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BOOTSTRAP FOR CONTINUOUS-TIME PROCESSES

MASAAKI FUKASAWA

Abstract. An Edgeworth expansion of a Studentized statistic for an ergodic
regenerative strong Markov process is validated. A specific nonparametric

bootstrap method is proposed and proved to be second-order correct in the
light of the Edgeworth expansion, which is a variant of the regenerative block
bootstrap designed for discrete-time Markov processes. One-dimensional dif-

fusions and semi-Markov processes are treated as examples.

1. Introduction

An Edgeworth expansion (EE) for an ergodic continuous-time process was first
validated by Yoshida [9] as a refinement of the martingale central limit theorem.
Kusuoka and Yoshida [8] and Yoshida [10] extended it by a mixing-based approach,
and Fukasawa [6] also did it by the regenerative method. As in the iid case, one
may expect to obtain, for instance, second-order correct confidence intervals of
estimators by utilizing the EE; however, in nonparametric contexts, no EE result
has been available for Studentized statistics, which hampers the practical use of
the EE theory for continuous-time processes. The first half of this paper extends
the argument of Fukasawa [6] to validate the EE of a Studentized statistic, which
is a counterpart of the result of Bertail and Clémençon [1] for Markov chains. Let
X = {Xt} be a regenerative strong Markov process with stationary distribution µ.
Suppose that a path Xt, 0 ≤ t ≤ T is completely observed. We are interested in
the asymptotic property of an estimator of type

θ̂T =
1
T

∫ T

0

f(Xt)dt

for θ = µ[f ] where f is a µ-integrable function. A nonparametric estimator σ̂T for
the asymptotic variance is proposed and the first-order EE

P [
√

T (θ̂T − θ)/σ̂T ≤ z] = Φ(z) + T−1/2φ(z)(a1 + a2(2z2 + 1)) + O(T−1)

is validated, where Φ and φ are the distribution function and the density of the
standard normal distribution respectively. Exploiting the above expansion, the
latter half of this paper proves the second-order correctness of a variant of the re-
generative block bootstrap proposed by Bertail and Clémençon [2, 3] for Markov
chains. One-dimensional diffusions and semi-Markov processes are treated as ex-
amples. Seemingly, our bootstrap is the only resampling method so far proved
to attain second-order correctness in the context of nonparametric inference for
continuous-time processes.
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2. Edgeworth expansion

2.1. Regenerative method. Here we give a rigorous formulation.

Definition 1. A càdlàg process X is said to be regenerative if there exists an
increasing sequence of finite random times {τj}j≥1 such that

{Xt}0≤t≤τ1 , {Xt}τ1≤t≤τ2 , · · · , {Xt}τj≤t≤τj+1 , · · ·

are independent and

{Xt}τ1≤t≤τ2 , · · · , {Xt}τj≤t≤τj+1 , · · ·

are identically distributed. The random time τj is called a j-th regenerative epoch.

We suppose that X is a regenerative strong Markov process with state space E.
Denote by Pν the probability or the expectation operator with respect to the initial
condition X0 ∼ ν for a given distribution ν on E. Let Px stand for Pδx for x ∈ E.
We suppose also that the regenerative epochs are given as

τj+1 = inf{t > τj ;Xt = x, there exists s ∈ (τj , t) such that Xs ∈ x̂}

where τ0 = 0 and x, x̂ are a point and a closed set of E respectively such that x /∈ x̂.
In particular, {τj} is a sequence of stopping times with respect to the canonical
filtration of X and Xτj = x for all j ≥ 1. Here the set x̂ was introduced to assure
τj+1 > τj a.s.. Since Lj : = τj+1 − τj , j ≥ 1 is an iid sequence, it holds that
τj → ∞ a.s. as j → ∞. The primary use of the regenerative method appears
in a proof of the consistency of θ̂T as follows; by the law of large numbers for iid
sequences, we have

lim
T→∞

1
T

∫ T

0

f(Xt)dt = lim
N→∞

1
τN − τ1

N−1∑
j=1

Fj =
Px[F0]
Px[L0]

