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Abstract
In this paper we consider the stability of the inverse problem of determining a function
q(x) in a wave equatio®?u — Au + ¢(x)u = 0 in a bounded smooth domain & from
boundary observations. This information is enclosed in the hyperbolic (dynamic) Dirichlet-
to-Neumann map associated to the solutions to the wave equation. We prove in the case
of n > 2 thatg(z) is uniquely determined by the range restricted to a subboundary of the
Dirichlet-to-Neumann map whose stability is a type of double logarithm.

1 Introduction

Let 2 C R™ be a bounded domain witti** boundaryl' = 0f). Throughout this paper we
assume that the spatial dimension> 2. We consider the following initial boundary value
problem for the wave equation,

(02 — A+ q(x)u(t,z) =0 in Q=(0,T) x Q,
uw(0,2) =0, Qu(0,x) =0 in Q, (1.2)

u(t,z) = f(t,x) on X=(0,T) xT,
where a functiony(z) is assumed if¥1>°(Q). It is well known (see [19], [21]) that iff €
H'(X)andf(0,z) = 0, there exists a unique solutianc C([0,T]; H'(Q))NC([0,T]; L*(Q))
with 9,u € L?(X) to (1.1). Herev(z) denotes the unit outward normal Foat z and we set
d,u = Vu - v. We denote the solution to (1.1) by. Therefore we can define the Dirichlet-to-
Neumann map

Ay HY(®) — LA(%)
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fo— A, (1.2)

Using an energy estimate, one can prove thas continuous fronf ! (X) to L%(X) (e.g., [19]).
The inverse problem is whether knowledge of the Dirichlet-to-Neumann map on a particular
subset of the boundary determines a functiamiquely.

From the physical viewpoint, our inverse problem consists in determining the properties e.g.,
a dispersion term of an inhomogeneous medium by probing it with disturbances generated on
the boundary. The data are responses of the medium to these disturbances which are measured
on a suitable suboundary, and the goal is to recqyey which describes the property of the
medium. Here we assume that the medium is quiet initially, Amgla disturbance which is
used to probe the medium. Roughly speaking, the daauisneasured on a subboundary for
different choices off.

Rakesh and Symes [25] uses complex geometrical optics solutions concentrating near lines
with any directionv € S"~! to prove that\, determineg/(x) uniquely. In [25],A, gives equiv-
alent information to the responses on the whole boundary for all the possible input disturbances.
Ramm and Sjostrand [26] has extended the result in [25] to the cagdegending on: and
t. Isakov [12] has considered the simultaneous determination of a zeroth order coefficient and
a damping coefficient. A key ingredient in the existing results, is the construction of complex
geometric optics solutions of the wave equation, concentrated along a line, and the relationship
between the hyperbolic Dirichlet-to-Neumann map and the X-ray transform play a crucial role.

The uniqueness by a local Dirichlet-to-Neumann map is solved well (e.g., Belishev [1],
Katchlov, Kurylev and Lassas [15], Kurylev and Lassas [18]). However the stability by a local
Dirichlet-to-Neumann map is not discussed comprehensively. For it, see Isakov and Sun [14]
where a local Dirichet-to-Neumann map yields a stability result in determining a coefficient in a
subdomain. In the case where the Dirichlet-to-Neumann map is considered on the whole lateral
boundary?, the stability is established in Cipolatti and Lopez [9], Stefanov and Uhlmann [28],
Sun [29].

As for results by a finite number of data of Dirichlet-to-Neumann map, see Cheng and Naka-
mura [8], Cipolatti and Lopez [9], Rakesh [24]. There are very many works on Dirichlet-to-
Neumann maps, and so our references are far from being perfect, and see Cardoso and Mendoza
[7], Rachele [23], Romanov [27], Uhlmann [30] as related papers.

In this paper we prove lag log-type estimate which shows that a dispersion temepends
stably on the Dirichlet-to-Neumann map even when the boundary measurement is taken only
on a subbundary which is slightly larger than the half of the bounfiary

Our inverse problem is formulated with many boundary measurements. On the other hand,
as for a different formulation of inverse problems with a single measurement, the main method-
ology is based on an?-weighted inequality called a Carleman estimate, and was introduced
by Bukhgeim and Klibanov [4]. Furthermore, as for applications of Carleman estimates to in-
verse problems, we can refer to Bellassoued [2], Imanuvilov and Yamamoto [11], Isakov [13],
Klibanov [16], Klibanov and Timonov [17]. Most of those papers treat the determination of
spatially varying functions by a single measurement. As for observability inequalities by means
of a Carleman estimate, see [17].



