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Abstract

We consider asymptotic expansion of density function of Wiener functionals as

in [4] and give a formula for the first coefficient.

1 Introduction

Let (Θ, k·kΘ) be a separable Banach space and (H, k·kH) be a separable Hilbert space such
that H is a dense subspace of Θ and the inclusion map is continuous. Let μs, s ∈ [0,∞),
be the (necessarily unique) probability measure on (Θ,BΘ) with the property thatZ

Θ

exp[
√
−1hu, θi]μs(dθ) = exp(−

s

2
kuk2H), u ∈ Θ∗.

Then (Θ, H,μ1) is an abstract Wiener space in the sense of L. Gross.

Given a separable Hilbert space E and an n ∈ Z=1, let C∞%(Rn;E) be the space of
smooth E-valued functions f on Rn with the property that, for each multi-index α ∈ Zn=0,
there exist να, Cα ∈ (0,∞) such that°°°∂αf

∂xα
(x)
°°°
E
5 Cα(1 + |x|2)να/2, x ∈ Rn.
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Next, define FC∞%([0,∞)×Θ;E) to be the space of f : [0,∞)→ E for which there exists

an n ∈ N, an f̃ ∈ C∞%(R1+n), and a continuous linear map A : Θ→ Rn such that

f(s, θ) = f̃(s, Aθ), (s, θ) ∈ [0,∞)×Θ.

We use H(E) to denote H ⊗E (or equivalently, the space H.S.(H;E) of Hilbert-Schmidt
operators fromH into E). We define an operatorD : FC∞% ([0,∞)×Θ;E)→ FC∞% ([0,∞)×
Θ;H(E)) by

Df(s, θ)(h) = lim
τ→0

f(s, θ + τh)− f(s, θ)
τ

, (s, θ) ∈ [0,∞)×Θ and h ∈ H .

We define Hm(E) inductively for m = 2 so that Hm(E) = H(Hm−1(E)). Then Dm can

be defined inductively so that Dm+1 = D ◦Dm. Noting that, for any f ∈ FC∞% ([0,∞)×
Θ;E), (s, θ) ∈ [0,∞) × Θ, and complete orthonormal basis {hi} ⊂ H, the Laplacian ∆f
of f given by

∆f(s, θ) = traceHD
2f(s, θ) ≡

X
i

D2f(s, θ)(hi, hi) ∈ E

is well defined and independent of the choices of basis {hi}, we now define the heat

operator A : FC∞% ([0,∞)×Θ;E)→ FC∞% ([0,∞)×Θ;E) by

Af(s, θ) = ∂f

∂s
(s, θ) +

1

2
∆f(s, θ), (s, θ) ∈ [0,∞)×Θ.

We consider a certain class of seminorms on the vector space FC∞% ([0,∞)×Θ;E) and
its completion G∞(A;E), and also introduce a notion, complete P -regularity for functions
in G∞(A;E) (see Section 2 for the precise definitions).
Now let f, g ∈ G∞(A;R) and F ∈ G∞(A;RN) be completely P -regular functions and

Y be a compact subset in RN .
First we assume the following.

(A1) there is an α > 0 such that

sup
s∈(0,1]

s log(

Z
Θ

exp(
(1 + α)f(s, θ)

s
)μs(dθ)) <∞.

We define e : RN → (−∞,∞] by

e(x) ≡ inf{khk
2
H

2
− f(0, h) : F (0, h) = x}, x ∈ RN .

We also assume the following.

(A2) For each y ∈ Y ,
M(y) ≡ {h ∈ H;F (0, h) = y} 6= ∅
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and that

e(y) =
kh(y)k2
2

− f(0, h(y))

for precisely one h(y) ∈M(y).
We assume moreover the following.

(A3) T (y) ≡ DF (0, h(y)) has rank N for every y ∈ Y.
Let π(y) = T (y)∗(T (y)T (y)∗)−1T (y), y ∈ Y. π(y) is an orthogonal projection in H.

Let π(y)⊥ = IH − π(y). Then π(y)⊥ is also an orthogonal projection in H onto ker T (y).

Let V (y) : H ×H → R be a bilinear form given by

V (y)(h, h0)

= D2f(0, h(y))(π(y)⊥h,π(y)⊥h0)

+(h(y)−Df(0, h(y)), T (y)∗(T (y)T (y)∗)−1D2F (0, h(y))(π(y)⊥h, π(y)⊥h0))H .

We assume the following furthermore.

(A4) For all y ∈ Y and h ∈ H \ {0}

V (y)(h, h) < ||h||2H .

Finally we define

A(s, θ) = DF (s, θ)DF (s, θ)∗

= ((DFi(s, θ), DFj(s, θ))H)15i,j5N

and assume the following.

(A5) For any p ∈ [1,∞)

lim
s↓0
s log(

Z
Θ

| detA(s, θ)|−pμs(dθ)) 5 0.

