automorphic representations on GL(n) is uti-
lized to have automorphic L-functions, as can be seen in the theory developed by
Jacquet, Piatetski-Shapiro, and Shalika (cf. [2]). The basic parts of local investiga-
tions are to handle the unramified p-adic cases and the archimedean cases.

Compared with the explicit formula of Whittaker functions for unramified prin-
cipal series representations of GL(n) over p-adic fields ([20]), the history to have
explicit integral expressions of Whittaker functions for principal series representa-
tions of GL(n) over the archimedean fields R and C is more involved and longer. The
classical case GL(2) is found in the literature of automorphic forms such as Jacquet-
Langlands [12] and Weil [28]. The beginning works beyond this point seems to be
those of Vinogradov-Tahtajan [25], Proskurin [18], and Bump [1]. They obtained
the explicit integral formula of archimedean Whittaker functions for class one prin-
cipal series representations of GL(3) by evaluating the Jacquet’s integral ([11]) or
by solving the differential equations for them. And further investigation of the class
one Whittaker functions is developed gradually by the papers of Stade and Ishii (cf.
[21], [22], [23], [9], [10]).

Contrary to the class one case refereed above, explicit integral formulas of the
archimedean Whittaker functions for non-spherical principal series representations
begin to be investigated rather recently (Manabe-Ishii-Oda [13]). The reason of this
delay is not clear. But it is true that the discussion of non-spherical cases which is
not a trivial extension of the spherical cases is more time-demanding and requires
some new ideas.

In this paper, we discuss the Whittaker functions with minimal K-types belonging
to general principal series representations of GL(3,C). We need two new ideas in
this paper. One is the use of Gelfand-Zelevinsky basis of simple K-modules in order
to treat the Whittaker functions which is vector-valued different from the spherical
cases. This basis is defined in the paper [3] and is recognized as the (classical limit of)
dual of canonical basis in quantum groups investigated by Kashiwara and Lusztig.
The other is the use of Dirac-Schmid operators in our constructions of differential
equations satisfied by the Whittaker functions. These operators are elements in
U(gC) defined by the injectors of the minimal K-type τ into the tensor product
pC ⊗ τ and their explicit descriptions require the Clebsch-Gordan coefficients.
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The main results are explicit formulas for Whittaker functions in section 7. In
more detail, the results are explicit formulas for the secondary Whittaker functions,
two equivalent integral representations for the primary Whittaker function, and the
factorization theorem of the primary function by the secondaries. These formulas
are a natural extension of the class one case and can be handled easily like as
those for class one functions. We expect that our results are applicable for deeper
investigation of automorphic forms on GL(3).

Also, based on the explicit formula for the primary function, we derive an inductive
procedure to write Whittaker functions on GL(3,C) by these on GL(2,C) in section
8, which we call a propagation formula. This is an analogue of the formula in the
real cases by Ishii-Stade [10] and Hina-Ishii-Oda [5]. It seems not only to show the
similarity between the real and the complex cases in the non-class one situations
but also to give a hint on a basis of gln-modules which is suitable for an explicit
description of general principal series Whittaker functions on GL(n,C).

2. Preliminaries

2.1. Groups and algebras. Let G = GL(3,C) be the complex general linear
group of degree 3. We view G as a real reductive group and denote the imaginary
unit by J ; J2 = −1. The center ZG of G is {ru13 | r ∈ R>0, u ∈ U(1)} ≃ C×. Here
13 is the unit matrix of degree 3. For a Cartan involution θ(g) = tḡ−1, g ∈ G of G,
its fixed part K = {g ∈ G | θ(g) = g} = U(3), the unitary group of degree 3, is a
maximal compact subgroup of G.

Let g = gl(3,C) be the Lie algebra of G. If we denote the differential of θ again
by θ, then we have θ(X) = −tX̄ for X ∈ g. Let k and p be the +1 and the −1
eigenspaces of θ in g, respectively. Then k = u(3) is the Lie algebra of K and g has
a Cartan decomposition g = k ⊕ p.

In general for a Lie algebra l, its complexification is denoted by lC. For 1 ≤
i, j ≤ 3, let Eij (resp. E ′

ij) in g be the matrix unit with its (i, j)-entry 1 (resp.
J) and the remaining entries 0. Moreover put Hij = Eii − Ejj, H ′

ij = E ′
ii − E ′

jj,
I3 = E11 + E22 + E33, and I ′

3 = E ′
11 + E ′

22 + E ′
33. Then we have k = Zk ⊕ k0 and

p = Zp ⊕ p0 with

Zk = RI ′
3, k0 = RH ′

12 ⊕ RH ′
23 ⊕ {⊕i<jR(Eij − Eji)} ⊕

{
⊕i<jR(E ′

ij + E ′
ji)

}
,

and

Zp = RI3, p0 = RH12 ⊕ RH23 ⊕ {⊕i<jR(Eij + Eji)} ⊕
{
⊕i<jR(E ′

ij − E ′
ji)

}
.

In the complexification kC and pC, we use the following symbols.

Ik
3 = −

√
−1I ′

3, Hk
ij =

√
−1H ′

ij, Ek
ij =

1

2

{
(Eij − Eji) −

√
−1

(
E ′

ij + E ′
ji

)}
in kC and

Ip
3 = I3, Hp

ij = Hij, Ep
ij =

1

2

{
(Eij + Eji) −

√
−1

(
E ′

ij − E ′
ji

)}
in pC.

Put a = Zp ⊕RH12⊕RH23. Then a is a maximal abelian subalgebra of p. Also if
we put n = ⊕i<j(REij ⊕RE ′

ij), then n is the direct sum of the all positive restricted
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root spaces with respect to (g, a) and we have an Iwasawa decomposition g = n⊕a⊕k
of g. Moreover, we have an Iwasawa decomposition G = NAK of G, where A and
N is the analytic subgroup with Lie algebra a and n, respectively, that is,

A = {diag (a1, a2, a3) ∈ G | ai ∈ R>0, i = 1, 2, 3},

N =


1 x1 x2

0 1 x3

0 0 1

 ∈ G

∣∣∣∣∣∣ xi ∈ C, i = 1, 2, 3

 .

Consider the centralizer M of A in K;

M = {k ∈ K | kak−1 = a, a ∈ A}
= {diag (u1, u2, u3) |ui ∈ U(1), i = 1, 2, 3} ≃ U(1)3.

Then the upper triangular subgroup P = NAM is a minimal parabolic subgroup
of G and the right hand side gives its Langlands decomposition. Namely, N is the
unipotent radical of P and AM is a Levi subgroup whose split component is A.

2.2. Representations of K. According to the theory of highest weight, the equiv-
alence classes of irreducible continuous representations of the maximal compact sub-
group K = U(3) of G are parameterized by the set of highest weights

Λ = {µ = (µ1, µ2, µ3)|µi ∈ Z, µ1 ≥ µ2 ≥ µ3}.
The representation of K corresponding to a highest weight µ ∈ Λ is denoted by
(τµ, Vµ). The dimension of Vµ is given by the Weyl dimension formula (cf. [27],
Theorem 2.4.1.6).

Lemma 2.1.

dimC Vµ =
1

2
(µ1 − µ2 + 1)(µ2 − µ3 + 1)(µ1 − µ3 + 2).

In the following, we often use the symbol ei for 1 ≤ i ≤ 3 which means the unit
vector of degree 3 with its i-th component 1 and the remaining component 0 in order
to write an element in Z3.

2.3. Principal series representations of G. The (irreducible) characters of M ≃
U(1)3 are exhausted by

σn(diag(u1, u2, u3)) = un1
1 un2

2 un3
3 , n = (n1, n2, n3) ∈ Z3.

Since the Lie algebra a of A has a system of generators consisting of diagonal matrix
units {Eii|i = 1, 2, 3}, each linear form ν ∈ HomR(a,C) can be identified with the
complex vector (ν1, ν2, ν3) ∈ C3 of degree 3 via νi = ν(Eii) for 1 ≤ i ≤ 3. The
adjoint action of A on the Lie algebra n of N induces the action e2ρ on the top
degree wedge product ∧6

Rn. Here ρ is the half-sum of the positive restricted roots,
i.e.,

eρ(diag (a1, a2, a3)) =

(
a1

a3

)2

, diag (a1, a2, a3) ∈ A.

Let us take a character σn of M parameterized by n = (n1, n2, n3) ∈ Z3 and an
element ν in a∗

C identified with (ν1, ν2, ν3) ∈ C3. Then the induced representation

π = π(ν, σn) = IndG
P (1N ⊗ eν+ρ ⊗ σn)
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of G from the parabolic subgroup P = NAM is called the principal series repre-
sentation of G. The representation π is a Hilbert representation (i.e., a Banach
representation on a Hilbert space) with the representation space

L2
(M,σn)(K) = {f ∈ L2(K) | f(mk) = σn(m)f(k), m ∈ M, k ∈ K},

and the action of G on L2
(M,σn)(K) is given by

(π(x)f)(k) = a(kx)ν+ρf(κ(kx)), k ∈ K, x ∈ G.

Here g = n(g)a(g)κ(g) ∈ G is the Iwasawa decomposition of g ∈ G. If we put
ν̃ = ν1 + ν2 + ν3 and ñ = n1 + n2 + n3, the central character of π is given by

ZG ∋ ru13 7→ rν̃uñ, r ∈ R>0, u ∈ U(1).

The K-types of the principal series representation π = π(ν, σn) are understood
via the right K-action on L2

(M,σn)(K). A standard argument using the Frobenius
reciprocity for induced representations leads the following proposition.

Proposition 2.2. Let π = π(ν, σn) be a principal series representation with data
(ν, σn). A necessary and sufficient condition for a representation τµ of K correspond-
ing to a highest weight µ = (µ1, µ2, µ3) ∈ Λ to be a constituent of the restriction π|K
of π to K is that the convex closure of the subset

{(µi, µj, µk) ∈ Z3 | (i, j, k) are permutations of (1, 2, 3) }

in R3 contains the point n = (n1, n2, n3). In particular, if m = (na, nb, nc) is the
dominant permutation of n (namely na ≥ nb ≥ nc), then the representation τm is
the minimal K-type of π and occurs with multiplicity one in π|K.

2.4. Unitary characters of N. Since a set {Eij, E ′
ij | 1 ≤ i < j ≤ 3} gives a

system of generators of n, a non-degenerate character η = ηc1,c2 of N can be specified
as

η(E12) = 2π
√
−1Re (c1), η(E23) = 2π

√
−1Re (c2),

η(E ′
12) = 2π

√
−1Im (c1), η(E ′

23) = 2π
√
−1Im (c2),

with two non-zero complex numbers c1, c2 ∈ C×. Then we have

η

 1 x1 x2

1 x3

1

 = exp
(
2π

√
−1Re (c̄1x1 + c̄2x3)

)
, xi ∈ C.

3. Whittaker functions

For a finite dimensional representation (τ, Vτ ) of K and a non-degenerate character
η of N , we denote by C∞

η,τ (N\G/K) the space consisting of smooth functions φ :
G → Vτ satisfying the condition

φ(ngk) = η(n)τ(k)−1φ(g), (n, g, k) ∈ N × G × K.

Then the function φ ∈ C∞
η,τ (N\G/K) is determined by its restriction φ|A to A,

because of the Iwasawa decomposition G = NAK of G. Moreover, let C∞IndG
N(η)
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be the representation of G induced from η as C∞-induction. Here the representation
space of C∞IndG

N(η) is

C∞
η (N\G) = {φ ∈ C∞(G) |φ(ng) = η(n)φ(g), (n, g) ∈ N × G},

on which G acts via right translation.
If we denote by (τ ∗, Vτ∗) the contragradient representation of (τ, Vτ ) and by ⟨·, ·⟩

the canonical bilinear form on Vτ∗ × Vτ , then the relation

ι(v∗)(g) = ⟨v∗, F [ι](g)⟩, v∗ ∈ Vτ∗ , g ∈ G,

defines an association from ι ∈ Hom K(τ ∗, C∞IndG
N(η)) to F [ι] ∈ C∞

η,τ (N\G/K),

which gives an isomorphism Hom K(τ ∗, C∞IndG
N(η)) ∼= C∞

η,τ (N\G/K).
For an (irreducible) admissible representation (π,Hπ) of G, we choose a K-

type (τ ∗, Vτ∗) in π which occurs with multiplicity one and fix an injective K-
homomorphism i ∈ Hom K(τ ∗, π|K). Let

Iη,π = Hom (gC,K)(π,C∞IndG
N(η))

be the intertwining space between (gC, K)-modules π and C∞IndG
N(η) consisting of

all K-finite vectors. For each T ∈ Iη,π, we define an element Ti ∈ C∞
η,τ (N\G/K) by

T (i(v∗))(g) = ⟨v∗, Ti(g)⟩, v∗ ∈ Vτ∗ , g ∈ G.

Then we call the subspace

Wh(π, η, τ ) =
∪

i∈Hom K(τ∗,π|K)

{Ti ∈ C∞
η,τ (N\G/K) |T ∈ Iη,π}

of C∞
η,τ (N\G/K) the space of Whittaker functions with respect to (π, η, τ ). More-

over, we denote by I◦
η,π the subspace of Iη,π consisting of the intertwining operators

whose images in C∞
η (N\G) are moderate growth functions ([26] §8.1) and define the

subspace

Wh(π, η, τ )mod =
∪

i∈Hom K(τ∗,π|K)

{
Ti ∈ C∞

η,τ (N\G/K)
∣∣T ∈ I◦

η,π

}
,

of Wh(π, η, τ ). An element in Wh(π, η, τ )mod is called a Whittaker function of mod-
erate growth.

