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Abstract

In the present paper, we give an asymptotic expansion of probability density for a com-
ponent of general diffusion models. Our approach is based on infinite dimensional analysis
on the Malliavin calculus and Kusuoka-Stroock’s asymptotic expansion theory for general
Wiener functionals [10]. The initial term of the expansion is given by the ‘energy of path’
and we calculate the energy by solving Hamilton equation. We apply our approach to the
problems of mathematical finance. In particular, we obtain general asymptotic expansion
formulae of implied volatilities for general diffusion models, e.g. CEV model, displaced
diffusion and SABR model.

1 Introduction

There are many applications of asymptotic expansion theory to mathematical finance. Most pop-
ular application is the singular perturbation approach. For example, Hagan-Woodward [4] gave
an asymptotic expansion formula of implied volatilities for local volatility models and Hagan-
Kumar-Lesniewski-Woodward [5] gave a formula for a stochastic volatility model named SABR
model. Their formula is well-known for practitioners. Berestycki-Busca-Florent [2] applied
non-linear PDE analysis to this problem. Henry-Labordeére [6] applied a heat kernel expansion
method and gave an asymptotic expansion formula for mean-reverting SABR model.

In this paper, we take another approach based on Malliavin calculus. The theory of asymp-
totic expansions of probability densities based on Malliavin calculus was originated by Bismut [3]
and was developed by Watanabe [14] and Kusuoka-Stroock [10], [11]. Many applications of this
theory to finance were given by Yoshida [15], Takahashi-Kunitomo [8] and Jaeckel-Kawai [7]. In
[12], we gave an asymptotic expansion of implied volatilities of call options for dynamic SABR
model by using this theory.
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In this paper, we apply the methods of Kusuoka-Stoock [11] to mathematical finance. The
key theorem is given in [9]. We consider the asymptotic expansion of implied volatilities of call
options. Finally we give some explicit formulae for general diffusion models including SABR
model.

Let us explain our results. Let (2, F, P) be a probability space and let {W(¢),--- ,W(t); t €
[0,7]} be a d-dimensional Brownian motion. Let Vp,---,Vy € C°([0,7] x RY;RN). Here
Co([0,T] x RN;RN) denotes the space of RY -valued smooth functions defined in [0, 7] x RY
whose derivatives of any order are bounded.

Now let X.(t),t € [0,T],e € (0, 1], be the solution to the stochastic differential equation

d
(1.1) dXi(t) = ZsV,f(t,XE(t))de(t) + Vi(t, X.(t)dt, 1<i<N,
k=1
X.(0) =z = (x0,...,2)), o RV,

We assume
(A1) Vo =0,
and the ellipticity of V1,--- , Vg, at xg, i.e. there exists a constant § > 0 such that
d
(A2) > Vi(0,20) ® Vi (0,20) > 61,
k=1

where I denotes the identity matrix. Then there exists a unique solution to this equation.
Moreover we assume that X, (¢) is continuous in ¢ with probability one.

We investigate the distribution of X!(7). From the ellipticity condition(A2), the law of
X!(T), denoted by v,, is absolutely continuous and has a smooth density p.(y). Let H be the
Cameron-Martin space. We consider the associated ordinary differential equation

d
(1.2) = Vilty(t )R () + Vit y(t;h), t€[0,T], heH,
k=1
y(0;h) = xp, o € R".

We define the energy function e : R — R by
1< T
(1.3) e(y) = inf{5 Z/O |hi(s)2ds; h € H, y'(T;h) = y}.
i=1

Since V! = 0, this energy function satisfies e(z}) = 0. Let us define a flow ¢ : [0, 7] x RY — RY
by

Solt.r) =Vo(t o(t,)), tE,T], xR,

#(0,2) =2

(1.4)



Then the map ¢(t,-) : RN — RN t € [0,7T] is a diffeomorphism denoted by ¢;. Note that ¢; is
an identity map. We define

(1.5) Vit Z o (oL (8 e(ty), 1<i<N, 1<k<d,

which is the push-forward of the vector field V' by the map ¢;. Let us define (¢)1<; j<n :
[0, 7] x RY — R by

Vit )V (tx), 1<i,j<N.

M=

g7 (t,x) =

ES
Il
—

From (A2), the matrix (¢%/);<; j<n is non-negative definite corresponding to Riemaniann metric
on RY. We define the generating operator Ly, t € [0,T] by

(1.6)
N
(L)) =5 3 o) o)+ Zb’ feCE®EY), weRY, te,T)
2,]=

where b € C2°([0,T] x RV; RY) is given by

LN Py
(17) =5 23 s (CE OV S WIVA (6l y), 1< i< N.

k,l=1m=1

Let us define linear operators V : C°([0,7] x RY) — C°([0,T] x RY) and T : C°([0,7] x
RY) @ C2°([0,T] x RY) — C2°(RN) by

(1.8) V)tz) = ig”(t,x) /T ggl (s,z)ds
T o9
(1.9) ’]Zl/ (, / 39& )d )( . OxJ 97 (501 )d

Our main result is the following.

THEOREM 1.1. There is a constant ro > 0 satisfying the following.
(1) The energy function e € C*([x} — ro,x} + o)) and there is a constant Cy > 0 such that the
asymptotic expansion of energy e satisfies

1 1\2 ba 143 bs b2 5
. — | —(y - - = (y-— — < —
(110) Jetw) = [t = o0)* = 5= a)* + (=g + 5 ) = #0)'] | < Coly =t

y € [xg — 10, 25 + 0],

where

T 3 T
(111) b1 :/ g (t 1’0 dt b2 5/ Vgu t l‘[) dt
0 0

T
=2 [ (P taohde+ 576" g o)



(2) There are constants Cy, Co > 0 such that the probability density p-(y) satisfies following.