Then Kusuoka-Stroock [4] proved the following.

Theorem 1.1. For each s ∈ (0, 1], a signed measure Ps(·) on RN given by

Ps(Γ) =

Z
F (s,θ)∈Γ

g(s, θ) exp

µ
f(s, θ)

s

¶
μs(dθ), Γ ∈ B(RN ),

admits a smooth density ps(·) with respect to Lesbegue’s measure. Moreover, there exist
sequence {an}∞n=0 ⊆ C(Y ;R) and {Kn}∞n=0 ⊆ (0,∞) with the property that, for every
n ∈ N, ¯̄̄

(2πs)N/2ee(y)/sps(y; 0)−
nX

m=0

sm/2am(y)
¯̄̄
5 Kns

(n+1)/2, (s, y) ∈ (0, 1]× Y.
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Note that the relation of functions ρ in [4] and e in this paper is given by ρ(y) = −e(y),
y ∈ Y.
Our main result is the following.

Theorem 1.2. e is smooth in the neighborhood of Y and

a0(y) = (det∇2e(y))1/2det2(IH − B(y))−1/2 exp
³ NX
l=1

∂e

∂yl
(y)AF l(0, h(y)) +Af(0, h(y))

´
,

where

B(y) ≡
NX
l=1

∂e

∂yl
(y)D2F l(0, h(y)) +D2f(0, h(y)).

Here we identify a continuous symmetric bilinear form B : H×H → R with a bounded
symmetric linear operator B̃ : H → H given by

(B̃h, k)H = B(h, k), h, k ∈ H,

and det2 is a Carleman-Fredfolm determinant (c.f. Dunford-Schwartz [3] pp.1106).

An application of this theorem to finance will be given in Osajima [5].

2 Definitions

In this section and the next section, we summarize the results in [4]. Let (ΩΘ, || · ||ΩΘ) be
a Banach space given by

ΩΘ = {w ∈ C([0,∞);Θ); w(0) = 0, and lim
t→∞

||w(t)||Θ
t

= 0},

and

||w||ΩΘ = sup
t∈[0,∞)

||w(t)||Θ
1 + t

.

Let P be a (unique) probability measure on ΩΘ such that for any n = 1, and 0 = t0 < t1 <
· · · < tn, w(ti) − w(ti−1), i = 1, . . . , n are independent under P and that the probability
law of w(ti)− w(ti−1) under P is μti−ti−1, i = 1, . . . , n.
Let E be a separable real Hilbert space. For any measurable map f : [0,∞)×Θ→ E,

p ∈ (1,∞) and R ∈ (0,∞), let us define ||f ||p,R;E by

||f ||p,R;E = sup
05s5R

sup
||h||H5R

(

Z
ΩΘ

||f(s, w(s) + h)||pEP (dw))1/p.
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Let G1(A;E) be a set of measurable maps f : [0,∞) × Θ → E such that there are

measurable maps Df : [0,∞)×Θ→ H(E), Af : [0,∞)×Θ→ E and a sequence {fn}∞n=1
in FC∞([0,∞)×Θ;E) such that

||f − fn||p,R;E → 0, ||Df −Dfn||p,R;H(E) → 0, ||Af −Afn||p,R;E → 0

as n → ∞ for all p ∈ (1,∞) and R ∈ (0,∞). We define seminorms || · ||(1)p,R;E, p ∈ (1,∞)
and R ∈ (0,∞), on G1(A;E) by

||f ||(1)p,R;E = {||f ||pp,R;E + ||Df ||pp,R;H(E) + ||Af ||
p
p,R;E}1/p.

The closability of the linear operators D and A is guaranteed by Ito’s formula

f(s, h+w(s)) = f(0, h)+

Z s

0

Df(t, h+w(t))dw(t)+

Z s

0

Af(t, h+w(t))dt, P−a.s.w ∈ ΩΘ h ∈ H.

We define Gn(A;E), n = 2, inductively in the following. We say that f ∈ Gn(A;E), if
f ∈ G1(A;E), Df ∈ Gn−1(A;H(E)) andAf ∈ Gn−1(A;E).We define seminorms ||·||(n)p,R;E,
p ∈ (1,∞) and R ∈ (0,∞), on Gn(A;E), n = 2, inductively by

||f ||(n)p,R;E = {||f ||pp,R;E + ||Df ||
(n−1)
p,R;H(E)

p + ||Af ||(n−1)p,R;E
p}1/p.

Finally we define G∞(A;E) by

G∞(A;E) =
∞\
n=1

Gn(A;E).

