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ADIABATIC LIMITS OF η-INVARIANTS AND THE MEYER FUNCTIONS

SHUICHI IIDA

Abstract. We construct a function on the orbifold fundamental group of the moduli space
of smooth theta divisors, which we call the Meyer function for smooth theta divisors. In the
construction, we use the adiabatic limits of the η-invariants of the mapping torus of theta divi-
sors. We shall prove that the Meyer function for smooth theta divisors cobounds the signature
cocycle, and we determine the values of the Meyer function for the Dehn twists. In particular,
we give an analytic construction of the Meyer function of genus two.
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1. Introduction

Let Mg be the mapping class group of a closed orientable surface Σg of genus g. In [Me], Meyer
introduced a 2-cocycle τg : Mg×Mg→Z, called the signature cocycle or the Meyer cocycle. By
using the Meyer cocycle τg, he gave the formula for the signatures of surface bundles over
surfaces. Since M1 = SL2(Z), H1(SL2(Z),Z) = 0 and 3[τ1] = 0 in H2(M1,Z), there exists
a unique function φ1 : SL2(Z) → 1

3Z that cobounds τ1. The function φ1 is called the Meyer
function of genus one, which has the following property: Let π : Z → X be a Σ1-bundle over a
compact oriented surface with boundary ∂X = c1q· · ·qck. Let A1, · · · , Ak be the monodromies
around each component of the boundary. Since the Picard-Lefschetz transformation along ci is
an automorphism of H1(Σ1,Z) preserving the intersection form, one has Ai ∈ SL2(Z) by fixing
a symplectic basis of H1(Σ1,Z). Then the signature of Z, which is defined as the signature of
the cup-product pairing on H2(Z, ∂Z,R), satisfies

Sign(Z) = −
k∑

i

φ1(Ai).(1)

The explicit formula for φ1 was obtained by Meyer [Me].
1
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In [A2], Atiyah investigated the Meyer function φ1 from several view points. For an odd
dimensional closed oriented Riemannian manifold M , let η(M) be the η-invariant of M with
respect to the signature operator of M [APS]. For σ ∈ SL2(Z), let π : Mσ → S1 be the mapping
torus associated with σ, i.e., the Σ1-bundle over S1 with monodromy σ. Then Atiyah showed
the following identity, when Mσ is equipped with a certain metric :

φ1(σ) = η(Mσ).(2)

Moreover, he gave several interpretations of φ1 in terms of the following quantities : (i) Hirze-
bruch’s signature defect; (ii) the transformation low of the logarithm of the Dedekind η-function;
(iii) the logarithm of the monodromy of the determinant line bundle; (iv) the value of the Shimizu
L-function at the origin.

After Meyer and Atiyah, generalizations of their results to the cases of curves of higher genus
or the case of higher dimensional complex tori were studied by many authors.

When g = 2 there exists a unique function φ2 : M2 → 1
5Z satisfying (1) for every Σ2-

bundles over compact oriented surfaces. The function φ2 is called the Meyer function of genus
two. While [τg] ∈ H2(Mg,Z) is not a torsion element for g > 2, the restriction of [τg] to
the hyperelliptic mapping class group is known to be a torsion element. Therefore the Meyer
function for hyperelliptic curves can be defined [Mo], [E]. The relations between η-invariants
and the Meyer function for hyperelliptic curves were studied in [Mo].

A natural extension of Eq. (2) to mapping torus of higher dimensional torus follows from the
same idea as in Atiyah [A2], which we give in Appendix A. The coincidence of the η-invariants
of torus fibrations and the special values of the corresponding L-functions was established by
Bismut and Cheeger [BC2]. In their results, automorphic forms seem to play no role.

The purpose of this paper is to give a generalization of Eq. (2) in which an automorphic form
of higher dimension plays a role similar to the role of Dedekind η-function in Atiyah’s study.
For this reason, we shall consider the signature cocycle of smooth theta divisors as a higher
dimensional analogue of curves of genus two and we shall prove that the cohomology class of
this cocycle vanishes rationally by constructing the Meyer function for smooth theta divisors
explicitly. Let us explain our results in details.

Let Sg be the Siegel upper half-space of degree g and let Γg be the Siegel modular group of
degree g. Let f : Ag → Sg be the universal family of principally polarized Abelian varieties.
Then Γg acts on Ag and Sg, so that f is Γg-equivariant. Consider the universal family of theta
divisors :

p : Θ → Sg, Θ ⊂ Ag, p = f |Θ.
Here the fiber Θτ = p−1(τ) is the theta divisor of Aτ := f−1(τ) for any τ ∈ Sg, i.e., the zero
divisor of the Riemann theta function. Let Ng := {τ ∈ Sg | SingΘτ 6= ∅} be the Andreotti-

Mayer locus. Then there is a Siegel modular form ∆g(τ) of weight (g+3)·g!
2 with zero divisor Ng

by [Mu], [Y2]. We put S
◦
g = Sg −Ng, Θ◦ = Θ

∣∣�
◦
g
. After a slight modification of the Γg-action

on Ag, we construct a Γg-action on Θ◦ and a specific Γg-invariant Kähler metric gΘ◦

on Θ◦ such

that p : Θ◦ → S
◦
g is Γg-equivariant. (See Sections 4 and 5 for the construction of gΘ◦

.) The
quotient space Γg \ S

◦
g is regarded as the coarse moduli space of smooth theta divisors. Let us

consider the orbifold fundamental group of Γg \ S
◦
g, which will be one of the main objects in

this paper :

Sg := πorb
1 (Γg \ S

◦
g).

Since S1 = M1 = SL2(Z) and S2 = M2, Sg is an analogue of the mapping class group.
Following Atiyah [A2], we define a 2-cocycle cg ∈ Z2(Sg,Z) as follows. Let B := S2 \ q3

i=1Di

be a sphere with three holes and let q3
i=1γi = ∂B ⊂ B be the boundary. For given σ1, σ2 ∈ Sg,

let α : B → Γg \Sg be a C∞-map in the sense of orbifolds such that its restrictions to γ1 and γ2

are representatives of σ1 and σ2, respectively. Let X(σ1,σ2) := B ×α Θ◦ be the family of smooth
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theta divisors on B induced from p : Θ◦ → S
◦
g via α. Then X(σ1,σ2) is a compact 2g-dimensional

oriented manifolds with non-empty boundary. Define the map cg : Sg × Sg → Z by

cg(σ1, σ2) := Sign(X(σ1,σ2)).

By the Novikov additivity for signature, cg is a 2-cocycle of Sg. We call cg the signature cocycle
of smooth theta divisors. By construction, c2 = τ2. When g is odd, cg is trivial, i.e., cg ≡ 0.

For σ ∈ Sg, we choose a map α : S1 → Γg\S◦
g in the sense of orbifolds, which is a representative

of σ. Let π : Mσ → S1 be the mapping torus of a smooth theta divisor induced by α. Let gMσ/S1

be the metric on the relative tangent bundle TMσ/S
1 induced from the metric gΘ◦

. Using the
connection induced from the Levi-Civita connection on TAg, we define a family of metrics on
Mσ by

gMσ
ε = gMσ/S1⊕ε−1π∗dt2, ε ∈ R>0.

By Bismut-Cheeger [BC1], the limit η0(Mσ) := lim
ε→0

η(Mσ, g
Mσ
ε ) exists and is called the adiabatic

limit of the η-invariants η(Mσ , g
Mσ
ε ). Set

Φg(σ) := η0(Mσ) +
(−1)g/22g+3(2g+2 − 1)

(g + 3)!
B g

2
+1

∫

S1

α∗dclog‖∆g(τ)‖2,(3)

where dc = 1
4π

√
−1

(∂ − ∂̄) and ‖∆2g(τ)‖2 := (detImτ)
(g+3)·(g)!

2 |∆g(τ)|2 denotes the Petersson

norm of the Siegel modular form ∆g(τ). Here Bk is the k-th Bernoulli number when k ∈ Z and
Bk = 0 when k ∈ 1

2 + Z. The main results of this paper are stated as follows.

Theorem 1.1. The value Φg(σ) is independent of the choice of α, and Φg descends to a real-
valued function on Sg cobounding the signature cocycle −cg, i.e.,

−cg(σ1, σ2) = Φg(σ1) + Φg(σ2) − Φg(σ1σ2), σ1, σ2 ∈ Sg.

In particular, [cg] ⊗ Q = 0 ∈ H2(Sg,Q).

We call Φg the Meyer function for smooth theta divisors. When g is odd, Φg vanishes iden-
tically. When g is even, Φg is non-trivial by Theorem 1.3 below. From the uniqueness of the
Meyer function of genus 2, it follows that φ2 = Φ2.

We next consider the uniqueness of a function on Sg cobounding cg, which is equivalent to
the vanishing of H1(Sg,Z). In general, the uniqueness no longer holds.

Theorem 1.2. The following equality holds :

H1(Sg,Z) =

{
0 if 0≤g≤3,

Z if g≥4.

We conjecture that Φg is a rational-valued function, while the equality [cg]⊗�Q = 0 does not
necessarily imply by Theorem 1.2 the rationality of Φg when g ≥ 4.

To prove the non-triviality of Φg, we compute the value of Φg for the Dehn twists. The
subgroup π1(S

◦
g) of Sg is regarded as an analogue of the Torelli group by the exact sequence

1 → π1(S
◦
g) → Sg → Γg → 1.

Then π1(S
◦
g) is generated by lassoes surrounding the irreducible components of Ng. By Debarre

[D], Ng consists of two Γg-invariant components θg and Jg such that Γg \ θg and Γg \ Jg are
irreducible divisors on the Siegel modular variety Γg \ Sg. Let

∑
λ θg,λ and

∑
µ Jg,µ be the

irreducible decompositions of θg and Jg, respectively. Consider lassoes surrounding θg,λ and
Jg,µ, and denote their homotopy classes by Π1

λ and Π2
µ, respectively. Then Π1

λ and Π2
µ are

elements of π1(S
◦
g) ⊂ Sg such that {Π1

λ,Π
2
µ}λ,µ generates π1(S

◦
g).
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Theorem 1.3. The following equalities hold :

Φg(Π
1
λ) =

{
−4

5 if g = 2,

(−1)
g
2
+1 (g+1)2g+2(2g+2−1)

(g+3)! B g
2
+1 if g ≥ 3.

Φg(Π
2
µ) = (−1)

g
2
+1 (g + 1)2g+3(2g+2 − 1)

(g + 3)!
B g

2
+1 if g ≥ 4.

When g = 2, the monodromy Π1
λ is the Dehn twist along a separating simple closed curve on a

Riemann surface of genus two. In this case, the formula Φ2(Π
1
λ) = φ2(Π

1
λ) = −4

5 confirms a result
of Matsumoto [Ma, Proposition 3.6]. We conjecture that the function Φg is a homomorphism
on π1(S

◦
g). If this conjecture is affirmative, then the value of Φg on π1(S

◦
g) will be determined

by Theorem 1.3. When g = 2, this conjecture is affirmative since the cocycle τ2 = c2 is the
pull-back of a cocycle of Γ2.

We explain the strategy of the proof of Theorem 1.1 briefly.
(Step 1) For σ1, σ2 ∈ Sg, consider the the family π : X(σ1,σ2) → B as defined above. For

simplicity, set X = X(σ1,σ2). Endow X with the metric gX/B on the relative tangent bundle

TX/B induced by gΘ◦

via the classifying map α : B → Γg \S
◦
g. Let gB be a metric on TB that is

a product metric on a color neighborhood of the boundary. By using the connection induced from
the Levi-Civita connection on TAg, define a family of metrics by gX

ε := gX/B ⊕ ε−1π∗gB, ε ∈
R>0. The Atiyah-Patodi-Singer index theorem applied to (X, gX

ε ) yields that

Sign(X) =

∫

B
π∗L(TX, gX

ε ) −
3∑

i=1

η(Mσi , g
X
ε |Mσi

), σ3 = (σ1σ2)
−1.(4)

(Step 2) Let ∇X/B be the connection on the relative tangent bundle TX/B induced from

the metric gX/B and the connection on the fiber bundle π : X → B (See Section 2). Since

limε→0 L(TX, gX
ε ) = L(TX/B,∇X/B) and since the signature is independent of the choice of a

metric, we take the limit ε→ 0 in (4) to get

cg(σ1, σ2) =

∫

B
π∗L(TX/B,∇X/B) −

3∑

i=1

η0(Mσi).(5)

(Step 3) Let ∇H be the holomorphic Hermitian connection on the holomorphic relative
tangent bundle T 1,0Θ◦/S◦

g. In Section 5, we shall prove that

(
p∗L(T 1,0Θ◦/S◦

g,∇H)
)(2)

= k(g)ddc log ‖∆g(τ)‖2,(6)

where L denotes the multiplicative genus of Chern forms corresponding to the power series
x/tanh(x), ω(p) denotes the p-form component of a differential form ω and k(g) is a certain
rational number containing the Bernoulli number B g

2
+1 (cf. Theorem 5.6). By the functoriality

of the connection ∇X/B (Lemma 2.7) and by the Kählerness of the metric gΘ◦

(Theorem 4.6),
we shall prove that (cf. Sections 5 and 7)

(
π∗L(TX/B,∇X/B)

)(2)
= α∗ (p∗L(T 1,0Θ◦/S◦

g,∇H)
)(2)

= d
(
k(g)α∗dc log ‖∆g(τ)‖2

)
.(7)

The assertion follows from (5), (6), (7) and the Stokes Theorem.

The remainder of this paper is organized as follows : In Section 2, we recall some results on the
connection of the relative tangent bundle. In Section 3, we recall the definition of η-invariants.
In Section 4, we recall some basic properties of theta divisors. In Section 5, we compute the
Hirzebruch’s L-form of the relative tangent bundle for the family of smooth theta divisors. In
Section 6, we construct the signature cocycle cg. In Section 7, we construct the Meyer function
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Φg and prove that Φg cobounds −cg. In Section 8, we consider the uniqueness of a 1-cochain
that cobounds cg. In Section 9, we compute the value of Φg for the Dehn twists. In Section 10,
we give another analytic expression of Φ2 by using Dai’s result concerning the η-forms [Da].

Throughout this paper, we fix the following notation. For a complex manifold M , T 1,0M
(resp.T 0,1M) denotes the holomorphic (resp. anti-holomorphic) tangent bundle and TM denotes

the real tangent bundle. We set dc := 1
4π

√
−1

(∂ − ∂̄). Hence ddc =
√
−1
2π ∂∂̄.
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2. Preliminaries from Riemannian geometry

In this section, we recall some results of Riemannian geometry which will be used in the
proof of the main theorem. Following [BGV], we define connections of fiber bundles and the
connection of relative tangent bundles. Let M be a manifold and let π : Z → B be a fiber
bundle with typical fiber M .

The relative tangent bundle T (Z/B) is the subbundle of TZ defined by

T (Z/B) := Ker{π∗ : TZ→π∗TB}.
A vector of T (Z/B) is said to be vertical.

