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ABSTRACT. We construct a function on the orbifold fundamental group of the moduli space
of smooth theta divisors, which we call the Meyer function for smooth theta divisors. In the
construction, we use the adiabatic limits of the n-invariants of the mapping torus of theta divi-
sors. We shall prove that the Meyer function for smooth theta divisors cobounds the signature
cocycle, and we determine the values of the Meyer function for the Dehn twists. In particular,
we give an analytic construction of the Meyer function of genus two.
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1. INTRODUCTION

Let M, be the mapping class group of a closed orientable surface X, of genus g. In [Me], Meyer
introduced a 2-cocycle 74 : Myx M —Z, called the signature cocycle or the Meyer cocycle. By
using the Meyer cocycle 7,4, he gave the formula for the signatures of surface bundles over
surfaces. Since My = SLy(Z), H'(SLy(Z),Z) = 0 and 3[r] = 0 in H?(M1,Z), there exists
a unique function ¢ : SLy(Z) — %Z that cobounds 7. The function ¢ is called the Meyer
function of genus one, which has the following property: Let 7 : Z — X be a X;-bundle over a
compact oriented surface with boundary 0X = ¢;II---1l¢g. Let Ay, --- , A be the monodromies
around each component of the boundary. Since the Picard-Lefschetz transformation along ¢; is
an automorphism of H!(X1,Z) preserving the intersection form, one has A; € SLo(Z) by fixing
a symplectic basis of H'(X1,7Z). Then the signature of Z, which is defined as the signature of
the cup-product pairing on H?(Z,0Z, R), satisfies

(1)

k
Sign(Z) = — Z P1(A;).

The explicit formula for ¢; was obtained by Meyer [Me].
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In [A2], Atiyah investigated the Meyer function ¢; from several view points. For an odd
dimensional closed oriented Riemannian manifold M, let n(M) be the n-invariant of M with
respect to the signature operator of M [APS]. For 0 € SLy(Z),let 7w : M, — S! be the mapping
torus associated with o, i.e., the ¥i-bundle over S with monodromy o. Then Atiyah showed
the following identity, when M, is equipped with a certain metric:

(2) ¢1(0) = n(Ms).

Moreover, he gave several interpretations of ¢, in terms of the following quantities: (i) Hirze-
bruch’s signature defect; (ii) the transformation low of the logarithm of the Dedekind n-function;
(iii) the logarithm of the monodromy of the determinant line bundle; (iv) the value of the Shimizu
L-function at the origin.

After Meyer and Atiyah, generalizations of their results to the cases of curves of higher genus
or the case of higher dimensional complex tori were studied by many authors.

When g = 2 there exists a unique function ¢o : My — %Z satisfying (1) for every Xo-
bundles over compact oriented surfaces. The function ¢4 is called the Meyer function of genus
two. While [r,] € H?(M,,Z) is not a torsion element for g > 2, the restriction of [r,] to
the hyperelliptic mapping class group is known to be a torsion element. Therefore the Meyer
function for hyperelliptic curves can be defined [Mo], [E]. The relations between n-invariants
and the Meyer function for hyperelliptic curves were studied in [Mo].

A natural extension of Eq. (2) to mapping torus of higher dimensional torus follows from the
same idea as in Atiyah [A2], which we give in Appendix A. The coincidence of the n-invariants
of torus fibrations and the special values of the corresponding L-functions was established by
Bismut and Cheeger [BC2]. In their results, automorphic forms seem to play no role.

The purpose of this paper is to give a generalization of Eq. (2) in which an automorphic form
of higher dimension plays a role similar to the role of Dedekind n-function in Atiyah’s study.
For this reason, we shall consider the signature cocycle of smooth theta divisors as a higher
dimensional analogue of curves of genus two and we shall prove that the cohomology class of
this cocycle vanishes rationally by constructing the Meyer function for smooth theta divisors
explicitly. Let us explain our results in details.

Let &, be the Siegel upper half-space of degree g and let I'; be the Siegel modular group of
degree g. Let f : Ay — &, be the universal family of principally polarized Abelian varieties.
Then I'y acts on Ay and &, so that f is I'j-equivariant. Consider the universal family of theta
divisors:

p:©—6, ©OCA, p=fle.

Here the fiber ©, = p~1(7) is the theta divisor of A, := f~1(7) for any 7 € &4, i.e., the zero
divisor of the Riemann theta function. Let Ny := {7 € &, | Sing®, # 0} be the Andreotti-
Mayer locus. Then there is a Siegel modular form Ay (7) of weight W with zero divisor N,

by [Mu], [Y2]. We put &5 = &5 — Ny, ©° = O|,. After a slight modification of the I'j-action
g

on Ay, we construct a I'j-action on ©° and a specific I'g-invariant Kahler metric ¢®° on ©° such
that p : ©° — & is I'j-equivariant. (See Sections 4 and 5 for the construction of g®°.) The
quotient space I'y \ S, is regarded as the coarse moduli space of smooth theta divisors. Let us
consider the orbifold fundamental group of I'y \ Sy, which will be one of the main objects in
this paper:

Sy =Ty \ &).
Since §; = My = SLy(Z) and So = My, S, is an analogue of the mapping class group.
Following Atiyah [A2], we define a 2-cocycle ¢, € Z%(S,,Z) as follows. Let B := S?\ II_, D;
be a sphere with three holes and let IT3_,~; = 9B C B be the boundary. For given 01,09 € S,
let a: B—Ty\ &, bea C™-map in the sense of orbifolds such that its restrictions to v; and 72
are representatives of o1 and o9, respectively. Let X4, ,) := B X4 ©° be the family of smooth
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theta divisors on B induced from p : ©° — &g via a. Then X(,, 4,) is a compact 2g-dimensional
oriented manifolds with non-empty boundary. Define the map ¢, : §; x Sy — Z by
Cg(ala 02) = Sign(X(al,og))'

By the Novikov additivity for signature, ¢4 is a 2-cocycle of S;. We call ¢, the signature cocycle
of smooth theta divisors. By construction, ca = 7. When g is odd, ¢, is trivial, i.e., ¢, = 0.

For o € §;, we choose amap « : S L Fg\Gg in the sense of orbifolds, which is a representative
of 0. Let 7 : M, — S! be the mapping torus of a smooth theta divisor induced by a. Let gMC’/S1
be the metric on the relative tangent bundle TM,/S' induced from the metric ¢®°. Using the
connection induced from the Levi-Civita connection on T'A,, we define a family of metrics on
M, by

gMe = gMo/S e ar? & € Ry,
By Bismut-Cheeger [BC1], the limit 7°(M,) := hII(l) n(M,, gM7) exists and is called the adiabatic
E—

limit of the n-invariants n(M,, g2). Set

(_1)g/229+3(29+2 _ 1)

0 * JC 2
Q By () = 1 (My) + By [ 0"z A ()
where d° = -1—(0 — ) and [|Agy(r)||” = (detlmr)" 2" |A,(r)[> denotes the Petersson

norm of the Siegel modular form Ay(7). Here By, is the k-th Bernoulli number when k& € Z and
B; =0 when k € % + Z. The main results of this paper are stated as follows.

Theorem 1.1. The value ®4(0) is independent of the choice of o, and ®, descends to a real-
valued function on S, cobounding the signature cocycle —cg4, i.e.,

—cg(01,02) = By(01) + @y(02) — Py(0102), 01,02 €S,.
In particular, [c]] @ Q =0 € H?*(S,,Q).

We call ®, the Meyer function for smooth theta divisors. When g is odd, ®, vanishes iden-
tically. When g is even, ®, is non-trivial by Theorem 1.3 below. From the uniqueness of the
Meyer function of genus 2, it follows that ¢o = .

We next consider the uniqueness of a function on S, cobounding c,, which is equivalent to
the vanishing of H 1(Sg, Z). In general, the uniqueness no longer holds.

Theorem 1.2. The following equality holds:

0 if  0<g<3,

1 _
H(Sy,2) = {Z if  g>4.

We conjecture that @, is a rational-valued function, while the equality [cy] ®7 Q = 0 does not
necessarily imply by Theorem 1.2 the rationality of ®; when g > 4.

To prove the non-triviality of ®,, we compute the value of ®, for the Dehn twists. The
subgroup 7r1(6;) of S, is regarded as an analogue of the Torelli group by the exact sequence

1-m(G)) =8 —Ty— 1L

Then 7r1(6;) is generated by lassoes surrounding the irreducible components of ;. By Debarre
[D], Ny consists of two I'g-invariant components ¢, and J; such that T'y\ §, and 'y \ J, are
irreducible divisors on the Siegel modular variety I'y \ &g. Let }°, 045 and }° Jy, be the
irreducible decompositions of 6, and J,, respectively. Consider lassoes surrounding 6, ) and
Jg.u, and denote their homotopy classes by Hi and Hi, respectively. Then Hi and Hi are
elements of 1 (&) C S, such that {II}, Hi})\# generates 71 (&j).
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Theorem 1.3. The following equalities hold:

_4 if g=2
P Hl —_ 5 ’
9( )\) {(_1) 941 (g+1)2?;jgg+2 I)B%-i-l if g>3.

o0q (g+1)2973(20%2 —
O,(IL) = (-1)2*!

1) |

When g = 2, the monodromy H%\ is the Dehn twist along a separating simple closed curve on a
Riemann surface of genus two. In this case, the formula ®9(I1}) = ¢o(I1}) = —3 2 confirms a result
of Matsumoto [Ma, Proposition 3.6]. We conjecture that the function ®, is a homomorphism
on 71(&y). If this conjecture is affirmative, then the value of ®; on 71(&;) will be determined
by Theorem 1.3. When g = 2, this conjecture is affirmative since the cocycle 79 = ¢o is the

pull-back of a cocycle of I's.

We explain the strategy of the proof of Theorem 1.1 briefly.

(Step 1) For 01,09 € S, consider the the family 7 : X4, ,,) — B as defined above. For
simplicity, set X = X5, 5,). Endow X with the metric g*/B on the relative tangent bundle
TX/B induced by ¢®° via the classifying map « : B — [\ &;. Let ¢® be a metric on TB that is
a product metric on a color neighborhood of the boundary. By using the connection induced from
the Levi-Civita connection on T'A, define a family of metrics by gX = gXBgelggB, ce
R-o. The Atiyah-Patodi-Singer index theorem applied to (X, gZ) yields that

(4) Sign(X) = /B L(TX, g¥) Zn 0, 03 = (0102)7]

(Step 2) Let V*/B be the connection on the relative tangent bundle TX/B induced from
the metric ¢*/B and the connection on the fiber bundle 7 : X — B (See Section 2). Since
lim. o L(TX, ¢X) = L(TX/B,V*/B) and since the signature is independent of the choice of a
metric, we take the limit € — 0 in (4) to get

3
(5) o100 = [ mL(TX/BVVE) = YO,
B i=1

(Step 3) Let VH be the holomorphic Hermitian connection on the holomorphic relative

tangent bundle T1-96°/ S;. In Section 5, we shall prove that

(6) (pL(T"00° /62, V)P = k(g)dde log || 2y(7)]2,

where L denotes the multiplicative genus of Chern forms corresponding to the power series
x/tanh(z), w® denotes the p-form component of a differential form w and k(g) is a certain
rational number containing the Bernoulli number B 941 (cf. Theorem 5.6). By the functoriality

of the connection VX/8 (Lemma 2.7) and by the Kihlerness of the metric g©° (Theorem 4.6),
we shall prove that (cf. Sections 5 and 7)

©)
(M (mL(TX/B, V)T = o (pL(T00°/65, V) = d (k(g)a"d®log | Ay(7)]]?)
The assertion follows from (5), (6), (7) and the Stokes Theorem.

The remainder of this paper is organized as follows: In Section 2, we recall some results on the
connection of the relative tangent bundle. In Section 3, we recall the definition of n-invariants.
In Section 4, we recall some basic properties of theta divisors. In Section 5, we compute the
Hirzebruch’s L-form of the relative tangent bundle for the family of smooth theta divisors. In
Section 6, we construct the signature cocycle ¢,. In Section 7, we construct the Meyer function



ADIABATIC LIMITS OF n-INVARIANTS AND THE MEYER FUNCTION 5

®, and prove that ®, cobounds —c,. In Section 8, we consider the uniqueness of a 1-cochain
that cobounds ¢4. In Section 9, we compute the value of ®, for the Dehn twists. In Section 10,
we give another analytic expression of ®9 by using Dai’s result concerning the n-forms [Da).
Throughout this paper, we fix the following notation. For a complex manifold M, T1OM
(resp. T%! M) denotes the holomorphic (resp. anti-holomorphic) tangent bundle and TM denotes

the real tangent bundle. We set d° := M—lf_l(a — 0). Hence dd° = %85.
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and Professor Tomohide Terasoma for suggesting the idea of the proof of Lemma 9.4. Special
thanks are due to my advisor Professor Ken-ichi Yoshikawa for various comments and suggestions
and the interests in my studies.