We regard G∞(A;E) as a topological vector space with seminorms || · ||(n)p,R;E, n ≥ 1,

p ∈ (1,∞) and R ∈ (0,∞). Then D : G∞(A;E) → G∞(A;H(E)) and A : G∞(A;E) →
G∞(A;E) are continuous linear operators.
Let Y be a compact metric space. We say that a measurable map f : [0,∞) ×

Θ × Y → E is P -regular uniformly on Y into E, if there exists a sequence {fn}∞n=1
⊂ C([0,∞)×Θ× Y ;E) with the property that

lim
n→∞

sup{||f(0, h, y)− fn(0, h, y)||E; (h, y) ∈ H × Y with ||h||H 5 L} = 0

for any L > 0, and

lim
n→∞

lim
s↓0
sup
y∈Y

s log(P ({||f(s, w(s), y)− fn(s, w(s), y)||E > δ})) = −∞

for any δ > 0.

We say that a map f : [0,∞)× Θ × Y → E is completely P -regular uniformly on Y,

if y ∈ Y 7→ f(·, ∗, y) is a continuous mapping into G∞(A;E) and, for each n,m ∈ Z=0,
DnAmf : [0,∞)×Θ× Y → Hn(E) is P - regular uniformly on Y into Hn(E).
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3 Asymptotic Expansions

Let Y be a compact metric space, and let f : [0,∞)×Θ×Y → R, F : [0,∞)×Θ×Y → RN

and g : [0,∞)×Θ× Y → R be completely P -regular uniformly on Y.
We assume that there is an α > 0 such that

sup
y∈Y

sup
s∈(0,1]

s log(

Z
Θ

exp(
(1 + α)f(s, θ, y)

s
)μs(dθ)) <∞.

We define ẽ : RN × Y → (−∞,∞] by

ẽ(x, y) ≡ inf{khk
2
H

2
− f(0, h, y) : F (0, h, y) = x}, x ∈ RN , y ∈ Y.

Remind again that the function ρ in [4] is expressed by ρ(y) = −ẽ(0, y), y ∈ Y.We assume
that for each y ∈ Y

M̃(y) ≡ {h ∈ H;F (0, h, y) = 0} 6= ∅
and

ẽ(0, y) =
kh̃(y)k2
2

− f(0, h(y), y)
for precisely one h(y) ∈M(y). We assume moreover that

T̃ (y) ≡ DF (0, h(y), y)

has rank N for every y ∈ Y. Let π̃(y) = T̃ (y)∗(T̃ (y)T̃ (y)∗)−1T̃ (y), y ∈ Y. π̃(y) is an
orthogonal projection inH. Let π̃(y)⊥ = IH−π̃(y). Then π̃(y)⊥ is an orthogonal projection
in H onto kerT̃ (y). Let Ṽ (y) : H ×H → R be a bilinear form given by

Ṽ (y)(h, h0)

= D2f(0, h(y), y)(π̃(y)⊥h, π̃(y)⊥h0)

+(h(y)−Df(0, h(y), y), T̃ (y)∗(T̃ (y)T̃ (y)∗)−1D2F (0, h(y), y)(π̃(y)⊥h, π̃(y)⊥h0))H

We assume furthermore that

Ṽ (y)(h, h) < ||h||2H for all y ∈ Y and h ∈ H \ {0} .

Finally we define

Ã(s, θ, y) = DF (s, θ, y)DF (s, θ, y)∗

= ((DFi(s, θ, y), DFj(s, θ, y))H)15i,j5N

and assume that

lim
s↓0
s log(sup

y∈Y

Z
Θ

| det Ã(s, θ, y)|−pμs(dθ)) 5 0, p ∈ [1,∞).

The following has been shown in [4].
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Theorem 3.1. For each s ∈ (0, 1] and y ∈ Y, a signed measure Ps(·, y) on RN given by

Ps(Γ, y) =

Z
F (s,θ,y)∈Γ

g(s, θ, y) exp[
f(s, θ, y)

s
]μs(dθ), Γ ∈ B(RN),

admits a smooth density ps(·, y) with respect to Lebesgue’s measure. Moreover, there exist
sequences {an}∞n=0 ⊆ C(Y ;R) and {Kn}∞n=0 ⊆ (0,∞) with the property that, for every
n ∈ N, ¯̄̄

(2πs)N/2ee(0,y)/sps(0, y)−
nX

m=0

sm/2am(y)
¯̄̄
5 Kns

(n+1)/2, (s, y) ∈ (0, 1]× Y.

We will show the following theorem in the following sections.

Theorem 3.2. ẽ(·, y) is smooth in the neighborhood of 0 for each y ∈ Y, and

a0(y) = (det∇2xẽ(0, y))
1
2det2(IH − B(y))−

1
2 exp

³ NX
l=1

∂ẽ

∂xl
(0, y)AF l(0, h(y), y) +Af(0, h(y), y)

´
,

where

B(y) ≡
NX
l=1

∂ẽ

∂xl
(0, y)D2F l(0, h(y), y) +D2f(0, h(y), y).