,

where

(1) Fj =
∫ τj+1

τj

f(Xt)dt, Lj = τj+1 − τj

for j ≥ 0. In order to check θ = Px[F0]/Px[L0], notice that the above convergence
holds under any initial condition X0 ∼ ν and that

(2) Pµ

[∫ T

0

f(Xt)dt

]
= Tµ[f ]

for the stationary distribution µ. Hereafter we assume f not to be constant. It
is also possible to exploit this regenerative argument in order to obtain the corre-
sponding central limit theorem and EE;

Theorem 1. Assume that there exists p ≥ 1 such that the characteristic function
of (F0, L0) under Px is in Lp(R2) and that

(3) Pν [F 2
0 ] + Pν [L2

0] + Px[F 4
0 ] + Px[L4

0] + Px

[∫ τ1

0

∣∣∣∣∫ t

0

f(Xs)ds

∣∣∣∣2 ds

]
< ∞.

Then, it holds

Pν [
√

T (θ̂T − θ)/σ ≤ z] = Φ(z) + T−1/2φ(z)(a1 + a2(1 − z2)) + O(T−1)
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uniformly in z ∈ R, where

σ2 = Px[F̄ 2
0 ]/α, F̄0 = F0 − θL0, α = Px[L0],

a1 = Pµ[F̄0] − Pν [F̄0], a2 =
κ − 3ρσ2

6ασ3
, κ = Px[F̄ 3

0 ], ρ = Px[F̄0L0].

Proof. If x̂ = {y} for y ∈ E, the result is a special case of Theorem 1 of Fukasawa [6].
The general case is treated in the same way. ¤

2.2. Studentized statistics. The asymptotic variance σ defined in the preced-
ing subsection is practically unknown in the nonparametric context. Hence we
have to construct an estimator for it when constructing confidence intervals for
instance. Here we propose an estimator which is a counterpart of σn(f) in Bertail
and Clémençon [1]. Let MT = max{j; τj+1 ≤ T} and

(4) σ̂2
T =

∑MT

j=1

∣∣Fj − θ̌T Lj

∣∣2∑MT

j=1 Lj

, θ̌T =

∑MT

j=1 Fj∑MT

j=1 Lj

.

By the law of large numbers, we have θ̌T → θ and σ̂T → σ a.s. as T → ∞ since
MT → ∞. Because of the regeneration-based construction, we can prove that the
estimator σ̂T admits the following EE;

Theorem 2. Assume that there exists p ≥ 1 such that the characteristic function
of (F0, L0) under Px is in Lp(R2) and that

(5) Pν [F 2
0 ] + Pν [L2

0] + Px[F 12
0 ] + Px[L12

0 ] + Px

[∫ τ1

0

∣∣∣∣∫ t

0

f(Xs)ds

∣∣∣∣2 ds

]
< ∞.

Then, it holds

Pν [
√

T (θ̂T − θ)/σ̂T ≤ z] = Φ(z) + T−1/2φ(z)(a1 + a2(2z2 + 1)) + O(T−1)

uniformly in z ∈ R, where a1 and a2 are defined in Theorem 1.

Proof. See Section 4. ¤

The above two theorems correspond to Theorem 5.1 of Bertail and Clémençon [1].
It is noteworthy that we have a remainder term of O(T−1) in Theorem 2, while the
corresponding term is of O(n−1 log(n)) in Theorem 5.1 of Bertail and Clémençon [1]
where n corresponds to T . The reason why we can obtain such a better accuracy is
that the regenerative block (Fj , Lj) has a bounded density in our continuous-time
setting, so that we can exploit a more powerful result on the asymptotic expansion
of iid sequence. See Section 4 for detail.