In order to formulate our result, we need to introduce some notations. Henceforth we arbi-
trarily choose
wo €S" P ={weRY |w| =1}

and fixe > 0. By (z - y) we denote the scalar productafy € R" and set

Pielwo) ={z el (W(z)-wo) > e}, T o(wo) = P\ c(wo),
Ste(wo) = (0,T) x Ty e(wo),  S-elwo) = D\T < (wo).
We also writel'; (wy) = T'4 o(wo), X4 (wo) = X4 0(wo) as well asl'_(wy) = I'_ o(wp) and
Y_(wo) = X o(wop)-

We introduce the local Dirichlet-to-Neumann map by

Nyt H(S) — IS (o)
fo— A(f) =D, . (1.3)

—,E(WO)

By |[A;, — A/, || we denote the operator norm.
The main result of this paper can be stated as follows.

Theorem 1 Assume thal’ > diam<Q. Letq, ¢ € H*(Q2), o > § + 1, such thaﬂquHa(m <
M. Then there exist constarts> 0 ands, s, € (0,1) such that

lar = @2ll ey < C [|1Ag, = A | + (10g [log [|A7, — AL [II) "] (1.4)
whereC' depends of, M, ¢, n, a andsy, ss.

Our proof is inspired by techniques used by Bukhgeim and Uhimann [5] which proves a
uniqueness theorem from an inverse problem for an elliptic equation. Their idea in turn goes
back to the work of Calder6n [6]. Our problem turns out to be easier because geometric optics
solutions interact with the interior &2 in the hyperbolic case but not in the elliptic case. The
main idea is to probe the medium by real geometric optics solutions of the wave equation,
concentrated along a line, starting on one side of the boundary, and measure responses of the
medium on other side of the boundary. A response gives a line integyal of

The plan of this paper is as follows. Some basic lemmata are given in section 2. Section 3
is devoted to the proof of Theorem 1.

2 Preiminaries

In this section we collect some results from [3] which are needed in the proof of Theorem 1.
The first one is the Carleman estimate for the hyperbolic opeter A + ¢(x). For fixed
w € S"~1, we introduce the functions;, j = 1,2, defined by

o1t rw) =z -wtt, glt,riw)=2-w—(T—t), weS"

Then we have the following Carleman type estimate:
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Lemma21l ([3]) Letq € L>(S2) such that|q|| ;) < M. There exist constants, > 0 and
C > 0 such that forj = 1, 2, the following estimate holds true:

/ e 0T (N |uf? 4 |Vul*)dwdt + A / (- v)e P91, uf* dodt
Q

I (w)

< C’/ e 20T (97 — A+ g(x)) u|2 dxdt — )\/ (w - v)e 222 t) |9 y|® dodt
Q ()

for everyu € H*(Q) withu|g, = 0, u|,_, = dwu|,_, = 0 andX > \,.

Using Lemma 2.1 and a Carleman estimate in Sobolev spaces of negative order proved in [3]
we are able to construct real geometric optics solutions for the wave operator, which are crucial
ingredients in the proof of Theorem 1. In this section, we precise and explain the existence of
exponentially growing solutions. By selecting suitably smgalt 0, we assume that

T > diamS2 + 4p. (2.1)

Denote _
Q, = {z € R"\; dist(z,Q) < o} .

Henceforthy € H*(Q?) is regarded as a function iH*(R"™) with ||¢|| e @n) < Cl|q||me) by

the zero extension " \ (Q U Q,).
Let x € C5°(2,). Then we have

suppyx NQ =0, (suppy £7Tw) NN = 0. (2.2)

Let
xi(t,x) = x(z +tw), xa(t,z) = x(z — (T — t)w).

Lemma?2.2 ([3]) Letq € H*()) such tha4|q||Ha(Q) < M andw € S"~!. For\ large enough
we can construct a special solutio) of

(07 = A+ q(x))u(t,z) =0 inQ, wul,_,=0dul,_,=0 inQ

in the form ‘ 4
u(j)(t, z) = i (taw) (Xj(t7$) + 1/)§J)(t,x; )\)) . j=1,2,

wherey? satisfies

, C
H?/)é])(> g )\)HLQ(O,T;H’C(Q)) < W ||X||H5(Rn) ; k= 0,1,2,
whereC' > 0 depends only o, T andM .