We have Theorem 1.2 as an immediate corollary to Theorem 3.2, applying Theorem 1.2

to the Wiener functional F (s, θ, y) = F (s, θ)− y.

4 Preparations

We make some preparations to prove Theorem 3.2. The statement in Theorem 3.2 is

just an equation for each y ∈ Y. So we may assume that Y consists of one point y0. For

simplicity, we denote ẽ(·, y0), h̃(y0), T̃ (y0) and π̃(y0), by e0(·), h0, T0 and π0 respectively.
Also, we denote f(s, θ, y0), F (s, θ, y0) and g(s, θ, y0) by f(s, θ), F (s, θ) and g(s, θ).

We have to follow the argument in p.49-59 in [4]. For any completely P -regular map

G : [0,∞) × Θ → E, G̃ : [0,∞) × Θ → C∞c (RN ;E) is defined in Theorem 4.19 in [4].

Then Ξ(s, θ)(·) is defined as a modified inverse function of F̃ (s, θ)(·) in p.57 in [4]. Then
J(s, θ) is given by

J(s, θ) = | det(∇Ξ(s, θ)(0))|.
Finally ḡ and f̄ are defined in the following.

ḡ(s, θ) = J(s, θ)g̃(s, θ)(Ξ(s, θ)(0)),
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and

f̄(s, θ) = f̃(s, θ)(Ξ(s, θ)(0))− 1
2
|U ∗0Ξ(s, θ) + π0h0|2.

Then it is shown in [4] that

lim
s↓0
s log |ps(0, y0)−

Z
Θ

ḡ(s, θ) exp(
f̄(s, θ)

s
)μs(dθ)| < e0(0).

So by (3.16) in [4], we see that

(4.1) a0(y0) = ḡ(0, h0)det2(IH −D2f̄(0, h0))
−1/2 exp(Af̄(0, h0)).

Therefore what we have to do is to compute the right hand side of Equation (4.1).

Since h0 ∈ H is a minimizer of 1
2
||h||2 − f(0, h) subject to the condition F (0, h) = 0,

and T0 has rank N, we can apply Lagrange’s method and there is a λ0 ∈ RN such that

h0 = Df(0, h0) +

NX
i=1

λi0DF
i(0, h0).

Let U0 = (T0T
∗
0 )
−1/2T0. Then π0 = U∗0U0. Remind that π0 : H → H is an orthogonal

projection onto the image of DF (0, h0)
∗ and that π⊥0 = IH−π0 is an orthogonal projection

onto kerDF (0, h0).

Let v0 ∈ RN be given by

(4.2) v0 = (T0T
∗
0 )
−1T0Df(0, h0).

Then we have

(4.3) (T0T
∗
0 )
−1T0π0h0 = v0 + (T0T

∗
0 )
−1T0(

NX
i=1

λi0DF
i(0, h0)) = v0 + λ0

So we see that

(4.4) λ0 = (T0T
∗
0 )
−1T0(π0h0 −Df(0, h0)).

In particular, we have

(4.5) V (y0)(h, h
0) = D2f(0, h0)(h, h

0) + λ0 ·D2F (0, h0)(h, h
0), h, h0 ∈ H.

Several cut-off functions and modified procedures are used in the definitions of G̃ and Ξ

in [4]. To avoid complexity, we use the following notion. For any separable real Hilbert

space E and completely P -regular maps, fi : [0,∞) × Θ → E, i = 1, 2, we denote

f1(s, θ) ' f2(s, θ) if
DnAmf1(0,π⊥0 h0) = DnAmf2(0,π⊥0 h0)
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for all n,m ∈ Z=0.
Let Br = {x ∈ R; |x| < r}, r > 0, and let W n

2 (Br;E), n = 1, denote L2-Sobolev

spaces of E-valued functions defined in Br (e.g. Adams [1]). Then there is a natural map

jn,r corresponding ϕ ∈ C∞(RN ;E) to ϕ|Br ∈ W n
2 (Br;E).

Then for any completely P -regular map G : [0,∞) × Θ → E, jn,r ◦ G̃ : [0,∞) ×
Θ → W n

2 (Br;E) is also completely P -regular. Let us define a map G
0
n,r : [0,∞) × Θ →

W n
2 (Br;E) be given by

G0n,r(s, θ)(ξ) = G(s, U
∗
0 ξ + π0h0 + π⊥0 θ), ξ ∈ Br.

Checking the definitions in [4], we have the following.

Proposition 4.1. Let n > N + 2. Then there is an r > 0 satisfying the following.

(1) For any completely P -regular map G : [0,∞)×Θ→ E,

jn,r ◦ G̃(s, θ) ' G0n,r(s, θ).

(2)

F̃ (s, θ) ◦ Ξ(s, θ) ' IdBr .