(1.12) ‘(27752)% exp(%)pg(y) —ap(y) — 52a2(y)‘§ e2Cy,  y € [z — 1o,z + 7o)

Here, ay and ay are continuous functions such that

1

d%e 3 Ly — x})?
113)  Jaolw) - () exp(FE) | < Coly - o € fnd = rovah 4 vl
1

and

1 L 5b3 30
(1.14) az(ah) = —=( 2422,

NS AR
where
(1.15) L :/ Lu(g' (8, ) (o) dudt.
O<u<t<T

Next, we apply our results to mathematical finance. We investigate the asymptotic expansion
of the value of call options and their implied volatilities. We regard X! as the underlying of
options. Then the forward value of a call option of strike rate K and maturity 7 is given by

C.(T,K) = E[(X}T) - K)*], £€(0,1], K >0.

€

We define smooth functions ¢, € Cy°([0,00)), n > 0, by

00 22
(1.16) on(z) = / 2" exp(—xz — ?)dz, x> 0.
0

Some properties of ¢, are given in Appendix A. Since (1.10), we can define the following function
VIS 02([95(1) - 7“0,96(1) + 70]; Ry ) such that

1 T ody \? 1 1
(1.17) e(x):—(/ —) , T € [xy—r0, 20+ 10)-
2 z} Q(y) [ 0 0 ]
Then the asymptotic expansion of values of call options are given by the following.

THEOREM 1.2. There are constants K1 < Ky and C7 such that the value of the call option
with strike rate K, maturity T satisfies

\\/ﬁexp(e(g))cg(n K) - 5a0(K)q(K)2<p1(7v266(K))RQ(S,K)‘ <yt
where
(1.18)
_ ap(K) | 3q(K)\p2(\/2e(K)/e) oflag(K) | ap(K)¢'(K)
Rale, K) = ealB) (G205 * 5 gty o Taere) o 1 (5 e * 2an(i) o)

7(q’(K)>2+2q”(K)}s03(\/26(K)/€) L 202(K)
3.4(K) Lo (y/2e(K)/e)  ao(K)



Next we calculate the asymptotic expansion of implied volatilities of call options. Let us

define f € C*°(Ry;R}) by

11 2

(1.19) flx) = T exp(—?)gol(x), x> 0.

We can easily check that f is strictly decreasing and

f(04) =00,  f(o0) =0.

Therefore the inverse function f~!: R, — R, is well defined. When we consider the following
normal model

dX (t) = odW(t), X(0) =z,

the value of the call option with strike rate K and maturity 7" is given by

Cy(T,K) = z+xp — K)exp(—

22 K—mé)

1 o0
\/ﬁ/oo( QUZT)dﬂﬁ:(K—ﬂﬁé)'f( T

Therefore the implied normal volatility can be written as

K—x(l)
FUCAT, K) /(K — x))VT

oy(T,K) = . K>z

The asymptotic expansion of the implied normal volatilities are given by the following.

THEOREM 1.3. The asymptotic expansion of implied normal volatilities are given by

5|K—3U(1)| -1 1\3 1
1.20 ‘7 on(T,K) —ex J‘SC&‘-I—K—%’ , K €lxp, Kq],
(1.20) (Faeyy) oK) —exp(D)| < Ofe + K ) [y, K]
where
|K —xj> /L 163 1b3 2¢(K), €2/ L 5b3 3b3 2¢(K)
121) J="2 0 (2 22 S (M) - (2 22 P (VY
(121) J b2 (2 6 b? 4b1>‘p1( c )+b1< 2602 4b1) ()

+

362 4by

e |K -z} 2b2  3b 2e(K), €*/L b2 b 2¢(K)
o g g O g ()BT

+ —
\/E b1 b1 e

REMARK 1.4. Since we can give the same formula for put options, Theorem 1.3 still holds in
the case K < x(l). The implied volatility for a put option of strike rate K and maturity 7" is the
same as the implied volatility for a call option with the same strike rate and maturity because
we have put-call parity. See Appendix B for the details.

We also give a relation with the expansion based on Watanabe [14] and Yoshida [15]. Finally
we apply our theorem to some known models e.g. CEV model, displaced diffusion and SABR
model.



2 Hamilton equation and the energy of path

In this section, we investigate the correspondence between the Hamilton equation and the energy
of path defined by (1.3). It is enough to discuss in the case T = 1.
Let H be a separable real Hilbert space defined by

N 1
H= {h € Cp([0,1];RY) : h is absolutely continuous and Z/ ‘%hi(t)fdt < oo}.
i=170
The inner product is given by

(h,k)m = ;/0 hi(s)k'(s)ds.

This Hilbert space H is called the Cameron-Martin space.
Let y(t;h), t €[0,1], h € H, be the solution to the ordinary differential equation

d
d . . d . . .
o+ — 1 . . 2 . < <
i (t;h) E Vi (t,y(t; h))dth (t) +b'(t,y(t;h)), 1<i< N, tel0,1],

Here we consider the Hamiltonian with potential term. Let ¢ : [0,1] x RN — R be a smooth
function. We define the functional f: H — R by

1
F(h) = / ety (1) dt.

We define (g”)lgi,jSN : [0, 1] X RN —R by

We define Hamilitonian H : [0,1] x RY x RY — R by

N N
1 - )
(21) H(t,x,p) = 5 Z gZ] (tax)pipj + sz(t,fli)pi + C(t,IL‘).
1,j=1 =1

Then the correspondence between Hamilton equation and the energy of path is given by the

following,.