4. A small U(3) machine

4.1. Gelfand-Zelevinsky basis. Let (τµ, Vµ) be an irreducible representation of
K = U(3) associated with a highest weight µ = (µ1, µ2, µ3) ∈ Λ. The representation
space Vµ of τµ has a Gelfand-Zelevinsky basis (or a proper basis) defined and studied
in the paper of Gelfand and Zelevinsky [3]. This basis can be parameterized by the
set G(µ) of G-patterns belonging to µ as well as the Gelfand-Tsetlin basis. Here a
G-pattern M ∈ G(µ) belonging to µ is a triangle

M =

(
µ1 µ2 µ3

α1 α2

β

)
consisting of 6 integers satisfying the inequalities

µ1 ≥ α1 ≥ µ2 ≥ α2 ≥ µ3 and α1 ≥ β ≥ α2.
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A Gelfand-Zelevinsky basis for gl3 has the ambiguity of scalar multiples. In the paper
[3], a normalization of this basis was defined and the explicit action of gl3 on them
was given. We denote this normalized Gelfand-Zelevinsky basis by {f(M)}M∈G(µ)

and call it the GZ-basis simply.
In order to describe the explicit action of kC on the GZ-basis, we introduce some

notations for G-patterns. For a G-pattern M =

(
µ1 µ2 µ3

α1 α2

β

)
∈ G(µ) belonging to

µ ∈ Λ and a triangular array I =

(
i13 i23 i33

i12 i22
i11

)
of integers, we define the shift M(I)

of M by I as

M(I) =

(
µ1+i13 µ2+i23 µ3+i33

α1+i12 α2+i22
β+i11

)
.

If the vector (i13 i23 i33) is zero, we omit the top row of I, that is, M(I) is written

as M
(

i12 i22
i11

)
. We use a convenient symbol M [k] defined by M

(
k − k

0

)
. Put

δ(M) = α1 + α2 − µ2 − β,

and define the characteristic functions χ
(i)
+ (M) and χ

(i)
− (M) of the sets {M | δ(M) >

i} and {M | δ(M) < −i}, respectively. If i = 0, we write χ
(0)
± (M) simply by χ±(M).

Moreover, we introduce ’piecewise-linear’ functions C1(M) and C̄1(M) by

C1(M) = Min{β − α2, α1 − µ2} =

{
β − α2, if δ(M) ≥ 0
α1 − µ2, if δ(M) ≤ 0

,

C̄1(M) = Min{µ2 − α2, α1 − β} =

{
µ2 − α2, if δ(M) ≥ 0
α1 − β, if δ(M) ≤ 0

,

and put C2(M) = C1(M)C̄1(M). Also we define the functions

D(M) = −µ1 + α1 − δ(M),

E(M) = C̄1(M) {µ1 − µ3 + 1 − C1(M)} ,

F (M) = −C2(M)

−χ−(M) {(µ1 − α1)(α2 − µ3) − (µ1 − µ3 + 1)δ(M)} ,

and its duals

D̄(M) = −α2 + µ3 + δ(M),

Ē(M) = C1(M)
{
µ1 − µ3 + 1 − C̄1(M)

}
,

F̄ (M) = −C2(M)

−χ+(M) {(µ1 − α1)(α2 − µ3) + (µ1 − µ3 + 1)δ(M)} .

Lemma 4.1. Let Vµ be an irreducible finite dimensional representation of kC cor-
responding to a highest weight µ ∈ Λ and {f(M)}M∈G(µ) be the GZ-basis of Vµ. If
we take the subalgebra consisting of diagonal matrices as the Cartan subalgebra, the
actions of the elements Ek

ii in the Cartan subalgebra and the simple root vectors Ek
ij

on {f(M)}M∈G(µ) are given as follows.

Ek
iif(M) = wif(M),
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Ek
12f(M) = (α1 − β)f

(
M

(
0 0
1

))
+χ+(M)(µ2 − α2)f

(
M

(
0 0
1

)
[−1]

)
,

Ek
21f(M) = (β − α2)f

(
M

(
0 0
−1

))
+χ−(M)(α1 − µ2)f

(
M

(
0 0

−1

)
[−1]

)
,

Ek
23f(M) = (µ1 − α1)f

(
M

(
1 0
0

))
+χ−(M) {µ1 − α1 − δ(M)} f

(
M

(
1 0
0

)
[−1]

)
,

Ek
32f(M) = (α2 − µ3)f

(
M

(
0 − 1

0

))
+χ+(M) {α2 − µ3 + δ(M)} f

(
M

(
0 − 1

0

)
[−1]

)
,

Ek
13f(M) = (µ1 − α1)f

(
M

(
1 0
1

))
−C̄1(M)f

(
M

(
1 0
1

)
[−1]

)
,

Ek
31f(M) = −(α2 − µ3)f

(
M

(
0 − 1

−1

))
+C1(M)f

(
M

(
0 − 1
−1

)
[−1]

)
.

Here, (w1, w2, w3) = (β, α1 + α2 − β,m1 + m2 + m3 − α1 − α2) is the weight of

the vector f(M) associated with a G-pattern M =

(
m1 m2 m3

α1 α2

β

)
, and we promise

the corresponding vector f(M ′) is zero if a shift M ′ of M appearing in the above
formulas violates the conditions of G-patterns.

4.2. pC as a K-module. Let p = Zp ⊕ p0 be the (−1)-eigenspace for the Cartan
involution θ in g as explained in §2.1. It is well known that the complexification pC
of p is a K-module via the adjoint action and has the irreducible decomposition pC =
Zp,C ⊕ p0,C, where Zp,C and p0,C are isomorphic to the trivial representation V(0,0,0)

and the 8 dimensional representation Ve1−e3 corresponding to the highest weight
e1 − e3, respectively. The correspondence between the GZ-basis {f(M)}M∈G(e1−e3)

of Ve1−e3 and the elements in p0,C is given by the following lemma.
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Lemma 4.2. We have an isomorphism Ve1−e3 ≃ p0,C by the following correspon-
dence between their basis.

f

(
e1 − e3

1 0
1

)
↔ Ep

13, f

(
e1 − e3

1 −1
1

)
↔ −Ep

12, f

(
e1 − e3

1 0
0

)
↔ Ep

23,

f

(
e1 − e3

1 −1
0

)
↔ 1

3
(Hp

12 + Hp
13) =

1

3
(2Hp

12 + Hp
23),

f

(
e1 − e3

0 0
0

)
↔ 1

3
(Hp

31 + 2Hp
32) = −1

3
(Hp

12 + Hp
23),

f

(
e1 − e3

0 −1

0

)
↔ −Ep

32, f

(
e1 − e3

1 −1

−1

)
↔ Ep

21, f

(
e1 − e3

0 −1

−1

)
↔ Ep

31.

Proof. We can find the following table of the adjoint action of kC on the elements
in p0,C by direct computation. Comparing this with the action of the simple root
vectors of kC on the GZ-basis {f(M)}M∈G(e1−e3) of Ve1−e3 in Lemma 4.1, we have
the assertion. 2

Ek
11 Ek

22 Ek
33 Ek

12 Ek
21 Ek

23 Ek
32 Ek

13 Ek
31

Hp
12 0 0 0 −2Ep

12 2Ep
21 Ep

23 −Ep
32 −Ep

13 Ep
31

Hp
23 0 0 0 Ep

12 −Ep
21 −2Ep

23 2Ep
32 −Ep

13 Ep
31

Ep
12 Ep

12 −Ep
12 0 0 Hp

21 −Ep
13 0 0 Ep

32

Ep
21 −Ep

21 Ep
21 0 Hp

12 0 0 Ep
31 −Ep

23 0
Ep

23 0 Ep
23 −Ep

23 Ep
13 0 0 Hp

32 0 −Ep
21

Ep
32 0 −Ep

32 Ep
32 0 −Ep

31 Hp
23 0 Ep

12 0
Ep

13 Ep
13 0 −Ep

13 0 Ep
23 0 −Ep

12 0 Hp
31

Ep
31 −Ep

31 0 Ep
31 −Ep

32 0 Ep
21 0 Hp

13 0

TABLE 1. The adjoint actions of Ek
ij on p0,C.

By the isomorphism in Lemma 4.2, we identify the tensor product p0,C ⊗ Vµ with
Ve1−e3 ⊗ Vµ for a general irreducible representation Vµ of K.

4.3. Injectors and their Clebsch-Gordan coefficients. For the 8 dimensional
representation (τe1−e3 , Ve1−e3) of K = U(3), we consider the tensor product with
a general irreducible representation (τµ, Vµ) associated with a highest weight µ =
(µ1, µ2, µ3) ∈ Λ. The tensor product Ve1−e3 ⊗ Vµ has the following irreducible de-
composition.

Ve1−e3 ⊗ Vµ ≃
(
⊕i ̸=jVµ+ei−ej

)
⊕ V ⊕2

µ .

Here, if the weight µ+ei−ej is not dominant, the corresponding irreducible compo-
nent Vµ+ei−ej

does not appear, and if either µ1 = µ2 or µ2 = µ3 holds, the irreducible
component Vµ occurs with multiplicity free in Ve1−e3 ⊗Vµ. Among others, the inter-
twining space Hom (Ve1−e3 ⊗ Vµ, Vµ) has dimension 2 if µ1 > µ2 > µ3. An explicit
description for projectors from Ve1−e3 ⊗ Vµ into its irreducible components with re-
spect to the GZ-basis are given in our previous paper [7]. Now we give an explicit
formula of injectors from the irreducible component Vµ into Ve1−e3 ⊗ Vµ. The injec-
tors we construct here are based on the following lemma given in our previous paper
[7], Lemma 3.9.
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Lemma 4.3. Let L(1) =

(
µ1 µ2 µ3

µ1 µ2

µ1

)
∈ G(µ) be the G-pattern giving the highest

weight vector f(L(1)) in Vµ, and let us define two vectors v1 = v
(1)
1 and v2 = v

(1)
2 in

Ve1−e3 ⊗ Vµ by the formulas

v1 = f

(
e1−e3

0 0
0

)
⊗ f

(
L(1)

)
− f

(
e1−e3

1 0
0

)
⊗ f

(
L(1)

(
0 −1

0

))
+f

(
e1−e3

1 0
1

)
⊗ f

(
L(1)

(
0 −1
−1

))
,

v2 = f

(
e1−e3

1 −1

0

)
⊗ f

(
L(1)

)
− f

(
e1−e3

1 −1

1

)
⊗ f

(
L(1)

(
0 0
−1

))
+f

(
e1−e3

1 0

1

)
⊗ f

(
L(1)

(
−1 0

−1

))
.

Then, if µ1 > µ2 > µ3, each of v1 and v2 respectively generates a representation
isomorphic to Vµ in Ve1−e3 ⊗ Vµ and gives the highest weight vector in each space.
If µ1 = µ2 (resp. µ2 = µ3), then the vector v2 (resp. v1) is not valid.

Since each of the vectors v1 and v2 defined in the above lemma is a highest weight
vector for a representation isomorphic to Vµ in Ve1−e3 ⊗ Vµ, two injectors which
map the highest weight vector f(L(1)) in Vµ into v1 and v2 can be constructed. The
following theorem which is the main theorem in this subsection gives an explicit
description for such injectors.

Theorem 4.4. Let M =

(
µ1 µ2 µ3

α1 α2

β

)
∈ G(µ) be a G-pattern belonging to µ. Then,

for i = 1, 2, the following formulas give injective K-homomorphisms ιi from Vµ into

Ve1−e3 ⊗ Vµ satisfying ιi(f(L(1))) = vi with the G-pattern L(1) =

(
µ1 µ2 µ3

µ1 µ2

µ1

)
.

1.

ι1 ((µ1 − µ3 + 1)(µ2 − µ3)f(M))

= f

(
e1−e3

0 − 1
−1

)
⊗

{
−(µ1 − α1)(α2 − µ3)f

(
M

(
1 0
1

))
+E(M)f

(
M

(
1 0

1

)
[−1]

)}
+f

(
e1−e3

0 − 1
0

)
⊗

{
(µ1 − α1)(α2 − µ3)f

(
M

(
1 0
0

))
−F (M)f

(
M

(
1 0
0

)
[−1]

)
+ χ−(M)C2(M)f

(
M

(
1 0
0

)
[−2]

)}
+f

(
e1−e3

1 − 1

−1

)
⊗

{
(µ1 − α1)(α2 − µ3)f

(
M

(
1 − 1

1

))
−

[
E(M)
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−χ+(M)(µ1 − α1)(α2 − µ3)
]
f

(
M

(
1 − 1

1

)
[−1]

)
−χ+(M)E(M)f

(
M

(
1 − 1

1

)
[−2]

)}
+f

(
e1−e3

1 − 1
0

)
⊗

{
−2(µ1 − α1)(α2 − µ3)f

(
M

(
1 − 1

0

))
+

[
−(µ1 − α1)(α2 − µ3) − C2(M) + E(M)

+χ−(M)δ(M)(µ1 − µ3 + 1)
]
f

(
M

(
1 − 1

0

)
[−1]

)
−C2(M)f

(
M

(
1 − 1

0

)
[−2]

)}
+f

(
e1−e3

0 0

0

)
⊗

{
−(µ1 − α1)(α2 − µ3)f

(
M

(
1 − 1

0

))
+

[
−(µ1 − α1)(α2 − µ3) − C2(M)

+(α1 − µ3 + 1)(α2 − µ3)

+χ−(M)δ(M)(µ1 − µ3 + 1)
]
f

(
M

(
1 − 1

0

)
[−1]

)
−2C2(M)f

(
M

(
1 − 1

0

)
[−2]

)}
+f

(
e1−e3

1 − 1

1

)
⊗

{
(µ1 − α1)(α2 − µ3)f

(
M

(
1 − 1

−1

))
−F (M)f

(
M

(
1 − 1
−1

)
[−1]

)
+χ−(M)C2(M)f

(
M

(
1 − 1
−1

)
[−2]

)}
+f

(
e1−e3

1 0

0

)
⊗

{
−(α1 − µ3 + 1)(α2 − µ3)f

(
M

(
0 − 1

0

))
+

[
C2(M)

−χ+(M)(α1 − µ3 + 1)(α2 − µ3)
]
f

(
M

(
0 − 1

0

)
[−1]

)
+χ+(M)C2(M)f

(
M

(
0 − 1

0

)
[−2]

)}
+f

(
e1−e3

1 0
1

)
⊗

{
(α1 − µ3 + 1)(α2 − µ3)f

(
M

(
0 − 1

−1

))
−C2(M)f

(
M

(
0 − 1
−1

)
[−1]

)}
.

2.

