
UTMS 2007–16 September 18, 2007

A new weak approximation scheme

of stochastic differential equations

by using the Runge-Kutta method

by

Shigeo Kusuoka, Mariko Ninomiya,

and Syoiti Ninomiya

�
UNIVERSITY OF TOKYO

GRADUATE SCHOOL OF MATHEMATICAL SCIENCES

KOMABA, TOKYO, JAPAN



A NEW WEAK APPROXIMATION SCHEME OF STOCHASTIC
DIFFERENTIAL EQUATIONS BY USING THE RUNGE-KUTTA METHOD

SHIGEO KUSUOKA1, MARIKO NINOMIYA2, AND SYOITI NINOMIYA3

1. Introduction

A number of studies on numerical calculations of stochastic differential equations
(SDEs) have been carried out as there is a great demand for it in various fields
such as mathematical finance. It is shown in [11], [15], [16], and [19] that the new
higher order scheme introduced by Kusuoka in [8] and [10] does extremely faster
calculation in application to some finance problems. Lyons and Victoir extensively
developed the scheme in [13] by using the notion of free Lie algebra.

In this paper, we successfully construct in Theorem 1.1 and Corollary 1.1 a new
implementation method of the new higher order scheme of weak approximation.
The point in the algorithm is that the approximation operator can be considered
to be composition of solutions of ODEs when ω is given. The concrete ODEs
are constructed by Theorem 1.2 and can be approximated by the Runge-Kutta
method for ODEs by Theorem 4.1. We should note that another higher-order weak
approximation method is introduced in [17]. Although this algorithm and the
new method which we are going to present in this paper are based on the same
scheme ([8] [10][13]) and have many common features, algorithms themselves are
completely different and the diversity is not trivial.

Let (Ω,F ,P) be a probability space. We define B0(t) as t and (B1(t), . . . ,Bd(t)) as
the d-dimensional standard Brownian Motion. C∞b (RN;RN) denotes the set of RN-
valued infinitely differentiable functions defined over RN whose derivatives are
all bounded. Our interest is in weak approximation, that is to say, approximation
of (Pt f )(x) = E[ f (X(1, x))] where f ∈ C∞b (RN;R) and X(t, x) is a solution to the
Stratonovich stochastic integral equation

(1.1) X(t, x) = x +
d∑

i=0

∫ t

0
Vi(X(s, x)) ◦ dBi(s),

where Vi ∈ C∞b (RN;RN), i = 0, . . . , d. Vi ∈ C∞b
(
RN;RN

)
is regarded as a vector field

in the following way:

Vi f (x) =
N∑

j=1

V j
i (x)
∂ f
∂x j

(x), for f ∈ C∞b (RN;R).

Let A = {v0, v1, . . . , vd}, d ≥ 1 be an alphabet and A∗ denote the set of all words
consisting of the elements of A. The empty word 1 is the identity of A∗. For
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u = vi1 · · · vin ∈ A∗, ik ∈ {0, 1, . . . , d}, |u| and ‖u‖ are defined by |u| = n and ‖u‖ =
|u| + card ({k | ik = 0}), respectively, where card(S) denotes the cardinality of a set
S. A∗m and A∗≤m denote {w ∈ A∗| |w| = m} and {w ∈ A∗| |w| ≤ m}, respectively.
Let R〈A〉 be the R-coefficient free algebra with basis A∗ and R〈〈A〉〉 be the set of
all R-coefficient formal series with basis A∗. Then, R〈A〉 is a sub R-algebra of
R〈〈A〉〉. We call an element of R〈A〉 a non-commutative polynomial. Let R〈A〉m =
{P ∈ R〈A〉 | (P,w) = 0, if ‖w‖ , m }. P ∈ R〈〈A〉〉 is written as

P =
∑
w∈A∗

(P,w) w or
∑
w∈A∗

aww,

where (P,w) = aw ∈ R denotes the coefficient of w. The algebra structure is defined
as usual, that is to say, ∑

w∈A∗
aww


∑

w∈A∗
bww

 = ∑
w=uv
w∈A∗

aubvw.

The Lie bracket is defined as [x, y] = xy − yx for x, y ∈ R〈〈A〉〉. For w = vi1 · · · vin ∈
A∗, r(w) denotes [vi1 , [vi2 , [. . . , [vin−1 , vin ] . . . ]]]. We define LR(A) as the set of Lie
polynomials in R〈A〉 and LR((A)) as the set of Lie series. For m ∈ Z≥0, let jm be a
map defined as follows:

jm

∑
w∈A∗

aww

 = ∑
‖w‖≤m

aww.

For arbitrary P,Q ∈ R〈A〉, the inner product 〈P,Q〉 is defined as follows:

〈P,Q〉 =
∑
w∈A∗

(P,w)(Q,w).

Also we let ‖P‖2 = (〈P,P〉)1/2 for P ∈ R〈A〉. For P ∈ R〈〈A〉〉 such that (P, 1) = 0, we
can define exp(P) as 1+

∑∞
k=1 Pk/k!. Also, log(Q) can be defined as

∑∞
k=1(−1)k−1(Q−

1)k/k for Q ∈ R〈〈A〉〉 if (Q, 1) = 1. The following relations hold:

log(exp(P)) = P and exp(log(Q)) = Q.

By the natural identification R〈〈A〉〉 ≈ R∞, we can induce the direct product
topology into R〈〈A〉〉. R〈〈A〉〉 becomes a Polish space by the topology. Also we
can consider its Borel σ-algebra B(R〈〈A〉〉), R〈〈A〉〉-valued random variables, their
expectations, and other notions as usual.

Let Φ be a homomorphism between R〈A〉 and the R-algebra which consists of
smooth differential operators over RN such that

Φ(1) = Id,

Φ(vi1 · · · vin ) = Vi1 · · ·Vin , i1, . . . , in ∈ {0, 1, . . . , d}.
(1.2)

Also, for s ∈ R>0,Ψs : R〈〈A〉〉 −→ R〈〈A〉〉 is defined as follows:

Ψs

 ∞∑
m=0

Pm

 = ∞∑
m=0

sm/2Pm, where Pm ∈ R〈A〉m.
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For a smooth vector field V, i. e. an element of C∞b
(
RN;RN

)
, exp (V) (x) denotes

the solution at time 1 of the ordinary differential equation

dzt

dt
= V (zt) , z0 = x.

We also define ‖V‖Cn for V ∈ C∞b (RN;RN) as follows:

‖V‖ = sup
x
|V(x)|∥∥∥V(n)

∥∥∥ = sup
x

{∣∣∣∣V(n)
(x) (U1,U2, . . . ,Un)

∣∣∣∣ ; ‖Ui‖ = 1, i = 1, . . . , n
}

‖V‖Cn =

n∑
i=0

∥∥∥V(i)
∥∥∥

Here V(k) denotes the k-th order total differential of V, that is,

V(n)
(x) (U1,U2, . . . ,Un) =

N∑
i=1

N∑
j1=1

· · ·
N∑

jn=1

∂nVi

∂x j1 · · · ∂x jn
(x)U j1

1 · · ·U
jn
n ei

where ei denotes an N-dimensional unit vector and U j
k is the j-th component of Uk.