Definition 2.1. A subbundle THZ⊂TZ with TZ = T (Z/B) ⊕ THZ is called a connection of
the fiber bundle π : Z → B.

For a connection, one has THZ∼=π∗TB via the projection π∗ : TZ→π∗TB. A vector of THZ
is said to be horizontal.

When Z is trivial, i.e., Z = M×B, TZ is naturally isomorphic to the direct sum (pr1)
∗TM ⊕

(pr2)
∗TB. This connection is called the trivial connection of the trivial fiber bundle.

Given a connection, one can define the projection PZ : TZ→T (Z/B) with kernel THZ. We
often identify PZ with the corresponding connection THZ := Ker(PZ). In the rest of Section 2,
we fix a connection THZ, or equivalently PZ .

One can define the pull-back of a connection as follows: Let B′ be a manifold and let h : B′→B
be a C∞-map. The fiber product Z ′ := Z×BB

′ = {(x, b)∈Z×B′ | π(x) = h(b)} satisfies the
following commutative diagram :

Z ′ h̃−−−→ Z

π′

y
yπ

B′ −−−→
h

B

h̃ = pr1, π
′

= pr2.

Lemma 2.2. The map PZ◦h̃∗ : TZ ′→h∗T (Z/B) is surjective.

Proof. Since h̃∗
∣∣
T(x,b′)(Z

′/B′)
: T(x,b′)(Z

′/B′)→Tx(Z/B) is an isomorphism for all (x, b′)∈Z ′ and

since PZ

∣∣
T (Z/B)

= idT (Z/B), PZ◦h̃∗ is surjective.

Since PZ◦h̃∗ is surjective,

dimKer(PZ◦h̃∗)(x,b′) = dimZ ′ − rankT (Z/B) = dimZ ′ − rankT (Z ′/B′) = dimTbB
′.
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Hence Ker(PZ◦h̃∗) is a subbundle of TZ ′. Since T (Z ′/B′) is canonically isomorphic to h∗T (Z/B),

the map PZ ◦ h̃∗ is identified with a projection from TZ ′ to T (Z ′/B′).

Definition 2.3. The connection of π′ : Z ′→B′ induced from THZ by h is defined by

THZ
′ := Ker

(
PZ◦h̃∗ : TZ ′→T (Z/B)

)

under the identification between T (Z ′/B′) and h∗T (Z/B) given by (h̃∗)|T (Z′/B′). The projection

corresponding to THZ
′ is denoted by h∗PZ .

Lemma 2.4. (a) For any C∞-map h′ : B′′→B′,

(h◦h′)∗PZ = h′∗(h∗PZ).

(b) The following diagram is commutative:

TZ ′ h̃∗−−−→ TZ

PZ′

y
yPZ

T (Z ′/B′) −−−−−−−−→
(h̃∗)|T (Z′/B′)

T (Z/B).

(c) If h is a constant map, say h(b′) = b for all b′ ∈ B′, then h∗PZ is the trivial connection on
the trivial fiber bundle Z ′ = Zb ×B′, where Zb := π−1(b).

Proof. (a) Set Z ′′ := Z ′ ×B′ B′′. Let h̃′ : Z ′′ → Z ′ be the lift of the map h′. Under the
isomorphism (h ◦ h′)∗T (Z/B) ∼= h′∗T (Z ′/B′) ∼= T (Z ′′/B′′), we have

(h ◦ h′)∗PZ = PZ ◦ (h̃ ◦ h̃′

)∗ = (PZ ◦ h̃∗) ◦ h̃
′

∗ = h′∗(h∗PZ).

(b) The assertion follows from Definition 2.3.

(c) Since THZ
′ = Ker

(
PZ ◦ h̃∗ : TZ ′ → T (Z/B)|Zb

)
= Ker ((pr1)∗ : TZ ′ → TZb), h

∗PZ is the

trivial connection.

Definition 2.5. Let Z be a manifold and let Diff(Z) be the group of C∞-diffeomorphism of Z.
For ϕ ∈ Diff(Z), the mapping torus π : Mϕ → S1 = R/Z is defined by

π : Mϕ := (Z×R)/Z, π := pr2,

where Z acts on Z×R by

m·(x, t) := (ϕm(x), t+m), m∈Z, (x, t)∈Z×R.

If Z is oriented, let Diff+(Z) be the group of orientation-preserving diffeomorphism of Z. For
ϕ ∈ Diff+(Z), Mϕ is endowed with the orientation induced from the one on M×R. Notice that
Mϕ = −Mϕ−1 , which is the same manifold equipped with the opposite orientation. Since the
trivial connection TH(M×R) = pr∗2TR is preserved by the Z-action, it descends to a connection
of Mϕ. This connection is called the canonical connection of the mapping torus π : Mϕ→S1.

We fix a metric gZ/B on the relative tangent bundle, a Riemannian metric gB on B, and the
connection THZ and the corresponding projection PZ . We define the Riemannian metric gZ on
the total space Z by

gZ := gZ/B⊕π∗gB

under the isomorphism TZ∼=T (Z/B)⊕THZ∼=T (Z/B)⊕π∗TB. Let ∇Z be the Levi-Civita con-

nection of (Z, gZ). We define the connection ∇Z/B on T (Z/B) by

∇Z/B := PZ◦∇Z .

Then ∇Z/B preserves the metric gZ/B .
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Lemma 2.6. The connection ∇Z/B is independent of the choice of gB

Proof. See [BGV, Proposition 10.2]

Lemma 2.7. Let B′ be a manifold and let h : B′→B be a C∞-map. Set Z ′ := Z×BB
′. Let

gZ′/B′

= h∗gZ/B be the metric on T (Z ′/B′) induced from gZ/B, and let PZ′ = h∗PZ be the

connection of Z ′ induced from PZ . Then ∇Z′/B′

= h∗∇Z/B .

Proof. Let X ′∈TZ ′. Let {e1, · · ·, ek} be a local framing of T (Z/B) and let {e′1, · · ·, e′k} be the
local framing of T (Z ′/B′) induced from {e1, · · ·, ek}, i.e., e′i = h∗ei.

(Step 1) Assume that h : B′→B is an embedding. We put gB′

:= h∗gB and gZ′

:=

gZ′/B′⊕(π′)∗gB′

with respect to the decomposition TZ ′ = T (Z ′/B′)⊕ THZ
′. Then h̃ : Z ′→Z is

an embedding and h̃∗gZ = gZ′

. Let PZ′

Z denote the orthogonal projection PZ′

Z : TZ|Z′→TZ ′.
Since the decomposition

TZ|Z′ = TZ ′⊕(TZ ′)⊥ = T (Z ′/B′)⊕THZ
′⊕(TZ ′)⊥

is orthogonal with respect to the metric gZ , we get PZ = PZ′◦PZ′

Z . Denote by S the second
fundamental form for the short exact sequence of vector bundles

0 → TZ ′ → TZ|Z′ → (TZ ′)⊥ → 0

with respect to the connection induced from the Levi-Civita connection of (Z, gZ ). For X =
h∗X ′, we get

∇Z′/B′

X′ e′i = PZ′∇Z′

X′e′i

= PZ′((∇Z
Xei)|Z′ − S(X ′)e′i)

= PZ′◦PZ′

Z (∇Z
Xei)|Z′

= PZ(∇Z
Xei)|Z′ = h∗(∇Z/B

X ei).

This proves the assertion when h : B′ → B is an embedding.
(Step 2) Let B′′ be a manifold. Assume that B′ = B×B′′ and h : B×B′′→B is the projection

to the first factor. Let p1 : Z×B′′→Z and p2 : Z×B′′→B′′ be the natural projections. Since
p1 = h̃ : Z ′→Z and TZ ′ = p∗1TZ⊕p∗2TB′′, we get

Z ′ = Z×B′′, THZ
′ = p∗1THZ⊕p∗2TB′′.

Let gB′′

be a Riemannian metric on B′′ and put gZ′

:= p∗1g
Z⊕p∗2gB′′

. Let ∇Z′

and ∇B′′

denote

the Levi-Civita connections of (Z ′, gZ′

) and (B′′, gB′′

), respectively. Then

∇Z′

= p∗1∇Z⊕p∗2∇B′′

.

Let w′ = (w, b′′)∈Z ′, w∈Z, b′′∈B′′, and let X ′∈Tw′Z ′. Since e
′

i = p∗1ei,

∇Z′/B′

X′ e′i = PZ′∇Z′

X′e′i

= PZ′(p∗1∇Z⊕p∗2∇B′′

)X′e′i

= PZ′(p∗1∇Z)X′e′i + PZ′(p∗2∇B′′

)X′p∗1ei

= PZ′p∗1(∇Z
(p1)∗X′ei)

= p∗1PZ(∇Z
(p1)∗X′ei) = h̃∗(∇Z/B

h̃∗X′
ei),

where the forth equality follows from the fact that (p∗2∇B′′

)X′p∗1ei = 0, the fifth equality follows

from Lemma 2.4 (a) and the last equality follows from h̃ = p1. This proves the assertion when
B′ = B ×B′′ and h = pr1.

(Step 3) Let h : B′→B be an arbitrary C∞-map. We define h1 : B′→B′×B by h1(b
′) :=

(b′, h(b′)) and h2 : B′×B→B by h2(b
′, b) := b Then h1 is an embedding, h2 is a projection,
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and h = h2◦h1. Let Z1 = Z×BB
′ and Z2 = Z×B(B′×B) be the fiber bundles induced from

π : Z → B by the map h1 and h2, respectively. Since Z1 → B′ is induced from Z2 → B′ ×B by
h1, we get

∇Z1/B′

= h∗1∇Z2/(B′×B) = h∗1◦h∗2∇Z/B = h∗∇Z/B,

where the first equality follows from (Step 1), the second equality follows from (Step 2), and the
last equality follows from Lemma 2.4 (a). This completes the proof.

With respect to the decomposition TZ = T (Z/B) ⊕ THZ, we put for ε∈R+

gZ,ε := gZ/B⊕ε−1π∗gB .

The Levi-Civita connections of (Z, gZ,ε) and (B, gB) are denoted by ∇Z,ε and ∇B, respectively.
Let RZ,ε and RB be the curvature of ∇Z,ε and ∇B, respectively. We define another connection
∇ on Z by

∇ := ∇Z/B⊕π∗∇B,

and we put

S(ε) := ∇Z,ε −∇ ∈A1(End(TZ)), S := S(1).

Then ∇ preserves the Riemannian metric gZ,ε, and PZ is parallel with respect to ∇, i.e. ∇◦PZ −
PZ◦∇ = 0.

Let {e1, · · ·, ek} be a local orthogonal framing for (T (Z/B), gZ/B), and let {f1, · · ·, fl} be a
local orthogonal framing for (THZ, π

∗gB).

Proposition 2.8. With respect to the splitting TZ = T (Z/B)⊕THB, the following identity
holds :

lim
ε→0

RZ,ε =

(
RZ/B PZ(∇S)

0 π∗RB

)
.

Proof. See [BF, Eq. (3.195)].

3. η-invariants

In this section, we recall the definition and some properties of η-invariants. Let (M,gM ) be a
closed oriented Riemannian manifold of dimension (2l− 1). Denote the space of C∞ k-forms on
M by Ak(M). Let ∗ : Ak(M) → A2l−k−1(M) be the Hodge star operator with respect to gM .
The signature operator D : ⊕p≥0A2p(M)→⊕p≥0 A2p(M) of M is defined by

D : ω 7−→(
√
−1)l(−1)p+1(∗d− d∗)ω, ω∈A2p(M).

Then D is an elliptic self-adjoint differential operator of first order acting on ⊕p≥0A2p(M). Let
σ(D) be the spectrum of D. The η-function of M is defined by

η(s) :=
∑

λ∈σ(D)\{0}

signλ

|λ|s

for s∈C with Re(s)�0. Then η(s) extends meromorphically to C and is holomorphic at s = 0
by [APS], [BF].

Definition 3.1. The real number η(0) is called the η-invariant of (M,gM ) and is denoted by
η(M,gM ).

Let (X, gX ) be a 4k-dimensional, oriented, compact, Riemannian manifold with boundary
Y . Put gY := gX

∣∣
Y

and fix a color neighborhood U⊃Y such that U ∼= Y×[0, 1). Assume that
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gX
∣∣
U

= gY ⊕dt2 under the above isomorphism. Let ∇L be the Levi-Civita connection of (X, gX )

and let RL := (∇L)2 be the curvature. Let L(TX,∇L) be the Hirzebruch L-form, i.e.,

L(TX,∇L) := det1/2

( −RL/2π
√−1

tanh(−RL/2π
√−1)

)
.(8)

Denote by Sign(X) the signature of X, i.e., the signature of the cup-product pairing on
H2k(X,Y,Q), which is a homotopy invariant of the pair (X,Y ). Note that one can also use the
compact support cohomology H2k

c (X \ Y,Q) ∼= H2k(X,Y,Q) to define Sign(X).

Theorem 3.2 (Atiyah-Patodi-Singer [APS]). The following equation holds:

Sign(X) =

∫

X
L(TX,∇L) − η(Y, gY ).

Let X, B and M be closed oriented manifolds. Let π : X → B be a C∞-submersion, whose
fibers are isomorphic to M . Assume that dimX = 4k. Let gX/B be a metric on T (X/B) and
let gB be a metric on TB. Let THX ⊂ TX be a connection . We identify THX with π∗TB via
π. With respect to the decomposition TX = T (X/B) ⊕ π∗TB, we define the metric on X by

gX := gX/B ⊕ π∗gB and we consider the one parameter family of metrics on X defined by

gX
ε := gX/B ⊕ ε−1π∗gB , ε ∈ R>0.

Theorem 3.3 (Bismut-Cheeger [BC1]). The limit lim
ε→0

η(X, gX
ε ) exists.

The limit lim
ε→0

η(X, gX
ε ) is called the adiabatic limit of the η-invariants and is denoted by

η0(X). By definition, η0(X) depends on the three data: gX/B , gB and THX.

4. Family of theta divisors

In this section we construct an action of the Siegel modular group on the universal family of
theta divisors and we also construct a specific invariant Kähler metric on the total space of this
family.

We first fix the notation. Let Sg be the Siegel upper half-space of degree g and let Γg be the
Siegel modular group, i.e.,

Sg := {τ∈M(g,C) | tτ = τ, Imτ > 0}
Γg := {γ ∈ GL(2g,Z) | γ Jg

tγ = Jg},
where Jg =

( 0 1g

−1g 0

)
and 1g denotes the g × g identity matrix. Γg acts on Sg by

γ·τ := (Aτ +B)(Cτ +D)−1, γ =

(
A B

C D

)
∈ Γg, τ ∈ Sg.

For τ ∈ Sg, write τ = (tτ1, · · · , tτg) and set

Λτ := Ze1 ⊕ · · · ⊕ Zeg ⊕ Zτ1 ⊕ · · · ⊕ Zτg ⊂ Cg

where 1g = (te1, · · · , teg) and τ = (tτ1, · · · , tτg) ∈ Sg. Here all vectors denote row vectors.
Define the Z2g-action on Cg × Sg by

(m,n) · (z, τ) := (z +mτ + n, τ), (z, τ) ∈ Cg × Sg, m, n ∈ Z2g.