PROPOSITION 2.1. Let J;: : [0,1]x H — R be the solution to the following ordinary differential
equation

d N i ] N opi
iﬂ'(t; =YY g‘;’; (t,y(tR)J7 (t h)RE(E) +> gi, (t,y(t; h))Jj (£ h),

=1 r=1




where &;j is Kronecker’s delta. Let J(t;h) = J~'(t;h). We assume there is hg € H and X\ € RY
such that

N

(2.2) ho =Y MDyF(1, ho) + D f(ho).
k=1

We define x,p € C*°([0, T);RN) b

(2.3) z(t) = y(t; ho),
N ) N
£y =" Tt ho) (Z (1; ho /\k+/ (s (s ho)) TF (s ho)ds)
j=1 k=

Then (x,p) satisfies the following Hamilton equation, where Hamiltonian H is given by (2.1).

(2.4 () = Mt (0).p(0),
%pz( ) = —aii?[(t,x(t),p(t)), tel0,1, 1<i<N,

N
(2.5) CHb = S p Vi a(), 0<t<1, 1<k<d
N |
Il = 3~ [ gt )0 e
ij=1"0

Proof. We note that j;: :[0,1] x H — R satisfies the following ordinary differential equation.

d d N ) N 9 B
Tj(th) = =3 Y SVt ()Tt R () = D 5V (y(t ) i (E ),
k=1r=1 r=1
Ji(0;h) =65, 1<i,j<N.
From Proposition 6.6 in Shigekawa [13], we have
d N 1
(2.6) Dy (1)K = Z (1;h) / T5 (6 )V (t,y(t; b)) (t)dt, 1 <i< N,
11 0
Nl 11 C |
1) DI =Y [ G5 eyt Dy e
=1
N 1 )
- 1221]2:1/0 FL () T (6 )V (¢, y (£ B / (s (s ) Ji (s h)ds)d



We can check that (z(t),p(t)), 0 <t <1, satisfies (2.4) as follows.

d
Emi(t) =Y Vit y(t; ho)) B () + b (£ y(t; ho))
k=1

N
=" gt a(t)p; (1) + b (5 2(1)),

g b o
(8, y(t: )y (DR () =) 51 By R)pe(2)
r=1

N ; N .
ag’" b7 Jc
== Z Oxt (t,l‘(t g (9— ](t) ox l(t Q"(t))
Since the definition of p, we have A = p(1). Since hy = Zi:l \iDyi(hg) + Df(hg), we see that

N d
0.1 =325 [ momi s )i
=1

=1

Therefore we have (2.5). O

REMARK 2.2. We define the functional £ : H — R by

Z/ \—h’f t)|>dt — £(n).

Then the condition (2.2) is obtained by the Euler-Lagrange equation associated with
inf{E(h); y(1; h) = z}.
Let us define the following notations.

g L g 10— 000

lim = =0, k>0, f,g€C(0,1]).

In the following case, we obtain the asymptotic solutions.

PROPOSITION 2.3. Suppose that Hamiltonian is given by (2.1) with b=0, ¢ =0 and

Jw (i=1), weR
(2:8) AZ_{o (2<i<N).

Let x(t;w), p(t;w) be the solution to the associated Hamilton equation. Then the asymptotic
ezpansion of z'(1;w) is given as follows.

(2.9) 1 (1;w) T %o+ byw + byw? + byw?,

where by, by, by are defined by (1.11).



Proof. The solution can be written as

(2.10) o) =ah+ 3 | o5, tss)oy (s whas,

(2.11) pi(t;w) = pi(L;w) Z/ %g;: (s;w))p;(s; w)pr (s; w)ds.

],7‘ 1

We calculate the asymptotic expansion inductively. Since x(¢;0) = xg, p(t;0) = 0, we have
(2.12) x(t;w) ~ o, p(t; w) ¥ 0.

Since the integral term in (2.11) is second order in w and the boundary condition (2.8), we have
the first order expansion of p.

w (i=1)

(2.13) pi(t;w) ~ pill;w) = {0 (2 <i < N).

We substitute (2.13) for (2.10), we have the first order expansion of z.

(2.14) ' (t; w) Y xh + </0t gﬂ(s,xg)ds>w

We also substitute (2.13) for (2.11), we have second order expansion of p.

pi(t;w) ~ pl (L;w) Z / 389;7" (s, z(s; w))ds)p](l w)pr (L w)

77“_

(2.15) Npl (L;w) / D (s,20) ds)
We substitute (2.14) for (2.10), we have second order expansion of .
. . N |2 1 1 agll )
z'(t; w) 3 %ot ;/0 g J(s,m(s;w)){pj(l) + §</s W(T, mo)dr)w }ds

7,1

(2.16) 3 zh + (/ (s,x0) ds)w + Z(/ ; 833] (s,20)g" ! (u, zo)duds

/ / (s,20) " (u xo)duds> 2,

From second order expansion of p and first order expansion of x, we have third order expansion
of p.

(2.17)

pi(t;w) ~ pl (1;w) / B (s,20) ds)

L1 Z{agal ,.’130)(/5 %(u,mo)du>ds+/tl%(S’xo)(/osgjl(u’m)du) }w3.




Finally we have third order expansion of .