Definition 1.1. A map g from C∞b (RN;RN) to the set of all maps fromRN toRN is called
an integration scheme of order m if there exists a positive constant Cm such that

(1.3)
∣∣∣g(W)(x) − exp (W)(x)

∣∣∣ ≤ Cm‖W‖m+1
Cm+1

for all W ∈ C∞b (RN;RN) and x ∈ RN. Here Cm depends only on m and g. Let IS(m) be
the set of all integration schemes of order m.

Notation 1.1. For z1, z2 ∈ LR((A)), we define z2 à z1 as log(exp(z2) exp(z1)). Then from
the definition, for z1, z2, z3 ∈ LR((A)),

(z1 à z2) à z3 = log
(
exp(z1) exp(z2) exp(z3)

)
= z1 à (z2 à z3) ,

and so we can write for z1, . . . , zn ∈ LR((A))

(1.4) z1 à z2 à · · · à zn = log
(
exp(z1) · · · exp(zn)

)
.

The followings are the main results of our study.

Theorem 1.1. Let m ≥ 1, n ≥ 2, and Z1, . . . ,Zn be LR((A))-valued random variables.
Assume that Z1, . . . ,Zn satisfy the followings:

Zi = jmZi i = 1, . . . , n,(1.5)

E
[∥∥∥ jmZi

∥∥∥
2

]
< ∞,(1.6)

E

exp

a
n∑

j=1

∥∥∥∥ΦΨs

(
Z j

)∥∥∥∥
Cm+1


 < ∞ for any a > 0.(1.7)

Then for arbitrary g1, . . . , gn ∈ IS(m), there exists a positive constant C such that
(1.8)∥∥∥g1 (Φ (Ψs (Z1))) ◦ · · · ◦ gn (Φ (Ψs (Zn))) (x) − exp

(
Φ

(
Ψs

(
jm (Zn à · · · àZ1)

)))
(x)

∥∥∥
Lp ≤ Cs(m+1)/2.

Here for functions f and g, f ◦ g(x) denotes f
(
g(x)

)
as usual.
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Let
{
Si

j

}
i=1,...,d, j=1,...,n

be a set of R-valued normally distributed random variable

and c j’s and R j j′ be real numbers such that

(1.9)
n∑

j=1

c j = 1, E
[
Si

j

]
= 0, and E

[
Si

jS
i′
j′

]
= R j j′δii′

for j, j′ = 1, . . . , n, and i, i′ = 1, . . . , d,. Here our interest is in finding a set of random
variables

{
Z j = c jv0 +

∑d
i=1 Si

jvi : j = 1, . . . , n
}
, such that

(1.10) E
[
jm

(
exp (Z1) · · · exp (Zn)

)]
= jm

exp

v0 +
1
2

d∑
i=1

v2
i


 .

Theorem 1.2. For m = 5, n = 2, Z j as above can be constructed if and only if

c1 =
∓

√
2 (2u − 1)

2
, c2 = 1 ±

√
2 (2u − 1)

2
, R11 = u

R22 = 1 + u ±
√

2 (2u − 1), R12 = −u ∓
√

2 (2u − 1)
2

(1.11)

for some u ≥ 1/2.

Remark 1.1. We can show that in the case where m = 7, n = 3 there is no solution to (1.9)
and (1.10).

The M-stage Runge-Kutta method of order m in the sense of [2] can be written
as follows: for W ∈ C∞b

(
RN;RN

)
,

Yi (W, s) = y + s
M∑
j=1

ai jW
(
Y j(W, s)

)
,

Y(y; W, s) = y + s
M∑

i=1

biW (Yi(W, s)) ,

(1.12)

where A =
(
ai j

)
i, j=1,...,M

with ai j ∈ R and b = t(b1, . . . , bM) ∈ RM satisfy (4.2) in

Section 4. (1.12) gives the m-th order approximation of an ODE

(1.13)
d
dt

y(t) =W
(
y(t)

)
, y(0) = y.

Let g(m)(W)(y) be Y(y; W, 1). Then g(m) belongs to IS(m), which is Theorem 4.1 in
Section 4.

Corollary 1.1. Let Z j’s j = 1, . . . , n, be LR((A))-valued random variables as in Theo-
rem 1.2 and define linear operators Q(s), s ∈ (0, 1] by

(1.14)
(
Q(s) f

)
(x) = E

[
f
(
g(m) (ΦΨs (Z1)) ◦ · · · ◦ g(m) (ΦΨs (Zn)) (x)

)]
.

Then for f ∈ C∞b (RN;R),

(1.15)
∥∥∥Ps f −Q(s) f

∥∥∥∞ ≤ Cs(m+1)/2
∥∥∥grad( f )

∥∥∥∞ .
where C is a positive constant and s ∈ (0, 1].

Remark 1.2. Kusuoka has shown the following results in [10]:
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(1) For a Lipschitz continuous function f , the inequality (1.15) still holds.

(2) The Romberg extrapolation can be applied to this algorithm.

2. Proof of Theorem 1.1

In order to prove Theorem 1.1, we provide some lemmas first.

Proposition 2.1.

(1) For any V ∈ C∞b (RN;R), f ∈ C∞(RN;R), x ∈ RN and n ≥ 1,

(2.1) f
(
exp(tV)(x)

)
=

n∑
k=0

tk

k!

(
Vk f

)
(x) +

∫ t

0

(t − s)n

n!

(
Vn+1 f

) (
exp(sV)(x)

)
ds.

(2) For all z ∈ LR((A)), and n,m ≥ 1,

(2.2)

∣∣∣∣∣∣∣ f (
exp

(
Φ( jmz)

)
(x)

) − n∑
k=0

1
k!

(
Φ

(
( jmz)k

)
f
)

(x)

∣∣∣∣∣∣∣ ≤ 1
(n + 1)!