Then

f : Ag := (Cg×Sg)/Z
2g→Sg
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is the universal family of principally polarized Abelian varieties over Sg, whose fiber over τ is
Aτ := Cg/Λτ . For (a, b)∈R2g, z∈Cg and τ∈Sg we define the theta function with characteristic
by

ϑa,b(z, τ) :=
∑

n∈�g

e
(1
2
(n+ a)τ t(n+ a) + (n+ a)t(z + b)

)
,

where e(t) = exp(2π
√−1t). Let

p : Θa,b := {(z, τ)∈Ag | ϑa,b(z, τ) = 0}→Sg.

be the universal family of theta divisors. For simplicity we write ϑ for ϑ0,0 and set Θ = Θ0,0.
For any (a, b)∈R2g, we define an automorphism t(a,b) : Ag→Ag by

t(a,b) · (z, τ) := (z + aτ + b, τ).

Then t(a,b) has no fixed points when (a, b)∈R2g\Z2g and the subgroup Z2g⊂R2g acts trivially on
Ag. One has the Γg-action on Ag defined by

γ·(z, τ) := (z(Cτ +D)−1, (Aτ +B)(Cτ +D)−1), γ =

(
A B

C D

)
∈ Γg, z ∈ Cg, τ ∈ Sg,

so that f is Γg-equivariant. This action does not preserve the family p : Θ → Sg. However we
can construct a Γg-action on Θ so that p is Γg-equivariant, after a slight modification of the
definition of this Γg-action.

Theorem 4.1 ([Ig, Chap. II, Sec. 5, Theorem 6]). For γ =
(A B
C D

)
∈Γg, τ∈Sg, (m,n), (a, b)∈R2g,

ϑm,n

(
t(a,b) · (z, τ)

)
= e(−1

2
aτ ta− at(z + b+ n))ϑm+a,n+b(z, τ)

ϑm′,n′

(
γ·(z, τ)

)
= e(

1

2
z(Cτ +D)−1Ctz)det(Cτ +D)

1
2 ·uϑm,n(z, τ),

where

(m′, n′) = (m,n)·γ−1 +
1

2
((CtD)0, (A

tB)0), M0 = (mijδij), M = (mij) ∈M(g,Z),

and u ∈ C∗ is independent of τ, z.

For γ =
(
A B
C D

)
, put

γ̃ := t(a,b)◦γ ∈ Aut(Ag), (a, b) :=
1

2
((CtD)0, (A

tB)0).

Proposition 4.2. (a) The automorphism γ̃ preserves the family p : Θ → Sg.
(b) For any γ1, γ2∈Γg, the following identity holds in Aut(Θ) :

γ̃1◦γ̃2 = γ̃1γ2

Proof. (a) We set (m,n) = (0, 0) in the second equality of Theorem 4.1 to get

ϑ0,0(z, τ) = e

(
−1

2
z(Cτ +D)Ctz

)
det(Cτ +D)−

1
2u−1ϑa,b (γ · (z, τ))

= e

(
1

2
a(γ · τ)ta+ at(z(Cτ +D)−1 + b+ n)

)
e

(
−1

2
z(Cτ +D)Ctz

)

× det(Cτ +D)−
1
2u−1 · ϑ0,0

(
t(a,b) ◦ γ · (z, τ)

)
,

where the second equality follows from the first equality of Theorem 4.1. This implies that if
ϑ(z, τ) = 0 then ϑ (γ̃ · (z, τ)) = 0.

(b) Since γ◦t(m,n) = t(m,n)·γ−1◦γ for γ ∈ Γg and (m,n)∈1
2Z2g, there exists (m′, n′)∈1

2Z2g such
that

(γ̃1γ2)
−1γ̃1◦γ̃2 = t(m,n)◦(γ1γ2)

−1◦t(m1,n1)◦γ1◦t(m2,n2)◦γ2 = t(m′,n′).
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Thus (γ̃1γ2)
−1γ̃1◦γ̃2 is either the identity map or a holomorphic involution on Θ(γ1γ2τ) without

fixed points. By Lemma 4.3 below, we get γ̃1◦γ̃2 = γ̃1γ2.

Lemma 4.3. If Θτ is smooth, then there is no holomorphic involution on Θτ without fixed
points.

Proof. For a compact complex manifold X, let χhol(X) denote the arithmetic genus of X, i.e.,

χhol(X) :=
∑

k≥0

(−1)khk(X,OX).

Assume that ι is a holomorphic involution on Θτ without fixed points. Then

χhol(Θτ ) = 2χhol(Θτ/ < ι >).(9)

Let IΘτ be the ideal sheaf of Θτ . From the exact sequence of sheaves 0→IΘτ→OAτ→OΘτ→0
and the vanishing χhol(Aτ ) = 0, we get

χhol(Θτ ) = χhol(Aτ ) − χhol(IΘτ ) = −χhol(IΘτ ).(10)

Let [Θτ ] be the line bundle on Aτ defined by the divisor Θτ . Then [Θτ ] is ample. Since
Hk(Aτ ,IΘτ ) = Hk(Aτ , [Θτ ]−1), we get

χhol(IΘτ ) = (−1)ghg(Aτ , [Θτ ]
−1)

= (−1)gh0(Aτ , [Θτ ]⊗KAτ )

= (−1)gh0(Aτ , [Θτ ]) = (−1)g,

where the first equality follows from the Kodaira vanishing theorem, the second equality follows
from the Serre duality, and the third equality follows from the triviality of KAτ . Hence we get
χhol(Θτ ) = (−1)g+1, which contradicts (9).

We set

g
�

g /
�

g := dz·(Imτ)−1·tdz̄.
Then g

�
g /
�

g is a Γg-invariant Hermitian metric on the relative tangent bundle T (Ag/Sg). The
next purpose of this section is to construct a Γg-invariant Kähler metric on TAg whose restriction

to T (Ag/Sg) is g
�

g /
�

g .
Put T 2g := R2g/Z2g. Define a Z2g-action on R2g ×Sg by (m,n) · (x, y, τ) := (x+m, y+ n, τ)

for (m,n) ∈ Z2g, (x, y) ∈ R2g, τ ∈ Sg. Then (R2g ×Sg)/Z
2g is the trivial T 2g-bundle T 2g ×Sg.

We define a C∞-map ρ̃ : R2g × Sg → Cg × Sg by

ρ̃((x, y), τ) := (xτ + y, τ), x, y ∈Rg, τ∈Sg.

Since ρ̃ is a Z2g-equivariant map, ρ̃ induces a C∞-isomorphism ρ : T 2g×Sg → Ag as T 2g-bundles
over Sg. Define a Γg-action on T 2g×Sg by

γ·((x, y), τ) := ((x, y)γ−1, γ·τ), γ∈Γg.

Lemma 4.4. For all γ∈Γg, the following diagram is commutative.

T 2g×Sg
ρ−−−→ Ag

γ

y
yγ

T 2g×Sg −−−→
ρ

Ag
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Proof. Let γ =
(A B
C D

)
. Since

γ−1 =

(
tD − tB

−tC tA

)
, tBD = tDB, tAC = tCA, tAD − tCB = 1g,

we get

ργ((x, y), τ) = ρ((x, y)γ−1, γτ)

= ((xtD − ytC)(Aτ +B)(Cτ +D)−1

+(−xtB + ytA)(Cτ +D)(Cτ +D)−1, (Aτ +B)(Cτ +D)−1)

= ((xτ + y)(Cτ +D)−1, (Aτ +B)(Cτ +D)−1)

= γρ((x, y), τ).

Since the trivial connection on T 2g×Sg is Γg-invariant, Ag has the induced Γg-invariant con-
nection THAg ⊂ TAg via the Γg-equivariant isomorphism ρ. We denote the Γg-equivariant
projection corresponding to THAg by Pρ. Let P

�

ρ : TAg ⊗ C → T (Ag/Sg)⊗ C be the complexi-

fication of Pρ. Then P
�

ρ is also Γg-equivariant.
Let Z and B be complex manifolds and let π : Z → B be a holomorphic submersion. A

connection PZ on Z is said to be compatible with the complex structure if the horizontal lift of
a (1, 0) (resp. (0, 1)) vector is a (1, 0) (resp. (0, 1)) vector, or equivalently, if P : TZ → T (Z/B)
preserves the complex structure. Let P

�

Z : TZ ⊗ C → T (Z/B) ⊗ C be the complexification. If

PZ is compatible with the complex structure, we get the decomposition P
�

Z = P 1,0
Z ⊕ P 0,1

Z with
respect to the decomposition

TZ ⊗ C = T 1,0Z ⊕ T 0,1Z, T (Z/B) ⊗ C = T 1,0(Z/B) ⊕ T 0,1(Z/B),

such that P 1,0
Z (T 1,0Z) = T 1,0(Z/B), P 0,1Z(T 0,1Z) = T 0,1(Z/B). Hence P

�

Z induces the decom-
position

T 1,0Z ∼= T 1,0(Z/B) ⊕ π∗T 1,0B.

Lemma 4.5. The Γg-equivariant connection Pρ is compatible with the complex structure. Hence

P
�

ρ induces the Γg-equivariant C∞-isomorphism

T 1,0Ag
∼= T 1,0(Ag/Sg) ⊕ f∗T 1,0

Sg.

Proof. Since ρ((x, y), τ) = (xτ + y, τ) and zk =
∑

l xlτlk + yk, we get

ρ∗(
∂

∂τij
) =

g∑

k=1

∂zk
∂τij

∂

∂zk
+

g∑

k=1

∂z̄k
∂τij

∂

∂z̄k
+

∂

∂τij

=

g∑

k,l=1

xl
∂τlk
∂τij

∂

∂zk
+

∂

∂τij

= xi
∂

∂zj
+ xj

∂

∂zi
+

∂

∂τij
,(11)

ρ∗(
∂

∂τ̄ij
) = xi

∂

∂z̄j
+ xj

∂

∂z̄i
+

∂

∂τ̄ij
.

Notice that ∂τlk
∂τij

= δilδjk + δikδjl, since τ is a symmetric matrix. From (11), the assertion

follows.

Let g
�

g be the Bergman metric on Sg with Kähler form

ω�g = −2
√
−1∂∂̄logdetImτ.(12)
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Then g
�

g is Γg-invariant. With respect to the decomposition in Lemma 4.5, we define the
Γg-invariant Hermitian metric g

�
g on T 1,0Ag by

g
�

g := g
�

g /
�

g⊕f ∗g
�

g .

Then we have

g
�

g (
∂

∂zi
,
∂

∂zj
) = g

�
g /
�

g (
∂

∂zi
,
∂

∂zj
)

g
�

g (
∂

∂zi
, ρ∗(

∂

∂τkl
)) = 0(13)

g
�

g (ρ∗(
∂

∂τij
), ρ∗(

∂

∂τkl
)) = g

�
g (

∂

∂τij
,
∂

∂τkl
).

Theorem 4.6. The Hermitian metric g
�

g is Kähler.

Proof. Let L be the holomorphic line bundle over Ag defined by the divisor Θ, and let hL be
the Hermitian metric on L defined by

‖ϑ‖2
L(z, τ) := |ϑ(z, τ)|2exp

(
−2π(Imz)(Imτ)−1t(Imz)

)
.

Then

c1(L|Aτ , hL) =

√−1

2
dz(Imτ)−1t(dz̄).(14)

Write

g
�

g /
�

g =
∑

hijdzidz̄j , g
�

g =
∑

h′ijkldτijdτ̄kl.

By (11) and (13), we get

0 = g
�

g (ρ∗(
∂

∂τij
),

∂

∂zk
) = xihjk + xjhik + g

�
g (

∂

∂τij
,
∂

∂zk
),

h′ijkl = g
�

g (ρ∗(
∂

∂τij
), ρ∗(

∂

∂τkl
))

= −xixkhjl − xkxjhil − xixlhjk − xjxlhik + g
�

g (
∂

∂τij
,
∂

∂τkl
).

Therefore

g
�

g (
∂

∂zi
,
∂

∂zj
) = hij = (Imτ)−1

ij ,(15)

g
�

g (
∂

∂τij
,
∂

∂zk
) = −xihjk − xjhik,(16)

g
�

g (
∂

∂τij
,
∂

∂τkl
) = h′ijkl + xixkhjl + xjxkhil + xixlhjk + xjxlhik.(17)

By (12) and (14),

hij = − 1

π

∂2

∂zi∂z̄j
log‖ϑ‖2(z, τ)(18)

h′ijkl = − 1

π

∂2

∂τij∂τ̄kl
4πlogdetImτ.(19)

Since z = xτ + y, we have Imz = x(Imτ), i.e., x = Imz(Imτ)−1. Set Eij := teiej + tejei.
Since Imz = 1

2
√
−1

(z − z̄) and Imτ = 1
2
√
−1

(τ − τ̄), we get
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− 1

π

∂2

∂τij∂z̄k
log‖ϑ‖2(z, τ)

= 2
∂2

∂τij∂z̄k
Imz(Imτ)−1t(Imz)

= 2(
−1

2
√−1

)
∂

∂τij
{ek(Imτ)

−1t(Imz) + Imz(Imτ)−1tek}

= −2
( −1

2
√−1

)( 1

2
√−1

)
{ek(Imτ)

−1Eij(Imτ)
−1t(Imz) + Imz(Imτ)−1Eij(Imτ)

−1tek}

= −1

2
{ek(Imτ)

−1Eij
tx+ xEij(Imτ)

−1tek}
= −xjhik − xihjk

= g
�

g (
∂

∂τij
,
∂

∂zk
),

(20)

where the third equality follows from the identity ∂
∂τij

(Imτ)−1 = −
(

1
2
√
−1

)
(Imτ)−1Eij(Imτ)

−1,

the forth equality follows from the identity x = (Imz)(Imτ)−1 and the last equality follows from
(16). Similarly, we get

− 1

π

∂2

∂τij∂τ̄kl
log‖ϑ‖2(z, τ)

= 2
∂2

∂τij∂τ̄kl
Imz(Imτ)−1tImz

= −2(
−1

2
√−1

)
∂

∂τij
Imz(Imτ)−1Ekl(Imτ)

−1tImz

= 2(−1)2
( −1

2
√−1

)( 1

2
√−1

)
{Imz(Imτ)−1Eij(Imτ)

−1Ekl(Imτ)
−1tImz

+ Imz(Imτ)−1Ekl(Imτ)
−1Eij(Imτ)

−1tImz}

=
1

2
{xEij(Imτ)

−1Ekl
tx+ xEkl(Imτ)

−1Eij
tx}

= xixkhjl + xjxkhil + xixlhjk + xjxlhik

= g
�

g (
∂

∂τij
,
∂

∂τkl
) − h′ijkl,

(21)

where the last equality follows from (17).
Let Φ be the fundamental 2-form for g

�
g . By (15), (18), (20) and (21), we get

Φ = −ddclog‖ϑ‖2
L(z, τ) + f∗ω�g .