2. PRELIMINARIES FROM RIEMANNIAN GEOMETRY

In this section, we recall some results of Riemannian geometry which will be used in the
proof of the main theorem. Following [BGV], we define connections of fiber bundles and the
connection of relative tangent bundles. Let M be a manifold and let # : Z — B be a fiber
bundle with typical fiber M.

The relative tangent bundle T(Z/B) is the subbundle of T'Z defined by

T(Z/B) := Ker{rn, : TZ—n*TB}.
A vector of T'(Z/B) is said to be vertical.

Definition 2.1. A subbundle Ty ZCTZ with TZ = T(Z/B) ® TyZ is called a connection of
the fiber bundle 7 : Z — B.

For a connection, one has Ty Z=n*T B via the projection m, : TZ—n*TB. A vector of Ty Z
is said to be horizontal.

When 7 is trivial, i.e., Z = M x B, T'Z is naturally isomorphic to the direct sum (pr;)*TM &
(pry)*T'B. This connection is called the trivial connection of the trivial fiber bundle.

Given a connection, one can define the projection Py : TZ—T(Z/B) with kernel Ty Z. We
often identify Pz with the corresponding connection Ty Z := Ker(Py). In the rest of Section 2,
we fix a connection Ty Z, or equivalently Py.

One can define the pull-back of a connection as follows: Let B’ be a manifold and let h : B’—B
be a C*°-map. The fiber product Z’ := ZxpB' = {(x,b)eZxB’" | w(x) = h(b)} satisfies the
following commutative diagram :

7z

Wll lw iL:prl, 7Tl = pry.

B —— B
h

Lemma 2.2. The map Pzoh, : TZ'—h*T(Z/B) is surjective.
Proof. Since h*‘T(I,,,,)(Z'/B') :
since PZ‘T(Z/B) = 1idp(z/B), Pzohs is surjective. [l

: Tepy(Z2'/B")—T.(Z/B) is an isomorphism for all (z,b')€Z’ and

Since Pzoh, is surjective,

dimKer(PZoﬁ*)(%b/) = dimZ’ — rankT(Z/B) = dimZ’ — rankT(Z'/B’) = dimT,B’.
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Hence Ker(Pzgﬁ*) is a subbundle of T'Z’. Since T'(Z’/B’) is canonically isomorphic to h*T(Z/B),
the map Py o h, is identified with a projection from T'Z’ to T'(Z'/B’).
Definition 2.3. The connection of 7’ : Z'— B’ induced from Ty Z by h is defined by

TuZ' :=XKer(Pzoh, : TZ'~T(Z/B))
under the identification between T'(Z’/B’) and h*T'(Z/B) given by (hs«)|r(z//p)- The projection
corresponding to Ty Z' is denoted by h*Py.
Lemma 2.4. (a) For any C*°-map h' : B"—B’,

(hoh!)* Pz = W™ (h*Pyz).

(b) The following diagram is commutative:

TZ' e TZ

b |

T(Z'|B") ————— T(Z/B).
(h)lr(zr /1y
(¢) If h is a constant map, say h(b') = b for all b’ € B’, then h* Py is the trivial connection on
the trivial fiber bundle Z' = Z, x B', where Z; := ©—1(b).
Proof. (a) Set Z" := Z' xp B". Let I : Z" — Z' be the lift of the map 7. Under the
isomorphism (ho W)*T(Z/B) 2 h*T(Z'/B") = T(Z"/B"), we have
(ho W) Py =Pyo(hoh),=(Pzohy)oh, =h*(h*Py).
(b) The assertion follows from Definition 2.3.
(¢) Since TyZ' = Ker (PZ ohy:TZ — T(Z/B)\Zb> = Ker ((pry)« : TZ' — TZ,), h*Py is the
trivial connection. 0

Definition 2.5. Let Z be a manifold and let Diff (Z) be the group of C'*°-diffeomorphism of Z.
For ¢ € Diff(Z), the mapping torus m : M, — S' = R/Z is defined by
m: M, :=(ZxR)/Z, m:=pry,

where Z acts on ZxR by

m-(z,t) == (" (), t + m), meZ, (z,t)eZxR.
If Z is oriented, let Diff " (Z) be the group of orientation-preserving diffeomorphism of Z. For
¢ € Diff *(Z), M, is endowed with the orientation induced from the one on M xR. Notice that
M, = —M,-1, which is the same manifold equipped with the opposite orientation. Since the

trivial connection Tg (M xR) = pr3TR is preserved by the Z-action, it descends to a connection
of M. This connection is called the canonical connection of the mapping torus 7 : M,—S L

We fix a metric ¢%/Z on the relative tangent bundle, a Riemannian metric ¢ on B, and the
connection T Z and the corresponding projection Pz. We define the Riemannian metric g% on
the total space Z by
g7 = g%/ BaynrgP
under the isomorphism TZ=T(Z/B)&TyZ=T(Z/B)®m*TB. Let VZ be the Levi-Civita con-
nection of (Z, g%). We define the connection VZ/B on T(Z/B) by

V4B .= pPyovZ.

Then VZ4/B preserves the metric g%/Z.
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Lemma 2.6. The connection VZ/B is independent of the choice of P
Proof. See [BGV, Proposition 10.2] O

Lemma 2.7. Let B’ be a manifold and let h : B'—B be a C*®-map. Set Z' := ZxpgB'. Let
gZ'1B" = n*g?/B be the metric on T(Z'/B') induced from ¢g%/B, and let Py = h*Py be the
connection of Z' induced from Py. Then VZ'/B" = p*vZ/B,

Proof. Let X'eTZ'. Let {e1,---,ex} be a local framing of T(Z/B) and let {¢/1,---, €'} be the
local framing of T'(Z’/B’) induced from {ey, -, ex}, i.e., €/; = h*e;.

(Step 1) Assume that h : B'—B is an embedding. We put ¢g& := h*¢P and g% =
g7 1B @ (n") gP with respect to the decomposition 72" = T(Z'/B) © Ty Z'. Then h: Z'—Z is
an embedding and h*¢g? = ¢Z'. Let PZZ, denote the orthogonal projection PZZ' :TZ| 7 —TZ'.
Since the decomposition

TZ|p =TZ'&(TZ) =T(Z' |B YTy Z'a(TZ')*:
is orthogonal with respect to the metric g%, we get Py = PZ/oPZZ,. Denote by S the second
fundamental form for the short exact sequence of vector bundles
0-TZ —TZ|y — (TZ) -0
with respect to the connection induced from the Levi-Civita connection of (Z,¢%). For X =
h X', we get
V)Z(l//Blelz‘ = PZ/V)Z(,/SIZ'
Py((V&ei)|z — S(X')e's)
= PgoPf (Vie)lz
= Py(Ve) |z = " (VY Pe).

This proves the assertion when h : B’ — B is an embedding.

(Step 2) Let B” be a manifold. Assume that B’ = B x B” and h : BxB"”— B is the projection
to the first factor. Let py : ZxB”"—Z and ps : ZxB"”—B" be the natural projections. Since
pr=h:2'—Z and TZ' = piTZ&psTB", we get

7' = ZxB", TypZ = p'TyZapiTB".

Let gB” be a Riemannian metric on B” and put ng = p’{gZEszgBN. Let VZ' and V5" denote
the Levi-Civita connections of (Z/,g%') and (B”, g®"), respectively. Then

V7 = pivZiepv?.
Let w' = (w,b")eZ', weZ, V'eB", and let X'€T,yZ'. Since e; = pie;,
vZIB e = Puviie;
= Pr(piV7epsv?)xe,
= Pr(piV¥)xei + Pr(p3VP ) xipie;
= Pzpi(V{,).x€)

* T Z/B

o€
where the forth equality follows from the fact that (p§VB”) x'pie; = 0, the fifth equality follows
from Lemma 2.4 (a) and the last equality follows from h = p1. This proves the assertion when
B'=B x B"” and h = pr;.

(Step 3) Let h : B'=B be an arbitrary C*°-map. We define h; : B'=B'xB by hi(V) :=
(t/,h(t')) and hy : B'xB—B by ha(b/,b) := b Then hy is an embedding, hy is a projection,
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and h = hgohy. Let Z1 = ZxpB' and Zy = Zxp(B'xB) be the fiber bundles induced from
7w : Z — B by the map h; and hs, respectively. Since Z; — B’ is induced from Zy — B’ x B by
h1, we get

le/B/ — thZQ/(B’XB) — hTOhSVZ/B — h*VZ/B,
where the first equality follows from (Step 1), the second equality follows from (Step 2), and the
last equality follows from Lemma 2.4 (a). This completes the proof. [l

With respect to the decomposition TZ = T(Z/B) & Ty Z, we put for eeR™
gZ,E — gZ/B@E_lw*gB.

The Levi-Civita connections of (Z, g%¢) and (B, g®) are denoted by V%< and V?, respectively.
Let R%*¢ and RP be the curvature of VZ< and V5, respectively. We define another connection
V on Z by

V=V Per VP,
and we put
S§E) .= v%e -V eA (End(TZ2)), §:=80,

Then V preserves the Riemannian metric ¢%¢, and Py is parallel with respect to V, i.e. VoPy —
P70V = 0.

Let {e1,---, e} be a local orthogonal framing for (T'(Z/B),¢%/?), and let {f,---, fi} be a
local orthogonal framing for (TxZ, 7*g?).

Proposition 2.8. With respect to the splitting TZ = T(Z/B)®TyB, the following identity
holds:
Z/B
. ze [ R Pz(VS)
lim R**° = < 0 *RpB .
Proof. See [BF, Eq. (3.195)]. O

e—0

3. M-INVARIANTS

In this section, we recall the definition and some properties of n-invariants. Let (M, gM ) be a
closed oriented Riemannian manifold of dimension (2 — 1). Denote the space of C* k-forms on
M by AF(M). Let x : A¥(M) — A%=*=1(M) be the Hodge star operator with respect to gM.
The signature operator D : @,>0A% (M)— ®p>0 A®P(M) of M is defined by

D : w—s (V=1 (1P (xd — d¥)w, weA®P(M).

Then D is an elliptic self-adjoint differential operator of first order acting on ®,>0.4%(M). Let
o(D) be the spectrum of D. The n-function of M is defined by

sign A\
n(s) = Z W
Aea(D)\{0}

for seC with Re(s)>0. Then 7(s) extends meromorphically to C and is holomorphic at s = 0
by [APS], [BF].

Definition 3.1. The real number 7(0) is called the n-invariant of (M,g") and is denoted by
(M, g™).

Let (X, g~ ) be a 4k-dimensional, oriented, compact, Riemannian manifold with boundary
Y. Put ¢¥ = gX|Y and fix a color neighborhood UDY such that U = Y x[0,1). Assume that
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g% |U = ¢¥ @dt? under the above isomorphism. Let V¥ be the Levi-Civita connection of (X, g*)

and let RY := (V%)? be the curvature. Let L(TX, V%) be the Hirzebruch L-form, i.e.,
—RE/2my/—1

tanh(—RL/27/=1) )

Denote by Sign(X) the signature of X, i.e., the signature of the cup-product pairing on

H?!(X,Y,Q), which is a homotopy invariant of the pair (X,Y). Note that one can also use the
compact support cohomology H2*(X \ 'Y, Q) = H?*(X,Y,Q) to define Sign(X).

(8) L(TX,VE) := det'/? (

Theorem 3.2 (Atiyah-Patodi-Singer [APS]). The following equation holds:
Sign(X) = [ LIX.9%) ~n(Y,g"),
X

Let X, B and M be closed oriented manifolds. Let 7 : X — B be a C'°°-submersion, whose
fibers are isomorphic to M. Assume that dimX = 4k. Let ¢*/B be a metric on T(X/B) and
let g® be a metric on TB. Let Ty X C TX be a connection . We identify Ty X with 7*T B via
m. With respect to the decomposition TX = T(X/B) @ n*T B, we define the metric on X by
g% == ¢%/B @ n*¢P and we consider the one parameter family of metrics on X defined by

gX = 7B oelngB, e Rsy.