∥∥∥∥Φ (
( jmz)n+1 f

)∥∥∥∥∞ .
Proof. Since we have

d
dt

f
(
exp(tV)(x)

)
= V f

(
exp (tV) (x)

)
,

from the Taylor expansion and by integration by parts we obtain (2.1). (2.2) can be
derived from (2.1). �

Lemma 2.1. For all n ≥ 1, there exists a constant Cn > 0 such that for all z ∈ LR((A))
and f ∈ C∞(RN;R),

(2.3)
∥∥∥Φ( jnz) f

∥∥∥∞ ≤ Cn

∥∥∥ jnz
∥∥∥

2

∥∥∥grad( f )
∥∥∥

Cn−1

Proof. Let pm be a map such that

pm :
∞∑
|α|=0

aαDα 7−→
∑
|α|=m

aαDα

where aα ∈ C∞b (RN;RN) and α is a multi-index. Then we have

Φ(w) =
|w|∑
i=1

pi(Φ(w)),

because |w| ≥ 1. Since there exists a constant Cw,i > 0 such that∥∥∥pi(Φ(w)) f
∥∥∥∞ ≤ Cw,i sup

α∈(Z≥0)N

|α|=i−1

∥∥∥Dα(grad( f ))
∥∥∥∞ ,
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we can obtain∥∥∥Φ( jnz) f
∥∥∥∞ ≤ ∑

w∈A∗
1≤‖w‖≤n

∥∥∥Φ(w) f
∥∥∥∞ |〈z,w〉|

≤
∑
w∈A∗

1≤‖w‖≤n

|w|∑
i=1

Cw,i |〈z,w〉| sup
α∈(Z≥0)N

|α|=i−1

∥∥∥Dα(grad( f ))
∥∥∥∞

≤ Cn

∥∥∥ jnz
∥∥∥

2
sup
α∈(Z≥0)N

|α|=i−1

∥∥∥Dα(grad( f ))
∥∥∥∞

≤ Cn

∥∥∥ jnz
∥∥∥

2

∥∥∥grad( f )
∥∥∥

Cn−1

where Cn = sup w∈A∗
1≤‖w‖≤n

(
∑|w|

i=1 Cw,i). �

For simplification of notation, we let Φs(y) denote Φ(Ψs(y)) for an element
y ∈ LR((A)) in the following part.

Lemma 2.2. For z1, . . . , zn ∈ LR((A)), there exists a constant Cm,n > 0 such that

(2.4)∣∣∣ f (
exp

(
Φs

((
jmzn

) à · · · à ( jmz1
)))

(x)
) − (
Φs

(
jm exp

((
jmzn

) à · · · à ( jmz1
)))

f
)

(x)
∣∣∣

≤ Cm,ns(m+1)/2

1 +
n∑

i=1

∥∥∥ jmzi

∥∥∥
2


m+1 ∥∥∥grad( f )

∥∥∥
Cm(m+1)−1 .

Proof. From the fact that

jm
(
exp

(
jmz

))
=

m∑
k=0

1
k!

(
jmz

)k −
m∑

k=2

1
k!

( jm(m+1) − jm)
((

jmz
)k
)
,

and (2.2) in Proposition 2.1,

(2.5)
∣∣∣ f (

exp
(
Φ( jmz)

)
(x)

) − (
Φ

(
jm

(
exp( jmz)

))
f
)

(x)
∣∣∣

≤ 1
(m + 1)!

∥∥∥∥Φ ((
jmz

)m+1
)

f
∥∥∥∥∞ +

∣∣∣∣∣∣∣
m∑

k=2

1
k!

(
Φ

(
( jm(m+1) − jm)

(
( jmz)k

))
f
)

(x)

∣∣∣∣∣∣∣ .
Since for z ∈ LR((A)), (

jmz
)m+1 =

(
jm(m+1) − jm

) (
jmz

)m+1 ,

we can derive the followings by applying Lemma 2.1:∣∣∣ f (
exp

(
Φ

(
jmz

))
(x)

) − (
Φ

(
jm

(
exp

(
jmz

)))
f
)

(x)
∣∣∣

≤
m+1∑
k=2

1
k!

∥∥∥∥Φ ((
jm(m+1) − jm

) ((
jmz

)k
))

f
∥∥∥∥∞

≤ Cm

m+1∑
k=2

∥∥∥∥Φ ((
jm(m+1) − jm

) (
jmz

)k
)∥∥∥∥

2

∥∥∥grad( f )
∥∥∥

Cm(m+1)−1

(2.6)

where Cm is a positive constant.
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Taking zn à · · · à z1 as z above and evaluating by

m+1∑
k=1

∥∥∥∥( jm(m+1) − jm
) (

jmzn à · · · à z1
)k
∥∥∥∥

2
≤ Cm,n

1 +
n∑

i=1

∥∥∥ jmzi

∥∥∥
2


m+1

,

we obtain (2.4). �

Lemma 2.3. For z1, . . . , zn ∈ LR((A)), there exists a constant C > 0 such that

(2.7)∣∣∣ f (
exp

(
Φs

(
jmz1

)) ◦ · · · ◦ exp
(
Φs

(
jmzn

))
(x)

) − (
Φs

(
jm exp

((
jmzn

) à · · · à ( jmz1
)))

f
)

(x)
∣∣∣

≤ Cs(m+1)/2
n∑

i=1

(
1 +

∥∥∥ jmzi

∥∥∥
2

)m+1 ∥∥∥grad( f )
∥∥∥

Cm(m+n)−1 .

Proof. We prove the lemma by induction on n. When n = 1, (2.4) and (2.7) are
equivalent. Assume that (2.7) holds for n. Then∣∣∣ f (

exp
(
Φs

(
jmz1

)) ◦ · · · ◦ exp
(
Φs

(
jmzn+1

))
(x)

) − (
Φs

(
jm exp

((
jmzn+1

) à · · · à ( jmz1
)))

f
)

(x)
∣∣∣

≤
∣∣∣ f (

exp
(
Φs

(
jmz1

)) ◦ · · · ◦ exp
(
Φs

(
jmzn+1

))
(x)

)
− (
Φs

(
jm exp

((
jmzn

) à · · · à ( jmz1
)))

f
) (

exp
(
Φs

(
jmzn+1

))
(x)

)∣∣∣
+

∣∣∣(Φs
(
jm exp

((
jmzn

) à · · · à ( jmz1
)))

f
) (

exp
(
Φs

(
jmzn+1

))
(x)

)
− (
Φs

(
jm exp

((
jmzn+1

) à · · · à ( jmz1
)))

f
)

(x)
∣∣∣ .

Substituting Φs
(
jm exp

((
jmzn

) à · · · à ( jmz1
)))

f into f in (2.4), we can derive evalu-
ation of the second term on the right-hand side. As a result, we obtain∣∣∣ f (

exp
(
Φs

(
jmz1

)) ◦ · · · ◦ exp
(
Φs

(
jmzn+1

))
(x)

) − (
Φs

(
jm exp

((
jmzn+1

) à · · · à ( jmz1
)))

f
)

(x)
∣∣∣

≤ C1s(m+1)/2

 n∑
i=1

(
1 +

∥∥∥ jmzi

∥∥∥
2

)m+1
+

(
1 +

∥∥∥ jmzn+1

∥∥∥
2

)m+1
 ∥∥∥grad( f )

∥∥∥
Cm(m+n+1)−1 ,

where C1 > 0 is a constant and the statement holds in the case of n + 1. �

Lemma 2.4. For all m ≥ 1, there exists a constant Cm,n > 0 such that for all s ∈ (0, 1],
z1, . . . , zn ∈ LR((A)), and f ∈ C∞(RN;R)

(2.8)∣∣∣ f (
exp

(
Φs

(
jmz1

)) ◦ · · · ◦ exp
(
Φs

(
jmzn

))
(x)

) − f
(
exp

(
Φs

(
jm

(
( jmzn) à · · · à( jmz1)

)))
(x)

)∣∣∣
≤ Cm,ns(m+1)/2

n∑
i=1

(
1 +

∥∥∥ jmzi

∥∥∥
2

)m+1 ∥∥∥grad( f )
∥∥∥

Cm(m+n)−1 .