3. Continuous-time Regenerative Block Bootstrap

In this section, we assume X to be stationary, that is, ν = µ. Then, it holds
a1 = 0, so that we have

Pµ[
√

T (θ̂T − θ)/σ̂T ≤ z] = Φ(z) + T−1/2φ(z)â2(2z2 + 1) + Op(T−1),

where â2 is an arbitrary estimator for a2 with
√

T (â2 −a2) = O(1). We can use for
instance

â2 =
κ̂ − 3ρ̂σ̂2

6α̂σ̂3
, α̂ =

1
MT

MT∑
j=1

Lj , (κ̂, ρ̂, σ̂2) =
1

MT

MT∑
j=1

(
F̌ 3

j , F̌jLj , F̌
2
j /α̂

)
,
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where F̌j = Fj − θ̌T Lj . In fact, since

Pµ[|T − αMT | ≥ δT ] = O(T−1)

for δ ∈ (0, 1/2), using Kolmogorov’s inequality, we have

sup
T>0

Pµ

∣∣∣∣∣∣
√

T

MT

MT∑
j=1

{(Fj , Lj)n − Pµ [(F1, L1)n]}

∣∣∣∣∣∣ > K

 → 0

as K → ∞, where n ∈ Z2
+ with |n| ≤ 3. Hence, the above expansion formula is

practically of use to obtain second-order correct confidence intervals for instance by
means of the Cornish-Fisher expansion. For the same purpose, it is then natural to
expect that there corresponds a bootstrap method. Let FT = {(Fj , Lj)}j=1,2,...,MT

be the set of the observed regenerative blocks. Let (F ∗
j , L∗

j ), j = 1, 2, . . . ,MT be
an iid sequence and each (F ∗

j , L∗
j ) be uniformly distributed on FT . Here MT and

FT are fixed conditionally to the observation {Xt}0≤t≤T . Then, define bootstrap
statistics θ̌∗T and σ̂∗

T as

θ̌∗T =

∑MT

j=1 F ∗
j∑MT

j=1 L∗
j

, {σ̂∗
T }2 =

∑MT

j=1

∣∣F ∗
j − θ̌∗T L∗

j

∣∣2∑MT

j=1 L∗
j

.

Further, put

T ∗ =
MT∑
j=1

L∗
j .

Theorem 3. Assume that there exists p ≥ 1 such that the characteristic function
of (F0, L0) under Px is in Lp(R2) and that (F0, L0) has finite moments of any order
under Px. Then,

P ∗
µ [
√

T ∗(θ̌∗T − θ̌T )/σ̂∗
T ≤ z] = Φ(z) + T−1/2φ(z)(b̂ + â2(2z2 + 1)) + Op(T−1)

uniformly in z ∈ R, where P ∗
µ is the conditional probability given {Xt}0≤t≤T and

b̂ = ρ̂/(2α̂σ̂). In particular,

Pµ[
√

T (θT − θ)/σ̂T ≤ z] = P ∗
µ [
√

T ∗(θ̌∗T − θ̌T )/σ̂∗
T − b̂T−1/2 ≤ z] + Op(T−1)

uniformly in z ∈ R.

Proof. See Section 4. ¤

Example 1. Consider X to be given as a weak solution of the one-dimensional
stochastic differential equation

dXt = b(Xt)dt + c(Xt)dBt, X0 ∼ µ,

where B = {Bt} is a standard Brownian motion. Suppose that b is a locally
integrable and that c and 1/c are locally bounded on R. Assume that f is continuous
on an interval I of E = R and that f is not constant on I. Applying Theorem 2 of
Fukasawa [6], we conclude that the assumptions of Theorem 3 are satisfied if

lim sup
|z|→∞

zb(z)
c(z)2

= −∞

and both f and 1/c are of polynomial growth.
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Example 2. Let (Yj , Tj), j = 0, 1, . . . be a Markov renewal process and Z =
{Zt}t≥0 be the corresponding semi-Markov process with stationary distribution µ̃.
It holds by definition that

Zt = YNt , Nt = max{j ≥ 0;Tj ≤ t}.