(2.18)

z(t; w) Y zh + (/tg.l(s xo)ds )w

+Z// S (s, 20)g7" (u, o) duds + 5 // (s, 20) l(umo)duds> 2
N

t .. agkl 1 agll
_ ij dg™ dg't
+jk1[2/0 g" (s, xo)( o (u,xo)( i (Taﬂﬁo)dr)du)ds
L g2glt

/Ot gij(S,xo)( i W(u,xg)(/ou (7, ﬂﬁo)dT)du)ds
)Ydu

e
tagZ] 1 agll s il
o OxF (3,360)( . Oz ——(u, g )(/0 g (r,xg)dr>ds
1 [t og'h ) 1L gglt
0 o7 (3’%)(/ gjk(“ o) e

zl
8 S, %) 8 7 (u, zq) / gkl(r,wg)dr)du)ds
0

1 t 82 il s
Z —_J Jl k1l 3
+ 3 |, Guioat (s,xo)(/o g (u,xo)du> (/0 9" (r, xo)dr> ds}w

From the definition of linear operator V' given in (1.8), we have

_l.

N = DN =

_l.

_|_
N |

(7, xo)dr> du) ds

_l.

(2.19) (1 w) Y zg 4+ byw + byw? + byw?,

where by, b, b3 are defined in (1.11). O

3 Asymptotic expansion of energy term

In this section, we give a proof of Theorem 1.1 (1). We apply Proposition 2.3 in the case energy
function given by (1.3).
LEMMA 3.1. Let y(t;h) : [0,1] x H — R, be the solution defined by (1.2). Let us define
g(t;h) = ¢(—t,y(t;h), 1<i< N, tel0,1],

then 1 satisfies the ordinary diﬁerential equation
d
(3.1) ”th ka h’“(), 1<i<N, telo,1],

where V is defined by (1.5).
Proof. From the definition of ¢ given by (1.4), we have

d
—Vi (tp(=t, 91, y) + > V0" (—t, 6(t,9) VY (¢, $(t,y)) = 0.
j=1
Therefore we have our lemma. O

10



Since Vi = 0, we have §'(t;h) = y'(¢;h), and the energy function can be defined as follows.

e(z) = linf{zd:/l\ih’g(t)m k) =)
2 —Jo dt
Therefore it is enough to prove in the driftless case, i.e. V = 0.
Proof of Theorem 1.1(1). Let hg be defined by
(3.2) ho(z) = argmin{e(h);h € H,y'(1;h) = z}.

We denote hg(z)(t) = ho(t, z). Then from non-degeneracy condition, there is an r > 0 such that
ho(z) is unique in z € (zg — r,xo + r). Using Lagrange multiplier theorem, we have

(3.3) ho(x) = Mz)DF(0, ho(x)),
where A : (g — r,29 + r) — R is a smooth function. Applying Proposition 2.3, we have
| (15 A(z)) — (x(l) FhiA(2) + o ()2 + ng(x)?*) | = O(|z — o]*).

Therefore we have the asymptotic expansion of X\ in z.

(3.4) A(z) Y cr(r —xh) + eo(r — 2d)? +es(@ — 2p)3,
where

1 by by b3
35 C = —, C = ——, I :__+2_
(35) T TR ST TR

From [9] we have

(3.6) Az) = 24&)
ox
Since e(z}) = 0, we can calculate the path of energy by
r C1 C C3
@) = [ Moy Fo - o)+ 2o - ) + Lo - ah)"
o} 4
Therefore we have Theorem 1.1 (1). O

Let us define o : [0,1] — R by

t
(3.7) at) = ( / Vi (us ) du).
0
Then we have the following.
COROLLARY 3.2. Let hg € H be the element defined in (3.2), then we have
1§ () — a(-)(z — ag)lln = Ol — zg*).
Proof. From (2.5) and the proof of Theorem 1.1(1), we have

N ot
hE(t, ) Z/Op( Vi (s ) )t

t

~ (/Ot Vkl(u;xg)du)w v (/0 Vkl(u; xo)du> c1(z — x(l))

1

11



4 Proof of Theorem 1.1

Let X be the solution to the stochastic differential equation
d

(4.1) AXI(t,0) = Vi(t, X,(t,0))do" () + sb'(t, X,(t,0))dt, 1<i< N, telo,1],
k=1

Xs (0) = Xp.
Let us define Wiener functionals F*: (0,1) x © x [-rg,79] = R, 1 <i < N, by
(42) Fi(s,H,y) :X;(I,O) -y
To apply the main theorem in [9], it is necessary to check the assumptions (A-1), ..., (A-5)
given in [9]. Since f = 0, we can check (A-1). Since h(0) = 0, we can check (A-2), (A-3) and
(A-4) in the neighborhood of origin. Since the ellipticity condition at origin, we can check (A-5)

in [9], using the same discussion given in Appendix B in [12]. Then we have the following.
For each (s,y) € (0,1] x [—79,70], the density function ps(y) satisfies

e(y)

|(275)"/% exp(—*)ps(y) = ao(y)| < Kos'/?, (s,) € (0,1] x [=ro,7o].

The function ag € C([—79,70]) is given by

0%e(y)\ 3 _1 de(y)
(4.3) anly) = (5,77) "detalTn = Bly)~* exp(Z FAF (0, ho(y),))-
Here A is called the heat operator defined by

0 1
Af(s,0) = [3_£ + EtraceHDZf](s,O),
and
0

(4.4 By) = 250 D27 (0,10 (1))

In this section, we calculate each terms in right hand side of (4.3) explicitly. First we calculate
the heat operator.