Proof. We have

∣∣∣ f (
exp

(
Φs

(
jmz1

)) ◦ · · · ◦ exp
(
Φs

(
jmzn

))
(x)

) − f
(
exp

(
Φs

(
jm

(
( jmzn) à · · · à( jmz1)

)))
(x)

)∣∣∣
≤

∣∣∣ f (
exp

(
Φs

(
jmz1

)) ◦ · · · ◦ exp
(
Φs

(
jmzn

))
(x)

) − (
Φs

(
jm exp

((
jmzn

) à · · · à ( jmz1
)))

f
)

(x)
∣∣∣

+
∣∣∣ f (

exp
(
Φs

(
jm

((
jmzn

) à · · · à ( jmz1
))))

(x)
) − (
Φs

(
jm exp

((
jmzn

) à · · · à ( jmz1
)))

f
)

(x)
∣∣∣ .

(2.9)

From Lemmas 2.2 and 2.3, (2.8) can be derived. �
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Lemma 2.5. Let Z1, . . . ,Zn be LR((A))-valued random variables such that for m ≥ 1,
E
[∥∥∥ jmZi

∥∥∥
2

]
< ∞, i = 1, . . . , n. Then, for p ∈ [1,∞), there exists a constant Cm,n > 0 such

that for any s ∈ (0, 1] and x ∈ RN,

(2.10)∥∥∥exp
(
Φs

(
jmZ1

)) ◦ · · · ◦ exp
(
Φs

(
jmZn

))
(x) − exp

(
Φs

(
jm

(
( jmZn) à · · · à( jmZ1)

)))
(x)

∥∥∥
Lp

≤ Cm,ns(m+1)/2.

Proof. If for i ∈ {1, . . . ,N}, f ((x1, . . . , xN)) = xi, then
∥∥∥grad( f )

∥∥∥
Cm(m+n)−1 = 1 for all

m ≥ 1. Therefore, applying Lemma 2.4 for such f , we obtain (2.10). �

Proposition 2.2. For g ∈ IS(m) and W ∈ C∞b (RN;RN), there exists a constant C > 0
such that

(2.11)
∣∣∣g(W)(x) − g(W)(y)

∣∣∣ ≤ C ‖W‖m+1
Cm+1 + |x − y| exp (‖W‖C1 ) .

Proof. Since from the Gronwall’s inequality we have∣∣∣exp (W) (x) − exp (W) (y)
∣∣∣ ∣∣∣x − y

∣∣∣ exp (‖W‖C1 ) ,

(2.11) can be derived. �

Now we give the proof of Theorem 1.1.

∥∥∥g1 (Φs (Z1)) ◦ · · · ◦ gn (Φs (Zn)) (x) − exp
(
Φs

(
jm (Zn à · · · àZ1)

))
(x)

∥∥∥
Lp

≤
∥∥∥exp (Φs (Z1)) ◦ · · · ◦ exp (Φs (Zn)) (x) − exp

(
Φs

(
jm (Zn à · · · àZ1)

))
(x)

∥∥∥
Lp

+
∥∥∥g1 (Φs (Z1)) ◦ · · · ◦ gn (Φs (Zn)) (x) − exp (Φs (Z1)) ◦ · · · ◦ exp (Φs (Zn)) (x)

∥∥∥
Lp .

(2.12)

Since gi ∈ IS(m) and Zi satisfies (1.7), we have for some C1 > 0,

(2.13)
∥∥∥gn (Φs (Zn)) (x) − exp (Φs (Zn)) (x)

∥∥∥
Lp ≤

∥∥∥Cm ‖Φs (Zn)‖m+1
Cm+1

∥∥∥
Lp ≤ C1s(m+1)/2.

From this fact and Proposition 2.2, there exists a constant C3 > 0 such that∥∥∥gn−1 (Φs (Zn−1)) ◦ gn (Φs (Zn)) (x) − exp (Φs (Zn−1)) ◦ exp (Φs (Zn)) (x)
∥∥∥

Lp

≤
∥∥∥gn−1 (Φs (Zn−1)) ◦ exp (Φs (Zn)) (x) − exp (Φs (Zn−1)) ◦ exp (Φs (Zn)) (x)

∥∥∥
Lp

+
∥∥∥gn−1 (Φs (Zn−1)) ◦ gn (Φs (Zn)) (x) − gn−1 (Φs (Zn−1)) ◦ exp (Φs (Zn)) (x)

∥∥∥
Lp

≤
∥∥∥Cm ‖Φs (Zn−1)‖m+1

Cm+1

∥∥∥
Lp

+
∥∥∥C2 ‖Φs (Zn−1)‖m+1

Cm+1 +
∣∣∣gn (Φs (Zn)) (x) − exp (Φs (Zn)) (x)

∣∣∣ exp (‖Φs (Zn−1)‖C1 )
∥∥∥

Lp

≤ C3s(m+1)/2.

where C2 is a positive constant. Inductively,
(2.14)∥∥∥g1 (Φs (Z1)) ◦ · · · ◦ gn (Φs (Zn)) (x) − exp (Φs (Z1)) ◦ · · · ◦ exp (Φs (Zn)) (x)

∥∥∥
Lp ≤ C4s(m+1)/2

where C4 > 0. From (2.14) and Lemma 2.5, (1.8) can be shown.
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3. Construction of the LR((A))-valued random variables Z j’s

We introduce some notations first so as to obtain simple representation of the coef-
ficient C(w) of each w = vi1 vi2 · · · vi` , in E

[
exp(Z1) · · · exp(Zn)

]
where i j ∈ {0, 1, . . . , d},

j = 1, . . . , `, and Z j’s areLR((A))-valued random variables constructed with Gauss-
ian random variables satisfying (1.9).

For (i1, . . . , i`) ∈ {0, 1, . . . , d}`, we define
(
ī0, ī1, . . . , ī`′

)
as follows:

`′ =

card({i1, . . . , i`}) if {k | ik = 0} = ∅,
card({i1, . . . , i`}) − 1 otherwise,

ī0 = 0, {ī1, . . . , ī`′ } = {i1, . . . , i`} \ {0}.

For such (ī0, . . . ī`′), we also define mr ∈N, r = 0, 1, . . . , `′ by mr = card
({

j
∣∣∣ īr = i j

})
.

For `, n ∈N, letK`(n) =
{
(k1, . . . , kn) ∈ Zn

≥0

∣∣∣ k1 + · · · + kn = `
}
. For a set of indexed

variables
{
Xi

j

}
i, j∈Z

and two sequences of integers i1i2 . . . ia and j1 j2 . . . ja, we denote

by Xi1i2...ia
j1 j2... ja

the product
∏a

k=1 Xik
jk

. A sequence of indexed letters i1i2 . . . ia is frequently
denoted by i〈1, 2, . . . , a〉 through this section. Using these notations, we can write
as follows:

Xi1
j1

Xi2
j2
· · ·Xia

ja
= Xi1i2...ia

j1 j2... ja
= Xi〈1,2,...,a〉

j〈1,2,...,a〉.