This completes the proof.

Remark 4.7. By [FS, Theorem 7.10], there exists a Γg-invariant Kähler metric g
�

g on TAg

such that g
�

g is a flat metric on each fiber and such that p∗ : T (Ag/Sg)
⊥ → TSg is an isometry.

Here we gave an explicit construction of such a metric.

5. The L-form of the relative tangent bundle

Following [Y2, Proposition 5.1], we shall compute the Hirzebruch L-form of the relative tan-
gent bundle of the family of smooth theta divisors, which will be used in Sections 7 and 9.
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A holomorphic function f(τ) ∈ O(Sg) is a Siegel modular form of weight k if

f(γ · τ) = j(τ, γ)kχ(γ)f(τ), ∀γ ∈ Γg, ∀τ ∈ Sg,

where j(τ, γ) := det(Cτ + D) for γ =
(A B
C D

)
and χ : Γg → C∗ is a character. For a Siegel

modular form f(τ) of weight k, define the Petersson norm by

‖f(τ)‖2 := (det Imτ)k|f(τ)|2.(22)

By the automorphic property det Im(γ·τ) = |j(τ, γ)|−2 det Im(τ) and the finiteness ofH1(Γg,Z) =
Γg/[Γg,Γg], the norm ‖f(τ)‖2 is a C∞ Γg-invariant function on Sg. Set

χg(τ) :=
∏

a,b∈ 1
2
�g/�g, 4ta·b=0∈�/2�

ϑa,b(0, τ).

Then χg(τ) is a Siegel modular form of weight 2g−2(2g +1) and is called the Igusa modular form.
Let

Ng := {τ ∈ Sg | SingΘτ 6= ∅}
be the Andreotti-Mayer locus.

Theorem 5.1 ([D]). The Andreotti-Mayer locus Ng is a divisor of Sg. There exist two Γg-
invariant divisors θg and Jg on Sg such that

Ng = θg + 2Jg,

where Γg \θg and Γg \Jg are irreducible divisors on Γg \Sg. Here θg is the zero divisor of χg(τ)
and Jg = ∅ if and only if g = 2, 3. There exist proper subvarieties Z1 ⊂ θg and Z2 ⊂ Jg with
the following properties.
(1) For any τ ∈ θ◦g := θg \ Z1, Sing(Θτ ) consists of one ordinary double point.
(2) For any τ ∈ J ◦

g := Jg \ Z2, Sing(Θτ ) consists of two ordinary double points which are
mutually interchanged by the involution z → −z.

Theorem 5.2 ([Y2]). There exists a Siegel cusp form ∆g(τ) of weight (g+3)·g!
2 with zero divisor

Ng. In particular, there exists a Siegel modular form Jg(τ) of weight (g+3)·g!
4 − 2g−3(2g + 1) with

zero divisor Jg such that

∆g := χg(τ)Jg(τ)
2.

We put

S
◦
g := Sg −Ng, Θ◦

g := Θ|�◦
g
.

Then p : Θ◦ → S
◦
g is a family of smooth theta divisors. Endow T 1,0(Θ◦/S◦

g) with the Hermitian

metric gΘ◦/
�

◦

g := g
�

g /
�

g
∣∣
Θ◦
. Let gΘ◦

:= g
�

g |Θ◦ be the Kähler metric on Θ◦ induced from g
�

g .

Regard gΘ◦/
�

◦

g (resp. gΘ◦

) as a Riemannian metric on T (Θ◦/S◦
g) (resp. TΘ◦). Let

THΘ◦ := T (Θ◦/S◦
g)

⊥

be the orthogonal complement of T (Θ◦/S◦
g) in TΘ◦ with respect to the metric gΘ◦

, which
induces a connection PΘ : TΘ◦ → TΘ◦/S◦

g.

Lemma 5.3. One has gΘ◦

= gΘ◦/
�

◦

g ⊕ p∗(g
�

g |�◦
g
).

Proof. Let N be the normal bundle of Θ◦ in Ag. Endow N with the Hermitian metric induced

from g
�

g via the C∞-isomorphism N ∼= (TΘ◦)⊥ in TAg|Θ◦ . Then we have a C∞ orthogonal
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decompositions TAg|Θ◦
∼= TΘ◦ ⊕ N and T (Ag/Sg)|Θ◦ = T (Θ◦/S◦

g) ⊕ N . Hence we get the
following equality of subvector bundles of TAg|Θ◦ :

THAg|Θ◦ = T (Ag/Sg)
⊥|Θ◦ (in TAg)

= (T (Θ◦/S◦
g) ⊕N)⊥ (in TΘ◦ ⊕N)

= T (Θ◦/S◦
g)

⊥ (in TΘ◦)

= THΘ◦.

We thus have p∗(g
�

g |�◦
g
) = f∗g

�
g |Θ◦ , which together with gΘ◦/

�
◦

g = g
�

g /
�

g |Θ◦ , completes the
proof.

Lemma 5.4. The connection PΘ is compatible with the complex structure on Θ◦.

Proof. Let J ∈ End(TΘ◦) be the complex structure. Then the Riemannian metric gΘ◦

is
invariant under the action of J . Therefore the orthogonal complement THΘ◦ = T (Θ◦/S◦

g)
⊥

is also invariant under the action of J , which yields the assertion.

We define the connection ∇Θ◦/
�

◦

g on T (Θ◦/S◦
g) by using gΘ◦/

�
◦

g and PΘ as in Section 2.2.

Let ∇h be the holomorphic Hermitian connection on T 1,0(Θ◦/S◦
g) with respect to the Hermitian

metric gΘ◦/
�

◦

g .

Lemma 5.5. Under the C∞-isomorphism T (Θ◦/S◦
g) ⊗ C ∼= T 1,0(Θ◦/S◦

g) ⊕ T 0,1(Θ◦/S◦
g), the

following equality of connections holds:

∇Θ◦/
�

◦

g ⊗ C = ∇h ⊕ ∇̄h.

Proof. Let ∇L be the Levi-Civita connection on (TΘ◦, gΘ◦

) and let ∇H be the holomorphic
Hermitian connection on T 1,0Θ◦. Let P

�

Θ be the complexification of PΘ. Since gΘ◦

is Kähler by
Theorem 4.6, we get the decomposition by [Ko, Chap. I, Proposition 7.19]

∇L⊗C = ∇H⊕∇̄H

under the decomposition TΘ◦ ⊗ C = T 1,0Θ◦ ⊕ T 0,1Θ◦. By Lemma 5.4, we also get the decom-

position P
�

Θ = P 1,0
Θ ⊕ P 0,1

Θ . Then

∇Θ◦/
�

◦

g ⊗ C = (PΘ∇L) ⊗ C = P
�

Θ(∇L ⊗ C) = P 1,0
Θ ∇H ⊕ P 0,1

Θ ∇̄H .

Since P 1,0
Θ ∇H = ∇h by [Ko, Chap. I, Proposition 6.4], we get the result.

Let Bk be the k-th Bernoulli number when k ∈ Z, i.e.,

x

ex − 1
= 1 − x

2
+

∞∑

k=1

(−1)k+1Bk
x2k

(2k)!
.

We set Bk = 0 when k ∈ 1
2 + Z.

Theorem 5.6. Let g be even. The following equality holds:
[
p∗L(T (Θ◦/S◦

g),∇Θ◦/
�

◦

g )
](2)

=
(−1)g/22g+1(2g+2 − 1)

(g + 1)(g/2 + 1)
B g

2
+1dd

c log det Imτ

=
(−1)g/22g+3(2g+2 − 1)

(g + 3)!
B g

2
+1dd

c log ‖∆g(τ)‖2,

where f∗ denotes the integration along the fibers and α(p) denotes the p-form part of a from α.

Remark 5.7. When g is odd, say 2k + 1, since dim�Θτ = 4k and the L-form has only compo-
nents of degree 4n, the left-hand side of Theorem 5.6 is zero.
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Proof. The second equality follows from (22) and S
◦
g = Sg\div(∆g). We prove the first equality.

Let Rh := (∇h)2 be the curvature, which is a (1, 1)-form with values in End
(
T 1,0(Θ◦/S◦

g)
)
. Set

L(x) := x/tanh(x).(23)

For a complex vector bundle E, let L(E) denote the multiplicative genus of Chern forms asso-
ciated with L(x). By (8), we get

L
(
T (Θ◦/S◦

g),∇Θ/
�

◦

g )
)(2g)

= det

( −Rh/2π
√−1

tanh(−Rh/2π
√−1)

)(g,g)

= L
(
T 1,0(Θ◦,S◦

g),∇h
)(g,g)

.

(24)

Here the first equality follows from Lemma 5.5, the equality R̄h = −tRh and the fact that
x/tanh(x) is an even function.

Let G be a positive definite g×g-Hermitian matrix and let gG := dz G td̄z be a flat metric on
W := Cg associated to G. Let P(W∨) be the projective space of hyperplanes of W and let E be
the universal vector bundle of rank (g − 1) over P(W∨). Consider the following exact sequence
of vector bundles over P(W∨):

0−→E−→W∨ = Cg−→N = W∨/E−→0.(25)

Notice that N = O�
(W∨)(1). Let gE,G := gG|E be the induced metric on E.

Let g1g be the restriction of the Hermitian metric dz · tdz̄ on TAg/Sg to the relative tan-
gent bundle TΘ◦/S◦

g. Let R be the curvature of the holomorphic Hermitian connection of

(T 1,0Θ◦/S◦
g, g1g ). Set

L(T 1,0Θ◦/S◦
g, g1g ) := detL(

−R
2π

√−1
) ∈ ⊕p≥0A

p,p(Θ◦).

Let ν : Θτ −→ P(W∨) be the Gauss map:

ν : Θτ 3 z 7−→ (TΘτ )z ∈ P(W∨),

which induces a finite covering with mapping degree g!. Then

(TΘτ , g
Θτ ) = ν∗(E, gE,(Imτ)−1).(26)

By [Y1, Proposition 2.1], we have
[
L(TΘ◦/S◦

g, g1g )
](g,g) ≡ 0.

Hence we obtain
[
L(T 1,0(Θ◦/S◦

g),∇h)
](g,g)

=
[
L(T 1,0(Θ◦/S◦

g),∇h)
](g,g) −

[
L(T 1,0(Θ◦/S◦

g), g1g )
](g,g)

= −ddc
[
L̃(T 1,0(Θ◦/S◦

g); g1g , g
Θ◦/

�
◦

g )
](g−1,g−1)

,(27)

where L̃(T 1,0(Θ◦/S◦
g); g1g , g

Θ◦/
�

◦

g ) denotes the Bott-Chern secondary form [BoC], [BGS] corre-
sponding to L. By (24), (26), and Proposition B.1 below, we get

p∗
[
L̃(TΘτ , g1g , g

Θτ )
](g−1,g−1)

= p∗
[
ν∗L̃(E; gE,1g , gE,(Imτ)−1)

](g−1,g−1)

= degν

∫
�
(W∨)

L̃(E; gE,1g , gE,(Imτ)−1)(28)

= −g!k(L, g) log det Imτ,

where k(L, g) is the constant defined in (72) below. By (27), (28) and the following Lemma 5.8,
we complete the proof.
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Lemma 5.8. The following equality holds :

k(L, 2k) = (−1)g(2k + 1)
4k+1(4k+1 − 1)

(2k + 2)!
Bk+1.

Proof. By (72) and the relation tanh
′

(x) = 1 − tanh(x)2, we get

k(L, 2k) =

(
L

′

(0)

L(0)
·L−1(x) − 1

2k
L

′

(x)·L−2(x)

)∣∣∣
x2k−1

= − 1

2k

(
tanh(x)

x2
− tanh

′

(x)

x

)∣∣∣
x2k−1

,(29)

where h(x)|xg is the coefficient of xg for h(x) ∈ C[[x]]. Combined with (29), the Taylor expansion

tanh(x) =
∑

n≥1

(−1)n+14n(4n − 1)Bn

(2n)!
x2n−1(30)

yields the assertion.

Remark 5.9. In Section 7, it will be crucial that dclog‖∆g(τ)‖2 is Γg-invariant and that
ddclog‖∆g(τ)‖2 is an exact 2-form on Γg \ S

◦
g.

6. The signature cocycle of smooth theta divisors

Since Γg acts on S
◦
g properly discontinuously, the quotient Γg \ S

◦
g has the structure of a

complex orbifold and Γg \S
◦
g is a coarse moduli space of smooth theta divisors. In this section,

following [A2], we construct a 2-cocycle of the orbifold fundamental group of Γg \ S
◦
g, which is

an analogue of the Meyer cocycle [A2], [Tu].
We fix a base point ∗ ∈ S

◦
g such that {γ ∈ Γg | γ ·∗ = ∗} = {±12g}. Let (B, b) be a topological

space with base point b, and let π : B̃→B be the universal covering. The fundamental group

π1(B, b) acts on B̃ as deck transformations. Fix a point b̃∈B̃ with π(b̃) = b. We define the set
[B,Γg \ S

◦
g]

orb by

{(α, ρ) ∈ C0(B̃,S◦
g) × Hom(π1(B, b),Γg) | α(b̃) = ∗, α(γ · x) = ρ(γ−1) · α(x)}/ ∼ .

Here (α0, ρ0)∼(α1, ρ1) if and only if ρ0 = ρ1 and there exists a homotopy p̃ : B̃ × [0, 1] → S
◦
g

connecting α0 and α1 such that α̃(∗, 0) = α0, α̃(∗, 1) = α1 and

α̃(γ · x, t) = ρ(γ) · α̃(x, t), γ ∈ Γg, x ∈ B̃, t ∈ [0, 1].

Definition 6.1. Define the orbifold fundamental group of Γg \ S
◦
g by

Sg := [S1,Γg \ S
◦
g]

orb

= {(α, γ) ∈ C0(R,S◦
g) × Γg | α(0) = ∗, α(t) = γ · α(t+ 1), ∀t ∈ R}/ ∼ .

One has the following equivalent definition:

Sg := {(α, γ) ∈ C0([0, 1],S◦
g) × Γg | α(0) = γ · α(1) = ∗}/ ≈ .