ι2 ((µ1 − µ3 + 1)(µ1 − µ2)f(M))
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= f

(
e1−e3

0 − 1
−1

)
⊗

{
(µ1 − α1)(µ1 − α2 + 1)f

(
M

(
1 0
1

))
−C2(M)f

(
M

(
1 0

1

)
[−1]

)}
+f

(
e1−e3

0 − 1
0

)
⊗

{
−(µ1 − α1)(µ1 − α2 + 1)f

(
M

(
1 0
0

))
+

[
C2(M)

−χ−(M)(µ1 − α1)(µ1 − α2 + 1)
]
f

(
M

(
1 0
0

)
[−1]

)
+χ−(M)C2(M)f

(
M

(
1 0
0

)
[−2]

)}
+f

(
e1−e3

1 − 1
−1

)
⊗

{
(µ1 − α1)(α2 − µ3)f

(
M

(
1 − 1

1

))
−F̄ (M)f

(
M

(
1 − 1

1

)
[−1]

)
+χ+(M)C2(M)f

(
M

(
1 − 1

1

)
[−2]

)}
+f

(
e1−e3

1 − 1
0

)
⊗

{
−2(µ1 − α1)(α2 − µ3)f

(
M

(
1 − 1

0

))
+

[
−(µ1 − α1)(α2 − µ3) − C2(M) + Ē(M)

−χ+(M)δ(M)(µ1 − µ3 + 1)
]
f

(
M

(
1 − 1

0

)
[−1]

)
−C2(M)f

(
M

(
1 − 1

0

)
[−2]

)}
+f

(
e1−e3

0 0

0

)
⊗

{
−(µ1 − α1)(α2 − µ3)f

(
M

(
1 − 1

0

))
+

[
−(µ1 − α1)(α2 − µ3) − C2(M)

+(µ1 − α2 + 1)(µ1 − α1)

−χ+(M)δ(M)(µ1 − µ3 + 1)
]
f

(
M

(
1 − 1

0

)
[−1]

)
−2C2(M)f

(
M

(
1 − 1

0

)
[−2]

)}
+f

(
e1−e3

1 − 1

1

)
⊗

{
(µ1 − α1)(α2 − µ3)f

(
M

(
1 − 1

−1

))
+

[
−Ē(M)

+χ−(M)(µ1 − α1)(α2 − µ3)
]
f

(
M

(
1 − 1

−1

)
[−1]

)
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−χ−(M)Ē(M)f
(
M

(
1 − 1

−1

)
[−2]

)}
+f

(
e1−e3

1 0
0

)
⊗

{
(µ1 − α1)(α2 − µ3)f

(
M

(
0 − 1

0

))
−F̄ (M)f

(
M

(
0 − 1

0

)
[−1]

)
+χ+(M)C2(M)f

(
M

(
0 − 1

0

)
[−2]

)}
+f

(
e1−e3

1 0
1

)
⊗

{
−(µ1 − α1)(α2 − µ3)f

(
M

(
0 − 1
−1

))
+Ē(M)f

(
M

(
0 − 1
−1

)
[−1]

)}
.

Proof. If we put M = L(1) in the formula, then we have ιi(f(L(1))) = vi for each
i. Thus, to prove the formulas, it suffices to check that each of these injectors ιi
gives a gl3-homomorphism. An essential part which we should check is to confirm
the commutativity ιi · Ekl = Ekl · ιi with the simple root vectors Ekl for |k − l| = 1.
This is done by a direct but a long computation. We leave it for the reader. 2

A generic irreducible representation τµ corresponding to a highest weight µ =
(µ1, µ2, µ3) ∈ Λ has the 6 extremal weight vectors. Here an extremal weight means
a weight given by permutations of µ. Each extremal weight vector is annihilated
by the action of three different simple root vectors. If we evaluate the formulas in
Theorem 4.4 at the G-patterns which give the extremal weight vectors in Vµ, all
extremal vectors in ιi(Vµ) are obtained. The explicit description of the five extremal
weight vectors except the highest weight vector in ιi(Vµ) is given as follows.

Corollary 4.5. For i = 1, 2, let ιi be the injectors Vµ → Ve1−e3 ⊗ Vµ defined in the
above lemma.

1. For the G-pattern L(2) =

(
µ1 µ2 µ3

µ1 µ2

µ2

)
∈ G(µ) giving the extremal weight vector

f(L(2)) of weight (µ2, µ1, µ3) in Vµ, we have

v
(2)
1 = ι1

(
f

(
L(2)

))
= f

(
e1−e3

0 0
0

)
⊗ f

(
L(2)

)
+ f

(
e1−e3

1 0
1

)
⊗ f

(
L(2)

(
0 −1
−1

))
−f

(
e1−e3

1 0
0

)
⊗

{
f

(
L(2)

(
0 −1

0

))
+ f

(
L(2)

(
−1 0

0

))}
,

v
(2)
2 = ι2

(
f

(
L(2)

))
= f

(
e1−e3

1 −1
−1

)
⊗ f

(
L(2)

(
0 0
1

))
−

{
f

(
e1−e3

1 −1
0

)
+ f

(
e1−e3

0 0
0

)}
⊗ f

(
L(2)

)
+f

(
e1−e3

1 0
0

)
⊗ f

(
L(2)

(
−1 0
0

))
.
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2. For the G-pattern L(3) =

(
µ1 µ2 µ3

µ1 µ3

µ1

)
∈ G(µ) giving the extremal weight vector

f(L(3)) of weight (µ1, µ3, µ2) in Vµ, we have

v
(3)
1 = ι1(f(L(3))) = f

(
e1−e3

0 −1

0

)
⊗ f(L(3)

(
0 1
0

)
)

−
{

f

(
e1−e3

1 −1

0

)
+ f

(
e1−e3

0 0

0

)}
⊗ f(L(3))

+f

(
e1−e3

1 − 1

1

)
⊗ f

(
L(3)

(
0 0

−1

))
,

v
(3)
2 = ι2(f(L(3))) = f

(
e1−e3

1 − 1
0

)
⊗ f(L(3)) + f

(
e1−e3

1 0
1

)
⊗ f

(
L(3)

(
−1 0

−1

))
−f

(
e1−e3

1 − 1
1

)
⊗

{
f

(
L(3)

(
0 0
−1

))
+ f

(
L(3)

(
−1 1
−1

))}
.

3. For the G-pattern L(4) =

(
µ1 µ2 µ3

µ1 µ3

µ3

)
∈ G(µ) giving the extremal weight vector

f(L(4)) of weight (µ3, µ1, µ2) in Vµ, we have

v
(4)
1 = ι1(f(L(4))) = f

(
e1−e3

0 − 1

−1

)
⊗ f

(
L(4)

(
0 1
1

))
+ f

(
e1−e3

1 − 1

0

)
⊗ f

(
L(4)

)
−f

(
e1−e3

1 − 1

−1

)
⊗

{
f

(
L(4)

(
0 0

1

))
+ f

(
L(4)

(
−1 1

1

))}
,

v
(4)
2 = ι2(f(L(4))) = f

(
e1−e3

1 −1
−1

)
⊗ f(L(4)

(
0 0

1

)
)

−
{

f

(
e1−e3

1 −1
0

)
+ f

(
e1−e3

0 0
0

)}
⊗ f(L(4))

+f

(
e1−e3

1 0
0

)
⊗ f

(
L(4)

(
−1 0
0

))
.

4. For the G-pattern L(5) =

(
µ1 µ2 µ3

µ2 µ3

µ2

)
∈ G(µ) giving the extremal weight vector

f(L(5)) of weight (µ2, µ3, µ1) in Vµ, we have

v
(5)
1 = ι1(f(L(5))) = f

(
e1−e3

0 −1

0

)
⊗ f(L(5)

(
0 1
0

)
)

−
{

f

(
e1−e3

1 −1

0

)
+ f

(
e1−e3

0 0

0

)}
⊗ f(L(5))

+f

(
e1−e3

1 − 1
1

)
⊗ f

(
L(5)

(
0 0

−1

))
,

v
(5)
2 = ι2(f(L(5))) = f

(
e1−e3

0 − 1
−1

)
⊗ f

(
L(5)

(
1 0
1

))
+ f

(
e1−e3

0 0
0

)
⊗ f

(
L(5)

)
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−f

(
e1−e3

0 − 1
0

)
⊗

{
f

(
L(5)

(
1 0
0

))
+ f

(
L(5)

(
0 1
0

))}
.

5. For the G-pattern L(6) =

(
µ1 µ2 µ3

µ2 µ3

µ3

)
∈ G(µ) giving the lowest weight vector

f(L(6)) of weight (µ3, µ2, µ1) in Vµ, we have

v
(6)
1 = ι1(f(L(6))) = f

(
e1−e3

1 −1
0

)
⊗ f(L(6)) − f

(
e1−e3

1 − 1
−1

)
⊗ f

(
L(6)

(
0 0
1

))
+f

(
e1−e3

0 − 1
−1

)
⊗ f

(
L(6)

(
0 1
1

))
,

v
(6)
2 = ι2(f(L(6))) = f

(
e1−e3

0 0
0

)
⊗ f(L(6)) − f

(
e1−e3

0 − 1
0

)
⊗ f

(
L(6)

(
1 0
0

))
+f

(
e1−e3

0 − 1

−1

)
⊗ f

(
L(6)

(
1 0
1

))
.

4.4. The realization of τµ in L2(K). Let (τµ, Vµ) be a representations of K as-
sociated with a highest weight µ = (µ1, µ2, µ3) ∈ Λ. In this subsection, we give a
natural construction of τµ of K in L2(K). To do this, it suffices to investigate τ(p,0,−q)

with p = µ1 − µ2 and q = µ2 − µ3 instead of τµ, since there is an isomorphism

τµ ≃ τ(p,0,−q) ⊗ det µ2 .

Here det µ2 = τ(µ2,µ2,µ2) is the character of K = U(3) given by X 7→ (det X)µ2 .
First, we remark the following lemma which is easy to prove, say, utilizing the

harmonic polynomial model (cf. [24] for example).

Lemma 4.6.

τ(p,0,0) ⊗ τ(0,0,−q) ≃
min{p,q}⊕

i=0

τ(p−i,0,−q+i).

In particular, τ(p,0,−q) occurs in τ(p,0,0) ⊗ τ(0,0,−q) with multiplicity one.

Now we give a natural construction of the representation τ(p,0,−q) in L2(K). In
the tautological representation

K ∋ k 7→ s(k) = (sij(k))1≤i,j≤3 ∈ U(3) ⊂ G

of K, we can consider each of the matrix coefficients sij as a L2-function on K. Then,
for each fixed 1 ≤ i ≤ 3, the set {si1, si2, si3} of the matrix coefficients generates a
representation isomorphic to τe1 in L2

(M,σei )
(K). The correspondence to the GZ-basis

is given as follows.

si1 ↔ f

(
e1

1 0
1

)
, si2 ↔ f

(
e1

1 0
0

)
, si3 ↔ f

(
e1

0 0
0

)
.

Ek
12 Ek

21 Ek
23 Ek

32 Ek
13 Ek

31

si1 0 si2 0 0 0 si3

si2 si1 0 0 si3 0 0
si3 0 0 si2 0 si1 0
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TABLE 2. Actions of the simple root vectors Ek
ij on {sij(k)}.

Similarly, if we consider the matrix coefficients sij of the representation

K ∋ k 7→ s(k) = (sij(k))1≤i,j≤3 ∈ U(3) ⊂ G,

as a L2-function on K, the set {si1, si2, si3} generates a representation isomorphic to
τ−e3 in L2

(M,σ−ei )
(K) for each fixed i. The correspondence to the GZ-basis is given

by

si3 ↔ f

(
−e3

0 0
0

)
, −si2 ↔ f

(
−e3

0 − 1
0

)
, si1 ↔ f

(
−e3

0 − 1
−1

)
.

Ek
12 Ek

21 Ek
23 Ek

32 Ek
13 Ek

31

si3 0 0 0 −si2 0 −si1

si2 0 −si1 −si3 0 0 0
si1 −si2 0 0 0 −si3 0

TABLE 3. Actions of the simple root vectors Ek
ij on {sij(k)}.

Since we have the isomorphisms τ(p,0,0) ≃ Sympτe1 and τ(0,0,−q) ≃ Symqτ−e3 , the facts
discussed above lead the following lemma immediately.

Lemma 4.7. Let p, q ∈ Z≥0.

1. For each fixed 1 ≤ i ≤ 3, the function sp
i1 ∈ L2

(M,σpei )
(K) generates a repre-

sentation isomorphic to τ(p,0,0) by its right translations and becomes its highest
weight vector.

2. For each fixed 1 ≤ i ≤ 3, the function si3
q ∈ L2

(M,σ−qei )
(K) generates a repre-

sentation isomorphic to τ(0,0,−q) by its right translations and becomes its highest
weight vector.

3. For each fixed 1 ≤ i, j ≤ 3 such that i ̸= j, the function sp
i1sj3

q ∈ L2
(M,σpei−qej )(K)

generates a representation isomorphic to τ(p,0,−q) by its right translations and
becomes its highest weight vector.

In the above realization, the highest weight vector f(L(1)) in V(p,0,−q) corresponds
to the function sp

i1sj3
q in L2

(M,σpei−qej )(K). The next lemma gives the correspondence

between the extremal weight vectors f(L(k)) for 1 ≤ k ≤ 6 in V(p,0,−q) and the
functions in L2

(M,σpei−qej )(K) together with their neighbors.

Lemma 4.8. Let µ = (p, 0,−q), and for 1 ≤ k ≤ 6 let L(k) be the G-patterns
belonging to the highest weight µ defined in Lemma 4.3 and Lemma 4.5 which give
the extremal vectors in Vµ. In the above embedding of Vµ in L2

(M,σpei−qej )(K), we

have the following correspondence with the GZ-basis.

1.

f
(
L(1)

)
↔ sp

i1sj3
q, f

(
L(1)

(
0 0
−1

))
↔ sp−1

i1 si2sj3
q,

f
(
L(1)

(
0 − 1

0

))
↔ −sp

i1sj3
q−1sj2, f

(
L(1)

(
0 − 1
−1

))
↔ sp

i1sj1 sj3
q−1,

f
(
L(1)

(
−1 0

−1

))
↔ sp−1

i1 si3sj3
q.
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2.

f
(
L(2)

)
↔ sp

i2sj3
q, f

(
L(2)

(
0 0
1

))
↔ sp−1

i2 si1sj3
q,

f
(
L(2)

(
0 − 1
−1

))
↔ sp

i2sj3
q−1sj1, f

(
L(2)

(
0 − 1

0

))
↔ sp−1

i2 si1sj3
q−1 sj1,

f
(
L(2)

(
−1 0

0

))
↔ sp−1

i2 si3sj3
q.