Also, Xi〈1,...,`〉
j〈1k1 ,2k2 ,··· ,nkn 〉 means Xi1

j1
· · ·Xik1

j1︸      ︷︷      ︸
k1

X
ik1+1

j2
· · ·Xik1+k2

j2︸           ︷︷           ︸
k2

· · ·Xik1+···+kn−1+1

jn
· · ·Xik1+···+kn

jn︸                    ︷︷                    ︸
kn

.

For (k1, . . . , k2m) ∈ N2m with k1 < k2 < · · · < k2m, we define a set of maps
T(k1, . . . , k2m) by the statement that T ∈ T(k1, . . . , k2m) is equivalent to the following
conditions:

(i) T is a bijection from {1, . . . ,m} × {1, 2} to {k1, k2, . . . , k2m}
(ii) T(i, 1) < T(i, 2) for all i ∈ {1, . . . ,m}

(iii) T(i1, 1) < T(i2, 1) if i1 < i2.

Lemma 3.1. Let
{
Si

j

}
i=1,...,d, j=1,...,n

be the set of Gaussian random variables satisfying (1.9)

and m be an integer satisfying m ≤ d, then

(3.1) E
[
Sii...i

j〈1,2,...,2m〉
]
=

∑
T∈T(1,2,...,2m)

m∏
i=1

R[ j](T(i, 1),T(i, 2))

where R[ j] denotes the (2m) × (2m) matrix whose (a, b) component is R ja jb and R[ j](a, b)
denotes the (a, b) component of R[ j], that is, R[ j](a, b) = R ja jb .

This lemma is proved later. Let

R[ j ; k, 2m] =
∑

T∈T(k+1,...,k+2m)

m∏
i=1

R[ j](T(i, 1),T(i, 2)).

Theorem 3.1. If mr is even for any r ∈ {1, . . . , `′}, then

(3.2) C(w) =
∑

k∈K`(n)

1
k!

m0∏
p=1

c jp

`′∏
q=1

R[ j ; m̃(q − 1),mq],
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otherwise C(w) = 0 where m̃(q) =
∑q

r=0 mr, for k = (k1, . . . , kn), k! denotes k1! · · · kn! and
( j1, . . . , j`) is a sequence defined for each (k1, . . . , kn) such that

(3.3)

 m0∏
p=1

Sī0
jp


 m1∏

p=1

Sī1
jm̃(0)+p

 · · ·
 m`′∏

p=1

Sī`′
jm̃(`′−1)+p

 = Si〈1,...,`〉
1k1 2k2 ···nkn

.

Proof. For the case in which mr is odd for some r ∈ {1, . . . , `′}, (3.2) is directly
derived from (1.9).

We therefore consider the other case, that is, mr = 2m′r for all r ∈ {1, . . . , `′}. By
the Taylor expansion of exp (Z1) · · · exp (Zn), we have for w = vi1 . . . vi`

(3.4) C(w) = E

 ∑
k=(k1,...,kn)∈K`(n)

1
k!

Si1
1 · · · S

ik1
1 S

ik1+1

2 · · · Sik1+k2
2 · · · Sik1+···+kn−1+1

n · · · Sik1+···+kn
n

 .
By (3.3) and the definition of

{
Si

j

}
in (1.9), (3.4) becomes

(3.5) C(w) =
∑

k=(k1,...,kn)∈K`(n)

1
k!

 m0∏
p=1

c jp

 E

 m1∏
p=1

Sī1
jm̃(0)+p

 · · ·E
 m`′∏

p=1

Sī`′
jm̃(`′−1)+p

 .
Applying Lemma 3.1 to each E

[(∏mr
p=1 Sīr

jm̃(r−1)+p

)]
, r = 1, . . . , `′, we obtain (3.2). �

Proof of Lemma 3.1. Let S be an R2m-valued random variable defined by

S =
(
Si

j1 ,S
i
j2 , . . . , S

i
j2m

)
.

Let ϕS(z) be the characteristic function of S, that is,

(3.6) ϕS(z) = E
[
exp

(√
−1〈S, z〉

)]
where z = (z1, . . . , z2m) ∈ R2m and 〈S, z〉 denotes the inner product of S and z.
Because Si

j’s are normal random variables satisfying (1.9), we also have

(3.7) ϕS(z) = exp
(
−1

2
tzR[ j]z

)
.

From (3.6),

∂2mϕS(z)
∂z1∂z2 . . . ∂z2m

∣∣∣∣∣∣
z=0

=
∂2m

∂z1∂z2 . . . ∂z2m

∞∑
l=0

(√
−1

)l

l!
E
[
(〈S, z〉)l

]∣∣∣∣∣∣∣∣
z=0

=
(−1)m

(2m)!
∂2m

∂z1∂z2 . . . ∂z2m
E
[
(〈S, z〉)2m

]∣∣∣∣∣∣
z=0

=(−1)mE
[
Sii...i

j〈1,2,...,2m〉
]
.

(3.8)
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We also have

∂2mϕS(z)
∂z1∂z2 . . . ∂z2m

∣∣∣∣∣∣
z=0

=
∂2m

∂z1∂z2 . . . ∂z2m

∞∑
k=0

1
k!

−1
2

∑
1≤h,i≤2m

R[ j](h, i)zhzi


k
∣∣∣∣∣∣∣∣
z=0

=
1

m!
∂2m

∂z1∂z2 . . . ∂z2m

− ∑
1≤h<i≤2m

R[ j](h, i)zhzi


m∣∣∣∣∣∣∣

z=0

=
(−1)m

m!

∑
T∈T(1,...,2m)

m!
m∏

i=1

R[ j](T(i, 1),T(i, 2))

=(−1)m
∑

T∈T(1,...,2m)

m∏
i=1

R[ j](T(i, 1),T(i, 2))

(3.9)

from (3.7). The lemma is proved by (3.8) and (3.9). �

On the other hand, the value of the coefficient of each w in jm
(
exp

(
v0 + (1/2)

∑d
i=1 v2

i

))
can be obtained by the following proposition.

Proposition 3.1. Let A0 = {v0, v1v1, v2v2, . . . , vdvd} ⊂ A∗. Then

(3.10) exp

v0 +
1
2

d∑
i=1

v2
i

 = ∑
w=w1···wl

w1,...,wl∈A0

1
2|w|−ll!

w.

Therefore, taking Si
j’s to equate (3.2) with (3.10) for w = vi1 vi2 · · · vil with ‖w‖ ≤ m,

we can construct Z j’s.
For m = 5, we take n = 2 to have solvable simultaneous equations which are

actually become the following five:

c1 + c2 = 1,
1
2

(c1R11 + c2R22) + R12 =
1
2
,

1
6

(c1R11 + c2R22) +
1
2

c1(R12 + R22) =
1
4
,

1
6

(c1R11 + c2R22) +
1
2

c2(R11 + R22) =
1
4
,

1
24

(R2
11 + R2

22) +
1
6

R12(R11 + R22) +
1
4

R11R22 =
1
8
.