We can similarly prove



Lemma2.3 ([3]) Letq € H*()) such that[|q||Ha(Q) < M andw € S™!. For )\ large enough
we can construct a special solutiofd of

(07 — A+q(x))ult,z) =0 inQ, uyer = 0uu—r=0 inQ

in the form ' '
uf (t,2) = 905 (it a) + 6D (L) ;= 1,2

wherey satisfies

: C
“¢é])<7 B )\)HLQ((LT;H]C(Q)) < W HX”H5(]P>") ) k= 0,1,2,
whereC > 0 depends only of, T andM .

We will apply this lemmas withp; (¢, x,w) wherew varies in a neighbourhood aroung on

S7=1 and estimate the Fourier transformgf— ¢; in a conic subset dR™. In order to extend

the estimate on the conic subset to an estimate on the ball, we use an idea of Heck and Wang
[10] and conditional stability for analytic continuation established by Vessella [31].

3 Stability Estimate

In this section, we complete the proof of Theorem 1. The key is the combination of the exponen-
tially growing solutions of equation (1.1) and theray transform. We shall use the following
notations. Foe > 0 andw, € S"~!, by

o n—1, o E
V. (wo) = {w €SV lw—wp| < 2}
we denote a neighbourhood aroungdon S*~!. Then for eachv € V. (wy)

Yo g(w) C X (wo)-

3.1 Preliminary estimate

Lemma3.1 Letq;,q, € H*(Q2) such that|qj\|Ha(Q) < M andq = ¢, — q;. There exist; > 0,
C > 0 such that for anw € V.(wy) andy € C5°(2,) the following estimates holds true:

r 1
2z x+twdxdt‘<0(— oron + NN — A ) 2 e (3.1
[ [ et s ] < 0 (S lllm + e 1, = 85]) Il @D
for any sufficiently large\ > 0. HereC' depends only of, T' andM .

Proof . For A sufficiently large, Lemma 2.2 guarantees the existence of the exponentially
growing solutionmgj),j =1,2,to

(07 — A+ go(2))ut,z) =0 inQ, u(0,") =0u(0,-)=0 inQ
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in the form
u§ (t, ) = T (it ) + 0 (E 2, N) (3.2)

where)\/ satisfies

“¢ég)<" E )\)HLQ(O,T;H’“(Q)) < Nk HX”H"’(R") , k=012 (3.3)
By u{, j = 1,2, we denote the solutions to
( (02— A+ qu(2)d? =0, in Q,
ugj)(O,x) = Otu(lj) (0,z) =0, in Q,

Wt x) = ud (t,2) := fia(t,z), on .

\

Defining

w9 =0 — 0l g(2) = ga(x) — qu(2),

we have ’ ,
(07 = A+ qu(@)ut) = g(2)uy’, i Q,

u9) (0, ) = 0u(0,2) = 0, in €,

u (t, ) =0, on X.

For sufficiently large\, Lemma 2.3 guarantees the existence of exponentially growing solutions
v to the backward wave equation

(0] = A+ q(z)v(t,z) =0, (t,z)€Q, v(T,z)=0w(T,x)=0, z€Q,

of the form ‘ '
o) (t,x) — o Mi(taiw) (Xj (t, x) + wé{)(t’ x, /\)) 7 (3.4)

corresponding tq; and¢,, j = 1, 2, Where@bé{) satisfies
ng ('7 g /\)HL2(0,T;H’“(Q)) < W HX”HWH{") ) k= 0,1,2. (35)

Integrating by parts and using the Green’s formula, we obtain
/Q (82— A+ qu(2)) u? (¢, 2)] 09 (t, 2)dadt = / () (7)o (¢, ) ddt
= /3u3) (t, )09 (t,z)dodt. (3.6)
It follows from (3.2), (3.4) and (3.6) that

/q(f@)X?(t7I)dfﬁdt+/Q(I)Xj(tafﬂ)(%{)(t,ﬂsﬂ)+¢§§)(t,93;k))dl’dt
Q Q
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+ / 2@ (¢, 25 g9 (1, N) el
Q

= / 0D (x(t, ) + i (1, ) )e 49059 dor
E-»-,5/2("-’)

+ O, u (t, )0V (t, z)dodt. (3.7)
Z—,5/2(w)
Since (3.3) and (3.5) imply

. , C
‘/QC](IE)Xj(tJ)(@D,S{)(t,w; A) +¢§§’(t,w; )\))dxdt’ < B\ X 2 gy X 15 )

and

. , C
| a0 200 M| < S ey

Furthermore we have

/ A, u (t, x)vV) (¢, x)dodt
27,6/2(“))