The process Xt = (Zt, t−TNt
) is a Markov process with state space E = S× [0,∞),

where S is the state space of the embedded Markov chain Y = {Yj}. Suppose that
S is countable and that there exist p(s; y0, y1) for s ≥ 0, y0, y1 ∈ S and K > 0 such
that

P [Tj+1 − Tj ≤ t|Yj = y0, Yj+1 = y1] =
∫ t

0

p(s; y0, y1)ds

and p(s; y0, y1) ≤ K for all s ≥ 0, y0, y1 ∈ S. Suppose also that

sup
y0,y1∈S

∫ ∞

0

snp(s, y0, y1)ds < ∞

for each n ∈ N. Consider an estimator of type

θ̂T =
1
T

∫ T

0

f̃(Zt)dt

for θ = µ̃[f̃ ], where f̃ is a bounded function on S. Then, it can be proved that
X = {Xt} is a strong Markov process and the assumptions of Theorem 3 hold
provided that a recurrent time of Y has moments of any order.

4. Proof of theorems

4.1. Proof of Theorem 2. Consider the random vector

Uj =
(
F̄j , Lj − α, F̄ 2

j − ασ2, F̄jLj − ρ, L2
j − Px[L2

0]
)

where F̄j = Fj − θLj . Putting

Ūn =
1
n

n∑
j=1

Uj

and

Σ(x1, . . . , x5)2 =
x3(x2 + α)2 − 2x1(x2 + α)(x4 + ρ) + x2

1(x5 + Px[L2
0])

(x2 + α)3
,

we have σ̂T = Σ(ŪMT ). Moreover an equivalence
√

T (θ̂T − θ)/σ̂T ≤ z ⇔
√

MT AK,H(ŪMT ) ≤ ẑ

holds, where

Ak,h(x1, . . . , x5) =
σkx1 + h(σ − Σ(x1, . . . , x5))

kσΣ(x1, . . . , x5)
, K =

MT

T
, H =

F̄0 + RT

T

and

RT =
∫ T

0

f(Xt)dt − θT −
MT∑
j=0

F̄j , ẑ =
z −

√
TH/σ√
K

.

Lemma 1. For sufficiently large m, Ūm has a bounded density.
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Proof. By Theorem 19.1 of Bhattacharya and Rao [5],
∑n

j=1(F̄j , Lj) has a bounded
density for sufficiently large n. Then, it is straightforward to see that Ūm has
a density for m = 3n and that there exists r > 1 such that the density is in
Lr(R5). The lemma then obtained by using the discussion given after the proof of
Theorem 19.1 of Bhattacharya and Rao [5]. ¤

Now, we make a similar argument to the proof of Theorem 1 of Fukasawa [6].
For δ ∈ (0, 1/2),

Pν [
√

T (θ̂T −θ)/σ̂T ≤ z] =
∑

m;|T−αm|<δT

Pν [
√

mAK,H(Ūm) ≤ ẑ; MT = m]+O(T−1).

By Lemma 1,
√

mŪm has a bounded density pm(u) = pm(u1, u2, u3, u4, u5). Hence,
exploiting the strong Markov property, we have

Pν [
√

mAK,H(Ūm) ≤ ẑ; MT = m]

=
∫

ψm(u, f, l, r, t)P (R̂m(l,u2),τ1)
x (dr, dt)pm(u)duP (F0,L0)

ν (df, dl),

where ψm(u, f, l, r, t) is the indicator function of the set{
(u, f, l, r, t);

√
mAk(m),h(f,r)(u/

√
m) ≤ ẑm(f, r), 0 ≤

√
m(am − u2) − l < t

}
,

am =
T − αm√

m
, k(m) =

m

T
, h(f, r) =

f + r

T
, ẑm(f, r) =

z −
√

Th(f, r)/σ√
k(m)

,

and

(6) R̂m(l, u2) =
∫ T−l−

√
mu2−αm

0

f(Xs)ds.