(3.11)

The solution is (1.11). Since we let {Si
j}i=1,...,d, j=1,...,n be the Gaussian system, such

random variables can be definitely constructed.

Remark 3.1. If we let m = 5, then n has to be two at least.

4. The Runge-Kutta method

We begin by briefly introducing the tree theory following [2], [3] and [1]. For details
of the Runge-Kutta method, see [2], [3], and [18].

All trees introduced here are called directed or rooted trees in the literature listed
above.

Definition 4.1. A labelled tree t is a pair of finite sets (V(t),E(t)) which satisfies the
following conditions:
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(1) V(t) ⊂ Z and E(t) ⊂ {
(x, y) : x, y ∈ V(t) and x , y

}
.

(2) If (x, y) ∈ E(t) then x < y.

(3) For each x ∈ V(t), if (x, y) ∈ E(t) and (x′, y) ∈ E(t), then x = x′.

(4) For any two different elements x, y ∈ V(t), one of the followings holds:
(i) There exists a path from x to y,

(ii) There exists a path from y to x,
(iii) For some z ∈ V(t) \ {x, y}, there exist paths z to x and z to y.

Here a path from p1 to pl is a sequence (p1, p2), (p2, p3), . . . , (pl−1, pl) of elements of E(t)
such that pi , p j if i , j.

An element of V(t) is called a vertex of t and of E(t) is called an edge of t.
A particular labelled tree τ is the one with card (V(τ)) = 1. For only τ, E(τ) is allowed

to be empty.
For a labelled tree t = (V(t),E(t)), let r(t) be card (V(t)). We define T as the set ot all

labelled trees.

Proposition 4.1. For each t = (V(t),E(t)), there exists a unique vertex r ∈ V(t) such that
for any x ∈ V(t) \ {r}, there is a path from r to x.

Such a vertex r is called the root of t. τ consists of only the root.

Definition 4.2. For ti = (V (ti) ,E (ti)) ∈ T, i = 1, . . . , n, such that V (ti) ∩ V
(
t j

)
= ∅ if

i , j, [t1 · · · tn] is defined as t = (V(t),E(t)) such that

V(t) = {r} ∪ V (t1) ∪ · · · ∪ V (tn)

E(t) = {(r, r1), . . . , (r, rn)} ∪ E (t1) ∪ · · · ∪ E (tn)

where ri, i = 1, . . . , n denotes ti’s root and r = min{r1, . . . , rn} − 1.

Remark 4.1. For t1, . . . , tn ∈ T,

[t1 · · · tn] =
[
t$(1) · · · t$(n)

]
for any permutation $ ∈ Sn.

Definition 4.3. For ti = (V (ti) ,E (ti)) ∈ T, i = 1, 2, t1 and t2 are isomorphic, written
t1 ∼̄ t2, if there exists a bijection $ : V (t1) −→ V (t2) such that (x, y) ∈ E (t1) if and only if(
$(x), $(y)

) ∈ E (t2).
In particular, when t1 ∼̄ t2 and V (t1) = V (t2), that is, $ is a permutation, we say that

t1 and t2 are equivalent and write t1 ∼ t2.

Proposition 4.2. Both ∼̄ and ∼ are equivalence relations.

Proposition 4.3. If for i = 1, . . . , n, ti ∈ T and ui ∈ T are isomorphic, then [t1 · · · tn] and
[u1 · · ·un] are also isomorphic.

Definition 4.4. We define T = T/ ∼̄. An element t ∈ T is called a non-labelled tree. For
a labelled tree t ∈ T, |t| denotes the corresponding non-labelled tree t ∈ T.

Proposition 4.4. For ti, t′i ∈ T, i = 1, . . . , n, if |ti| = |t′i |, then

|[t1 · · · tn]| =
∣∣∣∣[t′1 · · · t′n]∣∣∣∣ .
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By virtue of Proposition 4.4, we can define a non-labelled tree t = [t1 · · · tn] for
t1, . . . , tn ∈ T as |[t1 · · · tn]| where ti ∈ T is a representative element of ti ∈ T. We let
τ = |τ| for all i = 1, . . . , n.

Proposition 4.5. For t ∈ T \ {τ}, there exist t1, . . . , tn ∈ T such that t = [t1 · · · tn].
Moreover, if t =

[
t′1 · · · t′n′

]
, then n = n′ and there exists a permutation $ ∈ Sn such

that ti = t′$(i).

If for t = [t1 · · · tn] ∈ T, there are u1, . . . , ul ∈ T such that for any ti there exists
u j such that ti = u j and that uk , u j if k , j, t is written as [um1

1 · · · u
ml
l ] where

m j = card
(
{ti : u j = ti}

)
.

In order to determine A = (ai j)i, j=1,...,M and b = t(b1, . . . , bM) where ai j’s and bi’s
are Rset-valued coefficients appearing in (1.12), we define some functions on T.

Definition 4.5. For t = (V(t),E(t)) ∈ T,

α(t) = card
({

u ∈ T : u ∼ t where t ∈ T is a representative element of t
})

r(t) = card (V(t))

σ(t) =

1 if t = τ∏l
i=1 mi!σ (ti)

mi if t =
[
tmi
1 · · · t

ml
l

]
, l ≥ 1

ζ(t; Ā) = t(ζi(t; Ā)
)

i=1,...,M+1 = Āζ̄(t)

where Ā =
(

A
tb

)
and

ζ̄(t) = t(ζ̄i(t)
)

i=1,...,M =

1M if t = τ
t(∏l

j=1 ζi

(
t j; Ā

))
i=1,...,M

if t = [t1 · · · tl], l ≥ 1.

Also, we define the elementary differentials D for anRN-valued function W ∈ C∞b (RN;RN)
as follows:
(4.1)

D(W, t)(·) =
W(·) if t = τ,

W(l)(·) (D(W, t1)(·),D(W, t2)(·), . . . ,D(W, tl)(·)) if t = [t1t2 · · · tl] , l ≥ 1.

ai j’s and bi’s for the Runge-Kutta method (1.12) of order m satisfy that for t ∈ T
with r(t) ≤ m

(4.2)
α(t)
r(t)!

=
ζ(t; Ā)
σ(t)

because the following evaluations for the solution to (1.13) and the Runge-Kutta
method (1.12) can be shown to hold:

(4.3)

∣∣∣∣∣∣∣∣∣∣exp (sW)(y) −

y +
∑
t∈T

r(t)≤m

sr(t)

r(t)!
α(t)D(W, t)

(
y
)
∣∣∣∣∣∣∣∣∣∣ ≤ Cm+1sm+1‖W‖m+1

Cm+1
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and

(4.4)

∣∣∣∣∣∣∣∣∣∣Y(y; W, s) −

y +
∑
t∈T

r(t)≤m

sr(t)

σ(t)
ζ(t; Ā)D(W, t)

(
y
)
∣∣∣∣∣∣∣∣∣∣ ≤ C

′

m+1sm+1‖W‖m+1
Cm+1

respectively where Cm+1 and C′m+1 are both positive constants.
We recall that g(m) denotes the m-th order Runge-Kutta method with s = 1 as

in section 1. The following theorem confirms that the m-th order Runge-Kutta
method belongs to IS(m).