3.

f
(
L(3)

)
↔ sp

i1(−sj2)
q, f

(
L(3)

(
0 1
0

))
↔ sp

i1(−sj2)
q−1sj3,

f
(
L(3)

(
−1 0
−1

))
↔ sp−1

i1 si3(−sj2)
q, f

(
L(3)

(
0 0
−1

))
↔ sp

i1(−sj2)
q−1sj1,

f
(
L(3)

(
−1 1
−1

))
↔ sp−1

i1 si3(−sj2)
q−1sj3.

4.

f
(
L(4)

)
↔ sp

i2sj1
q, f

(
L(4)

(
0 1

1

))
↔ sp

i2sj1
q−1sj3,

f
(
L(4)

(
−1 0

0

))
↔ sp−1

i2 si3sj1
q, f

(
L(4)

(
0 0
1

))
↔ sp−1

i2 si1sj1
q,

f
(
L(4)

(
−1 1

1

))
↔ sp−1

i2 si3sj1
q−1sj3.

5.

f
(
L(5)

)
↔ sp

i3(−sj2)
q, f

(
L(5)

(
1 0

1

))
↔ sp−1

i3 si1(−sj2)
q,

f
(
L(5)

(
0 0

−1

))
↔ sp

i3(−sj2)
q−1sj1, f

(
L(5)

(
1 0

0

))
↔ sp−1

i3 si1(−sj2)
q−1sj1,

f
(
L(5)

(
0 1

0

))
↔ sp

i3(−sj2)
q−1sj3.

6.

f
(
L(6)

)
↔ sp

i3sj1
q, f

(
L(6)

(
1 0
0

))
↔ sp−1

i3 si2sj1
q,

f
(
L(6)

(
0 0
1

))
↔ sp

i3sj1
q−1(−sj2), f

(
L(6)

(
1 0
1

))
↔ sp−1

i3 si1sj1
q,

f
(
L(6)

(
0 1
1

))
↔ sp

i3sj1
q−1sj3.

Proof. First we prove the correspondence in the assertion 1. From Lemma 4.1, we
have

Ek
21f(L(1)) = p · f

(
L(1)

(
0 0
−1

))
, Ek

32f(L(1)) = q · f
(
L(1)

(
0 − 1

0

))
.

On the other hand, by using the actions given in tables 2 and 3 we obtain

Ek
21(s

p
i1sj3

q) = p · sp−1
i1 si2sj3

q, Ek
32(s

p
i1sj3

q) = −q · sp
i1sj3

q−1sj2.

These give the second and the third correspondences in the assertion 1. The fourth
and the fifth one are obtained by the equations

Ek
31f(L(1)) = −q · f

(
L(1)

(
0 − 1
−1

))
+ p · f

(
L(1)

(
−1 0
−1

))
,

Ek
32f

(
L(1)

(
0 0
−1

))
= −q · f

(
L(1)

(
0 − 1
−1

))
+ (−q + 1) · f

(
L(1)

(
−1 0
−1

))
,

from Lemma 4.1 and

Ek
31(s

p
i1sj3

q) = −q · sp
i1sj1 sj3

q−1 + p · sp−1
i1 si3sj3

q,
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Ek
32(s

p−1
i1 si2sj3

q) = sp−1
i1 si3sj3

q + q · sp−1
i1 si2sj2 sj3

q−1

= −q · sp
i1sj1 sj3

q−1 + (−q + 1) · sp−1
i1 si3sj3

q,

from tables 2, 3 together with the relation

si1sj1 + si2sj2 + si3sj3 = 0, i ̸= j,

which comes from the unitarity.
The correspondences given in the other assertions are obtained similarly, if the

correspondences for the extremal weight vectors are given. Lemma 4.1 gives the
following relations between the extremal weight vectors in Vµ.(

Ek
21

)p
f

(
L(1)

)
= p!f

(
L(2)

)
,

(
Ek

32

)q
f

(
L(1)

)
= q!f

(
L(3)

)
,(

Ek
31

)q
f

(
L(2)

)
= q!(−1)qf

(
L(4)

)
,

(
Ek

31

)p
f

(
L(3)

)
= p!f

(
L(5)

)
,(

Ek
32

)p
f

(
L(4)

)
= p!f

(
L(6)

)
,

(
Ek

21

)q
f

(
L(5)

)
= q!f

(
L(6)

)
.

By considering the corresponding actions in L2
(M,σpei−qej )(K), we have the correspon-

dences for the extremal weight vectors in the assertions 2 to 5. 2

5. (gC, K)-module structure

Let π = π(ν, σn) be an irreducible principal series representation with data ν =
(ν1, ν2, ν3) and n = (n1, n2, n3), and let τ ∗ = τm be the minimal K-type of π. Here
m = (m1,m2,m3) ∈ Λ is the dominant permutation of n. In this subsection, we
explain some equations for weight vectors in the minimal K-type τm of π, which are
determined from (gC, K)-module structure of π. Although we need only a partial
result here, we can describe the whole (gC, K)-module structure of the principal
series representation as in the case of Sp(2,R) ([16]), Sp(3,R) ([14]), and SL(3,R)
([15]).

5.1. Differential equations for generators of Z(gC). For a Lie algebra l over
C, let us denote the universal enveloping algebra of l by U(l).

It is well known that an element C in the center Z(gC) of U(gC) acts as a scalar
on the K-finite vectors in π. Thus, if we take an injection j ∈ Hom K(τm, π|K), then
each element of the GZ-basis {f(M)}M∈G(m) of Vm satisfies the equation

C · j(f(M)) = χCj(f(M)),(1)

for a scalar χC.
Now we construct a set of generators of Z(gC). To do this, we use the Capelli

elements in U(g) given in the following lemma (cf. [8] §11).

Lemma 5.1. Define three elements

Cp1,R = I3,

Cp2,R = (E11 − 1)E22 + E22(E33 + 1) + (E11 − 1)(E33 + 1)

−E23E32 − E13E31 − E12E21,

Cp3,R = (E11 − 1)E22(E33 + 1) + E12E23E31 + E13E21E32

−(E11 − 1)E23E32 − E13E22E31 − E12E21(E33 + 1).
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in U(g). Then the set {Cpk,R | 1 ≤ k ≤ 3} is a system of independent generators of
Z(g).

The complexification gC of the Lie algebra g can be identified with g ⊕ g in such
way that X ∈ gC corresponds to the element X ⊕ X̄, where X̄ is the complex
conjugate of X. Hence the universal enveloping algebra U(gC) of gC is isomorphic
to U(g) ⊗C U(g). From this identification and Lemma 5.1, we have the following
lemma which gives a set of generators of Z(gC).

Lemma 5.2. For 1 ≤ k ≤ 3, put Cp
(1)
k = Cpk,R ⊗ 1 and Cp

(2)
k = 1 ⊗ Cpk,R in

U(g) ⊗C U(g). Then the set {Cp
(i)
k |1 ≤ i ≤ 2, 1 ≤ k ≤ 3} gives a system of

independent generators of Z(gC), considered as a subalgebra of U(g) ⊗C U(g).

For the generators Cp
(i)
k given in Lemma 5.2, we give their expression as the

elements in U(gC).

Lemma 5.3. As the elements in U(gC), the generators Cp
(i)
k of Z(gC) are given as

follows.

Cp
(1)
1 =

1

2

(
Ip
3 + Ik

3

)
,

Cp
(2)
1 =

1

2

(
Ip
3 − Ik

3

)
,

Cp
(1)
2 =

1

4

{(
Ep

11 + Ek
11 − 2

) (
Ep

22 + Ek
22

)
+

(
Ep

22 + Ek
22

) (
Ep

33 + Ek
33 + 2

)
+

(
Ep

11 + Ek
11 − 2

) (
Ep

33 + Ek
33 + 2

)
−

(
Ep

23 + Ek
23

) (
Ep

32 + Ek
32

)
−

(
Ep

13 + Ek
13

) (
Ep

31 + Ek
31

)
−

(
Ep

12 + Ek
12

) (
Ep

21 + Ek
21

)}
,

Cp
(2)
2 =

1

4

{(
Ep

11 − Ek
11 − 2

) (
Ep

22 − Ek
22

)
+

(
Ep

22 − Ek
22

) (
Ep

33 − Ek
33 + 2

)
+

(
Ep

11 − Ek
11 − 2

) (
Ep

33 − Ek
33 + 2

)
−

(
Ep

32 − Ek
32

) (
Ep

23 − Ek
23

)
−

(
Ep

31 − Ek
31

) (
Ep

13 − Ek
13

)
−

(
Ep

21 − Ek
21

) (
Ep

12 − Ek
12

)}
,

Cp
(1)
3 =

1

8

{(
Ep

11 + Ek
11 − 2

) (
Ep

22 + Ek
22

) (
Ep

33 + Ek
33 + 2

)
+

(
Ep

12 + Ek
12

) (
Ep

23 + Ek
23

) (
Ep

31 + Ek
31

)
+

(
Ep

13 + Ek
13

) (
Ep

21 + Ek
21

) (
Ep

32 + Ek
32

)
−

(
Ep

11 + Ek
11 − 2

) (
Ep

23 + Ek
23

) (
Ep

32 + Ek
32

)
−

(
Ep

13 + Ek
13

) (
Ep

22 + Ek
22

) (
Ep

31 + Ek
31

)
−

(
Ep

12 + Ek
12

) (
Ep

21 + Ek
21

) (
Ep

33 + Ek
33 + 2

)}
,

Cp
(2)
3 =

1

8

{(
Ep

11 − Ek
11 − 2

) (
Ep

22 − Ek
22

) (
Ep

33 − Ek
33 + 2

)
+

(
Ep

21 − Ek
21

) (
Ep

32 − Ek
32

) (
Ep

13 − Ek
13

)
+

(
Ep

31 − Ek
31

) (
Ep

12 − Ek
12

) (
Ep

23 − Ek
23

)
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−
(
Ep

11 − Ek
11 − 2

) (
Ep

32 − Ek
32

) (
Ep

23 − Ek
23

)
−

(
Ep

31 − Ek
31

) (
Ep

22 − Ek
22

) (
Ep

13 − Ek
13

)
−

(
Ep

21 − Ek
21

) (
Ep

12 − Ek
12

) (
Ep

33 − Ek
33 + 2

)}
.

Proof. From the definition, the elements Ek
ij and Ep

ij in gC correspond to the el-
ements Eij ⊕ (−Eji) and Eij ⊕ Eji in g ⊕ g, respectively. Therefore, we have the
correspondence between Ep

ij + Ek
ij (resp. Ep

ij − Ek
ij) and 2Eij ⊕ 0 (resp. 0 ⊕ 2Eji).

The assertion can be obtained from the above correspondences and the definition of

the generators Cp
(i)
k by direct computation. 2

For each C = Cp
(i)
k , the scalar value χC in the equation (1) can be obtained by

considering the evaluation of the left hand side at the identity.

Lemma 5.4.

χ
Cp

(1)
1

=
1

2

∑
1≤i≤3

(νi + ni), χ
Cp

(2)
1

=
1

2

∑
1≤i≤3

(νi − ni),

χ
Cp

(1)
2

=
1

4

∑
1≤i<j≤3

(νi + ni)(νj + nj), χ
Cp

(2)
2

=
1

4

∑
1≤i<j≤3

(νi − ni)(νj − nj),

χ
Cp

(1)
3

=
1

8

∏
1≤i≤3

(νi + ni), χ
Cp

(2)
3

=
1

8

∏
1≤i≤3

(νi − ni).

Proof. We evaluate the actions of Cp
(i)
k on the representation space L2

(M,σn)(K) of

π = π(ν, σn) at the identity using their expressions in Lemma 5.3. Then the elements
Ep

11, Ep
22, and Ep

33 in a act by the scalar ν1 + 2, ν2, and ν3 − 2, respectively. Also,
the elements Ek

11, Ek
22, and Ek

33 in mC act by the scalar n1, n2, and n3, respectively.
Moreover, Ep

ij +Ek
ij = Eij −

√
−1E ′

ij and Ep
ji −Ek

ji = Eij +
√
−1E ′

ij belong to nC for
i < j and thus their actions are zero. From the above facts, the eigen-values χ

Cp
(i)
k

can be calculated as in the assertion. 2

5.2. The Dirac-Schmid eigen-equations. For i = 1, 2, let ιi be the injectors
from Vm into p0,C ⊗ Vm ≃ Ve1−e3 ⊗ Vm defined in Lemma 4.4, and fix an injection
j ∈ Hom K(τm, π|K). Since τm occurs with multiplicity one in π|K , the composition

Vm
ιi−→ p0,C ⊗ Vm

α−→ π(p0,C)j(Vm) ⊂ L2
(M,σn)(K)

is a scalar multiple of j, where α is the evaluation map. Thus, if we write

ιi(f(M)) =
∑

M ′∈G(m)

X
(i)
M,M ′ ⊗ f(M ′), X

(i)
M,M ′ ∈ p0,C,

for the GZ-basis {f(M)}M∈G(m) in Vm, then we have the following system of equa-
tions ∑

M ′∈G(m)

X
(i)
M,M ′ · j(f(M ′)) = λij(f(M)), M ∈ G(m)(2)

for a scalar λi. We call this system of equations (2) the Dirac-Schmid eigen-
equations. Here if m1 = m2 (resp. m2 = m3) then the Dirac Schmid eigen-equation
(2) for i = 2 (resp. i = 1) is not valid.
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The scalar values λi in the Dirac-Schmid eigen-equations (2) are given as follows.

Lemma 5.5. If m = (na, nb, nc), then we have

λ1 = νc −
1

3
ν̃, λ2 = νa −

1

3
ν̃.

Here ν̃ = ν1 + ν2 + ν3.

Proof. Let us assume that n1 > n2 > n3, i.e. m = n. Then the Dirac-Schmid
equation (2) for i = 1 and the G-pattern M = L(1) becomes the following equation
in L2

(M,σm)(K).