Applying Theorem 19.2 of Bhattacharya and Rao [5], we have

sup
u∈R5

(1 + |u|6)

∣∣∣∣∣pm(u) − φV (u)

{
1 +

4∑
i=1

m−i/2pV
k (u)

}∣∣∣∣∣ = o(m−2),

where V is the covariance matrix of U1, φV is the normal density with mean 0 and
covariance V , and pV

k are polynomials. We have then,

Pν [
√

T (θ̂T − θ)/σ̂T ≤ z]

=
∑

m;|T−αm|<δT

∫
ψm(u, f, l, r, t)φV (u)

{
1 +

4∑
i=1

m−i/2pV
k (u)

}

P (R̂m(l,u2),τ1)
x (dr, dt)duP (F0,L0)

ν (df, dl) + O(T−1)

by the same calculation as in Fukasawa [6].

Lemma 2. For (h, k) ∈ R × (0,∞), there exists a sequence of polynomials qh,k
i ,

i = 1, 2, 3, 4 such that

Pν

√mAk,h(Ūm) ∈ S1,
1√
m

m∑
j=1

(Lj − α) ∈ S2


=

∫
S1×S2

φD(ξ, η) +
4∑

i=1

m−i/2qh,k
i (ξ, η)φD(ξ, η)dξdη + o(m−2)
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uniformly in Borel sets S1, S2 ⊂ R, and uniformly in (h, k) on compact sets of
R × (0,∞), where ΦD and φD are the distribution function and the density of the
normal distribution with mean 0, covariance

D = Dh,k = ch,k
1 h +

(
α ρ/α

ρ/α Px[|L0 − α|2]

)
,

where ch,k
1 is a matrix which is bounded in (h, k) on compact sets of R × (0,∞).

Moreover, we have

qh,1(ξ, η)φD(ξ, η) = (3a2 + ch,k
2 h)∂ξφD(ξ, η) + (2αa2 − ρ/(2σ) + ch,k

3 h)∂3
ξφD(ξ, η)

+ ch,k
4 ∂2

ξ∂ηφD(ξ, η) + ch,k
5 ∂ξ∂

2
ηφD(ξ, η) + ch,k

6 ∂3
ηφD(ξ, η),

where ch,k
i , i = 2, . . . , 6 are constants which are bounded in (h, k) on compact sets

of R× (0,∞). Besides, c0,k
i , i = 1, . . . , 6 and q0,k

i , i = 1, . . . , 4 do not depend on k.

Proof. Use the same argument as the proof of Theorem 2.1 of Bhattacharya and
Ghosh [4]. The uniformity in (h, k) follows from the fact that Ūm does not depend
on (h, k) and Ak,h does continuously. The expression of constants follows from

Cov

(
√

mAk,h(Ūm),
1√
m

m∑
k=1

(Lj − α)

)
= D + O(m−1)

and

Pν [
√

mAk,h(Ūm)] = − 1√
m

(3a2 + ch,k
2 h) + O(m−1),

Pν [
{√

mAk,h(Ūm)
}3

] =
1√
m

{
27ρ

2σ
− 7κ

2σ3
+ ch,k

7 h

}
+ O(m−1),

where ch,k
7 is a constant uniformly bounded in (h, k) on compact sets of R× (0,∞).

¤

Now, changing variable as

(ξ, η, ζ1, ζ2, ζ3) = (
√

mAk(m),h(f,r)(u/
√

m), u2, u3, u4, u5),

using Taylor’s expansion, and integrating in (ζ1, ζ2, ζ3), we have∫
ψm(u, f, l, r, t)1|h|≤h0φV (u)

{
1 +

4∑
i=1

m−i/2pV
k (u)

}
P (R̂m(l,u2),τ1)

x (dr, dt)du

=
∫ ∞

−∞

∫ ẑ

−∞

∫
ψm,2(η, l, t)1|h|≤h0φD̃(ξ, η)

{
1 +

4∑
i=1

m−i/2q̃i(ξ, η)

}
P (R̂m(l,η),τ1)

x (dr, dt)dξdη + o(m−2)

for any h0 > 0, where D̃ is a matrix, q̃i are polynomials and ψm,2 is the indicator
function of the set {(η, l, t); 0 ≤