Theorem 4.1. g(m) ∈ IS(m).

Proof. As we let g(m)(W)(y) = Y(y; W, 1), from (4.3), (4.4), and (4.2)

∣∣∣g(m)(W)(y) − exp (W)(y)
∣∣∣ ≤

∣∣∣∣∣∣∣∣∣∣g(m)(W)(y) −

y +
∑
t∈T

r(t)≤m

ζ(t; Ā)
σ(t)

D(W, t)
(
y
)
∣∣∣∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣∣∣∣exp(W)(y) −

y +
∑
t∈T

r(t)≤m

α(t)
r(t)!

D(W, t)
(
y
)
∣∣∣∣∣∣∣∣∣∣

≤Cm+1‖W‖m+1
Cm+1 .

�

5. The new simulation scheme and Corollary 1.1

Corollary 1.1 indicates the new implementation method of the new higher order
scheme proposed by Kusuoka in [8], [9], and [10]. Corollary 1.1 can be proved by
Theorem 1.1 and 4.1 and a theorem in [10].

This implementation method seems to be distinguished mainly for two ad-
vantages. One is that the approximation operator can be obtained by numerical
calculations if the Runge-Kutta method is applied to calculation of each exp (Z j)
while the tediousness in symbolical calculations of the operator might be an ob-
stacle for practical application, which can be seen in [11], [16], and [19]. The other
is that the partial sampling problem discussed in [11] and [16] can be conquered
by using quasi-Monte Carlo methods. More precisely, the following two points
make effective the use of the Low-Discrepancy sequences, which are essential to
quasi-Monte Carlo methods([14]):

• Si
j’s can be taken to be continuous random variables in this implementation

• the scheme itself is characterized by the need of the much less number of
discretization of time, which leads to reduction of the number of dimen-
sions of the numerical integration.

In this paper, we assume that the SDE (1.1) satisfies the following condition,
UFG:

UFG: There exist an integer l and ϕu,u′ ∈ C∞b (RN;R) which satisfy

(5.1) Φ(r(u)) =
∑

u′∈A∗≤l\{1,v0}
ϕu,u′Φ(r(u′))
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for any u ∈ A∗ \ {1, v0}.

6. Application

We give a numerical example in this section in order to illustrate the implementa-
tion method proposed in Corollary 1.1, comparing with some existing schemes.

6.1. Simulation. Let X(t, x) be a diffusion process defined by (1.1). The most
popular scheme of first order is the Euler-Maruyama scheme. It is shown in [7]
and [22] that for an arbitrary C4 function f

(6.1)
∥∥∥∥E

[
f
(
X(EM),n

1

)]
− E

[
f (X(1, x))

]∥∥∥∥ ≤ C f
1
n

where X(EM),n
1 denotes the Euler-Maruyama scheme approximating X(t, x).

Construction of higher order scheme is based on the higher order stochastic
Taylor formula ([4][7]). When the vector fields {Vi}di=0 commute, higher-order
schemes can be easily simplified to a direct product of one-dimensional problem
as seen in [7]. Contrastingly, for non-commutative {Vi}di=0, acquisition of all iterated
integrals of Brownian motion is required, which is very demanding. This is done
in [8][12][20] [21] and [11] and generalized as the cubature method on Wiener
space ([13]).

Once a pth-order scheme {X(ord p),n
k/n }k=0,...,n is obtained and expanded with some

constant K f as

(6.2) E
[

f
(
X(ord p),n

1

)]
− E

[
f (X(1, x))

]
= K f

1
np +O

( 1
np+1

)
,

the (p + 1)th-order scheme can be derived as

(6.3)
2p

2p − 1
E
[

f
(
X(ord p),2n

1

)]
− 1

2p − 1
E
[

f
(
X(ord p),n

1

)]
.

This boosting method is called Romberg extrapolation and is shown to become
applicable to the Euler-Maruyama scheme under some conditions ([22]).

Simulation approach is to be necessarily followed by numerical calculation of
E
[

f
(
X(ord p),n

1

)]
. However, when n×d is large, it is practically impossible to proceed

the integration by using trapezoidal formula and so we fall back on the Monte
Carlo or quasi-Monte Carlo method ([14]). Here we only introduce remarks on
each method. For details, see [17].

Remark 6.1. As long as we use the Monte Carlo method for numerical approximation of
E[ f (X(1, x))], the number of sample points needed to attain a given accuracy is independent
of the number of the dimensions of integration, namely both the number n of partitions and
the order p of the approximation scheme.

Remark 6.2. In contrast to the Monte Carlo case, the number of sample points needed
for the quasi-Monte Carlo method for numerical approximation of E[ f (X(1, x))] heavily
depends on the number of the dimensions of integration. The smaller the number of the
dimensions, the less the number of samples are needed.

6.2. The algorithm and competitors.
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6.2.1. The algorithm of the new method. We take the algorithm which is proposed in
Theorem 1.2 and Corollary 1.1 with u = 3/4. From Corollary 1.1, we can implement
the second order algorithm with numerical approximation of exp (Zi)’s of at least
fifth-order Runge-Kutta method because the order m for an integration scheme
attained by Z1 and Z2 is five and so the order of the new implementation method
becomes two. As a result of the same argument it can be shown that at least seventh-
order explicit Runge-Kutta method has to be applied to approximation of exp (Zi)’s
when we boost the new method to the third order by Romberg extrapolation.
Details of these Runge-Kutta algorithms used here are given in Appendix.

6.2.2. Competitive schemes. Although there are a lot of studies on acceleration of
Monte Carlo methods ([6]), we choose by the following reasons only the crude
Euler-Maruyama scheme and the algorithm introduced in [17], which we will refer
as N-V method in this paper, both with and without Romberg extrapolation as
competitors:

(i) Only these two schemes can be recognized to be comparable to the new
method in that they are model-independent.

(ii) Almost all variance reduction techniques and dimension reduction tech-
niques which we can apply to the Euler-Maruyama scheme are also applicable
to the new method.

6.3. Numerical results. We provide an example on financial option pricing in the
following part of this paper.

6.3.1. Asian option under the Heston model. We consider an Asian call option written
on an asset having the price process under the Heston model which is known as a
two-factor stochastic volatility model. Comparison with the N-V method is to be
given as well from the result shown in [17].