Theorem 3.3 (Bismut-Cheeger [BC1]). The limit liH(l) n(X,gX) exists.
E—>

The limit lir% n(X, gg( ) is called the adiabatic limit of the n-invariants and is denoted by
n°(X). By definition, 1°(X) depends on the three data: ¢*/Z, g% and Ty X.

4. FAMILY OF THETA DIVISORS

In this section we construct an action of the Siegel modular group on the universal family of
theta divisors and we also construct a specific invariant Kéhler metric on the total space of this
family.

We first fix the notation. Let &, be the Siegel upper half-space of degree g and let Iy be the
Siegel modular group, i.e.,

&, = {reM(g,C) |*r =7, Imr >0}
Ty = {v€GL(29.Z) | v Jg 'y = Jy},

where J, = (—019 16’) and 1, denotes the g x g identity matrix. I'; acts on &, by

AB

y7:= (AT +B)(CTt+D)™!, ~= < > ely, T€6,.

For 7 € &,, write 7 = (*ry,--- ,*

74) and set
A :=Ze1® - - DLey LT ®--- DLty CCY

where 1, = (‘e1,---,'e;) and 7 = ('ry,--- ,'7;) € &,. Here all vectors denote row vectors.
Define the Z29-action on CY x Sy by

(m,n)- (2,7) = (z+m7 +n,7), (2,7)€CI xS, mncZ¥.

Then
fihy = (CI%6,)/2*—6,
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is the universal family of principally polarized Abelian varieties over &,, whose fiber over 7 is
A, := CI/A,. For (a,b)eR?, z€CI and 7€S, we define the theta function with characteristic
by
1
Dap(2,7) = Z e(E(n +a)t'(n+a)+ (n+a)'(z +b)),

nez9

where e(t) = exp(2my/—1t). Let
p:BOup:={(z,7)€A; | Vop(2,7) = 0}—6,.
be the universal family of theta divisors. For simplicity we write ¥ for ¥y and set © = O g.
For any (a,b)€R?9, we define an automorphism tap) : Ag—Ay by

tap) - (2,7) == (z +ar + b, 7).
Then t(, 3 has no fixed points when (a, b)ER?9\Z29 and the subgroup Z*ICR? acts trivially on
A,. One has the I'j-action on A, defined by
AB
CD

so that f is I'j-equivariant. This action does not preserve the family p : © — &,. However we
can construct a I'g-action on © so that p is I'j-equivariant, after a slight modification of the
definition of this I';-action.

v-(z,7) == (2(CT —|—D)_1, (AT 4+ B)(CT + D)_l), v = < > €ely, zeC, 7€ G,

Theorem 4.1 ([Ig, Chap.II, Sec.5, Theorem 6]). For~y = (é g) €ly, €&y, (m,n), (a,b)ER?,

1
ﬂm,n (t(zz,b) : (27 7_)) = e(_i(m—ta - at(z +b+ n))ﬁm—&-a,n—l—b('z? 7-)

e (1-(27)) = e(%z(cf + D)L C2)det(Cr + D)3 by (2,7,
where
1
(mlan,) = (man)/y ! + 5((CtD)07 (AtB)O)a MO = (mZ](SZ])a M = (mZ]) EM(Q7Z)7

and u € C* is independent of T, z.

For v = (é g), put

3= tanor € Aut(Ag),  (@b) = 3 ((C"D)o, (A'B)o).
Proposition 4.2. (a) The automorphism 7 preserves the family p: © — &,.
(b) For any v1,72€ly, the following identity holds in Aut(©):
1992 = 1172
Proof. (a) We set (m,n) = (0,0) in the second equality of Theorem 4.1 to get

1
Yooz, 7) = e (—52(07' + D)C’tz> det(CT + D)_%u_lﬂmb (v (2,7))

2
x det(CT + D)_%u_1 0,0 (t(a’b) o - (2,7')) ,
where the second equality follows from the first equality of Theorem 4.1. This implies that if
¥ z,7) =0 then ¢ (¥ - (2,7)) =0.
(b) Since Yot () = t(mn)y-107 for v € Iy and (m, n)E%Z29, there exists (m/, n’)E%Z29 such
that

— e <1a(’y a+a(:(Cr+ D) +b+ n)> e <—%Z(CT + D)cfz>

('?1\/)72)_15’105'2 = t(m,n)0(71'72)_lot(ml,nl)of}/lot(mg,n2)072 = ZL/(m’,n’)’
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Thus (y172) 14107, is either the identity map or a holomorphic involution on O (417,7) Without
fixed points. By Lemma 4.3 below, we get 1092 = 7172. O

Lemma 4.3. If O, is smooth, then there is no holomorphic involution on ©, without fized
points.

Proof. For a compact complex manifold X, let xp0,(X) denote the arithmetic genus of X, i.e.,
Xnot(X) == _(=1)Fh¥(X, Ox).
E>0

Assume that ¢ is a holomorphic involution on ©, without fixed points. Then

(9) XhOl(GT) = 2Xhol(®7’/ <t >)'

Let Zg_. be the ideal sheaf of ©,. From the exact sequence of sheaves 0—Zg . —04.—0g,.—0
and the vanishing xp0 (A7) = 0, we get

(10) XhOl(GT) = XhOl(AT) - Xhol(I@q—) = _Xhol(I@q—)'

Let [©;] be the line bundle on A, defined by the divisor ©,. Then [©;] is ample. Since
HM(A;,To,) = H*(A,,[0,]71), we get
Xna(Ze,) = (=1)h%(A;,[0:]7")
= (_1)gh0(ATa [67]®KAT)
= (1)h°(A-,[6;]) = (-1)7,
where the first equality follows from the Kodaira vanishing theorem, the second equality follows

from the Serre duality, and the third equality follows from the triviality of K 4_. Hence we get
Xnot(©7) = (—=1)9%1, which contradicts (9). O

We set
gh9/8s .= dz.(Im7) " 1dz.

Then g*s/®s is a T'j-invariant Hermitian metric on the relative tangent bundle T'(A,/&,). The
next purpose of this section is to construct a I'y-invariant Kéhler metric on T'A, whose restriction
to T(Ay/G,) is ghe/®s.

Put T% := R%9/7%. Define a Z?9-action on R* x &, by (m,n) - (z,y,7) := (x +m,y+n,7)
for (m,n) € Z*, (z,y) € R*, 7 € &,. Then (R* x &,)/Z? is the trivial T?-bundle 7% x &,.
We define a C>®-map p : R% x 6y, — CI x G, by

ﬁ((xvy)aT) = (.fCT+y,T), z,y ERga 7—E(‘Sg’
Since p is a Z?9-equivariant map, p induces a C*°-isomorphism p : T2 x &, — A, as T?9-bundles
over &,. Define a I'j-action on T29><6g by
v((@,y),7) = (@) v7), 7Ely.

Lemma 4.4. For all v€l'y, the following diagram is commutative.

T¥x6, —2— A,

di |

TYxS, —— A,
P
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B

Proof. Let v = D . Since
= ( > ‘BD='DB, "AC="'CA, "AD -'CB =1,
we get
m((@,y),7) = p((z,y)y"97)

= ((xtD—th)(AT-I-B)(CT-FD)_l
+(—z'B +y'A)(Ct + D)(Ct + D)L, (At + B)(CT + D)™})
= ((zr +y)(CT+ D)™, (At + B)(CT+ D))
= (2, y), 7).
O

Since the trivial connection on 729 X8, is I'g-invariant, A, has the induced I'g-invariant con-
nection TyA, C TA, via the I'j-equivariant isomorphism p. We denote the I'j-equivariant
projection corresponding to TyA4 by P,. Let P;)C :TA;,®@C —T(Ay/6&,) ® C be the complexi-
fication of P,. Then P;C is also I'j-equivariant.

Let Z and B be complex manifolds and let 7 : Z — B be a holomorphic submersion. A
connection Pz on Z is said to be compatible with the complex structure if the horizontal lift of
a (1,0) (resp.(0,1)) vector is a (1,0) (resp. (0,1)) vector, or equivalently, if P : TZ — T(Z/B)
preserves the complex structure. Let PY : TZ ® C — T(Z/B) ® C be the complexification. If
Py is compatible with the complex structure, we get the decomposition Pg = Pé’o @ Pg’l with
respect to the decomposition

TZC=T"Za1%2 T(Z/B)®C=1"(2/B)® 1% (Z/B),

such that Py(T10Z) = T'0(Z/B), P*' Z(T%'Z) = T%'(Z/B). Hence PS induces the decom-
position
707 =710(7/B) ® m*T"°B.

Lemma 4.5. Thel'j-equivariant connection P, is compatible with the complex structure. Hence
P,;c induces the I'y-equivariant C'°°-isomorphism

THA, 2 TH(A,/6,) ® T8,
Proof. Since p((x,y),7) = (7 +y,7) and 2z, = > _; ;71 + Yk, We get

p*(a)zzazka Z@zk8 0

87—ij 87—2] 8Zk 87—1] 8Zk 87—2]
B z": oy 0 0
ki1 8’7'Z] azk 8’7’@'
0 0 0
11 — o 2
( ) xzaZj +$]8Z¢ +8Tij’
O L0 00
P 87_'Z'j N Zafj ]8Zi 87_'2']' '
Notice that % = 0ydjr + 0idj;, since 7 is a symmetric matrix. From (11), the assertion
ij
follows. O

Let ¢®s be the Bergman metric on 6, with Kahler form
(12) we, = —2v/—100logdetImr.
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Then ¢%9 is I'y-invariant. With respect to the decomposition in Lemma 4.5, we define the
I'j-invariant Hermitian metric gAg on Tl’OAg by

Then we have

g%(i i) — gAg/Gg(i i)

822-’ aZj 8ZZ'7 aZj
0 0
AQ - =
0 0 o 0
Ay . v - S 2 2
g (p*(872])7p*(87_kl)) aTij’ aTkl :

Theorem 4.6. The Hermitian metric g™ is Kihler.

Proof. Let L be the holomorphic line bundle over A, defined by the divisor ©, and let hz be
the Hermitian metric on L defined by

19017, (2,7) = [9(2, 7)Pexp (=27 (Imz) (Im7) "' (Imz)) .
Then

!

(14) c1(Lla,, hp) = dz(Im7) "t (dz).

Write

gt/ = " hidzdz;, g% = W ijudriidi.
By (11) and (13), we get

0 0 o 0
= qha(p, —~ V= 2:hs s Ag -
0 g (p (87—7,])782’k) Zq ]k+513] Zk+g (aTijaazk)a
0 0
Wikt = 0" (pe(o), po(e
jkl g (p (872-]-)”0 (8Tkl))

= —xixrhi — exihg — zixihi — iz + Ag(i 9

= LK1 kL] ik LNk T g 872]”(97%1'
Therefore

o 0

A2 2y — RB.=— —1

(15) g (8zi’ aZ]’) hij (ImT)Z] )

o 0
16 b0 O b — aiha,

Ay 0 0 ,
(17) g (871,],,87“) = Riju + xixphy + xjoephg + by, + b
By (12) and (14),
1 02
1 hiyj = —— log||9||
(18) )= g ol
(19) ' L& 4rlogdetIm
@i —_—— — 7 T.
Ikl T OT;j 0Ty &
Since z = 27 + y, we have Imz = x(Im7), i.e., z = Imz(Im7)~1. Set E;; = ‘e;e; + ‘eje;.