Here (α0, γ0) ≈ (α1, γ1) if and only if γ0 = γ1 and there exists a homotopy α(s, t) : [0, 1]×[0, 1] →
S

◦
g connecting α0 and α1 such that α(0, t) = α0(t), α(1, t) = α1(t), α(s, 0) = γ0 · α(s, 1) = ∗ for

s ∈ [0, 1].
The group law of Sg is defined as follows. Let [(α1, γ1)], [(α2, γ2)] ∈ Sg. Then γ−1

2 · α1 is a

path connecting γ−1
2 · ∗ and (γ1γ2)

−1 · ∗. Define the new path α : [0, 1] → S
◦
g by

α(t) :=

{
α2(2t) 0 ≤ t ≤ 1

2 ,

γ−1
2 · α1(2t− 1) 1

2 ≤ t ≤ 1.
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Then [(α1, γ1)] · [(α2, γ2)] := [(α, γ1γ2)]. For σ = [(l, γ)] ∈ Sg, the inverse is given by

σ−1 = [(−(γ · l), γ−1)], −l(t) := l(1 − t), t ∈ [0, 1].(31)

Let p : Sg → Γg be the projection to the second factor. Since the kernel of p is isomorphic to
π1(S

◦
g, ∗), we have an exact sequence

1 → π1(S
◦
g, ∗) → Sg → Γg → 1.(32)

Remark 6.2. When g = 1, Γ1 \S
◦
1 = SL2(Z) \S1 is the moduli space of curves of genus 1 and

S1 = M1. When g = 2, Γ2 \S
◦
2 is the moduli space of curves of genus 2 by the Torelli theorem

and S2 = M2. By (32), Sg is regarded as an analogue of the mapping class group.

Recall that a π1(B, b)-equivariant map (f, ρ) : (B̃, b̃) → (S◦
g, ∗) is a pair (f, ρ), where f ∈

C0(B̃,S◦
g) and ρ ∈ Hom(π1(B, b),Γg) satisfies the relations f(b̃) = ∗ and f(γ ·x) = ρ(γ) ·f(x) for

γ ∈ π1(B, b), x ∈ B̃. Given a π1(B, b)-equivariant map (f, ρ), one obtains the homomorphism
of groups f∗ : π1(B, b) → Sg by f∗([c]) = [(f ◦ c, ρ([c]))] for [c] ∈ π1(B, b).

Let F be a compact oriented surface with non empty boundary. Fix a base point b ∈ F . Since
F is homotopy equivalent to the n-bouquet Bn := S1 ∨ · · · ∨ S1 (n-times) for some n ∈ Z≥1,
π1(F, b) ∼= π1(Bn, ∗) is a free group of rank n. We have

[Bn,Γg \ S
◦
g]

orb ∼= [S1,Γg \ S
◦
g]

orb × · · · × [S1,Γg \ S
◦
g]

orb (n times)(33)

∼= Sg × · · · × Sg (n times).

Fix a set {g1, · · · , gn} of generators of π1(F, b) ∼= π1(Bn, ∗) as a free group of rank n. Since
[F,Γg \ S

◦
g]

orb ≡ [Bn,Γg \ S
◦
g]

orb we obtain the bijection by (33)

[F,Γg \ S
◦
g]

orb ∼= Sg × · · · × Sg (n times),(34)

which is given by [(f, ρ)] 7−→ ([f∗(g1), ρ(g1)], · · · , [f∗(gn), ρ(gn)]).
From now, we denote by B a pants, i.e.,

B = S2 \ q3
k=1Dk,

where D1,D2,D3 are mutually disjoint open discs. Fix a base point b ∈ B. Since B is homotopy
equivalent to the 2-bouquet B2, π1(B, b) is the free group of rank 2. Let g1, g2 be the generators
of π1(B, b) such that gi is represented by a loop homotopy equivalent to ∂Di. By (34) we have
the bijection

[B,Γg \ S
◦
g]

orb ∼= Sg × Sg.(35)

For [(f, ρ)] ∈ [B,Γg \ S
◦
g]

orb the fiber product π : B̃ ×f Θ → B̃ is a π1(B, b)-equivariant fiber

bundle because f : B̃ → S
◦
g is a π1(B, b)-equivariant map. Hence we get the fiber bundle

π : (B̃×f Θ)/π1(B, b) → B, which is uniquely determined by [f ] ∈ [B,Γg \S
◦
g]

orb up to homotopy
and which is a 2g-dimensional compact oriented manifold with boundary. If [(f, ρ)] corresponds
to (σ1, σ2) ∈ Sg × Sg via the isomorphism (35), we set

X(σ1, σ2) := (B̃ ×f Θ)/π1(B, b).
Then π : X(σ1, σ2) → B is a differentiable family of smooth theta divisors whose monodromy
around ∂Di is σi for i = 1, 2.

Recall that for 4k-dimensional compact oriented manifold with boundary the signature Sign(X)
is defined as the signature of the cup-product pairing on H2k(X,∂X,Q).

Definition 6.3. Define the map cg : Sg × Sg → Z by

cg(σ1, σ2) := Sign(X(σ1, σ2)), (σ1, σ2) ∈ Sg × Sg.

We call cg the signature cocycle for smooth theta divisors.
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Remark 6.4. When g is odd, cg ≡ 0 because Sign(X(σ1, σ2)) always vanishes in this case.

Lemma 6.5. The following equality holds:

(a) cg(σ1, σ2) + cg(σ1σ2, σ3) = cg(σ2, σ3) + cg(σ2σ3, σ1),
(b) If σ1σ2σ3 = I, then cg(σ1, σ2) = cg(σ2, σ3) = cg(σ3, σ1),
(c) cg(σ1, I) = cg(I, σ1) = 0,
(d) cg(σ1, σ2) = cg(σ2, σ1),

(e) cg(σ
−1
1 , σ−1

2 ) = −cg(σ1, σ2),

(f) cg(σ3σ1σ
−1
3 , σ3σ2σ

−1
3 ) = cg(σ1, σ2),

where σ1, σ2, σ3 ∈ Sg and I is the unit element. In particular, cg is a 2-cocycle of the group Sg

by (a).

Proof. By the same argument as in [A2, p.343], we obtain the assertion.

Denote by [cg] ∈ H2(Sg,Z) the cohomology class of cg. Then c2 is the Meyer cocycle of genus
two.

Remark 6.6. Let ρ : Sg → Aut(Hg−1(Θ∗,Z), <,>) be the monodromy representation, where
< , > denotes the cup-product pairing. When g is even, < , > is skew-symmetric and
Aut(Hg−1(Θ∗,Z), <,>) ∼= Γkg , where kg = 1

2dim�Hg−1(Θ∗,R). Hence we have the homo-
morphism ρ : Sg → Γkg . In this case, cg is the pull-back of the signature cocycle of Γkg via the
map ρ by [A1, Sect. 4] and [A2, Sect. 2]. When g = 2, ρ is equal to the homomorphism in (32).
However this is not the case for general g, because dim� Hg−1(Θ∗,R) > g for g > 2.

7. Construction of the Meyer function for smooth theta divisors

As we explained in Section 1, the cohomology class of the Meyer cocycle τg is a torsion
element of H2(Mg,Z) for g = 1, 2 because H2(Mg,Q) = 0. In this section we shall prove that
the cohomology class of the signature cocycle cg is a torsion element of H2(Sg,Z) by constructing
a 1-cochain that cobounds cg explicitly. We don’t know whether H2(Sg,Q) vanishes or not when
g > 2, while we will see that H2(Sg,Z) 6= 0 for g ≥ 1 in the next section.

Let σ = [(α, γ)] ∈ Sg. The fiber product R ×α Θ◦ is equipped with the π1(S
1)-action such

that m · (t, (z, α(t))) = (t+m,γm · (z, α(t))) . We define the mapping torus M(α,γ) by

π : M(α,γ) := (R ×α Θ◦)/π1(S
1) → S1, π = pr1.

Since the metric gΘ◦/
�

◦

g on T (Θ◦/S◦
g) and the connection PΘ on Θ◦ are Γg-invariant and since

the map α : S̃1 = R → S
◦
g is π1(S

1)-equivariant, the metric gM(α,γ)/S1
on T (M(α,γ)/S

1) (resp. the

connection P(α,γ) on M(α,γ)) is induced from gΘ◦/
�

◦

g (resp.PΘ) via the map α. With respect

to the decomposition TM(α,γ) = T (M(α,γ)/S
1) ⊕ π∗TS1 associated with P(α,γ), we define the

one-parameter family of Riemannian metrics g
M(α,γ)
ε on M(α,γ) by

g
M(α,γ)
ε := gM(α,γ)/S1⊕ε−1π∗dt2, ε∈R>0.

Here we regard S1 as R/Z and t∈R as a local coordinate of S1. By Theorem 3.3, there exists
the adiabatic limit

η0(M(α,γ)) := lim
ε→0

η(M(α,γ), g
M(α,γ)
ε ).

Since the 1-form dclog‖∆g(τ)‖2 is Γg-invariant, the pull-back α∗dc log ‖∆g(τ)‖2 can be re-
garded as a 1-form on S1.
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Definition 7.1. For σ ∈ Sg, let (α, γ) be a representative of σ, i.e., σ = [(α, γ)] and set

Φg(α, γ) := η0(M(α,γ)) +
(−1)g/22g+3(2g+2 − 1)B g

2
+1

(g + 3)!

∫

S1

α∗dc log ‖∆g(τ)‖2.

The following theorem is the main result of this paper.

Theorem 7.2. (a) The value Φg(α, γ) is independent of the choice of a representative (α, γ) of
σ∈Sg. In particular Φg is a function on Sg.
(b) The function Φg satisfies

(b1) cg(σ1, σ2) = −Φg(σ1) − Φg(σ2) + Φg(σ1σ2),
(b2) Φg(I) = 0,

(b3) Φg(σ
−1
1 ) = −Φg(σ1),

(b4) Φg(σ2σ1σ
−1
2 ) = Φg(σ1),

where σ1, σ2, σ3 ∈ Sg. In particular, [cg] ⊗ Q = 0 ∈ H2(Sg,Q) by (b1).

Recall that the Meyer function φ2 of genus two cobounds the Meyer cocycle τ2 (cf. Introduction).
As a consequence of Theorem 7.2, we get φ2 = Φ2 by the uniqueness of the Meyer function of
genus 2. Since ∆2(τ) coincides with the Igusa modular form χ2(τ) up to a constant [Y2], we get
the following analytic representation of the Meyer function φ2.

Corollary 7.3 ([Ii]). Let σ = [(α, γ)] be an element of S2 = M2. Then

φ2(σ) = η0(M(α,γ)) −
2

15

∫

S1

α∗dc log ‖χ2(τ)‖2.

Proof of Theorem 7.2. (a) Assume that (α0, γ) and (α1, γ) represent the same element σ ∈ Sg.
Put I := [0, 1]. There exists a continuous map ᾱ : I × R → S

◦
g satisfying

ᾱ(s, 0) = ∗, s ∈ I, ᾱ(s, t) = γ·ᾱ(s, t+ 1), (s, t)∈I×R

and

ᾱ(s, t) =

{
α0(t) s∈[0, 1

3)

α1(t) s∈(2
3 , 1].

(36)

Since ᾱ is π1(I×S1)-equivariant, the fiber product (I×R)×ᾱΘ◦ is endowed with the π1(I×S1)-
action, and we have the fiber bundle

π̄ : M(ᾱ,γ) := (I×R)×ᾱΘ◦/π1(I×S1)−→I × S1.

By the Γg-invariance of gΘ◦/
�

◦

g and the π1(I × S1)-equivariance of ᾱ, gΘ◦/
�

◦

g induces a metric

gM(ᾱ,γ)/I×S1
on T (M(ᾱ,γ)/I×S1), and the connection PΘ induces a connection P(ᾱ,γ) on M(ᾱ,γ).

With respect to the decomposition TM(ᾱ,γ) = T (M(ᾱ,γ)/I × S1) ⊕ π̃∗T (I × S1) associated with
P(ᾱ,γ), we set

g
M(ᾱ,γ)
ε := gM(ᾱ,γ)/I×S1 ⊕ ε−1π∗(ds2⊕dt2), ε ∈ R>0.

Let ∇M(ᾱ,γ)/(S1×I) be the connection on the relative tangent bundle T (M(ᾱ,γ)/(S
1×I)) associated

with gM(ᾱ,γ)/(S1×I) and P(ᾱ,γ). By (36) and Lemma 2.4 (c), g
M(ᾱ,γ)
ε is a product metric on a color

neighborhood of the boundary ∂M(ᾱ,γ), i.e.,

g
M(ᾱ,γ)
ε

∣∣
[0, 1

3
)×S1 = g

M(α0,γ)
ε ⊕ε−1dt2, g

M(ᾱ,γ)
ε

∣∣
( 2
3
,1]×S1 = g

M(α1,γ)
ε ⊕ ε−1dt2.
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The Atiyah-Patodi-Singer index theorem applied to (M(ᾱ,γ), g
M(ᾱ,γ)
ε ) yields that

Sign(M(ᾱ,γ)) =

∫

I×S1

π̃∗L
(
TM(ᾱ,γ), g

M(ᾱ,γ)
ε

)
−
(
η(M(ᾱ0,γ), g

M(α0,γ)
ε ) − η(M(ᾱ1 ,γ), g

M(α1,γ)
ε )

)
.

(37)

Since I is contractible, M(ᾱ,γ) is diffeomorphic to M(α0,γ)×I. Hence

Sign(M(ᾱ,γ)) = Sign(M(α0,γ))×Sign(I) = 0.(38)

Let pr : M(α,γ) → Θ◦ be the projection to the second factor. Then we get

lim
ε→0

∫

I×S1

π̄∗L
(
M(ᾱ,γ), g

M(ᾱ,γ)
ε

)
=

∫

I×S1

π̄∗
(
L
(
T (M(ᾱ,γ)/(I×S1))

)
∧ π̄∗L

(
T (I×S1)

))

=

∫

I×S1

[
π̄∗L

(
T (M(ᾱ,γ)/(I×S1)),∇M(ᾱ,γ)/(I×S1)

)](2)

=

∫

I×S1

[
π̄∗pr

∗L
(
T (Θ◦/S◦

2g),∇Θ◦/
�

◦

g
)](2)

=

∫

I×S1

ᾱ∗
[
p∗L

(
T (Θ◦/S◦

g),∇Θ◦/
�

◦

g
)](2)

,

(39)

where the first equality follows from Proposition 2.8, the third equality follows from Lemma 2.7
and we used the identity π̄∗p∗2ω = ᾱ∗p∗ω for ω ∈ Ak(Θ◦) to get the last equality. By Theorem
5.6, we have

∫

I×S1

ᾱ∗
[
p∗L

(
T (Θ◦/S◦

g),∇Θ◦/
�

◦

g
)](2)

=
(−1)g/22g+3(2g+2 − 1)

(g + 3)!
B g

2
+1

∫

I×S1

ᾱ∗ddclog‖∆g(τ)‖2

=
(−1)g/22g+3(2g+2 − 1)

(g + 3)!
B g

2
+1

(∫

{1}×S1

α∗
1d

c log ‖∆g(τ)‖2 −
∫

{0}×S1

α∗
0d

c log ‖∆g(τ)‖2

)
,

(40)

where we used the Γg-invariance of the 1-form dc log ‖∆g(τ)‖2 to get the last equality. We obtain

0 = lim
ε→0

∫

I×S1

π̄∗L
(
TM(ᾱ,γ), g

M(ᾱ,γ)
ε

)
−
(
η(M(ᾱ0 ,γ), g

M(α0,γ)
ε ) − η(M(ᾱ1,γ), g

M(α1,γ)
ε )

)

=

(
(−1)g/22g+3(2g+2 − 1)

(g + 3)!
B g

2
+1

∫

S1

α∗
1d

clog‖∆g(τ)‖2 + η0(M(α1,γ))

)

−
(

(−1)g/22g+3(2g+2 − 1)

(g + 3)!
B g

2
+1

∫

S1

α∗
0d

clog‖∆g(τ)‖2 + η0(M(α0,γ))

)

= Φg(α1, γ) − Φg(α0, γ),

where the first equality follows from (37) and (38), the second equality follows from (39), (40)
and Theorem 3.3, and the last equality follows from Definition 7.1.