1

3

(
Hp

31 + Hp
32

)
(sp

11s33
q det(S)n2) (k)

−Ep
23

(
−sp

11s32 s33
q−1 det(S)n2

)
(k) + Ep

13

(
sp
11s31 s33

q−1 det(S)n2
)
(k)

= λ1 (sp
11s33

q det(S)n2) (k),

with p = na−nb = n1−n2 and q = nb−nc = n2−n3. Here we use the identification
of p0,C with Ve1−e3 in Lemma 4.2, the expression of the highest weight vector v1 =
ι1

(
f

(
L(1)

))
in Lemma 4.3, and the correspondence between the GZ-basis of Vm and

L2
(M,σn)(K) in Lemma 4.8. If we evaluate this equation at the identity k = e after

computing the actions of the elements in U(gC), we obtain λ1 = ν3 − 1
3
ν̃. Similarly

we have λ2 = ν1 − 1
3
ν̃.

For the other cases of m, the scalar-values λi can be obtained by evaluating the
Dirac-Schmid equation (2) at the G-patterns corresponding to the other extremal
weight vectors as in the following table. 2

(a, b, c) (1, 2, 3) (2, 1, 3) (1, 3, 2) (2, 3, 1) (3, 1, 2) (3, 2, 1)
G-pattern M L(1) L(2) L(3) L(4) L(5) L(6)

TABLE 4.

For our later computation, we define λ3 by the relation λ1 + λ2 + λ3 = 0, that is,
λ3 = νb − 1

3
ν̃ if m = (na, nb, nc).

6. Whittaker realization

Let π = π(ν, σn) be an irreducible principal series representation with data
ν = (ν1, ν2, ν3) and n = (n1, n2, n3), and let τ ∗ = τm associated to the dominant
permutation m = (m1,m2,m3) ∈ Λ of n be the minimal K-type of π, as in the
previous section. Moreover let η = ηc1,c2 be a non-degenerate unitary character of
N specified by the parameters c1 and c2. In this section, we write the Whittaker
realization, i.e. the realization in the space C∞

η (N\G), of the equations (1) and (2)
explicitly.

6.1. Preliminaries. A Whittaker function ϕ ∈ Wh(π, η, τ ) ⊂ C∞
η,τ (N\G/K) is

expressed as
T (j(v∗))(g) = ⟨v∗, ϕ(g)⟩, v∗ ∈ Vτ∗ , g ∈ G,

with an intertwining operator T ∈ Iπ,η and an injective K-homomorphism j ∈
Hom K(τ ∗, π|K), by definition. Now, for each G-pattern M ∈ G(m) belonging to m,
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we define a function ϕ(M) in C∞
η (N\G) by taking the element f(M) of the GZ-basis

{f(M)}M∈G(m) for Vm as v∗ ∈ Vτ∗ = Vm in the above equation, that is,

ϕ(M ; g) = T (j(f(M)))(g) = ⟨f(M), ϕ(g)⟩, g ∈ G.

We call this function ϕ(M) the M -component of a Whittaker function ϕ.
Whittaker functions are determined by its A-radial parts (i.e. its restriction to

A) because of the Iwasawa decomposition of G. Moreover, the values of Whittaker
functions on the center ZG of G are given by the central character of π, i.e.,

ϕ(rug) = rν̃uñϕ(g), ϕ ∈ Wh(π, η, τ ), r ∈ R>0, u ∈ U(1), g ∈ G.

Therefore, we can describe Whittaker functions as functions of two variables with
the coordinates

y1 =
a1

a2

, y2 =
a2

a3

for diag (a1, a2, a3) = a3 · diag (y1y2, y2, 1) ∈ A, which correspond to simple roots of

(a, g). Also, we denote the Euler operator with respect to yi by ∂i = yi
∂

∂yi

.

6.2. Differential equations. Let ϕ ∈ Wh(π, η, τ ) be a Whittaker function deter-
mined by an intertwining operator T ∈ Iπ,τ and an injection j ∈ Hom K(τ ∗, π|K)
and ϕ(M) be its M -component. For each M ∈ G(m), we consider the image of both
side of the equation (1) by T ;

T (C · j(f(M)))(g) = T (χCj(f(M)))(g), g ∈ G.

Then the intertwining property of T leads the differential equation

Cϕ(M ; y) = χCϕ(M ; y), y = (y1, y2).(3)

for the A-radial part of ϕ(M). Similarly, the Dirac-Schmid eigen-equation (2) leads
the differential equation∑

M ′∈G(m)

X
(i)
M,M ′ϕ(M ′; y) = λiϕ(M ; y), y = (y1, y2).(4)

In this subsection, we write these equations (3) and (4), explicitly.
First, we observe the following fundamental lemmas.

Lemma 6.1. Let f ∈ C∞
η,τ (N\G/K). For X ∈ U(kC), Y ∈ U(nC), Z ∈ U(aC), and

a ∈ A, we have (Ad (a−1)Y )ZXf(a) = η(Y )τ(−X)(Zf)(a).

Lemma 6.2. Let ϕ = ϕ(y) ∈ Wh(π, η, τ )|A.

1. The actions of elements Hp
12, Hp

23, and Ip
3 in aC on ϕ are the following differ-

entials.

Hp
12ϕ = (2∂1 − ∂2)ϕ, Hp

23ϕ = (−∂1 + 2∂2)ϕ, Ip
3ϕ = ν̃ϕ.

Thus, for Ep
ii we have

Ep
11ϕ =

(
∂1 +

ν̃

3

)
ϕ, Ep

22ϕ

(
−∂1 + ∂2 +

ν̃

3

)
ϕ, Ep

33ϕ =

(
−∂2 +

ν̃

3

)
ϕ.
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2. The actions of elements Ep
ij + Ek

ij and Ep
ji − Ek

ji with i < j in nC on ϕ are the
following multiplications.(

Ep
21 − Ek

21

)
ϕ = 2π

√
−1c1y1ϕ,

(
Ep

12 + Ek
12

)
ϕ = 2π

√
−1c̄1y1ϕ,(

Ep
32 − Ek

32

)
ϕ = 2π

√
−1c2y2ϕ,

(
Ep

23 + Ek
23

)
ϕ = 2π

√
−1c̄2y2ϕ,

and
(
Ep

31 − Ek
31

)
ϕ =

(
Ep

13 + Ek
13

)
ϕ = 0.

The proof is omitted (cf. [13]).
By using the above lemmas together with Lemma 4.1 which gives the actions of

elements Ek
ij in kC, the following explicit description of the equation (3) is obtained

from Lemma 5.3 and Lemma 5.4.

Proposition 6.3. Let ϕ(M) be the M -component of a Whittaker function ϕ ∈
Wh(π, η, τ ) and put ϕ(M ; y) = y2

1y
2
2ϕ̃(M ; y). Then the differential equations (3)

for the Capelli elements C = Cp
(i)
k with k = 2, 3 and i = 1, 2 are given as follows:

Let (w1, w2, w3) = (β, α1 + α2 − β,m1 + m2 + m3 − α1 − α2) be the weight of a

G-pattern M =

(
m1 m2 m3

α1 α2

β

)
.

1. For C = Cp
(1)
2 , we have[(

∂1 +
ν̃

3
+ w1

)(
−∂1 + ∂2 +

ν̃

3
+ w2

)
+

(
−∂1 + ∂2 +

ν̃

3
+ w2

)(
−∂2 +

ν̃

3
+ w3

)
+

(
∂1 +

ν̃

3
+ w1

)(
−∂2 +

ν̃

3
+ w3

)
−

(
2π

√
−1

)2 (
|c1|2y2

1 + |c2|2y2
2

)
−

∑
1≤i<j≤3

(νi + ni)(νj + nj)

]
ϕ̃(M ; y)

−4π
√
−1c̄2y2

{
(α2 − m3) ϕ̃

(
M

(
0 − 1

0

)
; y

)
+χ+(M) (α2 − m3 + δ(M)) ϕ̃

(
M

(
−1 0

0

)
; y

)}
−4π

√
−1c̄1y1

{
(β − α2)ϕ̃

(
M

(
0 0

−1

)
; y

)
+χ−(M)(α1 − m2)ϕ̃

(
M

(
−1 1
−1

)
; y

)}
= 0.

2. For C = Cp
(2)
2 , we have[(

∂1 +
ν̃

3
− w1

)(
−∂1 + ∂2 +

ν̃

3
− w2

)
+

(
−∂1 + ∂2 +

ν̃

3
− w2

)(
−∂2 +

ν̃

3
− w3

)
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+

(
∂1 +

ν̃

3
− w1

)(
−∂2 +

ν̃

3
− w3

)
−

(
2π

√
−1

)2 (
|c1|2y2

1 + |c2|2y2
2

)
−

∑
1≤i<j≤3

(νi − ni)(νj − nj)

]
ϕ̃(M ; y)

+4π
√
−1c2y2

{
(m1 − α1)ϕ̃

(
M

(
1 0
0

)
; y

)
+χ−(M)(m1 − α1 − δ(M))ϕ̃

(
M

(
0 1
0

)
; y

)}
+4π

√
−1c1y1

{
(α1 − β)ϕ̃

(
M

(
0 0
1

)
; y

)
+χ+(M)(m2 − α2)ϕ̃

(
M

(
−1 1

1

)
; y

)}
= 0.

3. For C = Cp
(1)
3 , we have[(

∂1 +
ν̃

3
+ w1

)(
−∂1 + ∂2 +

ν̃

3
+ w2

) (
−∂2 +

ν̃

3
+ w3

)
−

(
2π

√
−1|c2|y2

)2
(

∂1 +
ν̃

3
+ w1

)
−

(
2π

√
−1|c1|y1

)2
(
−∂2 +

ν̃

3
+ w3

)
−

∏
1≤i≤3

(νi + ni)

]
ϕ̃(M ; y)

+2 · 2π
√
−1c̄1y1 · 2π

√
−1c̄2y2{

−(α2 − m3)ϕ̃
(
M

(
0 − 1
−1

)
; y

)
+ C1(M)ϕ̃

(
M

(
−1 0
−1

)
; y

)}
−2 · 2π

√
−1c̄2y2

(
∂1 +

ν̃

3
+ w1

)
{

(α2 − m3)ϕ̃
(
M

(
0 − 1

0

)
; y

)
+ χ+(M)(α2 − m3 + δ(M))ϕ̃

(
M

(
−1 0

0

)
; y

)}
−2 · 2π

√
−1c̄1y1

(
−∂2 +

ν̃

3
+ w3

)
{

(β − α2)ϕ̃
(
M

(
0 0
−1

)
; y

)
+ χ−(M)(α1 − m2)ϕ̃

(
M

(
−1 1
−1

)
; y

)}
= 0.

4. For C = Cp
(2)
3 , we have[(

∂1 +
ν̃

3
− w1

)(
−∂1 + ∂2 +

ν̃

3
− w2

)(
−∂2 +

ν̃

3
− w3

)
−

(
2π

√
−1|c2|y2

)2
(

∂1 +
ν̃

3
− w1

)
−

(
2π

√
−1|c1|y1

)2
(
−∂2 +

ν̃

3
− w3

)
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−
∏

1≤i≤3

(νi − ni)

]
ϕ̃(M ; y)

−2 · 2π
√
−1c1y1 · 2π

√
−1c2y2{

(m1 − α1)ϕ̃
(
M

(
1 0
1

)
; y

)
− C̄1(M)ϕ̃

(
M

(
0 1
1

)
; y

)}
+2 · 2π

√
−1c2y2

(
∂1 +

ν̃

3
− w1

)
{

(m1 − α1)ϕ̃
(
M

(
1 0
0

)
; y

)
+ χ−(M)(m1 − α1 − δ(M))ϕ̃

(
M

(
0 1
0

)
; y

)}
+2 · 2π

√
−1c1y1

(
−∂2 +

ν̃

3
− w3

)
{

(α1 − β)ϕ̃
(
M

(
0 0
1

)
; y

)
+ χ+(M)(m2 − α2)ϕ̃

(
M

(
−1 1

1

)
; y

)}
= 0.

If we evaluate the above equations from Cp
(2)
k with k = 2, 3 at the G-pattern L(1) =(

m1 m2 m3

m1 m2

m1

)
associated with the highest weight vector f(L(1)) in Vm, we obtain

the following system of differential equations for the L(1)-component of Whittaker
functions.

Corollary 6.4. Let ϕ(L(1)) be the L(1)-component of a Whittaker function ϕ ∈
Wh(π, η, τ ). Then the function ϕ̃(L(1)) = y−2

1 y−2
2 ϕ(L(1)) satisfies the following two

differential equations.

1. [
∂2

1 + ∂2
2 − ∂1∂2 − p(∂1 − λ2) − q(∂2 + λ1)

+(λ1λ2 + λ2λ3 + λ3λ1)

+
(
2π

√
−1

)2 (
|c1|2y2

1 + |c2|2y2
2

)]
ϕ̃(L(1); y) = 0.

Here p = m1 − m2 and q = m2 − m3.
2. [(

∂1 +
ν̃

3
− m1

)(
−∂1 + ∂2 +

ν̃

3
− m2

)(
−∂2 +

ν̃

3
− m3

)
−

(
2π

√
−1|c2|y2

)2
(

∂1 +
ν̃

3
− m1

)
−

(
2π

√
−1|c1|y1

)2
(
−∂2 +

ν̃

3
− m3

)
−

(
λ2 +

ν̃

3
− m1

)(
λ3 +

ν̃

3
− m2

)(
λ1 +

ν̃

3
− m3

)]
ϕ̃(L(1); y) = 0.

Proof. In the equations 2 and 4 in the above proposition evaluated at M = L(1),
all terms in the left hand side except the L(1)-component ϕ̃(L(1)) vanish, since the
highest weight vector f(L(1)) in Vm satisfies Ek

ijf(L(1)) = 0 with i < j. Then direct
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computation leads the equations in the corollary. Here we remark the equations∑
i<j

(
ν̃

3
− mi

)(
ν̃

3
− mj

)
−

∑
i<j

(νi − ni)(νj − nj)

= −(λ1λ2 + λ2λ3 + λ3λ1) − pλ2 + qλ1,

and ∏
i

(νi − ni) =

(
λ2 − m1 +

ν̃

3

)(
λ3 − m2 +

ν̃

3

)(
λ1 − m3 +

ν̃

3

)
,

which can be shown by using the definition of λi in Lemma 5.5. 2

Similarly to the equation (3), we can describe the explicit form of the Dirac-Schmid
eigen-equation (4) for each G-pattern M . However we need only the following partial
result in our later discussion.