Here IdBr ∈ W n
2 (Br;RN ) is given by IdBr(ξ) = ξ, ξ ∈ Br.

Then we have the following.

Proposition 4.2. For any completely P -regular map G : [0,∞) × Θ → E, we have the

following.

(1)

G̃(0,π⊥0 h0)(0) = G(0, h0).

(2)

DG̃(0, π⊥0 h0)(0) = DG(0, h0)(0)π
⊥
0 .

(3)

D2G̃(0, π⊥0 h0)(0)(h1, h2) = D
2G(0, h0)(0)(π

⊥
0 h1, π

⊥
0 h2), h1, h2 ∈ H.

(4)

∇ξG̃(0, π
⊥
0 h0)(0) = DG(0, h0)(0)U

∗
0 .

(5)

∇2ξG̃(0, π⊥0 h0)(0)(ξ1, ξ2) = D2G(0, h0)(U
∗
0 ξ1, U

∗
0 ξ2), ξ1, ξ2 ∈ RN .

(6)

AG̃(0,π⊥0 h0)(0) = AG(0, h0)−
1

2
traceHD

2G(0, h0)(0)(π0·,π0·).
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Proof. The assertion (1) is obvious. Since

DG0n,r(s, θ)(ξ) = DG(s, U
∗
0 ξ + π0h0 + π⊥0 θ)π

⊥
0 ,

we see that

D(jn,r ◦ G̃(s, θ)(ξ)) ' jn,r ◦ D̃G(s, θ)(ξ)π⊥0
So we have the assertions (2) and (3).

Since

∇ξG
0
n,r(s, θ)(ξ) = DG(s, U

∗
0 ξ + π0h0 + π⊥0 θ)U

∗
0 ,

we see that

∇ξ(jn,r ◦ G̃)(s, θ)(ξ) ' jn,r ◦ D̃G(s, θ)(ξ)U∗0 .

So we have the assertions (4) and (5).

Finally we have

AG0n,r(s, θ)(ξ)

= AG(s, U∗0 ξ + π0h0 + π⊥0 θ)−
1

2
traceHD̃G(s, U

∗
0 ξ + π0h0 + π⊥0 θ)(π0·,π0·).

So we have the assertion (6).

Proposition 4.3. (1) ∇ξΞ(0,π
⊥
0 h0)(0) = (T0U

∗
0 )
−1.

(2) DΞ(0,π⊥0 h0)(0) = 0.

(3) D2Ξ(0,π⊥0 h0)(0)(π
⊥
0 h1,π

⊥
0 h2) = −(T0T ∗0 )−1/2D2F (0, h0)(π

⊥
0 h1, π

⊥
0 h2) for any h1, h2 ∈

H.

(4)AΞ(0,π⊥0 h0)(0) = −(T0T ∗0 )−1/2AF (0, h0)+ 1
2
traceH((T0T

∗
0 )
−1/2D2F (0, h0)(0)(π0·,π0·)).

Proof. By Proposition 4.1 (2), we have

IdentityRN ' ∇ξ(F
0
n,r(s, θ)(Ξ(s, θ)(ξ)) = DF (s, U

∗
0 ξ + π0h0 + π⊥0 θ)(U

∗
0∇ξΞ(s, θ)(ξ)).

This implies our assertion (1).

By Proposition 4.1 (2), we also have

0 ' D{F 0n,r(s, θ)(Ξ(s, θ)(ξ))}

= DF 0n,r(s, θ)(Ξ(s, θ)(ξ) +∇F 0n,r(s, θ)(Ξ(s, θ)(ξ))(DΞ(s, θ)(ξ)).

Therefore we have

0 = DF 0n,r(0,π
⊥
0 h0)(0) +∇F 0n,r(0, h0)(0)(DΞ(0, h0)(0)).

= DF (0, h0)π
⊥
0 +DF (0, h0)U

∗
0DΞ(0, π

⊥
0 h0)(0) = (T0T

∗
0 )
1/2DΞ(0, π⊥0 h0)(0).
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This implies the assertion (2).

By Proposition 4.1 (2), we have

0 ' D2{F 0n,r(s, θ)(Ξ(s, θ)(ξ))}

= D2F 0n,r(s, θ)(Ξ(s, θ))(ξ) + 2∇DF 0n,r(s, θ)(Ξ(s, θ)(ξ))(DΞ(s, θ)(ξ))

+∇F 0n,r(s, θ)(Ξ(s, θ)(ξ))(D2Ξ(s, θ)(ξ))+∇2F 0n,r(s, θ)(Ξ(s, θ)(ξ))(DΞ(s, θ)(ξ), DΞ(s, θ)(ξ)).

So we see that

0 = D2F (0, h0)(π
⊥
0 h1, π

⊥
0 h2) + (T0T

∗
0 )
1/2D2Ξ(0,π⊥0 h0)(0)(π

⊥
0 h1,π

⊥
0 h2).