< [|of

S ||8Vu(j) ||L2(Z,Y€/2(w)) ||/U(J) ||L2(27,a/2(w))
) (4)
! HL2(0,T;H1(Q)) H@,W “L2(E_7€/2§u))
< O™ [l s ey 1A, (1) = Ay (POl 25—, o)) (3.8)
for some positive constan{s and ;.
By the wave equation, we have
10715 |20y < Cllus” [l 20,120,

and so . '
168”2y < Cllus |20, r:m2(0))-
Hence (3.2) and (3.3) yield

5" ll20) < AP x5
Moreover, sincev € V.(wp), we obtainX_ . »(w) C X_ (wy) and

HA:n(fi) a A:zz(fi)Hy(z_’E/Q(w)) < HA:n(fi) a A;z(fi)Hp(z,,g(wo))

15, = AL )
HAfh; AL S 2
Ce™ (x|l sy 1N, — A,

VAN VAN VAN

(3.9)

2”

Hence, by (3.7), we obtain

C e )
‘/Qq(x)sz(t,x)dxdt < X”X| ?{5@@”) +C HX||H5(R") e w]auu(])HL?(EJr,g/z(w))



+Ce™ x|

2
H5(R™) HA/ql - A/ng-

By Lemma 2.1, we obtain

(3.10)

5)\/ ‘&,u(j) |2 e~ 2205 (b39) ot < )\/ (w-v) ‘&,u(j) |2 e~ 220 (L5 oy gt
Sye/2W) T (w)

2

< C'/ ‘q(x)ugj)(x,t)‘ e 2)‘¢J’(t’x;“’)dxdt+Ceﬁ4A/ ‘3l,u(j)|2dadt
Q S-(w)

< € | Jae) ot ) + 00 0 0) P+ [ (0,00 o
Q Y (w)

N2
< C s qmy + Ce% /E 9 do
< C Il @y + Ce™M AL () = Mo (PO 205 )

Using again (3.9), we obtain
. . 1
/Z y |ayu(3)‘26_2)\¢j(t,x,w)dxdt <C (X + 656>\”A/ql _ A:pHQ) HXH?{NR") .
+,e/2 w

Hence it follows from (3.9) and (3.10) that

2 2
momn) T Ce ||X||H5(Rn) ||A:11 - A;2||~

] / q<x>x§<t,x>dxdt\ <

Therefore we obtain

M-

T
‘/ / XQ(x)q(x—i-tw)dxdt‘ <
—-T JRM

1

J

/QCI(J:)x?(t, ac)da;dt‘
1

< (ot e = ) e

This completes the proof of the lemma.

3.2 X-ray transform

The X-ray transform® maps a function ifiR™ into the set of its line integrals. More precisely,

if w e S*!andz € R,

P(f)(w, ) = /TRf(a; + sw)ds,

is the integral off over the straight line through with the directionw. It is easy to see that
P(f)(w,x) does not change if is moved in the directionn. Therefore we normally restrict
rtowt = {# € R"; §-w =0}, and we can considéP as a function on the tangent bundle

T ={(w,z): weS"', zew} (eg. Natterer [22]).
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Lemma 3.2 There exist constants > 0, u > 0, > 0 and\, > 0 such that for allo € V. (wo)
we have

C / /
P(q)(w, y)| < o ||qHL°°(Q) + Cet HAcn - Aq2

forany\ > \g.

, aeyeR"”

Proof . Letf# € C3°(R") be a positive function which is supported in the unit ball and

10]] L2y = 1. Define
xax>=ffﬂﬂe<%§;€)

wherey € Q, andh > 0 is sufficiently small.
Put
T
r(r,w) = / q(z — tw)dt.
-T
Then we have

r(y, w)| = <

[ @t

| e

| [ @0 - rlew)d]

SinceH*(Q2) c C'(Q) by a > 2 + 1 and||q|

|T<y7w> - T(I,u))| < C |13 - y| .

Applying Lemma 3.1 withy = y;, we obtain

1 / /
) € (e, = ) ol + € [ o= shidodte. )

R

On the other hand, we have

||Xh||H5(Rn) < Ch™?, |z — y| X7 (x)dz < Ch.
Rn

Then by (3.1) and (3.11), we have for alle V. (wy)

T
’/ q(y — tw)dt‘ < C oy optogn |AL, — ALl +Ch, aeyeqQ,
- VA

We selecth such that .
h=——h10
VA

Then there exist constanis> 0 andj > 0 such that

T
C
‘/_TQ(?J +tw)dt’ <3t Ce™ AL — AL ||, aeyeq,
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SinceT’ > Diam$2 andq|pm @om;) = 0, we obtain for alkw € V. (wo)

P(g)(w, y)| =

[t o] < S0, - n | aeyew

so that the proof of the lemma is completed.