LEMMA 4.1. There are constants C > 0 and r > 0 such that

_ ol N 1 ot
\,atFl(o,ho(y),y)—(y%1 0){2/ /bl(u,xo)vigﬂ(t,mo)dudt

+ Z Z / Vil (t, zo V”Vk (t, wg)(/ (u,xo)du)dt}‘ Oy — =%, y> xp.

k=11,j=1

Proof. Since the adaptivity of Y, we have

0

. d 1 . k 1 .
AF (3,9,y):; /0 ATV (u, X (u,0))]d0 (u) + / b, X (u, 0))du

1
+s/ A[D (u, X (u,0))]du, 1<i<N.
0

12



Therefore we have
N d
AFY (0, b)) = 3% / V3V (s Xo (1, ho (13 9))) AXY (s o 1 ) ()
j=1k=1

+Z
k=1

Z / V7 Vi (u, Xo (u, ho(u; ) (DX (u), DXF (u)) b (u; y)du.
i,7=1

Then using Corollary 3.2, we have the following.

N d

AP (0, ho(y). ) — (4 — ) 22/ ¥V a, Xo (3 0))AXY (5 0)* (w)du

j=1k=1

5 Z Z/ V25V (u, Xo (u;0)) (DX (13 0), DXE (5 0))é* (w)du) | = O(ly = 24 ?),

klz]l

where AX](t;0) fo (u, Xo(u;0))du. O

LEMMA 4.2. Hilbert-Schmidt norm of D?>F" is given by

(45)  [ID2FY(0,0,m0)|%s = 2 Z Z / / Wb (1, 20)V 0, VA (1, 20) Vi, VA (¢, 20 dud.

m=11,l>=1

Proof. The Malliavin derivatives of X§, 1 <4 < N, to the direction k € H is given by

N
DXy(E:K =3 Y / ViV (u, Xo(us b)) DXE (us B)[E]A™ (u)du + Z/ (u, Xo (uz b)) k™ (u) du.

=1 m=

The second Malliavin derivative of F'' to the direction ki, ks € H is given by

N

D*F'(0,0,z0)[k1][ka] = Z/ ViV (u, 0) DX (13 0) [k [ (w) dus

=1 m=1

+ / ViVt (u, 20) DXE (u; 0) ko) KT () dus
0

N d
-y / ViV, (6 20) / Vb ()5 ()t ) 7 (0t
=1 m1,ma=
N d ) )
=> / / (ViVi, (8, 20) Vi, (1, 20) Lisy + ViVih, (uy 20) Vil (£, 20) Lica ) 7™ (£) k™ (w) dt du.
=1 m1,ma=1 0 0

13



Therefore we have the Hilbert-Schmidt norm as following.

IIDQFI(0 0 wo)ll?qs

B> / / (VIV, (ba0) Vi, (20 s + VIV, (1,0 Vi, (8, 20) o)t

=1 m1,ma=1

—22 Z //ZVZ (t,x0)V, (u,xo))Qdudt

=1 m1,ma=1

=2 Z Z / / Vi Vit (8, 20) VI (u,20) Vi, V5 (t 20) Vi2, (u, o) dudt

ll,lz 1mi,ma=1

=2 Z Z/ / lllz (u, zg Vzlvm(t xo)VZQVm(t xo)dudt.

ll,lz 1m=1

Finally we will complete the proof of Theorem 1.1.
Proof of Theorem 1.1(2). Using (4.3), we have

2e
log ag(y) = —%log(detz(IH — B(y))) + aa(y)AFl(O h(y),y) + %log(aaygy))'

In the right hand side, the asymptotic expansion of second term is given by Lemma 4.1, so we

will give the asymptotic expansion of first term.
Since B is defined by (4.4) and ag—g’) Yo (y — x}), we have

|B(y) — c1D*F'(0,0,z0)(y — 25)| = O(ly — z5/°).

Since B(z}) = 0, if |y — x}] is sufficiently small we have
o

dets(T — B(y)) = exp(— %traceH(B(y)”)).

n=2

Therefore we have

2
c
@6 Jlog(deta(l ~ Bw)) + LU D2 (0,0,m0) ] = Oy - wol?).
The Hilbert-Schmidt norm of D?F is given by Lemma 4.2. Therefore we have
326(@/))
dy2

1y2 1
y—x Yy— 1
log ao(y) 5 %HD?FI(O,o,xo)nﬁs + 258 4510, hofy), ) + 5 o

1( —m
5 0 Z Z/ / W (1, 20) Vi, V™ (£, 20) Vi, V™ (L, w0 dudt

l1,l2=1m=1

;bgo E//(ﬂumo 19" (t, 7o) dudt
0e(y)
1 l1l2
2 E E //V (t,0)g" " (u, 20) V1, 1, Vi (£, z0)dudt + = log( By? )

l1,l2=1m=1

14



From the definition of (1.6), we have

(y —xp)° 11 1 & ely)
logag(y) ~ —5— L,(g(¢,- dudt—i——log( )
W) 2 Qb% 0<u<t<l wlg™ (t:)) 2 dy?
Then we have (1.13).
Finally we calculate ag(x}). First we give an asymptotic expansion of the density using
Hermite polynomials. Let y = z} + eﬁ. Then the asymptotic expansion in € up to second

order is given as follows.