(b) Since η(−M,gM ) = −η(M,gM ) for any odd dimensional Riemannian manifold (M,gM )
(cf. [APS]), we have (b3). Let σ1 = [(α1, γ1)], σ2 = [(α2, γ2)], σ3 := (σ1σ2)

−1 = [(α3, (γ1γ2)
−1)] ∈
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Sg. Recall that B = S2 \ q3
k=1Dk. By (b3), it suffices to show that

Sign(X(σ1, σ2)) = −
3∑

i=1

Φg(σi)(41)

in order to prove (b1). Let Ui be a neighborhood of ∂Di in B such that Ui
∼= [0, 1) × ∂Di. Let

βi : Ũi
∼= [0, 1) × R → B̃ be the lift of the map Ui ↪→ B. As before, g1, g2 ∈ π1(B, b) denote the

generators represented by the loops ∂D1, ∂D2, respectively. Let [(α, ρ)] ∈ [B,Γg \ S
◦
g]

orb be the
element corresponding to (σ1, σ2) ∈ Sg × Sg under the isomorphism (35). Since the loops ∂D1,
∂D2 and ∂D3 represent g1, g2 and (g1g2)

−1 ∈ π1(B, b), we can assume that

α ◦ βi

∣∣�
Ui

(si, t) = αi(t), (si, t) ∈ Ũi
∼= [0, 1) × R, i = 1, 2, 3.(42)

Let gX(σ1 ,σ2)/B (resp.PX(σ1,σ2)) be the metric on TX(σ1, σ2) (resp. the connection onX(σ1, σ2))

induced from the metric gΘ◦/
�

◦

g (resp. the connection PΘ) via the map α. Let gB be a met-
ric on TB such that gB

∣∣
Ui

= ds2i ⊕ dt2. With respect to the decomposition TX(σ1, σ2) =

T (X(σ1, σ2)/B)⊕π∗TB associated with PX(σ1,σ2), we define the family of metrics on TX(σ1, σ2)
by

gX(σ1,σ2)
ε := gX(σ1,σ2)/B ⊕ ε−1π∗gB, ε ∈ R>0.

By (42) and Lemma 2.4 (c), we have

gX(σ1,σ2)
ε

∣∣
Ui

= g
M(αi,γ)
ε ⊕ ε−1ds2i , i = 1, 2, 3.(43)

Let ∇X(σ1,σ2)/B be the connection on T
(
X(σ1, σ2)

)
associated to the metric gX(σ1,σ2)/B and

the connection PX(σ1,σ2). Since the metric g
X(σ1 ,σ2)
ε is a product metric on a color neighbor-

hood of the boundary of X(σ1, σ2) by (43), the Atiyah-Patodi-Singer index theorem applied to

(X(σ1, σ2), g
X(σ1 ,σ2)
ε ) yields that

Sign
(
X(σ1, σ2)

)
= lim

ε→0

(∫

X(σ1,σ2)
L
(
TX(σ1, σ2), g

X(σ1 ,σ2)
ε

)
−

3∑

i=1

η(M(αi,γ), g
M(αi,γ)
ε )

)

=

∫

B
π∗L

(
T (X(σ1, σ2)/B),∇X(σ1,σ2)/B)−

3∑

i=1

η0(M(αi,γ))

=

∫

B
α∗
[
p∗L

(
T (Θ◦/S◦

g),∇Θ◦/
�

◦

g
)](2)

−
3∑

i=1

η0(M(αi,γ))

=

∫

B

(−1)g/22g+3(2g+2 − 1)

(g + 3)!
B g

2
+1α

∗ddc log ‖∆g(τ)‖2 −
3∑

i=1

η0(M(αi,γ))

=
3∑

i=1

∫

∂Di

−(−1)g/22g+3(2g+2 − 1)

(g + 3)!
B g

2
+1α

∗
i d

c log ‖∆g(τ)‖2 −
3∑

i=1

η0(M(αi,γ))

= −
3∑

i=1

Φg(σi).

This completes the proof of (b1). From (b1) and Lemma 6.5 (c), (b2) follows. By (b1) and
Lemma 6.5 (d), we have Φg(σ1σ2) = Φg(σ2σ1) for any σ1, σ2 ∈ Sg, from which (b4) follows.
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8. The first cohomology of Sg

The uniqueness of a 1-cochain that cobounds the 2-cocycle cg is equivalent to the vanishing

of H1(Sg,Z). Indeed, if there is another 1-cochain Φ
′

g : Sg → R that cobounds cg, the difference

Φg − Φ
′

g is an element of Hom(Sg,R) ∼= H1(Sg,R). (See [Br] for generalities of cohomology of
groups).

Let k1(g) = 2g−2(2g + 1) and k2(g) = (g+3)·g!
4 − 2g−3(2g + 1) denote the weights of the Siegel

modular forms χg(τ) and Jg(τ), respectively. Set mi(g) := L.C.D(k1(g), k2(g))/ki(g), i = 1, 2.

Then χg(τ)
m1(g)Jg(τ)

−m2(g) is a Γg-invariant holomorphic function on S
◦
g.

While H1(S1,Z) = H1(S2,Z) = 0, the uniqueness is no longer valid for g > 3.

Theorem 8.1. The following holds :

H1(Sg,Z) =

{
0 1≤g≤3,

Z g≥4.

For g≥4 the generator of H1(Sg,Z) is represented by a homomorphism α ∈ Hom(Sg,Z) defined
by

σ 7−→ 1

2π
√−1

∫ 1

0
p∗dlogχg(τ)

m1(g)Jg(τ)
−m2(g) ∈Z, σ = [(p, γ)] ∈ Sg.

In particular, the cochain cobounding the signature cocycle cg is not unique when g ≥ 2.

The proof of Theorem 8.1 is divided into several lemmas below. By (32), we have the 5-term
exact sequence (see [Br, Chap.VII, Cororally 6.4])

1 → H1(Γg,Z) → H1(Sg,Z) → H1(π1(S
◦
g, ∗),Z)Γg δ→ H2(Γg,Z) → H2(Sg,Z).(44)

Here H1(π1(S
◦
g, ∗),Z)Γg denotes the Γg-invariant subspace of H1(π1(S

◦
g, ∗),Z).

Lemma 8.2. The following holds :

H1(Γg,Z) = 0 g ≥ 1, H2(Γg,Z) =





Z/12Z if g = 1

Z ⊕ Z/2Z if g = 2

Z if g ≥ 3.

Proof. See [Bo], [LW, Corollary 5.2.3, Remark 5.2.4].

By the Hurwitz theorem [Sp, Chap. 7, Sect. 5, Proposition 2], we obtain

H1(π1(S
◦
g, ∗),Z)Γg ∼= H1(S◦

g,Z)Γg .(45)

Lemma 8.3. Let X be a connected complex manifold of dim� X≥2. Assume that

H1(X,Z) = H2(X,Z) = 0.(46)

Let D =
∑

λ∈Λ nλDλ be a divisor on X such that nλ 6=0 and Dλ is irreducible for all λ ∈ Λ.
Then

H1(X −D,Z) ∼= ZΛ.

Here ZΛ denotes the direct product. The generator of the cohomology H1(X−D,Z) corresponding
to λ∈Λ is represented by the map lλ 7→1 and lµ 7→0 for µ6=λ∈Λ, where lµ denotes the loop around
a small disk intersection Dµ transversally.

Proof. Since the real codimension of SingD in X is greater than or equal to 4, we have πk(X,X−
SingD, ∗) = 0 for 1≤k≤3. The relative Hurwitz theorem [Sp, Chap. 7, Sect. 5, Proposition 1]
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asserts that Hk(X,X −SingD,Z) = 0 for k≤3. Hence Hk(X,X −SingD,Z) = 0 for k≤3, which
together with the cohomology exact sequence for the triple (X,X − SingD,X −D), yields that

H2(X,X −D,Z)∼=H2(X − SingD,X −D,Z).(47)

By the cohomology exact sequence for the pair (X,X −D) and (46), we see that

H1(X −D,Z)∼=H2(X,X −D,Z) ∼= H2(X − SingD,X −D,Z).(48)

Since D− SingD is a closed submanifold in X − SingD and since X −D = (X − SingD)− (D−
SingD), the Thom isomorphism asserts that

H2(X − SingD,X −D,Z)∼=H0(D − SingD,Z).(49)

By the irreducibility of Dλ, Dλ − SingDλ is path connected so that

H0(D − SingD,Z)∼=ZΛ.(50)

The result follows from (48), (49) and (50).

Lemma 8.4. The following holds :

H1(S◦
g,Z)Γg =





0 g = 1

Z g = 2, 3

Z⊕2 g ≥ 4.

By regarding H1(S◦
g,C) as the de Rham cohomology group, the images of the generators under

the natural map H1(S◦
g,Z) → H1(S◦

g,C) are represented by the 1-forms 1
2π

√
−1
dlogχg(τ) and

1
2π

√
−1
dlogJg(τ). Here Jg(τ) ≡ 1 and hence d log Jg(τ) ≡ 0 for g ≤ 3.

Proof. By Theorem 5.1 and 5.2, and Lemma 8.3, we get the assertion.

Remark 8.5. Notice that the differential forms 1
2π

√
−1
dlogχg(τ) and 1

2π
√
−1
dlogJg(τ) are not

Γg-invariant, but their cohomology classes are Γg-invariant.

Let G := Sp(2g,R) be the symplectic group and let Gδ be the same group endowed with the
discrete topology. Consider the universal covering

0 → Z → G̃→ G→ 0,(51)

which defines a central extension of Gδ by Z. Let e(G) ∈ H2(Gδ ,Z) be the cohomology class
corresponding to the central extension (51).

Recall that the automorphic factor j(τ, γ) is a nowhere vanishing holomorphic function on
Sg. Since Sg is simply connected, the logarithm of j(τ, γ) makes sense. Choose a branch of the

logarithm of j(τ, γ) and denote it by logσj(τ, γ) for γ∈Gδ . Define the function λσ : Gδ×Gδ→Z
by

(A,B)7−→ 1

2π
√−1

(
logσj(τ,AB) − logσj(B·τ,A) − logσj(τ,B)

)
(52)

for (A,B)∈Gδ×Gδ.

Lemma 8.6. The function λσ is a 2-cocycle of Gδ whose cohomology class is e(G).

Proof. For g = 1, see [BG, Lemma 2.1]. When g ≥ 1, we closely follow [BG]. Choose the branch
logσj(τ, γ) satisfying

Im logσj(
√
−1·12g, γ) ∈[0, 2π).(53)

Since the function λσ is measurable, the cohomology class [λσ] is a constant multiple of e(G) by
[Mc, Theorem 2]. Therefore it suffices to determine the restriction of the cohomology class [λσ]
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to the maximal compact subgroup of G. We identify the unitary group U(g) with the maximal
compact subgroup of G by the inclusion map defined by

ι : U(g) 3 Z 7−→
(

Re Z Im Z
−Im Z Re Z

)
∈G.

Since j(
√−1·12g, ι(Z)) = det(Z)−1 for Z∈U(g) and the isotropy subgroup at

√−1·12g∈Sg is
just U(g), we have

2π
√
−1λσ(Z1, Z2) = −logσdet(Z1Z2) + logσdet(Z1) + logσdet(Z2)(54)

for (Z1, Z2)∈U(g)×U(g). By (54), the restriction of the cohomology class [λσ] to U(g) is the
pull-back of the cohomology class corresponding to the universal covering

0 → Z → Ũ(1) ∼= R → U(1) → 1,

via the map det : U(g)→U(1). Since the induced map (det)∗ : π1(U(g)) → π1(U(1)) is an
isomorphism, we get [λσ] = e(G). Since the cohomology class is independent of the choice of a
branch of logσ j(τ, γ), we obtain the assertion.

Lemma 8.7. Let ι : Γg → Gδ be the natural inclusion. For g 6= 2 (resp. g = 2), the cohomology
class ι∗e(G) is a generator of H2(Γg,Z) (resp. the free part of H2(Γ2,Z)).

Proof. Let [τg] ∈ H2(Gδ,Z) be the original signature cocycle of G (see [Me] for definition). By
[Tu, Theorem 1], we have [τg] = 4e(G). Let ρ : Mg → Γg be the symplectic representation of
the mapping class group obtained by the action on H1(Σg,Z). By [Me], ρ∗ι∗[τg] is four times the
generator of H2(Mg,Z). Hence 4ι∗e(G) is four times the generator of H2(Γg,Z), which yields
the assertion.

Lemma 8.8. Let g ≥ 4. The map δ : H1(π1(S
◦
g, ∗),Z)Γg→H2(Γg,Z) is given by

(m,n)7−→(k1(g)m+ k2(g)n) ∈H2(Γg,Z)∼=Z

for (m,n) ∈ H1(π1(S
◦
g, ∗),Z)Γg ∼= Z⊕2. For g = 2, 3, the map δ is given by m7→k1(g)m.

Proof. Let σ : Γg → Sg be a section and write σ(γ) = [(lγ , γ)] ∈ Sg for γ ∈ Γg. Let α be an

element of H1(π1(S
◦
g, ∗),Z)Γg∼=Hom(π1(S

◦
g, ∗),Z)Γg . Then δ(α) : Γg×Γg→Z is given by

(A,B)7−→α
(
σ(A)σ(B)σ(AB)−1

)
∈Z, (A,B)∈Γg×Γg,

where we identify σ(A)σ(B)σ(AB)−1 with the corresponding preimage under the inclusion
π1(S

◦
g, ∗)→Sg. Write σ(A)σ(B)σ(AB)−1 = [(l(A,B), 1)]∈π1(S

◦
g, ∗), where l(A,B) is a loop on S

◦
g.

By (31), σ(AB)−1 = [(−(AB) · l(AB), (AB)−1)]. Hence l(A,B) is the composition of the paths
−(AB) · l(AB), (AB) · lB and A · lA. See Figure 1.

	

AB · ∗

∗

A · ∗

A · lA

(AB) · lB

−AB · l(AB)

Figure 1. loop l(A,B)
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Under the identification in Lemma 8.4, δ(m,n) for (m,n)∈H1(π1(S
◦
g, ∗),Z)Γg∼=Z⊕2 is given

by

δ(m,n)(A,B) =
1

2π
√−1

∫

l(A,B)

dlogχg(τ)
mJg(τ)

n ∈Z, (A,B)∈Γg×Γg.