Non-commutativity of this example should be of note here.
Let Y1 be the price process of an asset following the Heston model:

Y1(t, x) =x1 +

∫ t

0
µY1(s, x) ds +

∫ t

0
Y1(s, x)

√
Y2(s, x) dB1(s),

Y2(t, x) =x2 +

∫ t

0
α (θ − Y2(s, x)) ds

+

∫ t

0
β
√

Y2(s, x)
(
ρ dB1(s) +

√
1 − ρ2 dB2(s)

)
,

(6.4)

where x = (x1, x2) ∈ (R>0)2, (B1(t),B2(t)) is a two-dimensional standard Brownian
motion, −1 ≤ ρ ≤ 1, and α, θ, µ are some positive coefficients such that 2αθ −
β2 > 0 to ensure the existence and uniqueness of a solution to the SDE ([5]).
Then the payoff of Asian call option on this asset with maturity T and strike K is
max (Y3(T, x)/T − K, 0) where

(6.5) Y3(t, x) =
∫ t

0
Y1(s, x) ds.

Hence, the price of this option becomes D × E [max (Y3(T, x)/T − K, 0)] where D is
an appropriate discount factor that we do not focus on in this experiment. We set
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T = 1, K = 1.05, µ = 0.05, α = 2.0, β = 0.1, θ = 0.09, ρ = 0, and (x1, x2) = (1.0, 0.09)
and take

E [max (Y3(T, x)/T − K, 0)] = 6.0473534496 × 10−2

which is obtained by the new method with Romberg extrapolation and the quasi-
Monte Carlo with n = 96 + 48, and M = 8 × 108 where M denotes the number of
sample points.

Let Y(t, x) = t(Y1(t, x),Y2(t, x),Y3(t, x)). Transformation of the SDEs (6.4) and (6.5)
gives the following Stratonovich-form SDEs:

(6.6) Y(t, x) =
2∑

i=0

∫ t

0
Vi(Y(s, x)) ◦ dBi(s),

where

V0

(
t(y1, y2, y3

))
=

t(
y1

(
µ − y2

2
−
ρβ

4

)
, α(θ − y2) −

β2

4
, y1

)
V1

(
t(y1, y2, y3

))
=

t(
y1
√

y2, ρβ
√

y2, 0
)

V2

(
t(y1, y2, y3

))
=

t(
0, β

√(
1 − ρ2) y2, 0

)
.

(6.7)

6.3.2. The dimensions of integrations. As we mentioned in Remarks 6.1 and 6.2, the
dimensions of integrations included in these methods have an effect on the quasi-
Monte Carlo. The relation among d: the number of factors, n: the number of
partitions, and the dimensions of integration of each method can be summarized
as in Table 1.

Table 1. # of dimensions involved in each method.

Method Num. of dim.
Euler-Maruyama dn
N-V n + dn (n-Bernoulli and (d × n)-Gaussian)
New Method 2dn

6.3.3. Discretization Error. The relation between discretization error and the num-
ber of partitions of each algorithm is plotted in Figure 6.1. We can observe from
this figure that for 10−4 accuracy the new method with Romberg extrapolation
takes the minimum number of partitions n = 1 + 2 whereas n = 16 for the Euler-
Maruyama scheme with the extrapolation. Even without the extrapolation, the
new method attains that accuracy with n = 10 while the Euler-Maruyama scheme
takes n = 2000. Also, it can be said that the N-V method shows a little worse
performance than the new method.

6.3.4. Integration Error. Looking at Figure 6.2, we can compare convergence errors
of respective methods for each number of sample points, M. For Monte Carlo case,
2σ of 10 batches is taken as convergence error while for the quasi-Monte Carlo
method, absolute difference from the value to be convergent is considered. For
10−4 accuracy with 95% confidence level (2σ), M = 108 is taken for the Monte Carlo
method. On the other hand, if we apply the quasi-Monte Carlo method instead,
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Figure 6.1. Error coming from the discretization

the new method and the N-V method require M = 2 × 105 sample points, though
M = 5 × 106 has to be taken for the Euler-Maruyama scheme.

Table 2. #Partitions, #Samples, Dimension, and CPU time re-
quired for accuracy of 10−4.

Method #Part. Dim. #Samples CPU time (sec)
E-M +MC 2000 4000 108 1.72 × 105

E-M + Romb. + QMC 16 + 8 48 5 × 106 1.27 × 102

N-V + QMC 16 32 + 16 2 × 105 4.38
N-V + Romb. + QMC 4 + 2 12 + 6 2 × 105 1.76
New Method + QMC 10 40 2 × 105 3.4
New Method + Romb. + QMC 2 + 1 12 2 × 105 1.2

6.3.5. Overall performance comparison. The number of partitions, the number of
samples, and the amount of computation time required for 10−4 accuracy for each
method are summarized in Table 2. CPU used in this experiment is Athlon 64
3800+ by AMD.

Since the amount of time to do calculation for each sample point is proportional
to the number of partitions, the consumed time for calculation as a whole is propor-
tional both to the number of partitions and to the number of samples. Therefore,
we can easily guess from this table how it varies depending on the change in the
number of partitions or the number of samples.
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Figure 6.2. Convergence Error from quasi-Monte Carlo and
Monte Carlo

From this table, we can see that the speed of the new method is approximately
100 times faster than that of the Euler-Maruyama scheme when Romberg extrap-
olation and quasi-Monte Carlo are applied to each. Even when the extrapolation
is not applied, the new method dose more or less 37 times faster calculation than
the Euler-Maruyama scheme with Romberg extrapolation and quasi-Monte Carlo
does.

Lastly, Remarks 6.1 and 6.2 should be emphasized to recall that the advantage of
the new method is deeply related to the property of the quasi-Monte Carlo method.

Appendix: The fifth-order and the seventh-order Runge-Kutta algorithms

We give the concrete algorithms of the explicit fifth and seventh order Runge-
Kutta methods applied in subsection 6.2. The fifth order method is taken from [2]
as follows:

a21 =
2
5
, a31 =

11
64
, a32 =

5
64
, a43 =

1
2
, a51 =

3
64
, a52 = −

15
64
,

a53 =
3
8
, a54 =

9
16
, a62 =

5
7
, a63 =

6
7
, a64 = −

12
7
, a65 =

8
7
,

ai j = 0 otherwise,

b =
(

7
90

0
32
90

12
90

32
90

7
90

)
.
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The seventh order method is taken from [3] as follows:

a21 =
1
6
, a32 =

1
3
, a41 =

1
8
, a43 =

3
8
, a51 =

148
1331

, a53 =
150
1331

, a54 = −
56

1331
,

a61 = −
404
243
, a63 = −

170
27
, a64 =

4024
1701

, a65 =
10648
1701

, a71 =
2466
2401

, a73 =
1242
343
,

a74 = −
19176
16807

, a75 = −
51909
16807

, a76 =
1053
2401

, a81 =
5

154
, a84 =

96
539
, a85 = −

1815
20384

,

a86 = −
405
2464

, a87 =
49

1144
, a91 = −

113
32
, a93 = −

195
22
, a94 =

32
7
, a95 =

29403
3584

,

a96 = −
729
512
, a97 =

1029
1408

, a98 =
21
16
, ai j = 0 otherwise,

b =
(
0 0 0

32
105

1771561
6289920

243
1560

16807
74880

77
1440

11
70

)
.
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