ez | edz
dy = L) ==
2
-7 TN | [61225022350324}
~ (ag(xy + —=) +c"az(xp)) ——=—=exp|— (= (—= — dx
2(0(0 \/C_l) 2(0))\/%1) (2(\/6_1) 3(\/&) 4(\/6_1))
= [1—6—25(23—3z)+6 { % 25 (i+c—3)z4
30?/2 18¢ 3 3¢t 4c?
2
c; 3c3  Ley 1
Hloga T og t g ) e 2ay(ah) }] 6(2)dz
= 12y + 2 ) (S - ) Hu) + 2 (B )
"33 T 9c3 g/ T Ty R
2 2
2 1 C2 C2 C3 CIL :|
— —=Hs(0 — —)H4(0) = (—) H2(0
+ 2 (aeh) — e Ho(0) ~ (g — 1) Ha0) = () Ha(0)
e 2
Cl Z
where H,,, n € N, are Hermite polynomials e.g.
Hy(z) = 2% — 1,
Hs(x) = 2 — 3z,
Hy(z) = 2* — 62° + 3,
Hg(z) = 2% — 15y* + 45¢y% — 15
Since p,. is probability density, we have
o0 o0
1= [ nwiy= [ ez
—00 —00
The orthogonality of Hermite polynomials implies
52
/ Hy( exp( 2)dz:(), n>1,
then we have
(@) = 2 Ho(0) - (22 — ) 1,00) — (22 10)
as(x1y) = —=% =2 _ = (= )
T 23 42/ 2 /7
This completes the proof of Theorem 1.1. O
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The asymptotic expansion of the probability density in ¢ using Hermite polynomials is given
as follows.

COROLLARY 4.3. For each z € R, let y = z} + 6\/—20—1, e € (0,1]. For any r > 0, there is a
constant C > 0 such that

2me? 22 co , C2 c? c3
i/ z _ 12 _H 9 g, 22 _ Sy

+82(%)HQ(Z):| ‘ <&, e€(0,1], z€[-rrl.

5 Asymptotic expansion of call options

In this section, we prove Theorem 1.2. First we prove the following theorem.

THEOREM 5.1. We assume X2(T) has a density p-(y), y € R and let

az(y) = (2me?)/? exp(%)ps(y), yeR

We assume that there are constants N € N, Cy > 0 and Ky > 0 such that
N
‘aé‘(y) - Za2k(y)€2k‘ < 0082N+2a yE [x(l)v KO]a
k=0

and assume that the energy function e satisfies €'(x) > 0, x € (v, Ko]. We define g : R — R by

Since e is strictly increasing, g is well defined. Then there are constants K1 < Ko and C4, such
that the value of the call option satisfies following.

9 ' (K)

\/%exp(e(g Yo, i) eon ( Jao(K)q(K)2Ry (e, K)| < CyNt1,

e € (0,1], K € [z}, K1].

where

_ Cnm (97 (K)) ¢mi1(9 " (K)/2) onim
G1) MEH = 2 e T R) el EE
Here ¢ € C(R) is given by

i 1 d \k+1 d \m—k

(5.2) Cnm () = 2 G ()" gla) - ()™ An(o),
where
(5.3) Ap(z) = agi(9(2))g'(x), neN, z€z), K]

16



We have the following.

LEMMA 5.2.

Proof. Since

o0 1 e e
1= [ty = i [ e “Lay

s 2me?

we have
00 2
1= s | aetolen)exp(-)d )y

Since the right hand side is bounded, taking the limit of ¢ | 0, we have ay(g(0))¢'(0) = 1.

Proof of Theorem 5.1. We can divide the value of a call option into two parts.
C.(T,K) = C.(T, K) + R.(Ky),

where

and

1'2

22

)a5(9($))gl(a§)daj.

We define

We also define

Cen(T,K)

g '(K)?
262

= exp(—

0



Then there exist constants Cq, Co > 0 such that

-1 2
9~ (K) )

2e2

exp( C(T, K) — (T, K)‘ < Oy t2,

Since

(9(ez + 97" (K)) = K)Acpn(ez + g7 (K)) = D cumlg™ (K)) MM < Oy

n,m>0
2n+m-‘,jlgN
K € [z}, K],
we have
exp(e(K)) Cn(T,K) — Z c (gfl(K))52n+m+1LSO H(Q_I(K))‘ < ReNHL
52 g,n ’ =, n,m \/ﬁ m c — ?
2n+m+1<N

K € [x(l)vKl]

For any § > 0, we have

R.(Ko) < E[X(T); X; (T) > Ko
< E[X}(T)'PPP(XNT) > Ko)' ™.

Therefore we have

1%152 log R.(Kp) < 1%152(1 —0)log P(XX(T) > Kp) = —(1 — 8)e(Ky).
= €

Note that e(Ky) > e(kK), we have

limsupe®log R.(Ky) < —e(K1).
el0

The function ¢ defined by (1.17) can be written as

(5.4) q(K) = g'(7(K)) = (597 (K))

Then we have our assertion. O

Finally we prove Theorem 1.2.

Proof of Theorem 1.2. From the definition given in (5.1), we have

co1 (g (K) a9~ ' (K) /) | pc02(g” (K)) p3(g~" (K)/e)
co,0(97"(K)) pr1(g~"(K)/e) co,0(97'(K)) p1(g~H(K)/e)

The second and third derivatives of g at g~ '(K) are given as follows:

sc10(g 1(K)/e)

Ry(e,K) =¢ co0(9 1 (K)/e)

+e

+e

2
L ole™ (K)) = a(K)q'(K),
3
Lsole™ (K) = oK) (K)? + (K)q" (K)



Using the definition of ¢, ,, given in (5.2), we can calculate cg o, co 1, c1,0, Co,2 explicitly as follows.