By using the path −γ · lγ connecting ∗ and γ · ∗, we define the branch logσj(τ, γ) for γ∈Γg

satisfying

logσj(∗, γ) :=
1

k1(g)

∫

−γ·lγ
dlogχg(τ).

Then we get

2π
√
−1δ(1, 0)(A,B) =

∫

l(A,B)

dlogχg(τ)

=

∫

−(AB)·l(AB)

d logχg(τ) +

∫

(AB)·lB
d logχg(τ) +

∫

A·lA
d logχg(τ)

= k1(g)
[
logσ j(∗,AB) − logσ j(∗,A)

]
+

∫

B·lB
d logχg(A · τ)

= k1(g)
[
logσ j(∗,AB) − logσ j(∗,A)

]

+

∫

B·lB

[
d logχg(τ) + k1(g)d logσ j(τ,A)

]

= k1(g)
[
logσ j(∗,AB) − logσ j(∗,A)

]

+k1(g)[− logσ j(∗,B) + logσ j(∗,A) − logσ j(B · ∗, A)
]

= k1(g)
[
logσ j(∗,AB) − logσ j(B·∗, A) − logσ j(∗,B)

]
.

By Lemmas 8.6 and 8.7, we see that δ(1, 0) = k1(g)∈H2(Γg,Z)∼=Z. Similarly we get δ(0, 1) =
k2(g), which completes the proof.

Proof of Theorem 8.1. Since H1(Γg,Z) = 0 in the exact sequence (44), we get H1(Sg,Z) =
Ker(δ). By Lemma 8.8, we get Ker(δ) = 0, for 1 ≤ g ≤ 3 and Ker(δ) ∼= Z for g ≥ 4. This
completes the proof.

In the proof of Theorem 8.1, we also obtain

Proposition 8.9. One has H2(Sg,Z) 6= 0 for g ≥ 1.

Proof. Since k1(g) > 1 for g = 2, 3 and G.C.D(k1(g), k2(g)) > 1 for g≥4, δ is not surjective by
Lemma 8.8. By the exact sequence (44), we obtain the assertion.

9. The value for the Dehn twists

In this section, we compute the value of Φg for the generators of the subgroup π1(S
◦
g, ∗) ⊂ Sg

(cf. (32)). By Theorem 5.1, the Andreotti-Mayer locus Ng has two components θg and Jg such
that Γg \ θg and Γg \ Jg are irreducible divisors on Γg \ Sg. Let

∑
λ θg,λ and

∑
µ Jg,µ be the

irreducible decompositions of θg and Jg, respectively. Consider a lasso in Sg surrounding θg,λ

(resp.Jg,µ) and denote its homotopy class by Π1
λ (resp.Π2

µ). Then Π1
λ and Π2

µ define elements

of π1(S
◦
g, ∗) ⊂ Sg up to conjugacy classes. After [Ka], we call Π1

λ and Π2
µ the Dehn twists.
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Theorem 9.1. The following equalities hold :

Φg(Π
1
λ) =

{
−4

5 if g = 2,

(−1)
g
2
+1 (g+1)2g+2(2g+2−1)

(g+3)! B g
2
+1 if g ≥ 3.

Φg(Π
2
µ) = (−1)

g
2
+1 (g + 1)2g+3(2g+2 − 1)

(g + 3)!
B g

2
+1 if g ≥ 4.

Proof. Let ∆ := {z ∈ C | |z| ≤ 1} be the unit disc and set ∆r = {z ∈ ∆; |z| ≤ r} and
∆∗ := ∆ \ {0}. Let αi : S1 → S

◦
g be a representative of Πi

λ. Recall that the Zariski open subset
θ◦g ⊂ θg and J ◦

g ⊂ Jg were defined in Theorem 5.1. Let ρi : ∆ → Sg be a C∞-map with the
following properties :

(a) ρi|∂∆ = αi and ρi(∆
∗) ⊂ S

◦
g.

(b) ρi|∆ 1
3

: ∆ 1
3
→ ρi(∆ 1

3
) ⊂ Sg is a holomorphic embedding with

ρi(re
√
−1θ) = ρi

(
2

3
e
√
−1θ

)
,

2

3
≤ r≤1, 0≤θ < 2π.

(c) ρ1(∆) intersects θg at ρ1(0) ∈ θ◦g transversally, and ρ2(∆) intersects Jg at ρ2(0) ∈ J ◦
g

transversally.

Let

$ : Xi := ∆ ×ρi Θ −→ ∆,

be the family of theta divisors over ∆ induced from the universal family p : Θ → Sg by ρi. Let
pr : Xi → Θ be the projection to the second factor. By Condition (c), Xi is a C∞-manifold.
By Conditions (a), (c) and Theorem 5.1, Sing

(
$−1(0)

)
consists of one ordinary double point

(resp. two ordinary double points) and $−1(z) is a smooth theta divisor for z ∈ ∆∗. Notice
that ∂Xi endowed with the orientation induced from Xi is diffeomorphic to the mapping torus
M(Πi

λ)−1 endowed with the natural orientation (cf. Definition 2.5), i.e., ∂Xi = −MΠi
λ
. For

simplicity, set Mi := MΠi
λ

Let g∆ be a metric on T∆ such that

g∆ =

{
dr2 + dθ2 (|r| > 2

3 ),

p∗g
�

g (|r| < 1
3 ).

(55)

Let D be the set of singular points of the central fiber $−1(0). Let gXi/∆ be the metric

on T (Xi/∆)
∣∣
Xi−D induced from the metric gΘ◦/

�
◦

g via the map ρi. Let Pi be the connection

induced from the connection PΘ on Θ◦ via the map ρi. Using Pi, define the metric on TXi
∣∣
Xi−D

by g̃Xi
:= gXi/∆ ⊕$∗g∆. Since pr

∣∣
$−1(∆1/3)

: $−1(∆1/3) → Θ is a holomorphic embedding and

preserves the metric outside D by Lemma 5.3 and since the metric gΘ := g
�

g |Θ is defined on

the total space Θ, the metric g̃Xi
extends to a metric gXi

on TXi. Set

gXi

ε := gXi⊕ε−1$∗g∆, ε∈R>0.

By Condition (b), ρi is constant in the radial direction when 2
3 ≤ r ≤ 1. Hence gXi

ε is a

product metric on a color neighborhood of the boundary ∂Xi by Lemma 2.4 (c) and (55). The

Atiyah-Patodi-Singer index theorem applied to (Xi, gXi

ε ) yields that

Sign(Xi
g) =

∫

Xi

L(TXi, gXi

ε ) + η(Mi, g
Mi
ε ).(56)

Here, ∂Xi is identified with −Mi, and gMi
ε is the restriction of gXi

ε to the boundary ∂Xi∼=−Mi.
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Lemma 9.2. The following equality holds :

lim
ε→0

L(TXi, gXi

ε )(2g) = L(T (Xi/∆),∇Xi/∆)(2g) + P (−t, · · ·, (−t)g)|tg ·
∑

p∈D
µ(p)δp.

Here the diferential form L(T (Xi/∆),∇Xi/∆) on Xi \ D extends to a C∞-differential form on
Xi. The constant µ(p) is the Milnor number of the singular point p ∈ D, δp is the Dirac delta
current supported at p, and P (x1, · · · , xg) ∈ C[[x1, · · · , xg]] is defined by

g∏

k=1

L(xk) = P (σ1, · · ·, σg),

where σ1 =
∑

k xk, σ2 =
∑

i>j xixj , · · ·, σg =
∏

k xk are the elementary symmetric polynomials.

Proof. On Xi \D, the assertion follows from Proposition 2.8. Let U ⊂ Xi be an open neighbor-
hood of D contained in $−1(∆ 1

3
). By Condition (b) and the equality (24), we have

L(TXi, gXi

ε )|U = (pr|U )∗L(TΘ, gΘ
ε ) = (pr|U )∗L(T 1,0Θ, gΘ

ε ),(57)

where gΘ
ε := gΘ ⊕ ε−1p∗g

�
g . By [YY, Main Theorem 2.2], we get

lim
ε→0

L(T 1,0Θ, gΘ
ε )(2g)|pr(U) = L(T 1,0(Θ/Sg),∇h)(2g)|pr(U) + P (−t, · · · , (−t)g)|tg ·

∑

p∈pr(D)

µ(p)δp,

which together with (57), yields the assertion.

Lemma 9.3. The following equality holds :

P (−t, · · ·, (−t)g)|tg = L−1(t)|tg =
(−1)g/22g+2(2g+2 − 1)

(g + 2)!
B g

2
+1

Proof. Consider the exact sequence of vector bundles over Pg:

0 → O(−1) → Cg+1 → E := Cg+1/O(−1) → 0.

For a complex vector bundle F over Pg, recall that L(F ) ∈ H∗(Pg,Q) denote the multiplicative
genus of F associated with L(x) (cf. (24)) and let c(F ) denote the total Chern class of F .
Set t := c1(O(−1)). Since c(O(−1)) · c(E) = c(Cg+1) = 1 and c(O(−1)) = 1 + t, we have
c(E) =

∑g
k=0(−t)k, which together with L(O(−1)) = L(t), L(E) = P (c1(E), · · · , cg(E)) and

L(O(−1)) · L(E) = L(Cg+1) = 1, yields that

P ((−t), · · · , (−t)g) = L(E) = L(O(−1))−1 = L−1(t) ∈ H∗(Pg,Q) ∼= Q[t]/(tg+1).

This proves the first equality. Since L−1(t) = tanh(t)/t by (23), the second equality follows from
(30).
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Since p ∈ D is a non-degenerate critical point of $ : Xi → ∆, we get µ(p) = 1. Taking the limit
ε→ 0 in (56), we get by Lemma 9.2, Theorem 5.6 and Lemma 9.3

Sign(Xi) =

∫

∆
$∗pr

∗L(T (Θ◦/Sg),∇Θ◦/
�

g ) + L−1(t)|tg + η0(Mi)

=

∫

∆
ρ∗i p∗L(T (Θ◦/Sg),∇Θ◦/

�
g )

+ i
(−1)g/22g+2(2g+2 − 1)

(g + 2)!
B g

2
+1 + η0(Mi)

=
(−1)g/22g+1(2g+2 − 1)

(g/2 + 1)(g + 1)
B g

2
+1

∫

∆
ρ∗ddclogdetImτ

+ i
(−1)g/22g+2(2g+2 − 1)

(g + 2)!
B g

2
+1 + η0(Mi).

(58)

By (58) and Definition 7.1, we get

Φg(Π
i
λ) = η0(Mi) +

(−1)g/22g+3(2g+2 − 1)

(g + 3)!
B g

2
+1

∫

∂∆
ρ∗dc

(
log|∆g(τ)|2(detImτ)

(g+3)·(g)!
2

)

= −i(−1)g/22g+2(2g+2 − 1)

(g + 2)!
B g

2
+1 + Sign(Xi)

+
(−1)g/22g+3(2g+2 − 1)

(g + 3)!
B g

2
+1

∫

∆
ρ∗ddclog|∆g(τ)|2

= i
(−1)

g
2
+1(g + 1)2g+2(2g+2 − 1)

(g + 3)!
B g

2
+1 + Sign(Xi),

(59)

where we used the Poincaré-Lelong formula and Theorem 5.2 to get the last equality.
When g = 2 and i = 1, since the singular fiber has two irreducible components and hence

Sign(X1) = −1, the assertion follows. We complete the computation in the case g ≥ 3 and
i = 1, 2 by Lemma 9.4 below.

Lemma 9.4. Let π : X → ∆ be a proper surjective holomorphic map from a complex manifold
X of dimension 2n to the unit disk ∆. Assume that π has only finitely many critical points which
are non-degenerate and lie in the central fiber X0. If n > 1, then Sign(X) = 0.

Proof. By the assumption, there are points p1, · · · , pl ∈ X0 and open neighborhoods Uk of pk in
X such that

π(zk
1 , · · · , zk

2n) = (zk
1 )2 + · · · + (zk

2n)2, (zk
1 , · · · , zk

2n) ∈ Uk,

and such that the induced map π∗ : TX → T∆ has maximal rank on X\{p1, · · · , pl}. Let ε ∈ R>0

be a small number. We may assume that each V k := {(zk
1 , · · · , zk

2n) ∈ C2n | |zk
1 |2 + · · ·+ |zk

2n|2 <
ε2} is contained in Uk. Fix a ρ ∈ R>0 with ρ < ε2. Set

D := ∆ρ, X := π−1(D), X◦ := X \ ∪l
k=1V

k, F := π−1(0), F ◦ := F ∩X◦.

Since X is diffeomorphic to X, it suffices to show Sign(X) = 0. Consider the following commu-
tative diagram of the homologies induced from natural inclusions:

H2n(X◦,Z)
(f)−−−→ H2n(X \ {p1, · · · , pl},Z)

(a)−−−→∼=
H2n(X,Z)

(e)

x∼= ∼=
x(b)

H2n(F ◦,Z)
∼=−−−→
(d)

H2n(F \ {p1, · · · , pl},Z)
∼=−−−→
(c)

H2n(F,Z).

(60)
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Here the isomorphisms (a) and (c) follow from the fact that the submanifold {p1, · · · , pl} of X
(resp.F ) has real codimension 4n (resp. 4n−2), (b) and (d) follow from the fact that F (resp.F ◦)
is a deformation retraction of X (resp.F \ {p1, · · · , pl}). By Ehresmann’s fibration theorem for
manifolds with boundary [L, p. 23], there is an isomorphism of C∞-fiber bundles X◦ ∼= F ◦ ×∆.
Since ∆ is contractible, we obtain the isomorphism (e).

By (60), the map (f) is an isomorphism. Hence we get the commutative diagram

H2n(Xt ∩X◦,Z)
∼=−−−→ H2n(X◦,Z)

y
y∼=

H2n(Xt,Z) −−−→ H2n(X,Z)

(61)

for any t ∈ ∆. By (61), the map H2n(Xt,Z) → H2n(X,Z) is surjective for any t ∈ ∆. Therefore
every c ∈ H2n(X,Z) can be represented by a 2n-cycle contained in the fiber Xt for any t ∈
∆. Since the intersection number of any two 2n-cycles contained in different fibers is zero,
the intersection matrix of the lattice H2n(X,Z) is the zero matrix, from which the assertion
follows.

Remark 9.5. When g = 2, σ2∈M2 is the Dehn twist along a separating simple closed curve
on a Riemann surface of genus two. Since Sign(X2) = −1 and B2 = 1

30 , we obtain φ2(σ2) =

Φ2(σ2) = −4
5 , which confirms [Ma, Proposition 3.6].

10. An interpretation of Φ2 in terms of η-forms

In this final section, following Dai’s results [Da], we study the Meyer function Φ2 of genus two
from the view point of the Bismut-Cheeger η-forms and we give another analytic representation
of Φ2.