This implies the assertion (3).

By Proposition 4.1 (2), we have

0 ' A{F 0n,r(s, θ)(Ξ(s, θ)(ξ))}

= AF 0n,r(s, θ)(Ξ(s, θ)(ξ) +∇F 0n,r(s, θ)(Ξ(s, θ)(ξ))(AΞ(s, θ)(ξ))

−traceH(D∇F 0n,r(s, θ)(Ξ(s, θ)(ξ))(DΞ(s, θ)(ξ)))−
1

2
∇2F 0n,r(s, θ)(Ξ(s, θ)(ξ))(DΞ(s, θ)(ξ), DΞ(s, θ)(ξ)).

So we have

0 = AF̃ (0,π⊥0 h0) +∇F̃ (0, π⊥0 h0)(0)(AΞ(0, π⊥0 h0)(0))

= AF (0, h0)−
1

2
traceHD

2F (0, h0)(0)(π0·,π0·) + (T0T ∗0 )1/2AΞ(0, π⊥0 h0)(0).

This implies the assertion (4).

This completes the proof.

Proposition 4.4. (1) D2f̄(0,π⊥0 h0)

= D2f(0, h0)(π
⊥
0 ·,π⊥0 ·) + (D2F (0, h0)(π

⊥
0 ·,π⊥0 ·),λ0)RN .

(2) Af̄(0, π⊥0 h0)

= Af(0, h0)−
1

2
traceHD

2f(0, h0)(π0·, π0·)) + (AF (0, h0)),λ0)RN

−1
2
(traceH(D

2F (0, h0)(π0·, π0·)),λ0)RN .

Proof. Let

f̄1(s, θ) = f̃(s, θ)(Ξ(s, θ)(0)),

f̄2(s, θ) = ||U∗0Ξ(s, θ)(0)||2H ,
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and

f̄3(s, θ) = (U
∗
0Ξ(s, θ)(0),π0h0)H .

Then we see that

f̄(s, θ) = f̄1(s, θ)−
1

2
f̄2(s, θ)− f̄3(s, θ)−

1

2
||π0h0||2H .

Since Ξ(0,π⊥0 h0) = 0 and DΞ(0, π
⊥
0 h0) = 0, we have

D2f̄2(0,π
⊥
0 h0) = 0, and

Af̄2(0,π⊥0 h0) = 0.

By Proposition 4.3, we see that

D2f̄3(0,π
⊥
0 h0) = −(T ∗0 (T0T ∗0 )−1D2F (0, h0)(π

⊥
0 ·,π⊥0 ·),π0h0)H

= −(D2F (0, h0)(π
⊥
0 ·,π⊥0 ·),λ0 + v0)RN ,

and

Af̄3(0,π⊥0 h0)

= −(T ∗0 (T0T ∗0 )−1AF (0, h0),π0h0)H +
1

2
(traceH(T

∗
0 (T0T

∗
0 )
−1D2F (0, h0)(π0·, π0·), π0h0)H

= −(AF (0, h0),λ0 + v0)RN +
1

2
(traceH(D

2F (0, h0)(π0·,π0·),λ0 + v0)RN .

Note that

D2f̄1(s, θ)

= D2f̃(s, θ)(Ξ(s, θ)(0))+∇f̃(s, θ)(Ξ(s, θ)(0))(D2Ξ(s, θ)(0))+2D∇f̃(s, θ)(Ξ(s, θ)(0))(D(Ξ(s, θ)(0)),

and

Af̄1(s, θ)

= Af̃(s, θ)(Ξ(s, θ)(0)) +∇f̃(s, θ)(Ξ(s, θ)(0))(AΞ(s, θ)(0))

+2traceH(D∇f̃(s, θ)(Ξ(s, θ)(0))(D(Ξ(s, θ)(0)))

Also, we see that

D2f̄1(0,π
⊥
0 h0)

= D2f̃(0,π⊥0 h0)(0) +∇f̃(0,π⊥0 h0)(0)(D2(Ξ(0,π⊥0 h0)(0))

= D2f(0, h0)(π
⊥
0 ·,π⊥0 ·)−Df(0, h0)(U∗0 (T0T ∗0 )−1/2D2F (0, h0)(π

⊥
0 ·, π⊥0 ·))

= D2f(0, h0)(π
⊥
0 ·,π⊥0 ·)− (D2F (0, h0)(π

⊥
0 ·, π⊥0 ·), v0)RN ,

and

Af̄1(0,π⊥0 h0)

12



= Af̃(0,π⊥0 h0)(0) +∇f̃(0,π⊥0 h0)(0)(A(Ξ(0,π⊥0 h0)(0))

= Af(0, h0)−
1

2
traceHD

2f(0, h0)(π0·,π0·))−Df(0, h0)(U∗0 (T0T ∗0 )−1/2AF (0, h0))

+
1

2
D2f(0, h0)(U

∗
0 (T0T

∗
0 )
−1/2traceH(D

2F (0, h0)(π0·,π0·)))

= Af(0, h0)−
1

2
traceHD

2f(0, h0)(π0·, π0·))− (AF (0, h0)), v0)RN

+
1

2
(traceH(D

2F (0, h0)(π0·, π0·)), v0)RN .