√
m(am − η) − l < t}. Note that |T − αm| < δT

implies (1 − δ)/α < k(m) < (1 + δ)/α. In the light of Lemma 2, we can take

D̃ = Dh,k, q̃i = qh,k
i

for k = k(m) and h = h(f, r).
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Using Taylor’s expansion around h = 0, we have

Pν [
√

T (θ̂T − θ)/σ̂T ≤ z]

=
∑

m;|T−αm|<δT

∫ ∞

−∞

∫ ẑ

−∞
ψm,2(η, l, t)φD0(ξ, η)

{
1 +

4∑
i=1

m−i/2q0
i (ξ, η)

}

P (R̂m(l,η),τ1)
x (dr, dt)dξdηP (F0,L0)

ν (df, dl) + O(T−1)

=
∑

m;|T−αm|<δT

∫ ∞

−∞

∫ ẑ

−∞
ψm,2(η, l, t)φD0(ξ, η)

{
1 + m−1/2q0

1(ξ, η)
}

P (R̂m(l,η),τ1)
x (dr, dt)dξdηP (F0,L0)

ν (df, dl) + O(T−1),

where
D0 = D0,k, q0

i = q0,k
i

which do not depend on k by Lemma 2. Here we used the fact∑
m;|T−αm|<δT

∫
ψm,2(η, l, t)|h(f, r)|e−εη2

P (R̂m(l,η),τ1)
x (dr, dt)dηP (F0,L0)

ν (df, dl)

=
∑

m;|T−αm|<δT

m−1/2

∫
1{0≤T−η<t} exp

{
−ε

∣∣∣∣η − αm − l√
m

∣∣∣∣2
}

|h(f, r)|P (R(η),τ1)
x (dr, dt)dηP (F0,L0)

ν (df, dl)

where

R(η) =
∫ T−η

0

f(Xt)dt

and ∑
m;|T−αm|<δT

m−1/2 exp

{
−ε

∣∣∣∣η − αm − l√
m

∣∣∣∣2
}

≤ ||1 − δ|T/α|−1/2

∣∣∣∣∣∣3 +
∫

R
exp

−ε

∣∣∣∣∣ η − αu − l√
|1 + δ|T/α

∣∣∣∣∣
2
 du

∣∣∣∣∣∣ = O(1)

uniformly in (l, η) for any ε > 0, and∫
|h(f, r)|1{0≤T−η<t}P

(R(η),τ1)
x (dr, dt)dηP (F0,L0)

ν (df, dl)

≤ T−1Pν [|F0|]Px[τ1] + T−1Px

[∫ τ1

0

∣∣∣∣∫ v

0

f(Xs)ds

∣∣∣∣ dv

]
= O(T−1).

The rest of the proof is the same as Steps 2 and 3 of Section 4.1 of Fukasawa [6].

4.2. Proof of Theorem 3. Let

Â(x1, . . . , x5) =
x1√

x3 + α̂σ̂2 − 2x1(x4+ρ̂)
x2+α̂ + x2

1(x5+v̂L)
(x2+α̂)2

and

X̄∗ =
1

MT

MT∑
j=1

(
F̌ ∗

j , L∗
j − α̂, |F̌ ∗

j |2 − α̂σ̂2, F̌ ∗
j L∗

j − ρ̂, {L∗
j}2 − v̂L

)
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where F̌ ∗
j = F ∗

j − θ̌T L∗
j and v̂l = 1

MT

∑MT

j=1 L2
j . Notice that

√
T ∗(θ̌∗T − θ̌T )/σ̂∗

T =
√

MT Â(X̄∗).

Although MT is a random variable, the proof of Theorem 5.1 of Hall [7] remains
valid for n = MT . Hence, we have

P ∗
µ

[√
T ∗(θ̌∗T − θ̌T )/σ̂∗

T ≤ z
]

= Φ(z) + {α̂MT }−1/2φ(z)
{

(b̂ + 3â2)z + 2â2(z2 − 1)
}

+ O(M−1
T )

a.s.. It suffices then to observe that

{α̂MT }−1/2 = T−1/2 + O(T−1).

References
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