=
Nt
I
=
(o=}
—~
=
~—
K
—~
=
~
\‘[\3

co,0(g™"(
c1o(g ' (

co,1(97 (K)) = ag(K)q(K)? + Sao(K)q(K)*q (K),
|

=
Nt
I
<
[}
—~
=
~—
K
—~
=
~
\‘l\?

co2(9™ (K)) = Sap(K)a(K)" + 2a4(K)q(K)*q'(K) + —ao(K)q(K)*q' (K)°

Then we have our theorem. O

6 Asymptotic expansion of implied volatilities

In this section, we will prove Theorem 1.3. First, we define smooth functions 6,, n € N,
inductively by

(6.1) O1(z) = p1(),
Oni1(z) = —nbp(z) + 6, (2)01 ().

We define the function A : [0,1] x R — R by
(6.2) hit,y) = FH(tf(y),

where f is defined by (1.19). The properties of h are given in Appendix A. Then we have the
following.

PROPOSITION 6.1. The implied normal volatilities of call options are given as follows.

K — ol 1+i(e,K) 1 1K
o5 (T, K) = uexp(—/1 o1 (h(t, 2 ( )))dt), K >zl

g (EWVT t e
Here
l(e, K) = (14 R(e, K)(1 +r(K)) — 1,
where (K)
2 ¢ C.(T,K
R(e.K) = Y% Wfi{p( =) E—(l ) 3
eco,0(9~ 1 (K))pr(g~H(K)/2)
and . .
(i) = & (K)CO,O(Q1 (K) |
(K — )
R and r satisfies following respectively:
(6.3) |R(s,K) — Rn(c,K)| < CeV,
and
lim r(K) =0.
KL:I:(I)
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Proof. Since Theorem 5.1 and

sup on ()

< o0
>0 ©1(7)

we have (6.3). Using I'Hospital’s rule, we have

-1 -1
g (K)enolg™! (K)
Ik Y @wlm) =1

By definition of R, we can rewrite the value of call option as

Co(T,K) = f(g7" (K) /)9~ (K)eoo (9™ (K))(1 + R(e, K)).

On the other hand, the value of call option under the normal model is given by

K —a}
V= (K - ) f(—=2).
( O)f( U\/T )
Therefore we have
K -z} 9 '(K)
=(1+4+r(K))(1+R(s, K .
f(gﬁ) (1+r(K))( (e, KN (F——)
Using the definition of h given by (6.2) and Lemma A.4, we have our assertion. O

Next we will give the asymptotic expansion of implied volatilities.

THEOREM 6.2. For any N € N, there is a constant C > 0 such that the asymptotic expansion
of implied volatilities satisfy following.

N

() o003 e e ) < e
K € [z}, K1].

Here

(6.4) In(e,K) = (14 Ry(e, K))(1 +r(K)) — 1,

where

(65) (i) = Fenolg (K))

Proof. Using Lemma, A.4, we have

(2) Zerht,y)| = 0ulw), n>1.
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Therefore

Y _1 ”dt‘

1+l(E,K) 19 " d 1+lN EK
— t_
[ e Z/

1+i(e,K) -1 1+in (e, K) (K
<[ o, jK)»dt— / %ol(h(t,g 0 a
1 1

1+in(e,K) 1 g—l(K) N 1+in(¢,K) 0, (y
—01(h(t dt —
| e a3 -

S Cl|l(E,K) — lN(E,K)| +C2|IN(E,K)|N S C(E+ |K —x(1)|)N

™

~—

(t - 1)%‘

Finally we prove Theorem 1.3.

LEMMA 6.3. The derivatives of q, ag, a2 at xy are given as follows.

=L, LD 2e LG _tey s
Vel q(a) 3ei” qlzg) 9 \a 2¢

ap(zg) _ o aglwg) _ op <C_z> 3c3

ao(zd) o’ aop(x)) c1 c1’

ag(xg)

_ 1( c%L+2(02)2 3C3>
ao(zl) 2 3\q dey )’

where ¢;, (1 =1,2,3) are given by (3.5).
Proof. Since
1
elo(a)) = 52,

and ¢'(z) > 0, the derivatives are given by

z =¢€(g(z))d (z),

= ¢"(g(2))g' (2)* + €' (9(2))g" (x),
0 =e"(g(x))g () +3¢" (9(2))g (2)g" () + ¢ (g())g" (x),
0= e (g(x))g' (x)" + 6" (g(z))g' (x )2 "(2) +3¢"(9(2))g" ()
+4¢"(g())g' (2)g" (z) + ¢ (9(2)) g™ ().

1 2b 6b 1202
1 1 2 4),..1 3 )
¢(xg) =0, ¢"(xp) = by "(x0) B e () = ot
we have
2b Vb
g'(0) = Vb, ¢"(0) = 532, ¢"(0) = == (9b1bs — 8b3)
1
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LEMMA 6.4.

|Ra(e, K) — RY(,K)| < Cle +|K — zg))?,
Ir(K) —r’(K)| < C|K — x|,

where
7} c c 1
e = S 32" SR
2 2 o 2 c -1 2 2 oo 2 .
S s L) - 5
and

l/ea\2 1c 2L
0 2 3 1 1\2
-2+ 12+ B e
r(K) 3\ +4c1+2 ( %)

Proof. We will calculate each terms of Ry given by (1.18). From Lemma A.1, the functions
©a2/p1 and 3/ are bounded above. Since the first term is O(¢) and other terms are O(g?),
it is enough to calculate the first order of K in the first term and Oth order in the other terms.