We first recall one of the main results in [Da] briefly. Let π : X → B be a fiber bundle with
typical compact fiber M such that dim�X = 4k− 1 and dim�M = 2m. Assume that X, B and
M are oriented and the orientations are compatible. Give a metric gB on TB, a metric gX/B

on T (X/B) and a connection PX on X. Define the one parameter family of metrics on X by

gX
ε := gX/B ⊕ ε−1π∗gB , ε ∈ R>0.

Then one obtains the adiabatic limit η0(X) as in Section 3.
Let (Er, dr), r ≥ 2 be the Er-term of the Leray spectral sequence of the fiber bundle π : X →

B. The orientations of B and M give a natural basis ξ2 of E4k−1
2 , which induces a basis ξr of

E4k−1
r for r > 2. (See [CHS, Sect. 4.3] for details.) Consider the symmetric bilinear product

E2k−1
r × E2k−1

r → R defined by

(ω1, ω2) 7→ (ω1 · drω2, ξr), ω1, ω2 ∈ E2k−1
r ,

and denote its signature by τr. Set τ :=
∑

r≥2 τr.

Let Rπ∗C := ⊕Rkπ∗C be the direct image sheaf, which is a locally constant sheaf. We identify
Rπ∗C with the corresponding flat vector bundle on B. Since the fiber of (Rπ∗C)b is isomorphic
to the space of harmonic forms on the fiber Xb := π−1(b), the vector bundle Rπ∗C carries the
L2-metric gRπ∗

�

and also carries the Hodge star operator ∗M ∈ C∞ (B,End(Rπ∗C)). Let ∗B be
the Hodge star operator on the base space B. Define the involution τ acting on A∗(B,Rπ∗C)

by τ := (−1)k+p(p−1)/2+q(q−1)/2 ∗B ⊗∗M on Ap(B,Rqπ∗C). Let dRπ∗

�

be the exterior differential
acting on A∗(B,Rπ∗C). Set

DB ⊗Rπ∗C := τdRπ∗

�

+ dRπ∗

�

τ,

which is a differential operator acting on A∗(B,Rπ∗C).
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Let η̂(X) ∈ Aodd(B) be the η-form of the family π : X → B associated with the metric gX/B

and the connection PX , introduced in [BC1].

Theorem 10.1 ([Da, Theorem 0.3]). The following equality holds :

η0(X) = 2

∫

B
L(TB, gB) ∧ η̂ + η(DB ⊗Rπ∗C) + 2τ,

where η(DB ⊗Rπ∗C) denotes the η-invariant of the differential operator DB ⊗Rπ∗C (See [Da,
Section 4] for the precise definition).

We keep the notation in Section 7.

Theorem 10.2. For σ ∈ M2, let (α, γ) be a representative of σ. Let p : M(α,γ) → S1 be the
mapping torus associated with σ. Then

φ2(σ) = η(DS1 ⊗Rp∗C) − 4

5

∫

S1

α∗dc log ‖χ2(τ)‖2.

Proof. By Theorem 10.1, we have

η0(M(α,γ)) = 2

∫

S1

L(S1, dt2) ∧ η̂(M(α,γ)) + η(DS1 ⊗Rp∗C) + 2τ.(62)

Since dim�S1 = 1, all the differential dr in the Leray spectral sequence (Er, dr) is the zero map
and hence τ = 0. Since L(S1, dt2) = 1, we get by Corollary 7.3 and (62),

φ2(σ) = 2

∫

S1

η̂(M(α,γ)) + η(DS1 ⊗Rp∗C) − 2

15

∫

S1

α∗dc log ‖χ2(τ)‖2.(63)

Let f : C := Θ◦ → S
◦
2 be the universal family of curves of genus two. Recall that the Kähler

metric gC := gΘ◦

and the connection PC := PΘ were defined in Section 5. Denote by η̂1(C)
the 1-form component of the η-form of the family f : C → S

◦
2 associated with gC and PC .

By the functorial property of the Bismut superconnection [BGV, Proposition 10.15] and the
definition [BC1, Definition 4.33], the η-form has the functorial property η̂(M(α,γ)) = α∗η̂1(C),
which together with (62) and Theorem 10.3 below, yields the result.

Theorem 10.3. The following equality holds :

η̂1(C) = −1

3
dc log ‖χ2(τ)‖2.

Proof. We recall the relation of the signature operator and the Dolbeult operator on Riemann
surfaces. Let C be a compact Riemann surface. Let ι be the involution acting on A∗(C) defined
by

ι(ω) := (
√
−1)p(p−1)+1 ∗ ω, ω ∈ Ap(C).

Denote by A±(C) the ±1 eigenspaces of the involution ι. Let D be the signature operator
d+ d∗ : A±(C) → A∓(C). Then the following diagram is commutative and the vertical arrows
preserve the L2-metrics.

A+(C)
D−−−→ A−(C)

f+

x
xf−

A0,0(C) ⊕A1,0(C) −−−→√
2∂̄

A0,1(C) ⊕A1,1(C)

(64)

Here, for ωi,j ∈ Ai,j(C),

f+(ω0,0, ω1,0) :=
1√
2

(
ω0,0 + ι(ω0,0)

)
+ ω1,0, f−(ω0,1, ω1,1) := ω0,1 +

1√
2

(
ω1,1 − ι(ω1,1)

)
.
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The diagram (64), together with [B, p.153], yields that

η̂1(C2) = −dc log
(
det′�0,1

τ det′�1,1
τ

)
,(65)

where det′�i,j
τ is the regularized determinant of the ∂̄-Laplacian 2(∂̄∂̄∗+ ∂̄∗∂̄) acting on Ai,j(Cτ ).

By [Y2, Theorem 5.1], we have det′�0,1
τ = det′�1,1

τ = ‖χ(τ)‖ 1
3 , from which and (65) the assertion

follows.

Appendix A. The Meyer function for tori

In this appendix, we investigate the signature cocycle for torus fibrations associated with
SL(4g − 2,Z)-vector bundles and relate it to η-invariants. We closely follow [A2]. We refer to
[BC2] for further studies of η-invariants of torus fibrations.

Recall that B is a sphere with three holes and let g1 and g2 be the generators of π1(B) as in
Section 6. For σ1, σ2 ∈ SL(4g − 2,Z), we define the homomorphism ρ : π1(B) → SL(4g − 2,Z)
by

ρ(gk) = σk, k = 1, 2.(66)

Let p : Eρ := B̃×ρ R4g−2 → B be the flat real vector bundle of rank 2g−2 associated with ρ and

let Λρ := B̃ ×ρ Z4g−2 ⊂ Eρ be the corresponding family of lattices. Then the fiberwise quotient
Eρ/Λρ is a torus fibration over B, which is a compact oriented 4g-dimensional manifold with
boundary. We call Eρ/Λρ the torus fibration associated with Eρ. We define

tg : SL(4g − 2,Z) × SL(4g − 2,Z) −→ Z, (σ1, σ2) 7→ Sign(Eρ/Λρ).

By the same argument as in [A2, p.343], tg is a 2-cocycle of SL(4g−2,Z). In particular, t1 ≡ τ1.
Since H1(SL(n,Z),Z) = 0 for n ≥ 1 and H2(SL(n,Z),Z) = 0 for n ≥ 3 by [Mi, Section 10],
there exists a unique function ψg : SL(4g − 2,Z) → Z for g ≥ 2 which cobounds −tg, i.e.,

tg(σ1, σ2) = −ψg(σ1) − ψg(σ2) + ψg(σ1σ2), σ1, σ2 ∈ SL(4g − 2,Z).(67)

We call ψg the Meyer function for tori. The Novikov additivity for signatures yields

Proposition A.1. Let S be a compact oriented 2-dimensional manifold with boundary ∂S =
c1 q · · · q cn. Let E be a flat SL(4g − 2,Z) real vector bundle over S with monodromies σk ∈
SL(4g−2,Z) on ck, 1 ≤ k ≤ n. Let π : M → S be the torus fibration associated with E. Assume
that g ≥ 2. Then

Sign(M) = −
n∑

k=1

ψg(σk).

Proof. By the same argument as in [A2, p.357], we obtain the assertion.

For σ ∈ SL(4g− 2,Z), let p : E → S1 be the flat real vector bundle over S1 with monodromy
σ. Let p : Mσ → S1 be the corresponding torus fibration. Fix a metric gE and a connection

∇E on E. Then gE induces the metric gMσ/S1
on the relative tangent bundle T (Mσ/S

1) and
∇E induces the connection TMσ

∼= THMσ ⊕ T (Mσ/S
1) of the torus fibration Mσ (see [BGV,

Section 1.1]). Define the one parameter family of metrics on Mσ by

gMσ
ε := gMσ/S1 ⊕ ε−1π∗dt2, ε ∈ R>0.

Recall that η0(Mσ) := limε→0 η(Mσ , g
Mσ
ε ) as in Section 3.

Proposition A.2. For any σ ∈ SL(4g − 2,Z), ψg(σ) = η0(Mσ).
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Proof. By [BC2, Theorem 3.8], η0(Mσ) does not depend on gE and ∇E. Hence the map η0 :
SL(4g − 2,Z) → Z defined by σ 7→ η0(Mσ) is well-defined. By the uniqueness of the function
that cobounds −tg, it is enough to show that the function η0 satisfies (67).

For σ1, σ2 ∈ SL(4g − 2,Z), let ρ : π1(B) → SL(4g − 2,Z) be the homomorphism defined by
(66). Let Eρ be the flat vector bundle associated with ρ and denote the torus fibration associated
with Eρ by p : Xρ → B. Notice that ∂Xρ = Mσ1 qMσ2 q−Mσ1σ2 . Let ∇Eρ be a connection on
Eρ. Then we have the splitting (cf. [BC2, p.353])

TXρ
∼= p∗Eρ ⊕ p∗TB.(68)

Let gEρ and gB be metrics on the vector bundles Eρ and TB, which are product metrics on
a color neighborhood of the boundary. Using the splitting (68), we define the one parameter
family of metrics on TXρ by

g
Xρ
ε := p∗gEρ ⊕ ε−1p∗gB, ε ∈ R>0.

Since g
Xρ
ε is a product metric on a color neighborhood of the boundary, we get by the Atiyah-

Patodi-Singer index theorem

Sign(Xρ) =

∫

Xρ

L(TXρ, g
Xρ
ε ) − η(∂Xρ, g

Xρ
ε |∂Xρ).(69)

By Proposition 2.8 and (68), we get

lim
ε→0

L(TXρ, g
Xρ
ε )(4g) =

(
p∗L(Eρ, g

Eρ)p∗L(TB, gB)
)(4g)

= 0,(70)

because dim�B = 2 and rankEρ = 4g − 2. Moreover,

lim
ε→0

η(∂Xρ, g
Xρ
ε |∂Xρ) = −η0(Mσ1) − η0(Mσ1) + η0(Mσ1σ2).(71)

Since Sign(Xρ) = tg(σ1, σ2), the assertion follows from (69), (70) and (71).

Remark A.3. By Proposition A.2, we have η0(Mσ) ∈ Z, which confirms [BC2, Proposition
5.4]. By [OS, Theorem 5.7], η0(Mσ) 6= 0 for some torsion element σ ∈ SL(4g − 2,Z). Hence ψ
is a non-trivial function on SL(4g − 2,Z).

Appendix B. An integration of the Bott-Chern secondary form

In this appendix, we prove the last equality in Eq.(28). We keep the notation in Section 5.

Proposition B.1. Let F (x)∈C[[x]] be a formal power series with F (0) 6= 0. For a complex

vector bundle E, let F (E) be the multiplicative genus associated with F (x). Let F̃ (E; gE,1g , gE,G)
be the corresponding Bott-Chern secondary form. Then

∫
�
(W∨)

F̃ (E; gE,1g , gE,G) = k(F, g)logdetG.

Here k(F, g) is the constant defined by

k(F, g) :=

(
F

′

(0)

F (0)
·F−1(x) − 1

g
F

′

(x)·F−2(x)

) ∣∣∣
xg−1

.(72)

Proof. We follow [Y2, Proposition 5.1]. Put H = log G and gt := gexp(tH). Then {gt}0≤t≤1

is a one-parameter family of metrics connecting g1g and gG. Its restriction to E is denoted by

gE,t. Let W∨ = E ⊕t E
⊥
t be the orthogonal decomposition of W∨ relative to gt. Let gN,t be the
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metric on N via the C∞-identification N ∼= E⊥
t . With respect to this splitting, H ∈ End(W∨)

can be written as follows:

H =

(
H11(t) H12(t)
H21(t) H22(t)

)
, H11(t) ∈ End(E).(73)

Let RE,t be the curvature of (E, gE,t), and put c1(Et) :=
√
−1
2π TrRE,t. Let RN,t be the

curvature of (N, gN,t) and put c1(Nt) :=
√
−1
2π RN,t. Since Nt = O�

(W∨)(1), the 2-form c1(Nt)

represents c1
(
O�

(W∨)(1)
)
. By [Y2, Eq. (5.12)], we have

[
F̃ (E; gE,0, gE,1)

](g−1,g−1)

=
1

g − 1
TrH

∫ 1

0
Ḟ (RE,t)

(g−1,g−1)dt− 1

g − 1

∫ 1

0
H22(t)Ḟ (RE,t)

(g−1,g−1)dt,

(74)

where Ḟ (RE,t) := d
dε |ε=0 detF (ε1g−1 +

√
−1
2π RE,t). By [Y1, Eq.(2.8)], we get detF (

√
−1

2π RE,t) ·
F (c1(Nt)) = 1 and

Tr

[(
F

′

(

√−1

2π
RE,t)

)
F−1(

√−1

2π
RE,t)

]
+ F

′

(c1(Nt))F
−1(c1(Nt)) = TrF

′

(0g)F
−1(0g)

= F
′

(0)F−1(0)g,

where 0g is the g × g zero matrix. These, together with the definition of k(F, g), yields that

Ḟ (RE,t)
(g−1,g−1) =

[
detF

(√−1

2π
RE,t

)
Tr

(
F

′

(√−1

2π
RE,t

)
F−1

(√−1

2π
RE,t

))](g−1,g−1)

=
[
F−1(c1(Nt)){g · F ′(0)F−1(0) − F ′(c1(Nt))F

−1(c1(Nt))}
](g−1,g−1)

(75)

= g·k(F, g) c1(Nt)
g−1.

Comparing (74) and (75), we get
∫
�
(W∨)

F̃ (E; gE,0, gE,1) =
g

g − 1
k(F, g)

(
TrH −

∫ 1

0
dt

∫
�
(W∨)

H22(t)c1(Nt)
g−1

)
,(76)

where we used the identity
∫
�
(W∨) c1(Nt)

g−1 = 1. By [Y2, p.91 l.12-p.92 l.5], we have

TrH −
∫ 1

0
dt

∫
�
(W∨)

H22(t)c1(Nt)
g−1 =

g − 1

g
TrH,

which together with (76), yields that
∫
�
(V∨)

F̃ (E; gE,0, gE,1). = k(F, g)TrH.

This, combined with TrH = log det G, yields the assertion.
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