Combining these equations, we have our assertions.

This completes the proof.

By Equation (4.1) and Propositions 4.2, 4.3, 4.4, we have the following.

Proposition 4.5. a0(y0)

= g(0, h0) det(T0T
∗
0 )
−1/2det2(IH − π⊥0 B0π

⊥
0 )
−1/2

× exp(Af(0, h0) +
NX
i=1

λi0AF i(0, h0)−
1

2
traceH(π0B0)),

where

B0 = D
2f(0, h0) +

NX
i=1

λi0D
2F i(0, h0).

5 Proof of Theorem 3.2

Proposition 5.1. There is an r > 0 and smooth maps ĥ : Br → H and λ̂ : Br → R
satisfying the following.

(1)

e0(x) =
1

2
||ĥ(x)||2H − f(0, ĥ(x)).

(2)

ĥ(x)−Df(0, ĥ(x)) =
NX
i=1

λ̂i(x)DF i(0, ĥ(x)).

(3)

F (0, ĥ(x)) = x for each x ∈ Br.

Moreover,

ĥ(0) = h0 and λ̂(0) = λ0.
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Proof. Let us define a smooth map Φ : H × RN → H × RN by

Φ(h,λ) = (h−Df(0, h)−
NX
i=1

λiDF i(0, h), F (0, h)) (h,λ) ∈ H × RN .

Note that Φ(h0,λ0) = (0, 0). Also we see that the Frechét derivative Φ0(h0,λ0) of Φ at

(h0,λ0) is

Φ0(h0,λ0)(k, z)

= (k−D2f(0, h0)(k, ·)−
NX
i=1

λi0D
2F i(0, h0)(k, ·)−

NX
i=1

ziDF i(0, h0), DF (0, h0)(k)), (k, z) ∈ H×R.

First, we prove that Φ0(h0,λ0) : H×RN → H×RN is nondegenerate. If Φ0(h0,λ0)(k, z) =
0, DF (0, h0)(k) = 0, and so π

⊥
0 k = k, and we have

k −D2f(0, h0)(k, ·)−
NX
i=1

λi0D
2F i(0, h0)(k, ·)−

NX
i=1

ziDF i(0, h0)(k) = 0.

Taking the inner product with k = π⊥0 k, we see by Equation (4.5) that

||k||2H − V (y0)(k, k) = 0.

This implies k = 0. Then it is easy to see that z = 0. So we see that Φ0(h0,λ0) is

nondegenerate.

So by the inverse function theorem, we see that there is an r0 > 0 and smooth maps

ĥ : Br0 → H and λ̂ : Br0 → R such that

Φ(ĥ(x), λ̂(x)) = (0, x), and (ĥ(0), λ̂(0)) = (h0,λ0).

Let E : H → R be given by

E(h) =
1

2
||h||2H − f(0, h), h ∈ H.

It is sufficient to show that there is an r ∈ (0, r0) such that e0(x) = E(ĥ(x)), for any

x ∈ B(r).
Assume that such an r does not exist. Since f and F are completely P -regular, we see

that f(0, ·) : H → R, F (0, ·) : H → RN , DF (0, ·) : H → H(RN) are weakly continuous
on bounded sets in H.

It is shown in [4] that there are c0, c1 > 0 such that

1

2
||h||2H − f(0, h) 5 c0 − c1||h||2H for any h ∈ H.

Since the function E : H → R is lower semicontinuous in weak topology, we see that for
any x ∈ B(r0) there are h ∈ H such that F (0, h) = x and E(h) = e0(x).
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So from our assumption, there are xn ∈ RN and hn ∈ H, n = 1, 2, . . . , such that xn →
0, n → ∞, F (0, hn) = xn, e0(xn) = E(hn), and hn 6= ĥ(xn). Since ||hn||H , n = 1, 2, . . . ,
are bounded, we may assume that hn, n = 1, 2, . . . , converges weakly to a certain h∞ ∈ H.
Noting

E(h∞) 5 lim
n→∞

E(hn) 5 lim
n→∞

E(ĥ(xn)) = E(ĥ(0)) = e0(0),

we see that h∞ = h0, and ||hn||H → ||h0||H , n → ∞. Therefore we see that hn → h0 in

H as n → ∞. Then we see that DF (0, hn) : H → RN is nondegenerate for sufficiently
large n. Then we can apply Lagrange’s principle and so there are λn ∈ RN such that

hn −Df(0, hn) − λn ·DF (0, hn) = 0 for sufficiently large n. Then we see that λn → λ0,

n → ∞. These imply that Φ(hn,λn) = (0, xn) for sufficiently large n, and (hn,λn) →
(h0,λ0), n→∞. But the inverse function theorem implies that hn = ĥ(xn) for sufficiently
large n. This is the contradiction. So we have our assertion. This completes the proof.