1
2¢/—1

(z — z) and Im7 = 2\/1:1 (T —7), we get

Since Imz =
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1 &
W@Tijaik
2

log|[9]|*(2,7)

=2 Imz(Im7) (I
G705 mz(Im7)™ " (Imz)
—1 8 —1t —1t
m)aT{ek (ImT) (ImZ) + IIHZ(IHIT) ek}
ij
-1

= —2(2—\/:1) (ﬁ) {ex(Im7) ' E;;(Tm7) ' (Imz) + Imz(Im7) ' E;; (Im7) "'y}

1
= —§{ek(1m7)_1Eijtm + inj (ImT)_ltek}

=9
(20)

= —x;hik — zihyp

o 0
= gl —

where the third equality follows from the identity 2 (Im7)~! = —(2\#1)(Im7)_1Eij(ImT)_1,

87—1-]-

the forth equality follows from the identity = (Imz)(Im7)~! and the last equality follows from
(16). Similarly, we get

1 @

7'(' aTijan
2

log||9]1* (2, 7)

- 28’7}']’87_']{;[
-1 .0
e
oy =1 o, 1
(21) =20 =) G

+ Imz(Im7) ' By (Im7) "' B (Tm7) ' Imz}

Imz(Im7) ™ HImz

Imz(Im7) ! Ejy (Im7) ™ HImz

873]-

){Imz(Im7) " E;;(Im7) ! Ejy(Im7) ~M*Imz

1
= 5{:UEij(ImT)_lEMtac + 2Ey(Im7) " Bz}
= zixphj + xixchyg + vizhye + xjzhg,

o 0
—_— —V—h
g (aTZ] Y aTkl ) Z]k}l)

where the last equality follows from (17).
Let ® be the fundamental 2-form for g%s. By (15), (18), (20) and (21), we get

® = —dd°log||9|1(z,7) + f*we,.

This completes the proof. [l

Remark 4.7. By [FS, Theorem 7.10], there exists a I'g-invariant Kéhler metric g% on TA,
such that g% is a flat metric on each fiber and such that p, : T(A,/&,)* — TS, is an isometry.
Here we gave an explicit construction of such a metric.

5. THE L-FORM OF THE RELATIVE TANGENT BUNDLE

Following [Y2, Proposition 5.1], we shall compute the Hirzebruch L-form of the relative tan-
gent bundle of the family of smooth theta divisors, which will be used in Sections 7 and 9.
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A holomorphic function f(7) € O(6,) is a Siegel modular form of weight k if

fov-1) =37 x()f(r), VyeT,, Vre &y,

where j(7,7v) = det(Ct + D) for v = (é IB)) and x : I'y — C* is a character. For a Siegel
modular form f(7) of weight k, define the Petersson norm by

(22) 1F(D)I? := (det Tmr )| £ (7).

By the automorphic property det Im(y-7) = |j(7,)|72 det Im(7) and the finiteness of Hy(I'y,Z) =
L,/[Cg,Ty], the norm || f(7)||? is a C* T'y-invariant function on &,. Set

Xg(7) = 11 Va0, 7).

a,b€L79/7.9, 41a-b=0€7Z /27,

Then x4(7) is a Siegel modular form of weight 29 ~2(2941) and is called the Igusa modular form.
Let

Ny :={1 € &, | SingO, # 0}
be the Andreotti-Mayer locus.

Theorem 5.1 ([D]). The Andreotti-Mayer locus Ny is a divisor of &,. There exist two T'y-
invariant divisors 0, and J; on &, such that

Ny =04+ 27,

where I'g\ 0y and 'y \ Jy are irreducible divisors on T'y\ &,. Here 0, is the zero divisor of x4(T)
and Jy = 0 if and only if g = 2,3. There exist proper subvarieties Z1 C 0, and Zy C J, with
the following properties.

(1) For any T € 0, := 04\ Z1, Sing(0;) consists of one ordinary double point.

(2) For any 7 € J; = T, \ Z2, Sing(©;) consists of two ordinary double points which are
mutually interchanged by the involution z — —z.

Theorem 5.2 ([Y2]). There exists a Siegel cusp form Ay(T) of weight W with zero divisor

Ny. In particular, there exists a Siegel modular form Jy(7) of weight W —2973(29 + 1) with
zero dwisor Jy such that

We put
6, :=6, — N, 0 = 9|Gg-

Then p: ©° — & is a family of smooth theta divisors. Endow TI’O(GO/GS) with the Hermitian

metric g90/6g = gAg/Gg‘GO. Let ¢©° := g% |ee be the Kéhler metric on ©° induced from gh.

0°/65 (

Regard g resp. ¢9°) as a Riemannian metric on T(©°/6;) (resp.TO°). Let

THO°® :=T(0°/&;)"

be the orthogonal complement of T(©°/&7) in TO° with respect to the metric ¢®°, which
induces a connection Pg : TO° — T0O°/&j.

Lemma 5.3. One has ¢©° = ¢°°/%s @p*(969|eg)-

Proof. Let N be the normal bundle of ©° in A,;. Endow N with the Hermitian metric induced
from g via the C*®-isomorphism N 2 (T©°)* in TAylge. Then we have a C* orthogonal
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decompositions TAylee = TO° @ N and T'(A;/Gy)le- = T(0°/&;) @ N. Hence we get the
following equality of subvector bundles of T'A |ge:
TrAgloo = T(Ag/Gg)H@O (in TAg)

= (T(0°/&)) & N)= (inTO°® N)

= T(@O/Gg)l (in TO°)

=TyO°.
We thus have p*(969|68) = f*¢%9|e0, which together with gQO/GS = gl /69|@o, completes the
proof. [l

Lemma 5.4. The connection Pg is compatible with the complex structure on ©°.

Proof. Let J € End(T©°) be the complex structure. Then the Riemannian metric ¢®° is
invariant under the action of J. Therefore the orthogonal complement Typ©®° = T(©°/ 62)l
is also invariant under the action of J, which yields the assertion. [l

We define the connection V©°/®s on T(©°/6;) by using ¢®°/®3 and Pg as in Section 2.2.

Let V" be the holomorphic Hermitian connection on 71:°(©°/ &;) with respect to the Hermitian

metric 990/63.

Lemma 5.5. Under the C*®-isomorphism T(0°/65) @ C = TH9(6°/&7) @ T*1(0°/63), the
following equality of connections holds:

vo/% o C = vha V.

Proof. Let VI be the Levi-Civita connection on (70°, ¢®°) and let V¥ be the holomorphic
Hermitian connection on 7190°. Let Pg be the complexification of Pg. Since ¢©° is Kihler by
Theorem 4.6, we get the decomposition by [Ko, Chap. I, Proposition 7.19]

vieC = vigvH
under the decomposition T70° ® C = TH0° @ T%'0°. By Lemma 5.4, we also get the decom-
position P§ = P5% @ P3'. Then

VO/® @ C = (PoVE) @ C = B§(VF ® C) = PY'VH @ PY'VH.
Since Pé’OVH = V" by [Ko, Chap.I, Proposition 6.4], we get the result. O

Let By be the k-th Bernoulli number when k € Z, i.e.,
T 2k

x > x
—1-= SEPLARY; My
e — 1 2 +kz::1( ) " (2k)!

WesetBk:0Whenk:6%+Z.

Theorem 5.6. Let g be even. The following equality holds:
R Ie) (—1)9/220+1 (202 _ 1)
L(T(0°/6°),ve"/® = By ,ddlog det T
|:p ( (6 /Gg)7v g) (g+1)(g/2+1) %—i—l ogdetimT
(_1)g/229+3(2g+2 _ 1) .
= (g+3)| B%-i—ldd 10g||A9(7_)||27

where f, denotes the integration along the fibers and oP) denotes the p-form part of a from a.

Remark 5.7. When g is odd, say 2k + 1, since dimr®, = 4k and the L-form has only compo-
nents of degree 4n, the left-hand side of Theorem 5.6 is zero.
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Proof. The second equality follows from (22) and &7 = &,\div(A,). We prove the first equality.
Let R" := (V")? be the curvature, which is a (1, 1)-form with values in End (Tl’O(G)O/G;)). Set
(23) L(z) := z/tanh(z).

For a complex vector bundle E, let L(E) denote the multiplicative genus of Chern forms asso-
ciated with L(z). By (8), we get

L (T(@o/gg),ve/e;))(zm _ det( _RMjaryT1 ))(g,g)

(24) tanh(—R"/2m/—1
0 ~o (9,9)
~L (TLO(@ ,69),Vh) .
Here the first equality follows from Lemma 5.5, the equality R" = —'R" and the fact that

x/tanh(z) is an even function.

Let G be a positive definite gx g-Hermitian matrix and let gg := dz G *dz be a flat metric on
W := CY associated to G. Let P(W") be the projective space of hyperplanes of W and let E be
the universal vector bundle of rank (g — 1) over P(WV). Consider the following exact sequence
of vector bundles over P(W"):

(25) 0—E—WY =C9—N =W"Y/E—0.

Notice that N = Opyv)(1). Let g ¢ := gc|e be the induced metric on E.
Let g1, be the restriction of the Hermitian metric dz - 'dz on TA,/S, to the relative tan-
gent bundle 7©°/&;. Let R be the curvature of the holomorphic Hermitian connection of

(T°0°/63, g1,). Set

L(T"0°/&}, g1,) := det L(%;\/R:l) € @p>0APP(0°).
Let v: ©, — P(WV) be the Gauss map:
v:0,3z — (TO,), € P(WY),
which induces a finite covering with mapping degree g!. Then
(26) (TO;,9°7) = v*(E, g (tmr)-1)-

By [Y1, Proposition 2.1], we have

[L(Te°/&2,1,)] " = 0.
Hence we obtain
[L(TI’O(G)O/G;), Vh)] (9,9) — [L(TI’O(GO/GS), Vh)] (9,9) _ [L(TI,O((_)O/G;)’QIQ)] (9,9)
27) = —dd’[L(T"(0°/&7): 1,,9%7/%)] MY,

where INJ(TLO(@O/GE); 919,960/63) denotes the Bott-Chern secondary form [BoC], [BGS] corre-
sponding to L. By (24), (26), and Proposition B.1 below, we get

= —1,9—1 Mg —1,9—
pe[L(TO,,91,,6°)] " = p.[V'L(E;gm.1,, 98 0mn-1)] "

(28) = degv / L(E; 981,95, (tmr)-1)
P(WV)
= —glk(L, g) log det Imr,

where k(L, g) is the constant defined in (72) below. By (27), (28) and the following Lemma 5.8,
we complete the proof. [l
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Lemma 5.8. The following equality holds:

4k+1(4k+1 _ 1)
(2k +2)!

Proof. By (72) and the relation tanh'(z) = 1 — tanh(x)2, we get

K(L,2k) = (L—@-L_l(:ﬂ) 1L’(x)-L—2(:c)>

k(L,2k) = (—1)9(2k + 1) P,

2%
1 (tanh(x) B tanhl(x)>

p2k—1

(29) Y 2 x

z2k—17
where h(x)|zs is the coefficient of 29 for h(z) € C[[z]]. Combined with (29), the Taylor expansion

(30) tanh(z) — Z (_1)%1?;(37 — 1)an2n_1
n>1 :

yields the assertion. O

Remark 5.9. In Section 7, it will be crucial that dlog||Ay(7)[|? is I',-invariant and that
ddlog||Ay(7)||? is an exact 2-form on I'y \ &9.

6. THE SIGNATURE COCYCLE OF SMOOTH THETA DIVISORS

Since Ty acts on & properly discontinuously, the quotient I'y \ &7 has the structure of a
complex orbifold and Ty \ S, is a coarse moduli space of smooth theta divisors. In this section,
following [A2], we construct a 2-cocycle of the orbifold fundamental group of I'y \ &g, which is
an analogue of the Meyer cocycle [A2], [Tu].

We fix a base point * € & such that {y € T'y | v-* = x} = {£14}. Let (B,b) be a topological
space with base point b, and let 7 : B—B be the universal covering. The fundamental group
71(B,b) acts on B as deck transformations. Fix a point b€ B with 7(b) = b. We define the set
[B.Ty\ &5 by

{(a.p) € C°(B, &;) x Hom(m1(B,b),Ty) | a(b) = *, aly-z) = p(y"!) - a(a)}/ ~ .

Here (o, po)~(au, p1) if and only if pg = p1 and there exists a homotopy § : B x [0,1] — S,
connecting ag and oy such that &(*,0) = ag, &(*,1) = «; and
a(y-z,t) = p(y) - &z, t), el zeB, telo1].
Definition 6.1. Define the orbifold fundamental group of T'y \ S, by
Sy = [S.Ty\ &g
= {(a,7) €C'R,&3) x Iy | a(0) =%, aft)=7y-alt+1), VEER}/ ~.
One has the following equivalent definition:
Sy = {(a,) € C°([0,1],67) x Ty | a(0) =7~ a(1) = *}/ =~ .