Proposition 6.5. Let ϕ(M) be the M -component of a Whittaker function ϕ ∈
Wh(π, η, τ ) and put ϕ(M ; y) = y2

1y
2
2ϕ̃(M ; y).

1. If m2 ̸= m3, the Dirac-Schmid eigen-equation (4) for i = 1 at M = L(1)
(

0 0
−k

)
with 0 ≤ k ≤ p = m1 − m2 is given by

(∂2 + λ1)ϕ̃(M ; y)

= −2π
√
−1c̄2y2

{
ϕ̃

(
M

(
0 − 1

0

)
; y

)
+ χ+(M)ϕ̃

(
M

(
−1 0

0

)
; y

)}
.

2. If m1 ̸= m2, the Dirac-Schmid eigen-equation (4) for i = 2 at M = L(1)
(

0 − k
0

)
with 0 ≤ k ≤ q = m2 − m3 is given by

(∂1 − λ2)ϕ̃(M ; y)

= −2π
√
−1c̄1y1

{
ϕ̃

(
M

(
0 0
−1

)
; y

)
+ χ−(M)ϕ̃

(
M

(
−1 1
−1

)
; y

)}
.

Proof. Assume m2 ̸= m3. If we evaluate the formula 1 of the injector ι1 in Theorem

4.4 at M = L(1)
(

0 0
−k

)
, then we have

ι1(f(M)) = f

(
e1−e3

0 0
0

)
⊗ f(M)

−f

(
e1−e3

1 0
0

)
⊗

{
f

(
M

(
0 − 1

0

))
+ χ+(M)f

(
M

(
−1 0

0

))}
+f

(
e1−e3

1 0
1

)
⊗ f

(
M

(
0 − 1
−1

))
.

By using the correspondence between Ve1−e3 and p0,C in Lemma 4.2 and the funda-
mental lemmas on the actions of U(gC) on the space of Whittaker functions given in
the top of this subsection, the above injection formula leads the following equation
for the M -components of a Whittaker function ϕ ∈ Wh(π, η, τ ).

(∂2 + λ1) ϕ(M ; y)

= −
(
2ϕ

√
−1c̄2y2 − Ek

23

) {
ϕ

(
M

(
0 − 1

0

)
; y

)
+ χ+(M)ϕ

(
M

(
−1 0

0

)
; y

)}
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−Ek
13ϕ

(
M

(
0 − 1
−1

)
; y

)
.

Thus we have the equation in the assertion 1, because of the equations

Ek
23

{
f

(
M

(
0 − 1

0

))
+ χ+(M)f

(
M

(
−1 0

0

))}
= −Ek

13f
(
M

(
0 − 1

−1

))
= f(M),

which are obtained from Lemma 4.1. The equation in 2 can be shown similarly. 2

7. Explicit formulas

Let us take π = π(ν, σn), τ ∗ = τm, and η = ηc1,c2 as in the previous section. In this
section, we discuss explicit descriptions for the Whittaker functions with respect to
(π, η, τ ) which is our main theme in this paper.

7.1. Preliminaries. Let ϕ ∈ Wh(π, η, τ ) be a Whittaker function with respect to
(π, η, τ ). Then the set {ϕ(M)}M∈G(m) of M -components of ϕ satisfies the system
of equations (3) and (4) in §6.2. Before studying explicit formulas, we observe the
following lemma concerning this system of equations.

Lemma 7.1. A Whittaker function ϕ ∈ Wh(π, η, τ ) is determined by its L(1)-
component ϕ(L(1)). That is, all M-components ϕ(M) of ϕ ∈ Wh(π, η, τ ) are uniquely
determined from ϕ(L(1)) by the equations in Proposition 6.3 and Proposition 6.5.

Proof. To prove this assertion, we may give an effective procedure for determining
all M -components ϕ̃(M) from ϕ̃(L(1)). In the following, we promise that ϕ̃(M ′)
means zero if M ′ violates the conditions of G-patterns.

First, we can find the components ϕ̃
(
L(1)

(
0 −1

0

))
and ϕ̃

(
L(1)

(
0 0

−1

))
from the

equations in Proposition 6.5 for k = 0;

(∂2 + λ1)ϕ̃(L(1); y) = −2π
√
−1c̄2y2ϕ̃

(
L(1)

(
0 −1

0

)
; y

)
,

(∂1 − λ2)ϕ̃(L(1); y) = −2π
√
−1c̄1y1ϕ̃

(
L(1)

(
0 0
−1

)
; y

)
.

Next let us take 1 ≤ k ≤ m1−m2 and assume that the components ϕ̃
(
L(1)

(
0 0
−i

))
,

ϕ̃
(
L(1)

(
0 −1
−i

))
, and ϕ̃

(
L(1)

(
−1 0
−i

))
for 0 ≤ i ≤ k−1 are all known. Then, in the

equation 1 of Proposition 6.3 evaluated for M = L(1)
(

0 0

−k+1

)
, the only unknown

function is ϕ̃
(
L(1)

(
0 0
−k

))
with the coefficient −4π

√
−1c̄1y1(m1−m2−k+1). Thus

the L(1)
(

0 0

−k

)
-component is determined. Moreover the equation 3 in Proposition

6.3 for M = L(1)
(

0 0
−k+1

)
and the equation 1 in Proposition 6.5 for M = L(1)

(
0 0
−k

)
have the unknown terms

2 · 2π
√
−1c̄1y1 · 2π

√
−1c̄2y2

×
{
−(m2 − m3)ϕ̃

(
L(1)

(
0 −1
−k

))
+ (m1 − m2 − k + 1)ϕ̃

(
L(1)

(
−1 0
−k

))}
,
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and

−2π
√
−1c̄2y2

{
ϕ̃

(
L(1)

(
0 −1
−k

))
+ ϕ̃

(
L(1)

(
−1 0
−k

))}
,

respectively, and thus these two unknown components are determined from these two

equations. Similarly, for fixed 1 ≤ k ≤ m2−m3, if the components ϕ̃
(
L(1)

(
0 −i

0

))
,

ϕ̃
(
L(1)

(
0 −i
−1

))
, and ϕ̃

(
L(1)

(
−1 −i+1

−1

))
for 0 ≤ i ≤ k − 1 are all given, then the

three components ϕ̃
(
L(1)

(
0 −k

0

))
, ϕ̃

(
L(1)

(
0 −k
−1

))
, and ϕ̃

(
L(1)

(
−1 −k+1

−1

))
can be determined from the equations 1 and 3 in Proposition 6.3 and the equa-
tion 2 in Proposition 6.5. Therefore the M -components ϕ̃(M) corresponding to
the weights (m1 − i, m2 + i − j,m3 + j) for 0 ≤ i ≤ m1 − m2 and j = 0, 1 and
(m1 − j,m2 − i + j,m3 + i) for 0 ≤ i ≤ m2 − m3 and j = 0, 1 can be determined.

To determine the remaining M -components, we need only the equations 1 and
3 in Proposition 6.3. This process is done one by one from the larger pair (w1 −
w3, |δ(M)|) in lexicographical order, where (w1, w2, w3) is the weight corresponding
to G-pattern M . We leave the details for the reader. 2

The proof of this lemma shows that all M -components ϕ(M) of a Whittaker
function ϕ are moderate growth functions if and only if ϕ(L(1)) is. Thus a Whittaker
function is in the space Wh(π, η, τ )mod if and only if its L(1)-component is a moderate
growth function.

7.2. The highest weight components of Whittaker functions. According to
Lemma 7.1 in the previous subsection, we may consider their L(1)-components in
order to determine Whittaker functions, which satisfy the holonomic system of par-
tial differential equations in Corollary 6.4. In this subsection, we describe the space
of solutions for this holonomic system explicitly.

The holonomic system of partial differential equations in Corollary 6.4 has regular
singularities along 2 divisors y1 = 0 and y2 = 0 which are of simple normal crossing
at (y1, y2) = (0, 0), in the sense of [17]. First, we consider the power series solutions
of this system at the point (y1, y2) = (0, 0), which give the L(1)-components of the
secondary Whittaker functions with respect to (π, η, τ ). For a power series

(π|c1|y1)
γ1(π|c2|y2)

γ2

∞∑
k,l=0

cγ
k,l(π|c1|y1)

k(π|c2|y2)
l, γ = (γ1, γ2) ∈ C2,(5)

with a characteristic index γ = (γ1, γ2), it is easy to see that the holonomic system
in Corollary 6.4 can be translated into the following system of difference equations
for the coefficients {cγ

k,l}.

Lemma 7.2. The power series (5) satisfies the holonomic system in Corollary 6.4 if
and only if the coefficients {cγ

k,l} satisfy the following system of difference equations.

1. {
(γ1 + k)2 + (γ2 + l)2 − (γ1 + k)(γ2 + l)

−p(γ1 + k − λ2) − q(γ2 + l + λ1) + (λ1λ2 + λ2λ3 + λ3λ1)
}
cγ
k,l

−4cγ
k−2,l − 4cγ

k,l−2 = 0,
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2. {(
γ1 + k +

ν̃

3
− m1

)(
−γ1 + γ2 − k + l +

ν̃

3
− m2

)(
−γ2 − l +

ν̃

3
− m3

)
−

(
λ2 +

ν̃

3
− m1

)(
λ3 +

ν̃

3
− m2

)(
λ1 +

ν̃

3
− m3

)}
cγ
k,l

+4

(
γ1 + k +

ν̃

3
− m1

)
cγ
k,l−2 + 4

(
−γ2 − l +

ν̃

3
− m3

)
cγ
k−2,l = 0.

Here we understand cγ
k,l = 0 if k < 0 or l < 0.

Observe that all coefficients cγ
k,l are determined inductively from an initial non-

zero coefficients cγ
0,0 by the first difference equation in Lemma 7.2. The characteristic

indices γ can be found by putting k = l = 0 in the equations in Lemma 7.2.

Lemma 7.3. The set of characteristic indices {γ(i) = (γ
(i)
1 , γ

(i)
2 ) |1 ≤ i ≤ 6} of the

holonomic system of partial differential equations in Corollary 6.4 at (y1, y2) = (0, 0)
is given as follows.

γ(1) = (λ2,−λ1), γ(2) = (λ3 + p,−λ1),
γ(3) = (λ2,−λ3 + q), γ(4) = (λ1 + p + q,−λ3 + q),
γ(5) = (λ3 + p,−λ2 + p + q), γ(6) = (λ1 + p + q,−λ2 + p + q).

Now, for each 1 ≤ i ≤ 6, we define the coefficients {C(i)
k,l}k,l≥0 by

C
(i)
k,l =


4(−1)k′+l′

k′! · l′!
Γ

 a1

2
− k′,

a2

2
− k′,

a3

2
− l′,

a4

2
− l′

b

2
− k′ − l′

 if (k, l) = (2k′, 2l′),

0 otherwise,

with the parameters

a1 = a3 = b = −γ
(i)
1 − γ

(i)
2 + p + q, a2 = −2γ

(i)
1 + γ

(i)
2 + p, a4 = γ

(i)
1 − 2γ

(i)
2 + q.

Here we use the notation

Γ
[

a1, . . . , ar

b1, . . . , bs

]
=

r∏
i=1

Γ(ai)
/ s∏

i=1

Γ(bi).

Since Γ(x + 1) = xΓ(x) for x ̸∈ Z≤0, we have the relations

C
(i)
k−2,l = C

(i)
k,l × (−k′)

(
a1

2
− k′

)(
a2

2
− k′

) (
b

2
− k′ − l′

)−1

,

C
(i)
k,l−2 = C

(i)
k,l × (−l′)

(
a3

2
− l′

)(
a4

2
− l′

)(
b

2
− k′ − l′

)−1

,

if (k, l) = (2k′, 2l′), and thus,

4
(
C

(i)
k−2,l + C

(i)
k,l−2

)
= C

(i)
k,l

(
k2 − kl + l2 − a2k − a4l

)
.
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This identity shows that the coefficients {C(i)
k,l} satisfy the first difference equations

for γ = γ(i) in Lemma 7.2. Therefore we can state the following proposition on
an explicit formula for the L(1)-components of secondary Whittaker functions with
respect to (π, η, τ ).

Proposition 7.4. For each 1 ≤ i ≤ 6, we define the function φ̃
(i)
3 (L(1); y) by the

power series (5) with the above coefficients {C(i)
k,l}, that is,

φ̃
(i)
3 (L(1); y) = (π|c1|y1)

γ
(i)
1 (π|c2|y2)

γ
(i)
2

∞∑
k′,l′=0,

C
(i)
2k′,2l′(π|c1|y1)

2k′
(π|c2|y2)

2l′ .

Then the set {φ̃(i)
3 (L(1))} gives the complete system of linearly independent solutions

for the holonomic system of differential equations in Corollary 6.4 at y = (0, 0).

Next, we consider a solution with moderate growth property for the holonomic
system of partial differential equations in Corollary 6.4. As we mentioned in the
previous subsection, a Whittaker function ϕ is of moderate growth if and only if its
L(1)-component ϕ(L(1)) is. Therefore the local multiplicity one theorem for Whit-
taker model (cf. [19], [26]) tells that the holonomic system in Corollary 6.4 has
a solution of moderate growth unique up to scalar multiples, which gives the L(1)-
component of the primary Whittaker function. Here we give two integral expressions
of this unique solution of moderate growth.

Proposition 7.5. 1. Put

φ̃mod
3 (L(1); y) =

1

(2π
√
−1)2

∫
s1

∫
s2

V3(L
(1); s1, s2)(π|c1|y1)

−s1(π|c2|y2)
−s2ds1ds2.

Here

V3(L
(1); s1, s2) = Γ

[
s1+λ1+p+q

2
, s1+λ2

2
, s1+λ3+p

2
, s2−λ1

2
, s2−λ2+p+q

2
, s2−λ3+q

2
s1+s2+p+q

2

]
,

and the paths of integrations are the vertical lines from Re si −
√
−1∞ to

Re si +
√
−1∞ with large enough real parts. Then, up to scalar multiples,

the function φ̃mod
3 (L(1)) gives a unique solution with moderate growth property

for the holonomic system of partial differential equations in Corollary 6.4.
2. The function φ̃mod

3 (L(1)) has the following integral expression of Euler type.