Proposition 5.2. IH − π⊥0 B0 : H → H is bijective.

Proof. By the definition of Ṽ (y0), B0 and Equation (4.4) we have

||h||2H − Ṽ (y0)(h, h) = ((IH − π⊥0 B0π
⊥
0 )h, h)H , h ∈ H.

If (IH − π⊥0 B0)h = 0 for some h ∈ H, then we see that π0h = 0. So we see that ||h||2H −
Ṽ (y0)(h, h) = 0. This implies that h = 0 by the assumption on Ṽ . This proves our

assertion.

Proposition 5.3. (1) (π0
∂

∂xi
ĥ(x), DF j(0, ĥ(x)))H = δij, i, j = 1, . . . , N.

(2) λ̂i(x) =
∂e0
∂xi

(x), i = 1, . . . , N.

(3)

NX
j=1

∂2e0
∂xi∂xj

(0)DF j(0, h0) = (IH − B0)(IH − π⊥0 B0)
−1π0

∂

∂xi
ĥ(0), i = 1, . . . , N.

Proof. Acting ∂/∂xi to Proposition 5.1(3), we have

DF i(0, ĥ(x))
∂

∂xj
ĥ(x) = δij.

This implies the assertion (1)

Acting ∂/∂xi to Proposition 5.1(1), we have

∂e0
∂xi

(x) = (ĥ(x)−Df(0, ĥ(x)), ∂

∂xi
ĥ(x))H .

Then we have the assertion (2) by Proposition 5.1(2) and the assertion (1).
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Acting ∂/∂xi to Proposition 5.1(2), we have by the assertion (2)

(IH −D2f(0, ĥ(x))
∂

∂xi
(x)ĥ(x)

=

NX
j=1

λ̂j(x)D2F j(0, ĥ(x))
∂

∂xi
ĥ(x) +

NX
j=1

∂2e0
∂xi∂xj

(x)DF j(0, ĥ(x)).

This implies that

(5.1) (IH − B0)
∂

∂xi
ĥ(0) =

NX
j=1

∂2e0
∂xi∂xj

(0)DF j(0, ĥ(0)).

Acting π⊥0 , we have

π⊥0 (IH − B0)
∂

∂xi
ĥ(0) = 0,

which implies that

(IH − π⊥0 B0)
∂

∂xi
ĥ(0) = π0

∂

∂xi
ĥ(0).

Therefore
∂

∂xi
ĥ(0) = (IH − π⊥0 B0)

−1π0
∂

∂xi
ĥ(0).

Combining this with Equation (5.1), we have the assertion (3).

The following is easy to check.

Proposition 5.4. Let A be a bounded operator on RN . Assume that {ei}Ni=1 and {fi}Ni=1
are basis on RN satisfying

(ei, fj) = δij, i, j = 1, . . . , N.

Then

detA = det(((Aei, fj)i,j=1,...,N).

Proposition 5.5.

det(T0T
∗
0 )det2(IH − π⊥0 B0π

⊥
0 ) = (det∇2e0(0))−1det2(IH − B0) exp(−traceH(π0B0)).

Proof. Note that

IH − π0 + π0(IH − B0)(IH − π⊥0 B0)
−1

= IH − π0B0(IH − π⊥0 B0)
−1 = (IH − B0)(IH − π⊥0 B0)

−1.

Let S = π0B0(IH − π⊥0 B0)
−1. By Propositions 5.4 and 5.3, we have

det(IH − S) = det(IH − π0 + π0(IH − B0)(IH − π0B0)
−1π0)
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= det(((I − B0)(I − π⊥0 B0)
−1π0)

∂

∂xi
ĥ(0), DF j(0, h0))H)i,j=1,...,N )

= det(∇2e0(0)) det(T0T ∗0 ).

On the other hand, we have

det2(IH − B0) = det2((IH − S)(IH − π⊥0 B0))

= det2(IH − S)det2(IH − π⊥0 B0) exp(−traceH(S(π⊥0 B0)))

= det(IH − S)det2(IH − π⊥0 B0) exp(tr(S(IH − π⊥0 B0)).

= det(∇2e0(0)) det(T0T ∗0 )det2(IH − π⊥0 B0π
⊥
0 ) exp(traceH(π0B0)).

Thus we have our assertion.

Now Theorem 3.2 is a direct consequence of Propositions 4.5 and 5.5.
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