Here (g, 7v0) =~ (a1,71) if and only if 79 = 71 and there exists a homotopy a(s,t) : [0,1] x[0,1] —
&, connecting ag and «; such that a(0,t) = ag(t), a(1,t) = a1(t), a(s,0) = - a(s, 1) = * for
s €10, 1].

The group law of S, is defined as follows. Let [(a1,71)], [(a2,72)] € Sg. Then 72_1 caq is a
path connecting v, ' - % and (y192) " - . Define the new path a : [0,1] — &; by

Oé() a2(2t) O§
et @1 4<
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Then [(a1,71)] - [(a2,72)] == [(o,1172)]. For o = [(I,)] € Sy, the inverse is given by

(31) ot =[=(y- D,y ) =111, te[0,1).
Let p: S; — I'y be the projection to the second factor. Since the kernel of p is isomorphic to
m1(&y, x), we have an exact sequence

(32) 1 -m(6y,x) - S —Ty— 1.

Remark 6.2. When g =1, T'1\ 8} = SL2(Z) \ 6; is the moduli space of curves of genus 1 and
S1 = Mj. When g =2, I'y \ &5 is the moduli space of curves of genus 2 by the Torelli theorem
and Sy = Ms. By (32), S, is regarded as an analogue of the mapping class group.

Recall that a (B, b)-equivariant map (f,p) : (B,b) — (&5, ) is a pair (f,p), where f €
C(B, 6;)and p € ~Hom(7r1(B, b),T,) satisfies the relations f(b) = * and f(vy-x) = p(v)- f(x) for
v € m1(B,b), x € B. Given a m(B,b)-equivariant map (f, p), one obtains the homomorphism
of groups fi : m(B,b) — S,y by f«([c]) = [(f o ¢, p([c]))] for [c] € m1(B,b).

Let F' be a compact oriented surface with non empty boundary. Fix a base point b € F. Since
F is homotopy equivalent to the n-bouquet B, := S' Vv --- Vv S (n-times) for some n € Z>1,
m1(F,b) = w1 (B, %) is a free group of rank n. We have
(33) B Ty \ G507 2 [S1,Ty \ @507 x - x [$,Ty \ &7 (n times)

2 Sy x - xSy (ntimes).

Fix a set {g1, -+ ,gn} of generators of 71 (F,b) = m(B,,*) as a free group of rank n. Since
[F,Ty\ 65]°" = [B,,, 'y \ &5]°" we obtain the bijection by (33)

(34) [F,Tg\ 6;]0”’ = Sy x---xS; (n times),

which is given by [(f, p)] — ([fi(g1), p(g1)], -+, [f<(9n), p(gn)])-

From now, we denote by B a pants, i.e.,
B=S*\1I}_, Dy,

where D1, Dy, D3 are mutually disjoint open discs. Fix a base point b € 3. Since B is homotopy
equivalent to the 2-bouquet Bo, m1(B,b) is the free group of rank 2. Let g1, g2 be the generators
of w1 (B, b) such that g; is represented by a loop homotopy equivalent to 0D;. By (34) we have
the bijection

(35) B, T4\ &1 = Sy x S,
For [(f,p)] € [B,T4\ 6;]"”’ the fiber product 7 : B X0 — B is a (B, b)-equivariant fiber

bundle because f : B — Sy is a 71(B, b)-equivariant map. Hence we get the fiber bundle
T (gxf@)/m(l’)’, b) — B, which is uniquely determined by [f] € [B,I'y\ 6;]0“’ up to homotopy
and which is a 2g-dimensional compact oriented manifold with boundary. If [(f, p)] corresponds
to (o1,02) € Sy X Sy via the isomorphism (35), we set

X(o1,09) := (B x; ©)/m1(B,b).

Then 7 : X (01,02) — B is a differentiable family of smooth theta divisors whose monodromy
around 0D; is o; for i = 1, 2.

Recall that for 4k-dimensional compact oriented manifold with boundary the signature Sign(X)
is defined as the signature of the cup-product pairing on H?*(X,0X, Q).

Definition 6.3. Define the map ¢, : Sy x S; — Z by
cg(01,09) 1= Sign(X(o1,02)),  (01,02) € S x S,

We call ¢, the signature cocycle for smooth theta divisors.
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Remark 6.4. When g is odd, ¢, = 0 because Sign(X(o1,02)) always vanishes in this case.

Lemma 6.5. The following equality holds:
(a)  cy(o1,02) + cg(0102,03) = c4(02,03) + c4(0203,01),
If 010903 = 1, then c4(01,02) = c4(02,03) = cq4(03,01),
Cg(O'l,I) = Cg(I 0'1) = 0
(01702) = cy4(02,01),
Cg(al 702 ): _69(01702)7
(f) Cg(030103 ;030203 ) = cg(01,02),
where 01,02,03 € Sy and I is the unit element. In particular, cg is a 2-cocycle of the group S,
by (a).

Proof. By the same argument as in [A2, p.343|, we obtain the assertion. O

Denote by [c,] € H?(S,,Z) the cohomology class of ¢;. Then ¢z is the Meyer cocycle of genus
two.

Remark 6.6. Let p : S; — Aut(HY91(0,,Z),<,>) be the monodromy representation, where
< , > denotes the cup-product pairing. When ¢ is even, < , > is skew-symmetric and
Aut(H971(0,,Z),<,>) = T}, where k; = sdimg H971(0,,R). Hence we have the homo-
morphism p : §; — T'k,. In this case, ¢, is the pull-back of the signature cocycle of Ty, via the
map p by [Al, Sect. 4] and [A2, Sect.2]. When g = 2, p is equal to the homomorphism in (32).
However this is not the case for general g, because dimg H971(0,,R) > g for g > 2.

7. CONSTRUCTION OF THE MEYER FUNCTION FOR SMOOTH THETA DIVISORS

As we explained in Section 1, the cohomology class of the Meyer cocycle 74 is a torsion
element of H?(M,,Z) for g = 1,2 because H*(M,,Q) = 0. In this section we shall prove that
the cohomology class of the signature cocycle ¢, is a torsion element of H 2 (S4,Z) by constructing
a 1-cochain that cobounds ¢4 explicitly. We don’t know whether H 2 (S4,Q) vanishes or not when
g > 2, while we will see that H%(S,,Z) # 0 for g > 1 in the next section.

Let 0 = [(a,7)] € S;. The fiber product R x, ©° is equipped with the m(S1)-action such
that m - (¢, (z,a(t))) = (t + m,¥™ - (2,(t))) . We define the mapping torus M, ) by

T M. = (R x,0%)/m(S") = &',  7=pr.

Since the metric ¢®°/®s on T (©°/6;) and the connection Pg on ©° are I'j-invariant and since

the map o : SI=R — S, is 71 (Sh)-equivariant, the metric gMe@n/S" on T(Ma,)/S") (resp. the
connection P,y on M, ) is induced from ¢°° /%3 (resp. Po) via the map a. With respect
to the decomposition TM, ) = T(M(q) /Sl) ® 7 T'S! associated with Py, ), we define the

Mo,

one-parameter family of Riemannian metrics g. on M, ) by

M, 1
ge @ = gMen/F @e It dt?,  eeRsy.

Here we regard S' as R/Z and t€R as a local coordinate of S'. By Theorem 3.3, there exists
the adiabatic limit

M
(M(a’y)) - hm 77(M( v)s 9e ( ’7))'

Since the 1-form d¢log||Ay(7)||? is I'g-invariant, the pull-back a*d®log [|Ay(7)[|* can be re-
garded as a 1-form on S*.
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Definition 7.1. For o € S;, let («,7) be a representative of o, i.e., 0 = [(@,7)] and set
(—1)9/229+3(2g+2 - 1)Bg+1
(g +3)!

The following theorem is the main result of this paper.

@) = 1’ (M) + R VCTE

Theorem 7.2. (a) The value ®4(c, ) is independent of the choice of a representative (o,7) of
0€8y. In particular ®4 is a function on S.
(b) The function ®4 satisfies

) cglo1,02) = —Pg(01) — y(02) + Py(0102),
b2)  @y(1) =0,

) (I)g(al_l) = —®4(01),
b4) @9(020102_1) = ®y(01),

where a1,09,03 € Sy. In particular, [c,] ® Q =0 € H%(S,,Q) by (b1).
Recall that the Meyer function ¢9 of genus two cobounds the Meyer cocycle 75 (cf. Introduction).
As a consequence of Theorem 7.2, we get ¢o = @9 by the uniqueness of the Meyer function of

genus 2. Since Ay(7) coincides with the Igusa modular form y2(7) up to a constant [Y2], we get
the following analytic representation of the Meyer function ¢s.

Corollary 7.3 ([li]). Let o = [(c,7)] be an element of So = Ma. Then

2 [
() = 1" (Mia) = 5 [ ooz ) -

Proof of Theorem 7.2. (a) Assume that (ag,~) and (a1,7) represent the same element o € S,.
Put I :=[0,1]. There exists a continuous map & : I x R — & satisfying

a(s,0)=x, sel, a(st)=~a(s,t+1), (s,t)eIxR

and

(36) 5(5,8) = {ao<t> s€lo,

aq (t) se(

)

— I

Y

wlrno

Since @ is 71 (IxS')-equivariant, the fiber product (IxR)x;0° is endowed with the 71 (IxS%)-
action, and we have the fiber bundle

T M. = (IxR)x40°/m(IxS")—I x S'.

o, .
S5 induces a metric

By the I'y-invariance of ¢9°/85 and the m (I x S1)-equivariance of a, g/
gM(o’em/IXSl on T(M(O—W)/IxSl), and the connection Pg induces a connection P4y on M4 ).
With respect to the decomposition TM 4 oy = T(M(g,)/1 x S1) @& 7T (I x S') associated with

Pla,y), we set
e @ = gMan /I8! @ lr* (A’ @dt?), e € Rug.
Let VM@/(5"%1) be the connection on the relative tangent bundle T(Ma,)/(S*x1)) associated

with gM@m/(8™xD) anq P5)- By (36) and Lemma 2.4 (c), gy(&”) is a product metric on a color
neighborhood of the boundary 0M 4 ), i.e.,

Mz ) Magy) 1 _—1 7,2 M(a,~) Moy,
e oy = 9o T @ETNAE, g2 T v

— -1 742
‘(%,I]XSI —gg @5 dt .
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The Atiyah-Patodi-Singer index theorem applied to (M4 ), géw @7 yields that
(37)

. ~ Ma’ MQ ; Ma ’
SlgH(M(o’m/)) :/I o W*L(TM(oz,y),gg ( 7)) _ (n(M(@o,’y)yge ( ov)) _77(]\4(6[1’7)’9(S (aq v)))'
X

Since I is contractible, M4 ) is diffeomorphic to M, x 1. Hence

@0,7)
(38) Sign(M(aw)) = Sign(M(aOﬂ))xSign(I) =0.

Let pr: M, ) — ©° be the projection to the second factor. Then we get

i | 7L (Mg, e ™ ):/ ﬁ*(L(T(M(M)/(IxSI)))/\ﬁ*L(T(IxSl)))

} (2

:/ [ﬁ*L(T(M(@W)/([xSl))’VM(M)/(Ixsl))
(39) IxS?t [

] (2)

_ / & *L(T(@O/G;),v@°/6§)](2),
IxSt

where the first equality follows from Proposition 2.8, the third equality follows from Lemma 2.7
and we used the identity T.pjw = a*p,w for w € AF(©°) to get the last equality. By Theorem
5.6, we have

(40)
/Ixsl a [p*L(T(@)"/GS), v®°/68)} @)

—1)9/229+3(99+2 _ 1 —x 7 1c
) ( >B%+l /wa ddlog|| Ay (7)1

(g +3)!

_ <—1>g/2(2;fg2)j*2 “Up, ., ( /{ o 08185 - /{ e 0108 ||Ag<r>u2> ,
where we used the I'j-invariance of the 1-form d¢log ||A4(7)||? to get the last equality. We obtain
0 = lim | "L (TMas, 9" ) = (Mg s 92 ) = (Mg 92 7))

. ((—1)9/2(2;f;2;+2 by [ ajeiosl ()1 + n‘)(M(ao,w))

= q)g(ah’)/) - (I)g(OZOa'Y)a

where the first equality follows from (37) and (38), the second equality follows from (39), (40)
and Theorem 3.3, and the last equality follows from Definition 7.1.