φ̃mod
3 (L(1); y) = 24(π|c1|y1)

−λ3+p+q
2 (π|c2|y2)

λ3+p+q
2

×
∫ ∞

0

KA

(
2π|c1|y1

√
1 +

1

v

)
KA

(
2π|c2|y2

√
1 + v

)
vB dv

v
.

Here Kν(z) is the modified Bessel function of the second kind and the parame-
ters A and B are given by

A =
λ1 − λ2 + p + q

2
, B =

3λ3 + p − q

4
.
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3. The function φ̃mod
3 (L(1)) has the following factorization by the power series

φ̃
(i)
3 (L(1)) defined in Proposition 7.4.

φ̃mod
3 (L(1); y) =

6∑
i=1

φ̃
(i)
3 (L(1); y).

Proof. The Stirling formula for the gamma function shows that the double Mellin-
Barnes integral defining the function φ̃mod

3 (L(1)) converges absolutely and also defines
a moderate growth function of y. The second assertion follows from Lemma 7.1 in the
paper [13]. Moving the integration paths in the definition of φ̃mod

3 (L(1)) to the left, we
have the third assertion after the standard residue calculus. The factorization in the
third assertion means that the function φ̃mod

3 (L(1)) satisfies the holonomic system in
Corollary 6.4. Therefore, φ̃mod

3 (L(1)) gives a unique solution with moderate growth
property for the system, up to scalar multiples. 2

7.3. Explicit formulas of Whittaker functions. As we asserted in Lemma 7.1,
all M -components of a Whittaker function are determined from its L(1)-component
whose explicit formulas are given in the previous subsection. In this subsection, we
give explicit formulas for the whole components of Whittaker functions with respect
to (π, η, τ ). For simplicity, we assume c1 = c2 =

√
−1 in the following discussion.

First, we consider the power series solutions of the holonomic system of differential
equations (3) and (4) at (y1, y2) = (0, 0), which we call the secondary Whittaker

functions. That is, we give a family {ϕ̃(M ; y)}M∈G(m) of power series

ϕ̃(M ; y) = (πy1)
γ1(M)(πy2)

γ2(M)

∞∑
k,l=0

c
γ(M)
k,l (πy1)

k(πy2)
l,(6)

with a characteristic index γ(M) = (γ1(M), γ2(M)) ∈ C2 satisfying the differential
equations in Proposition 6.3 and Propositions 6.5.

Now, for each G-pattern M =

(
m1 m2 m3

α1 α2

β

)
∈ G(m) and each 1 ≤ i ≤ 6, we

define the characteristic index γ(i)(M) = (γ
(i)
1 (M), γ

(i)
2 (M)) and the set of coefficients

{C(i)
k,l(M)}k,l≥0 as follows. Put

ζ
(1)
1 (M) = λ1 − m3 + β, ζ

(2)
1 (M) = −λ1 + m1 − β − δ(M),

ζ
(1)
2 (M) = λ2 + m1 − β, ζ

(2)
2 (M) = −λ2 − m3 + β + δ(M),

ζ
(1)
3 (M) = λ3 + α1 − α2 − |δ(M)|, ζ

(2)
3 (M) = −λ3 + m1 − m3 − α1 + α2.

Then we define γ(i)(M) = (ζ
(1)
ui (M), ζ

(2)
vi (M)) with the index (ui, vi) given in the

following table.

i 1 2 3 4 5 6
(ui, vi) (2, 1) (3, 1) (2, 3) (1, 3) (3, 2) (1, 2)

TABLE 5. Index (ui, vi) in γ(i)(M)
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Here we observe that γ(i)(L(1)) = γ(i) is the characteristic index given in Lemma 7.3.

Moreover we define the coefficients {C(i)
k,l(M)}k,l≥0 by

C
(i)
k,l(M) =


4(−1)k′+l′

k′! · l′!
Γ

 a1

2
− k′,

a2

2
− k′,

a3

2
− l′,

a4

2
− l′

b

2
− k′ − l′

 if (k, l) = (2k′, 2l′),

0 otherwise,

with the parameters given by

{a1, a2} = {ζ(1)
u (M) − ζ(1)

ui
(M) | 1 ≤ u ≤ 3, u ̸= ui},

{a3, a4} = {ζ(2)
v (M) − ζ(2)

vi
(M) | 1 ≤ v ≤ 3, v ̸= vi},

and b = −ζ
(1)
ui (M) − ζ

(2)
vi (M) + ζ

(1)
3 (M) + ζ

(2)
3 (M). We write the power series with

the characteristic index γ(i)(M) and the coefficients {C(i)
k,l(M)}k,l≥0 defined above by

φ̃
(i)
3 (M ; y), i.e.

φ̃
(i)
3 (M ; y) = (πy1)

γ
(i)
1 (M)(πy2)

γ
(i)
2 (M)

∞∑
k′,l′=0,

C
(i)
2k′,2l′(M)(πy1)

2k′
(πy2)

2l′ .

When M = L(1), this power series coincides with the one (for c1 = c2 =
√
−1)

defined in Proposition 7.4.

Theorem 7.6. Let π = π(ν, σn) be an irreducible principal series representation
with data ν = (ν1, ν2, ν3) and n = (n1, n2, n3), and let τ ∗ = τm associated to the
dominant permutation m = (m1,m2,m3) ∈ Λ of n be the minimal K-type of π.
Moreover let η be a non-degenerate unitary character of N specified by the parameters

c1 = c2 =
√
−1. For each 1 ≤ i ≤ 6, let φ

(i)
3 ∈ Wh(π, η, τ ) be the secondary

Whittaker function whose L(1)-component is φ
(i)
3 (L(1)) = y2

1y
2
2φ̃

(i)
3 (L(1)) defined in

Proposition 7.4. Then, for each G-pattern M , the M -component of φ
(i)
3 is φ

(i)
3 (M) =

y2
1y

2
2φ̃

(i)
3 (M).

Proof. We can obtain this assertion similarly to Proposition 7.4, that is, by showing

directly for each 1 ≤ i ≤ 6 the set {C(i)
k,l(M)} satisfies the difference equations for

the coefficients {cγ(M)
k,l } of the power series (6) which is equivalent with Proposition

6.3 and 6.5.
In the case of δ(M) > 0 and γ(M) = γ(1)(M), since

γ(1)
(
M

(
0 −1

0

))
= γ(1)

(
M

(
−1 0

0

))
=

(
γ

(1)
1 (M), γ

(1)
2 (M) + 1

)
,

γ(1)
(
M

(
0 0

−1

))
=

(
γ

(1)
1 (M) + 1, γ

(1)
2 (M)

)
,

the difference equation for {cγ(M)
k,l } equivalent to the equation 1 in Proposition 6.3

is given by[(
γ1(M) + k +

ν̃

3
+ w1

)(
−γ1(M) + γ2(M) − k + l +

ν̃

3
+ w2

)
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+

(
−γ1(M) + γ2(M) − k + l +

ν̃

3
+ w2

)(
−γ2(M) − l +

ν̃

3
+ w3

)
+

(
γ1(M) + k +

ν̃

3
+ w1

)(
−γ2(M) − l +

ν̃

3
+ w3

)
−

∑
1≤i<j≤3

(νi + ni)(νj + nj)

]
c
γ(M)
k,l

+4c
γ(M)
k−2,l + 4c

γ(M)
k,l−2

−4 (α2 − m3) c
γ

„

M

„

0 −1
0

««

k,l−2 − 4 (α2 − m3 + δ(M)) c
γ

„

M

„

−1 0
0

««

k,l−2

−4(β − α2)c
γ

„

M

„

0 0
−1

««

k−2,l = 0.

Then direct computation shows that the coefficients {C(1)
k.l (M)} satisfy the above

difference equation by using the relations

C
(1)
k−2,l(M) = −k′

(
a1

2
− k′

)(
a2

2
− k′

)(
b

2
− k′ − l′

)−1

C
(1)
k,l (M),

C
(1)
k,l−2(M) = −l′

(
a3

2
− l′

)(
a4

2
− l′

)(
b

2
− k′ − l′

)−1

C
(1)
k,l (M),

C
(1)
k,l−2

(
M

(
0 − 1

0

))
= −l′

(
a2

2
− k′

)(
b

2
− k′ − l′

)−1

C
(1)
k,l (M),

C
(1)
k,l−2

(
M

(
−1 0

0

))
= −l′

(
a4

2
− k′

)(
b

2
− k′ − l′

)−1

C
(1)
k,l (M),

C
(1)
k−2,l

(
M

(
0 0

−1

))
= −k′C

(1)
k,l (M),

if (k, l) = (2k′, 2l′), where

a1 = ζ
(1)
1 (M) − ζ

(1)
2 (M), a2 = ζ

(1)
3 (M) − ζ

(1)
2 (M),

a3 = ζ
(2)
2 (M) − ζ

(2)
1 (M), a4 = ζ

(2)
3 (M) − ζ

(2)
1 (M),

and b = −ζ
(1)
2 (M) − ζ

(2)
1 (M) + ζ

(1)
3 (M) + ζ

(2)
3 (M). The other cases can be shown

similarly and we omit their detail. 2

Finally, we state our main result for the primary Whittaker functions with re-
spect to (π, η, τ ), i.e. the unique solution of moderate growth for the holonomic
system of differential equations (3) and (4). If we write such a solution by ϕ ∈
Wh(π, η, τ )mod, then a family {ϕ̃(M ; y)}M∈G(m) consisting of all M -components

ϕ(M ; y) = y2
1y

2
2ϕ̃(M ; y) of ϕ is the unique solution of moderate growth for the

differential equations in Proposition 6.3 and Propositions 6.5. Also, ϕ is given by a
linear combination of the six secondary Whittaker functions φ(i) in Theorem 7.6.

The following theorem can be seen by the same way as the proof of Proposition
7.5.



CALCULUS OF PRINCIPAL SERIES WHITTAKER FUNCTIONS ON GL(3,C) 33

Theorem 7.7. Let π = π(ν, σn), τ ∗ = τm, and η be the representations as in
Theorem 7.6. Moreover let φmod

3 ∈ Wh(π, η, τ )mod be the primary Whittaker function
whose L(1)-component is φmod

3 (L(1)) = y2
1y

2
2φ̃

mod
3 (L(1)) defined in Proposition 7.5.

Then, for each G-pattern M ∈ G(m) we have the following assertions on the M -
component φmod

3 (M) = y2
1y

2
2φ̃

mod
3 (M) of φmod

3 .

1. The function φ̃mod
3 (M) has the following integral expressions:

φ̃mod
3 (M ; y) =

1

(2π
√
−1)2

∫
s1

∫
s2

V3(M ; s1, s2)(πy1)
−s1(πy2)

−s2ds1ds2

= 24(πy1)
−λ3+m1−m3

2 (πy2)
λ3+m1−m3

2

×
∫ ∞

0

KA

(
2πy1

√
1 +

1

v

)
KA+δ(M)

(
2πy2

√
1 + v

)
vB(1 + v)C dv

v
.

Here, in the integral of Mellin-Barnes type, the paths of integrations are the
vertical lines from Re si −

√
−1∞ to Re si +

√
−1∞ with large enough real

parts and the integrand V3(M ; s1, s2) is defined by

V3(M ; s1, s2) = Γ

[
s1+ζ

(1)
1 (M)

2
,

s1+ζ
(1)
2 (M)

2
,

s1+ζ
(1)
3 (M)

2
,

s2+ζ
(2)
1 (M)

2
,

s2+ζ
(2)
2 (M)

2
,

s2+ζ
(2)
3 (M)

2
s1+s2+ζ

(1)
3 (M)+ζ

(2)
3 (M)

2

]
Also, in the integral of Euler type, the parameters A, B and C are given by

A =
ζ

(1)
1 (M) − ζ

(1)
2 (M)

2
, B =

2ζ
(1)
3 (M) − ζ

(1)
1 (M) − ζ

(1)
2 (M)

4
,

and C =
|δ(M)|

2
.

2. The function φ̃mod
3 (M) has the following factorization by the power series φ̃

(i)
3 (M).

φ̃mod
3 (M ; y) =

6∑
i=1

φ̃
(i)
3 (M ; y).

8. Propagation formula

Based on our main result in the previous section, we give here an expression of
Whittaker functions on GL(3,C) in terms of those on GL(2,C), which we call a
propagation formula. This is an analogous formula in the class one case obtained by
Ishii-Stade [10].

8.1. Principal series Whittaker functions on GL(2,C). In this subsection, we
derive an explicit formula of principal series Whittaker functions on GL(2,C) by
similar computation to the case of GL(3,C).

Let G′ = GL(2,C) be the complex general linear group of degree 2 and G′ =
N ′A′K ′ be its Iwasawa decomposition, where K ′ = U(2) is a maximal compact
subgroup of G′ and

A′ =

{(
a1 0
0 a2

) ∣∣∣∣ ai ∈ R>0, i = 1, 2

}
, N ′ =

{
n(x) =

(
1 x
0 1

) ∣∣∣∣ x ∈ C

}
.
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The center ZG′ of G′ is {ru12 | r ∈ R>0, u ∈ U(1)} ≃ C×. The upper triangular
subgroup of G′ is P ′ = N ′A′M ′, where M ′ is the centralizer of A′ in K ′ given by

M ′ =

{(
u1 0
0 u2

) ∣∣∣∣ ui ∈ U(1), i = 1, 2

}
≃ U(1)2.

Next, we recall the representations of K ′, G′, and N ′ which we need in order to
describe the Whittaker functions. We can parameterize the equivalence classes of
irreducible continuous representations of K ′ = U(2) by the set of highest weights

Λ′ = {µ′ = (µ′
1, µ

′
2) |µ′ ∈ Z2, µ′

1 ≥ µ′
2}.

The representation space Vµ′ of the representation τµ′ associated with µ′ = (µ′
1, µ

′
2) ∈

Λ′ has the (normalized) GZ-basis {f ′(M ′)}M ′∈G(µ′) as in the case of U(3). Here

G(µ′) =
{

M ′ =
(

µ′
1 µ′

2

α′

) ∣∣∣ α′ ∈ Z, µ′
1 ≥ α′ ≥ µ′

2

}
.