Let

U

weV(wp)
and let

76 = (Fre / f(z)e " do,

for f € L'(w') wheredo, is the(n — 1)-dimensional standard volume elementor w*,
while

7 = 20 [ atw)e ey
for g € LY(R™).

Lemma 3.3 There exist constants > 0, ;. > 0,6 > 0 and)\, > 0 such that

. C /
O < Sl + Co A, — AL €K,

forany A > \g.
Proof . Letq € L'(R"). By the change of variablg = z + tw € w' @ Rw = R" with
dy = dodt, noting thatt € w* impliesz- & =2 - & +tw - € =y - &, we have
F(Palw,))(E) = / / v+ tw)e = Edtdo
wl
= V2r(2m)7% | q(y)eVidy = V2mq(e), Eewt

R

(e.g., [22]). ForR > 0 such that2 C B(0, R), we obtain

n—1

FPGe )= 0T [ Pl e s = Vo)

In terms of Lemma 3.2, the proof is completed.
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3.3 Proof of the stability estimate
Let B(0,p) = {z € R"; |z| < p} and|y| =71 + - + 7, fory € (NU{0})".

Lemma 3.4 ([31]) Let VW be an open set dB(0;1), andF' an analytic function inB(0;2)
having the following property: there exist constamisn > 0 such that

Mly|!

HaWFHLoo(B(oz)) <—, Vye([Nu{o}p)"
7’]|'Y|

Then "
1Pl oy < @MY (Il ogny)
wherey € (0,1) depends om, n and|W)|.

The lemma is conditional stability for the analytic continuation, and see Lavrent’ev, Romanov
and Shishaskii[20] for classical results.

For fixedr > 0 andq € L'(R"), let us setF,.(£) = q(7€) for ¢ € R™. Then it is easily seen
that F' is analytic and

" F(6)] < (2m) 2

‘)‘ |)|
T T

H <O—_ L| |l
N ((Diam) )Pl = = (T 1) (TP

Therefore, applying Lemma 3.4 in the $8t= K. N B(0,1) with M = Ce” andn =T, we
can take a constapt € (0, 1) depending only om, n and7" such that

[Fr ()] < Ce M F iy, V€€ B(0,1).
Hence, by the fact thatlC. = {7¢; ¢ € K.} = K., we obtain
@) = |F-(771)| < CeT U Ell ) = C™ ) @l e,y - € € BO,7). (3.12)

We now estimate thé& ~!(R™) norm ofq. For all > 0 we have

1/p

a2 gy = [/5 P (1 k) / |a<§>|2<1+|f|2>1d5]

€[>

IA

/p
n 2 — 2
o AP VN
Substituting (3.12) and applying Lemma 3.3, we obtain

2 n (s 2 _ n r(lze _2
||q||h{’_‘1(Rn) < C[T /2 (*% )eCAHA:h — AL P 4 A2 (54) L, H} (3.13)

Let o > 0 be sufficiently large and > 7,. Set
)\ e TZTTQT<1E_H#)_
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By 7 > 79, we can assume that> \,. Thenri e () A= = =i and (3.13) yields
n T 2 -2
”qHQ/M (Rm) — < C [Tuew( ) HA;1 - Ai]2|| +7 N] ’ (3'14)

wherey is defined by

It is easily seen that
L) < et
THE <e , T>T

for someA depending only o), ¢, § andy. Substitute the above inequality into (3.14) and we
obtain

_ /2
HCIHH < 4l - 1(Rn) <C< —A’ || +r 2/M> '

Now, in order to minimize the right-hand side with respect tave set

:—log’logHA’ — AL (3.15)

and we obtain

w/2
lall -1y < C | 1A, = Ag, ||+ (10g [log | A7, — Ag, [[[) 7" (3.16)

provided that the right-hand side of (3.15)7,. If the right-hand side< 7, then there exists a
constant, > 0 such that
HA — A/ || > Cop-

Thus, we have

HQHH—l(Q) S CHQHHa(Q) S CT/ M/ < C/ HA —A/ HM

0

Therefore, (3.16) holds in the both cases. The conclusion follows from the interpolation in-
equality betweer ~(Q2) and H*(£2), and the Sobolev imbedding theorem.
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