(b) Since n(—M, gM) = —n(M, gM) for any odd dimensional Riemannian manifold (M, g
(cf. [APS]), we have (b3). Let o1 = [(a1,71)], 02 = [(a2,72)], 03 := (0102) "L = [(a3, (1172) 1) €

M)
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S,. Recall that B = S?\ II?_, D;.. By (b3), it suffices to show that
g k=1

3
(41) Sign(X(01,02)) = — Y _ ®4(03)

i=1
in order to prove (b1). Let U; be a neighborhood of 0D; in B such that U; = [0,1) x 0D;. Let
B U; [0,1) xR — B be the lift of the map U; — B. As before, g1, g2 € 71(B,b) denote the
generators represented by the loops D1, 0Ds, respectively. Let [(c, p)] € [B,T'y \ & g]orb be the
element corresponding to (o1,02) € Sy x S, under the isomorphism (35). Since the loops 0D1,
0Dy and D3 represent g1, g2 and (g1g2) ! € m1(B,b), we can assume that

(42) o Bilg(sit) = ait),  (si,t) €U 2 [0,1) x R, i =1,2,3.

Let gX(71:02)/B (yesp. PX(4,,0,)) be the metric on T'X (01, o2) (resp. the connection on X (01, 02))
induced from the metric g®o/ S5 (resp. the connection Po) via the map «. Let ¢ be a met-
ric on TB such that ¢8 ‘ v, = ds? @® dt?. With respect to the decomposition TX (0y,09) =
T(X(01,02)/B)@7*TB associated with Py
by

o1,02)> We define the family of metrics on T X (01, 02)

ge)((a'l,og) — gX(O'hO'Q)/B @5_17{'*967 € € ]R>0.

By (42) and Lemma 2.4 (c), we have

M.
(43) gXlven)| = g gl i=1,2,3.

U;

Let VX(91.:02)/B 1o the connection on T(X(01,02)) associated to the metric gX(1.72)/B and

the connection Px(s, 5,). Since the metric g§ (01,02) 4 5 product metric on a color neighbor-

hood of the boundary of X (o1,02) by (43), the Atiyah-Patodi-Singer index theorem applied to
(X(01,02), 95(01’02)) yields that

e—0

i i 01,0 Ma,,
Sign(X(o1,02)) = lim (/X( )L(TX(Ul,UQ),g;X( 1,02)) — Z”(M(am%gf ( ”))
01,09 —

3
= /W*L(T(X(thm)/lg),VX(‘”"”)/B) = (Mo, )
B

=1
* o o 0°/6° (2) - 0
= o [prirer /@), v T = S (e, )
=1

(_1)9/229+3(29+2 _ 1)
/B (9+3)!

3
% 73C 2 0
By a*ddlog || Ay (7)) —Zn (Mia,,))

3 g/229+3(2g+2

1) e
= 3 T e Braai g A, - Zn
3

= - Z Dy(0i)-
i=1

This completes the proof of (b1). From (b1) and Lemma 6.5 (c), (b2) follows. By (bl) and
Lemma 6.5 (d), we have ®4(0102) = ®4(0201) for any 01,09 € Sy, from which (b4) follows. O
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8. THE FIRST COHOMOLOGY OF S,

The uniqueness of a 1-cochain that cobounds the 2-cocycle ¢, is equivalent to the vanishing
of H'(8,,7Z). Indeed, if there is another 1-cochain (I>lg : 8y — R that cobounds ¢, the difference
o, — <I>'g is an element of Hom(S,,R) = H!(S,,R). (See [Br] for generalities of cohomology of
groups).

Let k1(g) = 2972(29 + 1) and ka2(g) = W —2973(29 + 1) denote the weights of the Siegel
modular forms x,(7) and Jy(7), respectively. Set m;(g) := L.C.D(k1(9), k2(g))/ki(g), i = 1,2.
Then x, (7)™ J,(7)7™2(9) is a T j-invariant holomorphic function on Sy

While H!(S1,7Z) = H'(S3,7Z) = 0, the uniqueness is no longer valid for g > 3.

Theorem 8.1. The following holds:

0 1<g<3,

HYS,,Z) =
(97 ) {Z 924'

For g>4 the generator of H'(S,,Z) is represented by a homomorphism o € Hom(S,,Z) defined
by

1 ' (9) (9)
S /0 prdlogxy(T)"'\ W Ty (7)Y €Z, o =[(p.,7)] €S,

In particular, the cochain cobounding the signature cocycle cg4 is not unique when g > 2.

g

The proof of Theorem 8.1 is divided into several lemmas below. By (32), we have the 5-term
exact sequence (see [Br, Chap. VII, Cororally 6.4])

(44)  1— H' Ty, Z) — H'(S,,Z) — H' (m (&5, ), Z)" 2 HAT,,Z) — HX(S,, 7).
Here H'(m (S, ), Z)V's denotes the T'j-invariant subspace of HY(m (&), %), Z).
Lemma 8.2. The following holds:

7)12Z if g=1
HYT,,Z)=0 g>1, H*(Ty,Z) = Z.® L)27 if g=2
7Z if 9= 3.
Proof. See [Bo], [LW, Corollary 5.2.3, Remark 5.2.4]. O

By the Hurwitz theorem [Sp, Chap. 7, Sect. 5, Proposition 2], we obtain
(45) H' (w1 (6, ), 2)" = H' (&, Z)"s.
Lemma 8.3. Let X be a connected complex manifold of dime X >2. Assume that
(46) HY(X,Z) = H*(X,Z) = 0.

Let D = ZAGA naxDy be a divisor on X such that nyx#0 and Dy is irreducible for all A € A.
Then

HYX — D,7) =7,
Here Z™ denotes the direct product. The generator of the cohomology HY(X—D,7Z) corresponding

to A€A is represented by the map [x—1 and l,—0 for u#A e\, where l,, denotes the loop around
a small disk intersection D, transversally.

Proof. Since the real codimension of SingD in X is greater than or equal to 4, we have (X, X —
SingD, ) = 0 for 1<k<3. The relative Hurwitz theorem [Sp, Chap. 7, Sect.5, Proposition 1]
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asserts that Hy (X, X —SingD,Z) = 0 for k<3. Hence H*(X, X —SingD,Z) = 0 for k<3, which
together with the cohomology exact sequence for the triple (X, X — SingD, X — D), yields that

(47) H*(X,X — D,Z)~H*(X — SingD, X — D,Z).
By the cohomology exact sequence for the pair (X, X — D) and (46), we see that
(48) HYX — D,2)2H*(X,X — D,7) = H*(X — SingD, X — D, 7).

Since D — SingD is a closed submanifold in X — SingD and since X — D = (X — SingD) — (D —
SingD), the Thom isomorphism asserts that

(49) H*(X — SingD, X — D, Z)=H"(D — SingD, Z).
By the irreducibility of Dy, Dy — SingD) is path connected so that
(50) H°(D — SingD, Z)~7".
The result follows from (48), (49) and (50). O
Lemma 8.4. The following holds:

0 g=1

HY&,Z)'" = Z 9=2,3
722 g > 4.

By regarding Hl(Gg, C) as the de Rham cohomology group, the images of the generators under
the natural map Hl(Gg,Z) — HI(GE,(C) are represented by the 1-forms %lﬁdlogxg(ﬂ and

ﬁdlong(T). Here J4(1) =1 and hence dlog J,(1) =0 for g < 3.

Proof. By Theorem 5.1 and 5.2, and Lemma 8.3, we get the assertion. [l

Remark 8.5. Notice that the differential forms %—\l/:ldlong(T) and #\ﬁldlogjg(r) are not

I'j-invariant, but their cohomology classes are I'g-invariant.

Let G := Sp(2g,R) be the symplectic group and let G° be the same group endowed with the
discrete topology. Consider the universal covering

(51) 0—-7Z—G—G—0,

which defines a central extension of G by Z. Let e(G) € H*(G®,Z) be the cohomology class
corresponding to the central extension (51).

Recall that the automorphic factor j(7,7) is a nowhere vanishing holomorphic function on
Sy. Since B, is simply connected, the logarithm of j(7,7) makes sense. Choose a branch of the
logarithm of j(7,~) and denote it by log, j(r,v) for yEG?. Define the function A, : G*xG®—Z
by

(52) (A, B)— (logaj(r, AB) —log,j(B-1,A) — log,j(T, B))

1
2my/—1
for (A, B)eGOxG°.

Lemma 8.6. The function A, is a 2-cocycle of G whose cohomology class is e(G).

Proof. For g = 1, see [BG, Lemma 2.1]. When g > 1, we closely follow [BG]. Choose the branch
log,j(7,7) satisfying

(53) Im log,j(v/—1-124,7) €[0,27).

Since the function A\, is measurable, the cohomology class [\,] is a constant multiple of e(G) by
[Mc, Theorem 2]. Therefore it suffices to determine the restriction of the cohomology class [A,]
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to the maximal compact subgroup of G. We identify the unitary group U(g) with the maximal
compact subgroup of G by the inclusion map defined by

ReZ ImZ a
—~Im Z ReZ ‘

Since j(v/=1-124,t(Z)) = det(Z)~! for Z€U(g) and the isotropy subgroup at /—1-19,€8, is
just U(g), we have

(54) 21V =1Mg (21, Z2) = —log,det(Z1 Zs) + log,det(Z1) + log,det(Z)

for (Z1,722)€U(g)xU(g). By (54), the restriction of the cohomology class [As] to U(g) is the
pull-back of the cohomology class corresponding to the universal covering

OHZHE{T)%RHU(DHL
via the map det : U(g)—U(1). Since the induced map (det), : m1(U(g)) — m(U(1)) is an
isomorphism, we get [A\;] = e(G). Since the cohomology class is independent of the choice of a
branch of log, j(7,7), we obtain the assertion. O

L:U(g)BZl—><

Lemma 8.7. Let t: 'y — G? be the natural inclusion. For g # 2 (resp. g = 2), the cohomology
class 1*e(Q) is a generator of H*(Ty,Z) (resp. the free part of H*(T2,Z)).

Proof. Let [r,] € H?(G%,7Z) be the original signature cocycle of G (see [Me] for definition). By
[Tu, Theorem 1], we have [74] = 4e(G). Let p : My — I'y be the symplectic representation of
the mapping class group obtained by the action on H(%,,Z). By [Me], p*t*[r,] is four times the
generator of H?(M,,Z). Hence 4:*e(G) is four times the generator of H?(I'y,Z), which yields
the assertion. O

Lemma 8.8. Let g > 4. The map 9 : Hl(m(Gg, x), Z)Yo—H?(Ty, Z) is given by
(m,n)—(k1(9)m + ka(g)n) €H*(Ty, Z)=Z
for (m,n) € H(m (&, %), Z)'s = 792, For g = 2,3, the map 6 is given by m—ki(g)m.

Proof. Let o : T'y — S, be a section and write o(y) = [(l,,7)] € Sy for v € I'y. Let a be an
element of H'(m(&y, *),Z)F9§Hom(7r1(6;, %), Z)'s. Then §(a) : TyxI'y;—Z is given by

(A, B)—a(o(A)o(B)o(AB) 1)€Z, (A,B)elyxT,,
where we identify o(A)o(B)o(AB)~! with the corresponding preimage under the inclusion
m1(6y, ¥)—S,. Write 0(A)o(B)o(AB) ™" = [(I(a,p),1)]€m1 (6}, %), where (4 p) is a loop on &,

By (31), 0(AB)~™! = [(—(AB) - liap), (AB)™1)]. Hence l(4 p) is the composition of the paths
—(AB) -lap), (AB)-lp and A-la. See Figure 1.

AB - %
(AB) -l
—AB~Z(AB)
A-x
A-lg %

FIGURE 1. loop (4, p)
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Under the identification in Lemma 8.4, d(m,n) for (m,n)eH*(m (&, %), Z)F9 =72 is given
by

1
2my/—1

By using the path —v - [, connecting * and v - %, we define the branch log,j(7,v) for veI'y
satisfying

5(m,n)(A, B) = /l dlogy (7)™ T, (7" €Z, (A, B)eT,xT,.
(4,B)

log,j(*,7) := ) / l dlogx¢(7).
by

Then we get

2mv/—16(1,0)(A,B) = / dlogxy(7)

la,B)

= / dlog x4(T) + / dlog x4(T) + / dlog x4(T)
—(AB)(ap) (AB)-lp Ay

= ki(g)[log, j(*,AB) —log, j(*, A)] +/B.l dlogxg(A - 7)
= ki(g)[log, j(*, AB) — log, j(*, A)]
+/ [dlog x,(T) + k1(g)dlog, j(T, A)]
Bilgp
= ki(9)[log, j(x, AB) — log, j(x, A)]

+k1(g)[—log, j(*, B) +log, j(x, A) —log, j(B - *, A)]
= ki(g) [log[,j(*,AB) —log, j(B-*,A) — log[,j(*,B)].