The explicit action of the complexification k′C of the Lie algebra k′ of K ′ on the
GZ-basis is given as follows. Let us put

Ek′

ij =
1

2

{
(Eij − Eji) −

√
−1

(
E ′

ij + E ′
ji

)}
,

for the matrix unit Eij (resp. E ′
ij) with its (i, j)-entry 1 (resp. J) and the remaining

entries 0. Then

Ek′

iif
′(M ′) = w′

if
′(M), i = 1, 2,

Ek′

12f
′(M ′) = (µ′

1 − α′)f ′ (M ′(1)) ,

Ek′

21f
′(M ′) = (α′ − µ′

2)f
′ (M ′(−1)) .

Here (w′
1, w

′
2) = (α′, µ′

1 + µ′
2 − α′) is the weight of vector f ′(M ′) associated with

a G-pattern M ′ =
(

µ′
1 µ′

2

α′

)
and M ′(i) =

(
µ′

1 µ′
2

α′+i

)
. Moreover, we promise the

corresponding vector f ′(M ′) is zero if M ′(i) appearing in the above formulas violates
the conditions of G-patterns. A principal series representation

π′ = π′(ν ′, σn′) = IndG′

P ′(1N ′ ⊗ eν′+ρ′ ⊗ σn′),

of G′ with data ν ′ = (ν ′
1, ν

′
2) ∈ C2 and n′ = (n′

1, n
′
2) ∈ Z2 induced from the minimal

parabolic subgroup P ′ = N ′A′M ′ is defined similarly to the case of GL(3,C). Here,
the half-sum ρ′ of the positive restricted roots is given by

eρ′(diag (a1, a2)) =
a1

a2

, diag (a1, a2) ∈ A′.

The central character of π′ is

ZG′ ∋ ru12 7→ rν̃′
uñ′

, r ∈ R>0, u ∈ U(1),

with ν̃ ′ = ν ′
1+ν ′

2 and ñ′ = n′
1+n′

2, and the minimal K ′-type of π′ is the representation
(τm′ , Vm′) associated with the dominant permutation m′ = (m′

1,m
′
2) ∈ Λ′ of n′.

Finally, we take a non-degenerate character η′ of N ′ defined by

η′(n(x)) = exp
(
2π

√
−1Im (x)

)
.
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As in the case of GL(3,C), for each element C in the center Z(g′
C) of the universal

enveloping algebra of g′
C each M ′-component ϕ(M ′) of a Whittaker function ϕ ∈

Wh(π′, η′, τ ′) satisfies a differential equation

Cϕ(M ′) = χCϕ(M ′)(7)

with an eigenvalue χC. We can give the following explicit description of the differ-
ential equation (7) in terms of the coordinate

y =
a1

a2

, for diag (a1, a2) = a2 · diag (y, 1) ∈ A′,

by computations similar to the case of GL(3,C).

Proposition 8.1. Let ϕ(M ′) be the M ′-component of a Whittaker function ϕ ∈
Wh(π′, η′, τ ′) and put ϕ(M ′) = yϕ̃(M ′). Then the differential equations (7) for the
Capelli elements of gl2 are given as follows: Let us denote the Euler operator with

respect to y by ∂ = y
d

dy
and put (w′

1, w
′
2) = (α′,m′

1 + m′
2 − α′) be the weight of a

G-pattern M ′ =
(

m′
1 m′

2

α′

)
.

1. [(
∂ +

ν̃ ′

2
+ w′

1

)(
−∂ +

ν̃ ′

2
+ w′

2

)
−

(
2π

√
−1

)2
y2 − (ν ′

1 + n′
1)(ν

′
2 + n′

2)

]
ϕ̃(M ′; y)

−4πy (α′ − m′
2) ϕ̃ (M ′(−1); y) = 0.

2. [(
∂ +

ν̃ ′

2
− w′

1

)(
−∂ +

ν̃ ′

2
− w′

2

)
−

(
2π

√
−1

)2
y2 − (ν ′

1 − n′
1)(ν

′
2 − n′

2)

]
ϕ̃(M ′; y)

−4πy (m′
1 − α′) ϕ̃ (M ′(1); y) = 0.

In particular, the second equation at the G-pattern L′ =
(

m′
1 m′

2

m′
1

)
associated

with the highest weight vector f ′(L′) in Vm′ gives the following differential equation

for ϕ̃(L′). [(
∂ +

ν̃ ′

2
− m′

1

)(
−∂ +

ν̃ ′

2
− m′

2

)
−

(
2π

√
−1

)2
y2 − (ν ′

1 − n′
1)(ν

′
2 − n′

2)

]
ϕ̃(L′; y) = 0.

If we put

λ′
1 = ν ′

b −
ν̃ ′

2
, λ′

2 = ν ′
a −

ν̃ ′

2
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for m′ = (n′
a, n

′
b), then we have the relations λ′

1 + λ′
2 = 0 and

(ν ′
1 ± n′

1)(ν
′
2 ± n′

2) =

(
λ′

2 +
ν̃ ′

2
± m′

1

)(
λ′

1 +
ν̃ ′

2
± m′

2

)
,

and thus we can write the above equation for ϕ̃(L′) as[
∂2 − (m′

1 − m′
2)(∂ + λ′

1) + λ′
1λ

′
2 +

(
2π

√
−1

)2
y2

]
ϕ̃(L′; y) = 0.

As solutions for the differential equations in Proposition 8.1, explicit formulas of
the M ′-components of Whittaker functions are given in the next theorem.

Theorem 8.2. Let π′ = π(ν ′, σn′) be an irreducible principal series representation
with data ν ′ = (ν ′

1, ν
′
2) and n′ = (n′

1, n
′
2), and let (τ ′)∗ = τm′ associated to the domi-

nant permutation m′ = (m′
1, m

′
2) ∈ Λ′ of n′ be the minimal K-type of π. Moreover

let η′ be a non-degenerate unitary character of N defined above.

1. For each G-pattern M ′ =
(

m′
1 m′

2

α′

)
and i = 1, 2, we put

γ(i)(M ′) =

{
λ′

2 + m′
1 − α′, i = 1

λ′
1 − m′

2 + α′, i = 2
,

and define the coefficients {C(i)
2k (M ′)}k≥0 by

C
(i)
2k (M ′) =

2(−1)k

k!
Γ

(
a′

2
− k

)
,

with the parameter a′ = (−1)i
(
γ(1)(M ′) − γ(2)(M ′)

)
. Then the power series

φ̃
(i)
2 (M ′; y) = (πy)γ(i)(M ′)

∞∑
k=0

C
(i)
2k (M ′)(πy)2k

= 2π

(
sin

a′π

2

)−1

(πy)
m′

1−m′
2

2 I−a′
2
(2πy),

for i = 1, 2 give the complete system of linearly independent solutions at y = 0
for the equations in Proposition 8.1. Here Iν(z) is the modified Bessel function
of the first kind.

2. Let φ̃mod
2 (M ′) be the unique (up to constant multiples) solution with the moder-

ate growth property for the differential equations in Proposition 8.1. Then we
have

φ̃mod
2 (M ′; y) =

1

2π
√
−1

∫
s

V2(M
′; s)(πy)−sds = 4(πy)AKB(2πy).

Here, the path of integration is the vertical line from Re s −
√
−1∞ to Re s +√

−1∞ with enough large real part and the integrand V2(M
′; s) is defined by

V2(M
′; s) = Γ

[
s + γ(1)(M ′)

2
,
s + γ(2)(M ′)

2

]
,

and the parameters A and B are given by

A =
m′

1 − m′
2

2
, B =

λ′
1 − λ′

2 + w′
1 − w′

2

2
.
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3. The function φ̃mod
2 (M ′) has the factorization

φ̃mod
2 (M ′; y) =

2∑
i=1

φ̃
(i)
2 (M ′; y).

8.2. Integral formulas. Here we recall some integral formulas which are funda-
mental to derive our propagation formula (see [4] for example).

The modified Bessel function Kν(z) of the second kind has several integral ex-
pressions. Among them, we need two expressions: One is the integral expression of
Mellin-Barnes type

Kν(z) =
1

4
· 1

2π
√
−1

∫
s

Γ

[
s + ν

2
,
s − ν

2

](z

2

)−s

ds.

Here, the path of integration is the vertical line from Re s−
√
−1∞ to Re s+

√
−1∞

with enough large real part. Another is that of Euler type

Kν(z) =
1

2

∫ ∞

0

exp

(
−z(t + t−1)

2

)
tν

dt

t
,

which is valid only for Re z > 0.
Also we need the following integral formula so-called Barnes’ lemma

1

2π
√
−1

∫
z

Γ [z + a, z + b,−z + c,−z + d] dz = Γ

[
a + c, a + d, b + c, b + d

a + b + c + d

]
.

Here the path of integration is the vertical line from Re z−
√
−1∞ to Re z +

√
−1∞

with enough large real part.

8.3. Propagation formula. Let π = π(ν, σn) be an irreducible principal series rep-
resentation of G = GL(3,C) with data ν = (ν1, ν2, ν3) ∈ C3 and n = (n1, n2, n3) ∈
Z3 and let η be a non-degenerate unitary character of N specified by the parameters
c1 = c2 =

√
−1 as in §7.3. For simplicity, we assume that the parameter n satisfies

the regularity condition
n1 ≥ n2 ≥ n3.

Then the minimal K-type of π is (τm, Vm) = (τn, Vn).
Let φmod

3 ∈ Wh(π, η, τ )mod be the primary Whittaker function with the M -

components φmod
3 (M) = y2

1y
2
2φ̃

mod
3 (M) for each G-pattern M =

(
m1 m2 m3

α1 α2

β

)
∈

G(m) given in Theorem 7.7. Under the regularity condition on n, we have the
parameters

(λ1, λ2, λ3) =

(
ν3 −

ν̃

3
, ν1 −

ν̃

3
, ν2 −

ν̃

3

)
.

Theorem 8.3. Let π, τ ∗ = τm, and η be as above. The integrand V3(M ; s1, s2) in
the Mellin-Barnes type integral expression for the M -component φ̃mod

3 (M) in Theo-
rem 7.7 has the following expression.

V3(M ; s1, s2) = Γ

[
s1 + ζ

(1)
j (M)

2
,
s2 + ζ

(2)
j (M)

2

]
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× 1

2π
√
−1

∫
z

Γ

[
z + s1 + µ1

2
,
z + s2 + µ2

2

]
V2(M

′;−z)dz,

where V2(M
′; s) is the integrand of the integral expression of φ̃mod

2 (M ′) in Theorem
8.2 for a triple (π′(ν ′, σn′), η′, τm′) and a G-pattern M ′ ∈ G(m′) and the path of
integration is the vertical line from Re z−

√
−1∞ to Re z+

√
−1∞ with large enough

real part. The parameters and the representations are given as follows.

1. If δ(M) ≥ 0, we have

j = 2, µ1 = −λ2

2
+ β − α2, µ2 =

λ2

2
+ m1 − α1,

ν ′ = (ν2, ν3), n′ = m′ = (m2,m3), M ′ =
(

m2 m3

α2

)
.

2. If δ(M) ≤ 0, we have

j = 1, µ1 = −λ1

2
+ α1 − β, µ2 =

λ1

2
+ α2 − m3,

ν ′ = (ν1, ν2), n′ = m′ = (m1,m2), M ′ =
(

m1 m2

α1

)
.

Proof. Assume δ(M) ≥ 0. Then, since ζ
(1)
1 (M) + ζ

(2)
1 (M) = ζ

(1)
3 (M) + ζ

(2)
3 (M),

Barnes’ lemma leads the equation

V3(M ; s1, s2) = Γ

[
s1 + ζ

(1)
2 (M)

2
,
s2 + ζ

(2)
2 (M)

2

]

× 1

2π
√
−1

∫
z

Γ

[
z + s1 + µ1

2
,
z + s2 + µ2

2
,
−z + µ3

2
,
−z + µ4

2

]
dz,

where the parameters µ1 and µ2 are given in the assertion of theorem and µ3 and
µ4 are

µ3 =
−ν2 + ν3

2
+ α2 − m3, µ4 =

ν2 − ν3

2
− α2 + m2.

Here we use the relations λ1 +
λ2

2
=

−ν2 + ν3

2
and λ3 +

λ2

2
=

ν2 − ν3

2
.

In the case of δ(M) ≤ 0, the relation ζ
(1)
2 (M) + ζ

(2)
2 (M) = ζ

(1)
3 (M) + ζ

(2)
3 (M)

brings the assertion by similar computation. 2

Corollary 8.4. We have the following expression of φ̃mod
3 (M).

φ̃mod
3 (M ; y)

=
24

2π
√
−1

∫
z

(πy1)
z
2
+a1K− z

2
+A1(2πy1)(πy2)

z
2
+a2K z

2
−A2(2πy2)V2(M

′;−z)dz.

Here

ak =
1

2

{
ζ

(k)
j (M) + µk

}
, Ak = ζ

(k)
j (M) − ak, k = 1, 2,

and the parameters and the representations are given in Theorem 8.3.

Proof. Using the first integral expression of Kν(z) of Mellin-Barnes type in the
previous subsection, we can get the corollary from Theorem 8.3 together with the
integral expression of Mellin-Barnes type for φ̃mod

3 (M) in Theorem 7.7. 2
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Corollary 8.5. We have the following expression of φ̃mod
3 (M).

φ̃mod
3 (M ; y) = 4πa1+a2ya1+A1

1 ya2−A2
2

∫ ∞

0

∫ ∞

0

exp

(
−π

(
y2

1u1 +
1

u1

+ y2
2u2 +

1

u2

))
×uA1

1 u−A2
2 φ̃mod

2

(
M ′; y2

√
u2

u1

)
du1

u1

du2

u2

.

Here the parameters and the representations are given in Theorem 8.3.

Proof. By applying the second integral expression of Kν(z) in the previous subsec-
tion to the expression of φ̃mod

3 (M) in Corollary 8.4, we have

φ̃mod
3 (M ; y)

=
4

2π
√
−1

∫ ∞

0

∫ ∞

0

∫
z

exp

(
−πy1

(
u1 +

1

u1

)
− πy2

(
u2 +

1

u2

))
uA1

1 u−A2
2

×(πy1)
a1(πy2)

a2

(
π2y1y2

u2

u1

) z
2

V2(M
′;−z)

du1

u1

du2

u2

dz.

Then we can get the assertion by the substitutions u1 → u1y1, u2 → u2y2, and
z → −z in the above integrals. 2
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