By Lemmas 8.6 and 8.7, we see that 6(1,0) = ki(g)€H?*(Ty, Z)=Z. Similarly we get §(0,1) =
k2(g), which completes the proof. O

Proof of Theorem 8.1. Since H'(I'y,Z) = 0 in the exact sequence (44), we get H(S,;,Z) =
Ker(6). By Lemma 8.8, we get Ker(d) = 0, for 1 < g < 3 and Ker(d) = Z for ¢ > 4. This
completes the proof. [l

In the proof of Theorem 8.1, we also obtain
Proposition 8.9. One has H*(S;,Z) # 0 for g > 1.

Proof. Since ki(g) > 1 for g = 2,3 and G.C.D(k1(g), k2(g)) > 1 for g>4, ¢ is not surjective by
Lemma 8.8. By the exact sequence (44), we obtain the assertion. [l

9. THE VALUE FOR THE DEHN TWISTS

In this section, we compute the value of ®, for the generators of the subgroup 7T1(6;, %) C Sy
(cf. (32)). By Theorem 5.1, the Andreotti-Mayer locus N, has two components 6, and 7, such
that I'y \ #5 and I'g \ J, are irreducible divisors on I'g \ &,4. Let 37, 0\ and 3, Jy, be the
irreducible decompositions of 6, and J,, respectively. Consider a lasso in &, surrounding 6,
(resp. Jy,.) and denote its homotopy class by II} (resp. Hi) Then II} and Hi define elements
of m1(&y,*) C Sy up to conjugacy classes. After [Ka], we call I} and Hi the Dehn twists.
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Theorem 9.1. The following equalities hold:

4 .
-5 Zf g= 27
D (L) = >, +2090+2_ ,
9 (_1)%-‘1-1 (9+1)2?g+§3!g 1) B%+1 if g>3.
1)29+3(29+2 _ 1
O (1) = (—1)%“(9 +1) ( )Bgﬂ if g>4.

(g+3)! 2

Proof. Let A := {z € C | |z| < 1} be the unit disc and set A, = {z € A;|z| < r} and
A*:= A\ {0}. Let o : St — S, be a representative of IT;. Recall that the Zariski open subset
05 C 0y and J; C J,; were defined in Theorem 5.1. Let p; : A — &, be a C°°-map with the
following properties :

(a) piloa = a; and p;(A*) C &j.

(b) p¢|A% : A% — pi(A%) C 6, is a holomorphic embedding with

2 2
pi(reV =10 = p; (—eﬁ”’> . g <r<l 0<h<2m

3
(c) p1(A) intersects 0, at p1(0) € 0 transversally, and p2(A) intersects J, at p2(0) € J;
transversally.
Let

w: X = Ax, 0 — A,
be the family of theta divisors over A induced from the universal family p : © — &, by p;. Let
pr : X' — O be the projection to the second factor. By Condition (c), X is a C*°-manifold.
By Conditions (a), (¢) and Theorem 5.1, Sing(w'(0)) consists of one ordinary double point
(resp. two ordinary double points) and w(z) is a smooth theta divisor for z € A*. Notice
that 0X" endowed with the orientation induced from X" is diffeomorphic to the mapping torus
M(Hg\)—l endowed with the natural orientation (cf.Definition 2.5), i.e., 0X" = —MHZ-A. For
simplicity, set M; := MH?
Let ¢® be a metric on TA such that

2 2 2
Py (Irl < 3)-

Let D be the set of singular points of the central fiber w=1(0). Let gXi/A be the metric
on T(Xi/A)‘Xi_D induced from the metric ¢®°/®3 via the map p;. Let P; be the connection
induced from the connection Pg on ©° via the map p;. Using P;, define the metric on T'X Z| Xi_p

by gXi = gXi/A @ w*g®. Since pr‘w ) w‘l(Al/g) — © is a holomorphic embedding and

71(A1/3
preserves the metric outside D by Lemma 5.3 and since the metric g® = g lo is defined on
the total space O, the metric ¥ extends to a metric ¢* on TX*. Set

gg(z = gX @elw g®, eeRsy.

By Condition (b), p; is constant in the radial direction when % < r < 1. Hence ngXi is a

product metric on a color neighborhood of the boundary dX* by Lemma 2.4 (¢) and (55). The
Atiyah-Patodi-Singer index theorem applied to (X%, gX") yields that

(56) Sign(X,) = /X L(TX', gX") + n(M;, g2).

Here, 0X" is identified with —M;, and g% is the restriction of ngXi to the boundary 0.X2 — M;.
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Lemma 9.2. The following equality holds:

lim L(TX', g% )9 = L(T(XT/A), VX2 4 P(—t, - (~t))|io- Y u(p)3-
= peD

Here the diferential form L(T(X?/A),VX'/2) on X\ D extends to a C®-differential form on
X"*. The constant p(p) is the Milnor number of the singular point p € D, 0, is the Dirac delta
current supported at p, and P(xy,--- ,x4) € Cllx1,--- ,x4]] is defined by

g
H L(.’Ek) = P(Ul7 T 09)7
k=1
where 01 =), T, 00 = ij xixj, -+, 09 = | [z are the elementary symmetric polynomials.

Proof. On X%\ D, the assertion follows from Proposition 2.8. Let U C X* be an open neighbor-
hood of D contained in w1 (A1). By Condition (b) and the equality (24), we have

1

3
(57) LITX", 2 )u = (prlo) L(TO, ) = (prlo) LT O, 6,
where ¢© := ¢® @ e 1p*¢®s. By [YY, Main Theorem 2.2], we get

gi_r)I%)L(T17oeag?)(29)‘pr(U) = L(TLO(@/Gg)a Vh)(2g) |pr(U) + P(—t, to 7(_t)g)|t9 : Z ,u(p)(sp,
p€pr(D)

which together with (57), yields the assertion. O

Lemma 9.3. The following equality holds:

_119/299+2(9g+2 _
P(_tﬂ"'ﬂ(_t)g)‘t" = L_l(t)|tg - ( 1)9 (Zgg‘i‘(;; 1)B%+1

Proof. Consider the exact sequence of vector bundles over P9:
0— O(-1) - C" — F:=C9"/O(~1) — 0.

For a complex vector bundle F' over P9, recall that L(F') € H*(PY,Q) denote the multiplicative
genus of F' associated with L(x) (cf.(24)) and let ¢(F) denote the total Chern class of F.
Set t := ¢ (O(=1)). Since c¢(O(=1)) - ¢(E) = ¢(CI™) = 1 and ¢(O(-1)) = 1 + t, we have
¢(E) = 39_,(—t)*, which together with L(O(—1)) = L(t), L(E) = P(c1(E), -+ ,¢4(E)) and
L(O(-1))-L(E) = L(C9™") = 1, yields that

P((~t),--,(=t)?) = L(E) = L(O(-1))"" = L™'(t) € H*(PY,Q) = Q[t]/(t'"").

This proves the first equality. Since L=1(¢) = tanh(¢)/t by (23), the second equality follows from
(30). O
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Since p € D is a non-degenerate critical point of @ : X* — A, we get u(p) = 1. Taking the limit
e — 01in (56), we get by Lemma 9.2, Theorem 5.6 and Lemma 9.3

SgnCYQ::/‘wgwaﬂX@OASQ,VQWGQ—+L‘1@Nw—%n%AL)
A

B /A PP L(T(8°/8,),VO"/®)
(_1)9/22g+2(29+2 . 1)
(g +2)!

(58) +1 By + n’ (M;)

(_1)9/229+1(29+2 —1) / .

= Bg ddlogdetl
(g/2+ 1)(g+1) 271 [0 oReeT
.(_1)9/22g+2(29+2 . 1)

(g +2)!

By +1°(M;).

By (58) and Definition 7.1, we get
(_1)9/22g+3(2g+2 _ 1)

i (9+3)-(9)!
@, (I15) = n° (M) + )

Bg+1/ prd° <log\Ag(T)|2(detIm7’) 2
0A

(g +3)!
_1)9/299+2(99+2 _ ,
_ BT D) p L Sien(X)
5 (g+2)! 2t
( ) (_1)9/229+3(2g+2 - 1) * 7 71C 2
+ (g+3)' B%—i—l /Ap dd 10g|Ag(7-)|
(~1 %+1g+1 29+2(99+2 _ | _ .
= z( ) ( (g_')_3)! ( )B%-i-l + Sign(X"),

where we used the Poincaré-Lelong formula and Theorem 5.2 to get the last equality.

When g = 2 and ¢ = 1, since the singular fiber has two irreducible components and hence
Sign(X1!) = —1, the assertion follows. We complete the computation in the case g > 3 and
i = 1,2 by Lemma 9.4 below.

O

Lemma 9.4. Let m : X — A be a proper surjective holomorphic map from a complexr manifold
X of dimension 2n to the unit disk A. Assume that ™ has only finitely many critical points which
are non-degenerate and lie in the central fiber Xo. If n > 1, then Sign(X) = 0.

Proof. By the assumption, there are points p1,--- ,p; € X0 and open neighborhoods U* of py, in
X such that

W(Z{gv T ’Zégn) = (Z]f)Q +et (Zgn)2’ (Z{g’ T ’Zégn) S Uk’
and such that the induced map 7, : TX — T'A has maximal rank on X\{p1,--- ,p}. Let £ € Ry
be a small number. We may assume that each V¥ := {(2F,--- 25 ) e C | |2F2+-- -+ |25 |2 <

€2} is contained in U*. Fix a p € Ry with p < €2. Set
D:=4A, X:=7YD), X°:=X\U,_,VF F:=717%0), F° :=FnX°

Since X is diffeomorphic to X, it suffices to show Sign(X) = 0. Consider the following commu-
tative diagram of the homologies induced from natural inclusions:

H2n(X07Z) L’ H2n(X\{pla"' )pl}aZ) % H2n(X7Z)

(60) (e)Tg gT(b)
HQn(FO,Z) % HQn(F\{ph 7pl}7Z) (—i> H2TL(F72)
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Here the isomorphisms (a) and (c) follow from the fact that the submanifold {p1,--- ,p;} of X
(resp. F') has real codimension 4n (resp. 4n—2), (b) and (d) follow from the fact that ' (resp. F'°°)
is a deformation retraction of X (resp. F'\ {p1,--- ,p}). By Ehresmann’s fibration theorem for
manifolds with boundary [L, p. 23|, there is an isomorphism of C*°-fiber bundles X° = F*° x A.
Since A is contractible, we obtain the isomorphism (e).

By (60), the map (f) is an isomorphism. Hence we get the commutative diagram

Hon(X; N X°,7) ——— Hop(X°,7)

(61) l lg
Hon(X,,Z)  —— Han(X,Z)

for any t € A. By (61), the map Ho,(X¢,Z) — Ho,(X,Z) is surjective for any ¢t € A. Therefore
every ¢ € Hy,(X,Z) can be represented by a 2n-cycle contained in the fiber X; for any ¢ €
A. Since the intersection number of any two 2n-cycles contained in different fibers is zero,
the intersection matrix of the lattice Ha,(X,Z) is the zero matrix, from which the assertion

follows. O
Remark 9.5. When g = 2, 096 M5 is the Dehn twist along a separating simple closed curve
on a Riemann surface of genus two. Since Sign(Xs) = —1 and By = 55, we obtain ¢s(02) =
Dy (09) = —%, which confirms [Ma, Proposition 3.6].

10. AN INTERPRETATION OF ®5 IN TERMS OF 7-FORMS

In this final section, following Dai’s results [Da], we study the Meyer function ®9 of genus two
from the view point of the Bismut-Cheeger n-forms and we give another analytic representation
of <I>2.

We first recall one of the main results in [Da] briefly. Let 7 : X — B be a fiber bundle with
typical compact fiber M such that dimgrX = 4k — 1 and dimgrM = 2m. Assume that X, B and
M are oriented and the orientations are compatible. Give a metric ¢ on TB, a metric ¢*/8
on T(X/B) and a connection Px on X. Define the one parameter family of metrics on X by

gg( =g B @elntgh, e € Ryg.
Then one obtains the adiabatic limit n°(X) as in Section 3.
Let (E,,d;), r > 2 be the E,-term of the Leray spectral sequence of the fiber bundle 7 : X —
B. The orientations of B and M give a natural basis & of Eék_l, which induces a basis &, of

E4=1 for r > 2. (See [CHS, Sect.4.3] for details.) Consider the symmetric bilinear product
E?=1 x E?~1 R defined by

(W1, w2) = (w1 - dywa, &), wi,wy € E2FL

and denote its signature by 7. Set 7:= )" ., 7y.

Let Rm,C := ®R*r,C be the direct image sheaf, which is a locally constant sheaf. We identify
R7,C with the corresponding flat vector bundle on B. Since the fiber of (R7.C); is isomorphic
to the space of harmonic forms on the fiber X := 7~1(b), the vector bundle Rm,C carries the
L%metric g™ and also carries the Hodge star operator *xy; € C*™ (B, End(Rm,C)). Let x5 be
the Hodge star operator on the base space B. Define the involution 7 acting on A*(B, Rm,C)
by 7 := (—1)k+pe-1/2+adla=1)/2 4 @) on AP(B, Ri7,C). Let df™C be the exterior differential
acting on A*(B, Rm,C). Set

DB 0%y RW*C = TdRT"*C + dRT('*(CT’
which is a differential operator acting on A*(B, Rm.C).
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Let 7(X) € A°¥(B) be the n-form of the family 7 : X — B associated with the metric g/
and the connection Py, introduced in [BC1].

Theorem 10.1 ([Da, Theorem 0.3]). The following equality holds:
n(X) = 2/ L(TB,¢") Ay +n(Dp ® Rm,C) + 2,
B

where n(Dp ® Rm,.C) denotes the n-invariant of the differential operator Dp ® Rm,C (See [Da,
Section 4] for the precise definition).

We keep the notation in Section 7.
Theorem 10.2. For o € My, let (a,7) be a representative of o. Let p : Moy — St be the
mapping torus associated with . Then

4 % e
¢2(0) = n(Dg1 @ Rp,C) — R /Sl a*d’log HX2(7')||2.

Proof. By Theorem 10.1, we have

(62) (M(a,)) = 2/ L(S',dt*) A(M(4)) + n(Ds1 ® Rp,C) + 27
Sl

Since dimgS! = 1, all the differential d, in the Leray spectral sequence (E,,d,) is the zero map

and hence 7 = 0. Since L(S!,dt?) = 1, we get by Corollary 7.3 and (62),

~ 2 * JC
63 oale) =2 [ M) +0(Ds @ BpC) = = [ o log el

Let f : C := ©° — G5 be the universal family of curves of genus two. Recall that the Kahler
metric g¢ := ¢®° and the connection Py := Pg were defined in Section 5. Denote by 7;(C)
the 1-form component of the n-form of the family f : C — &5 associated with ¢¢ and Pe.
By the functorial property of the Bismut superconnection [BGV, Proposition 10.15] and the
definition [BC1, Definition 4.33], the n-form has the functorial property (M, )) = a*7:1(C),
which together with (62) and Theorem 10.3 below, yields the result. O

Theorem 10.3. The following equality holds:

) 1
m(C) = 3

Proof. We recall the relation of the signature operator and the Dolbeult operator on Riemann
surfaces. Let C be a compact Riemann surface. Let ¢ be the involution acting on A*(C') defined
by

d“log [|x2 (7).

Ww) = (V=1)PP= D e AP(C).
Denote by A*(C) the +1 eigenspaces of the involution ¢. Let D be the signature operator
d+d* : AX(C) — ATF(C). Then the following diagram is commutative and the vertical arrows
preserve the L2-metrics.

D

AF(C) 2, A=(C)
(64) f+T Tf—
AN(C)p AV(C) —— AYL(C) e AVH(O)
V20

Here, for w € A%(C),

S0, w10y =
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The diagram (64), together with [B, p.153], yields that
(65) 11(C2) = —dlog (det'T% det' OF1)

where det/[0% is the regularized determinant of the d-Laplacian 2(89* +9*d) acting on A™I(C;).
By [Y2, Theorem 5.1], we have det/ 0! = det/T0%" = ||[x(7)||3, from which and (65) the assertion
follows. O

APPENDIX A. THE MEYER FUNCTION FOR TORI

In this appendix, we investigate the signature cocycle for torus fibrations associated with
SL(4g — 2,Z)-vector bundles and relate it to n-invariants. We closely follow [A2]. We refer to
[BC2] for further studies of n-invariants of torus fibrations.

Recall that B is a sphere with three holes and let g; and g, be the generators of 71 (B) as in
Section 6. For 01,09 € SL(4g — 2,Z), we define the homomorphism p : m(B) — SL(4g — 2,7Z)
by

(66) p(gk) =0k, k= 1,2.
Letp: E, := B pr4g_2 — B be the flat real vector bundle of rank 2g — 2 associated with p and
let A, :=Bx, 74972 ¢ E, be the corresponding family of lattices. Then the fiberwise quotient

E,/A, is a torus fibration over B, which is a compact oriented 4g-dimensional manifold with
boundary. We call E,/A, the torus fibration associated with E,. We define

tg: SL(4g —2,Z) x SL(4g — 2,Z) — Z, (01,02) — Sign(E,/A,).
By the same argument as in [A2, p.343], t, is a 2-cocycle of SL(4g—2,7Z). In particular, t; = 7.
Since HY(SL(n,Z),Z) = 0 for n > 1 and H*(SL(n,Z),Z) = 0 for n > 3 by [Mi, Section 10],
there exists a unique function v, : SL(4g — 2,Z) — Z for g > 2 which cobounds —tg, i.e.,
(67) tg(o1,02) = —g(o1) — Vg(02) + Yg(o102), o1,09 € SL(4g — 2,7).
We call v, the Meyer function for tori. The Novikov additivity for signatures yields

Proposition A.1. Let S be a compact oriented 2-dimensional manifold with boundary 0S =
cpI---1e,. Let E be a flat SL(4g — 2,7Z) real vector bundle over S with monodromies o), €
SL(49—2,Z) onci, 1 <k <mn. Let m: M — S be the torus fibration associated with E. Assume
that g > 2. Then

Sign(M) = =Y tg(0).
k=1

Proof. By the same argument as in [A2, p.357|, we obtain the assertion. O

For o € SL(4g—2,7), let p: E — S* be the flat real vector bundle over S! with monodromy
o. Let p: M, — S' be the corresponding torus fibration. Fix a metric g© and a connection
VE on E. Then g% induces the metric g™=/5" on the relative tangent bundle T'(M,/S') and
V¥ induces the connection TM, = Ty M, ® T(M,/S') of the torus fibration M, (see [BGV,
Section 1.1]). Define the one parameter family of metrics on M, by

gé‘/[" = gM"/S1 @ e tntdt?, e € Rsy.
Recall that n°(M,) := lim. o n(M,, gM7) as in Section 3.

Proposition A.2. For any o € SL(4g — 2,7), ¥4(0) = n°(M,).
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Proof. By [BC2, Theorem 3.8], n°(M,) does not depend on ¢g¥ and V. Hence the map 7° :
SL(4g — 2,7) — 7 defined by o — 1°(M,) is well-defined. By the uniqueness of the function
that cobounds —tg, it is enough to show that the function 7° satisfies (67).

For 01,09 € SL(4g — 2,Z), let p : m(B) — SL(4g — 2,Z) be the homomorphism defined by
(66). Let E, be the flat vector bundle associated with p and denote the torus fibration associated
with E, by p: X, — B. Notice that 0X, = M,, I M, I —My,,,. Let VF¢ be a connection on
E,. Then we have the splitting (cf. [BC2, p.353])

(68) TX,~p"E,®p*TB.

Let gP» and ¢® be metrics on the vector bundles E, and TB, which are product metrics on
a color neighborhood of the boundary. Using the splitting (68), we define the one parameter
family of metrics on T'X, by

X _
g=" =prgtr @elptgP, e e Ry,

Since ggX ? is a product metric on a color neighborhood of the boundary, we get by the Atiyah-
Patodi-Singer index theorem
(69 Sign(X,) = [ L(TX00) = 10X, 5 lox, ).
o
By Proposition 2.8 and (68), we get
(70) lim L(T X, 627) 49 = (5" L(E,, g )p" L(TB, ¢%)) " =0,
because dimgrB = 2 and rankF, = 4g — 2. Moreover,
(71) lim (09X, 2 lox,) = =1 (Mo,) = 1°(Ma,) + 1’ (Mo, ).
Since Sign(X,) = t4(01,02), the assertion follows from (69), (70) and (71). O

Remark A.3. By Proposition A.2, we have n°(M,) € Z, which confirms [BC2, Proposition
5.4]. By [0S, Theorem 5.7], n°(M,) # 0 for some torsion element o € SL(4g — 2,7Z). Hence ¢
is a non-trivial function on SL(4g — 2,Z).

APPENDIX B. AN INTEGRATION OF THE BOTT-CHERN SECONDARY FORM
In this appendix, we prove the last equality in Eq.(28). We keep the notation in Section 5.

Proposition B.1. Let F(z)€C|[z]] be a formal power series with F(0) # 0. For a complex

vector bundle E, let F(E) be the multiplicative genus associated with F(z). Let F(E;9p1,,9E,G)
be the corresponding Bott-Chern secondary form. Then

/ FV(E; 9E1,, 9E.G) = k(F, g)logdetG.
P(WV)

Here k(F,g) is the constant defined by

(72) k(F,g) = (%-F_l(fﬂ) - éF'(fﬂ)-F_2(w))

z9—1

Proof. We follow [Y2, Proposition 5.1]. Put H = log G and g; := gexprr)- Then {g:}o<i<1
is a one-parameter family of metrics connecting g1, and gg. Its restriction to E is denoted by

ge,t- Let WY = E &, Etl be the orthogonal decomposition of WV relative to g;. Let gn,: be the
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metric on N via the C*-identification N = Ej-. With respect to this splitting, H € End(W")
can be written as follows:

Hyi(t) Hys(t)
(73) H= ( Hi(t) H;;(t) > Hyi(t) € End(E).

Let Rp: be the curvature of (E,gg.), and put c¢i(E;) := %TrREﬂt. Let Ry: be the
curvature of (N,gn:+) and put ¢ (Ny) := \F Ry Since Ny = Opyvy(1), the 2-form c1 (V)
represents ¢; (Opyvy(1)) . By [Y2, Eq. (5.12)], we have

~ (g_lvg_l)
[F(E; 9E.0, QE,l)]
(74) N - |
i [ Fp o0V [ )RR )09V
0 0

g1 g-
where F(Rp;) = 4] _gdet Fely_y + %RE,t). By [Y1, Eq.(2.8)], we get det F(%REQ .
F(e1(Ny)) =1 and
A/ —1 —1 ' /
| (F (G Re0) ) O )| + F @) P (V) = TF (0)F0,)

= F'(0)F'(0)g,
where 0, is the g X g zero matrix. These, together with the definition of k(F, g), yields that

F(Rgy)o=to7l) = [detF<\/_1REt> < <\/_1REt> <\/_1REt>>]<g—1vg—1>

(75) = [F Y a(N){g- F'(0)F1(0) — F' (e (N))F Y (en (V) }] 1Y
= gk(F,g)ci (V).
Comparing (74) and (75), we get

_ 1
(76) / F(E;980,981) = —I_k(F.g) (TI‘H —/ dt/ sz(t)cl(Nt)g_1> ;
P(WV) g—1 0 P(WV)
where we used the identity fP(WV) c1(Ny)971 = 1. By [Y2, p.91 1.12-p.92 1.5], we have

1
1
TrH —/ dt/ Ho(t)ey (Ny)971 = g—TrH,
0 P(WV) g
which together with (76), yields that
/ F(E:gg0,98.1). = k(F,g)Tr H.
P(VV)

This, combined with Tr H = logdet G, yields the assertion. O
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