Using Lemma 6.3, we have

and the first derivative is given by

d coi(g~ " (K)) ag(K) | rapg(K)\2 | 3¢"(K)  ay(K) ¢ (K)
K coolg-1(K)) [ ; +( ; ) ; ]

and use Lemma 6.3 again, we have

coalg” (K)) (K — ) [CzL_§<c_z>2 §c_3}
C(),[)(g*l(K)) 1 \/a 1 6 C1 4 C1 ’
coplg” (K) 1 [c?_L (&) +39]
C(),[)(g*l(K)) 0 1 2 2 C1 2 C1 ’
oK) 17 AL 2/c\2 3ec3
C(),[)(g*l(K)) BJ a[_T g(g) B Za}
We can calculate r(K) in the same way and we have our results. U

Proof of Theorem 1.3. Using (6.4) we have
lo(e, K)  Ry(e, K) + r(K)

Since RY and 70 are second order in ¢, K, we have

g '(K)

2 c n+1 —1
> &Gnﬂ(%(m) 5 (B2(e, K) + 17 (K)o )

then we have our result.
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7 Watanabe’s Theorem

In this section, we give the correspondence between our result and the expansion given in
Watanabe [14], Yoshida [15], Takahashi-Kunitomo [8] and [12].
We define

6l) = [ @ - o).
Yy

PROPOSITION 7.1. For each y € R, let K. = x} +e—L, £ € (0,1]. For any r > 0, there is a

\/_?
constant C > 0 such that the value of a call option of strike K., maturity T satisfies following.
BUXAT) - K+ - = [Gly) - == 25 Fi)(o) + -2 Hu(y)olo)
€ e)+ \/C_l 3/2 18 3
c c c L
+6%(55 — —3) Ha(y)$(v) +€2(1—)Ho(y)¢(y)H <0, e €(0,1], y € [-rr]
2¢3 4c? 2

Proof. The asymptotic expansion of the probability density is given by Corollary 4.3. Since

| @ - m@o)s = Hoswoty), w22
Yy

we have our assertion. O

This formula coincides with the formula given in [12]. We can calculate the implied normal
volatility in the same way as the proof of [12] Theorem 1.1.

PROPOSITION 7.2. For each y € R, let K. = z} + Eﬁ, e € (0,1]. For any r > 0, there is
a constant C' > 0 such that the asymptotic expansion of the implied normal volatility satisfies
following.

on(T, K.) 1 C2 af(lcs lez\ o al 1 lg
e (G519 1)
(7.1) € al 636§/2y+6 6c; 4c vt 2 301 +401

<&, £€(0,1, yel[-rr].

REMARK 7.3. The Taylor expansion of (1.20) to the second order is given by

-z 1 [ leo 1 (1 €242 1C3> 12” 13
1—-—=(K;— —(—= K. — =0O(|K: — .
‘\/267 vaT 3c1( e =) + 6(01) de (Ke = 0) (17 =l

Then we have

(7.2)

€ 2e(K)T 2 3¢t 4c?
Kg—m(l)
= + Rs(e, x
Tl (14 Rule i)

As we see in the next section, applying this formula for SABR model we obtain SABR formula.
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8 Examples
In this section, we apply our results to some known models.

8.1 Local volatility models

We assume the following model. Let 0 : R — Ry be a smooth function whose derivatives of any
order are bounded. Let A be continuous Ry -valued functions defined on [0,77].

dXE (1) = eA(t)o (X5 (1)) dW,
XE(O) = 20-

In this case we can solve the energy as following.

elv) = 21A</y CZ«)) ’

T
_ 2
A= /0 A2 (t)dt.

Here minimum energy path h is given by

h(t) = %(/y %) /OtA(s)ds.

We can easily calculate the coefficients.

where

3 8 2
b= o(0)’A, by = So(@0)’o’ (v0)A% by = (F0(0)'0 (w0)? + So(wo)0” (w0) ) A,

3
L= (%U(mo)%'(m)? + %O’(IEO)?)O'H(I'U))AQ, g '(y) = \/LK(/::: %)

Then using Theorem 1.1 and Theorem 1.3 we can calculate the density function and implied
normal volatilities. We illustrate some cases.

ExAmMPLE 8.1 (CEV MODEL). This is in the case A(t) = a and
o(z) = 2P,

and each terms are given by

2
A=a?T, by =x"A, by= ﬁ o A2, b3=3(5 — B+ 4)z" 2%,

p= @ - Dapw, =200
g (y) = T( e ) w7y
T 0g(75) (B=1)
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EXAMPLE 8.2 (DISPLACED DIFFUSION). This is the case A(f) = o and
o(z) =gz + (1 — q)xo.
Each terms are given by

3 8 1
A= UZT? bl = nga b2 = EwquZa b3 = gwquAga L= §$3q2A2,

PRI T b dx _ 1yt (-
R i My oy
6”( ) _ 1+g_1(y)q\/K

Y7 May+ (1= o)

Black-Scholes model is the case ¢ = 1. We present a numerical results of the asymptotic
expansion formula comparing with analytical solution.

19%

18% E/E/E/a/@
17%

S 16% |
©
€ 15% |
o
c
2 14%
=
£ 13%
12% :
—— Asymptotic Formula
11% -8 Analytic Formula  |—

10%
0.25 0.5 0.75 1 1.25 1.5 1.75 2
Strike

Figure 1: Implied volatility smile of displaced diffusion, asymptotic expansion vs analytic solu-
tion with zp = 1.0, ¢ = 0.5, o0 =0.15, T = 10.

8.2 SABR model

We investigate the following model which is called SABR model.
dX(t) = ea® ()o (X (1)) (pdW (1) + V/1 — p2dZ (1)),
daf (t) = eva® (t)dW (1),
X?(0) = zp, a°(0) = a.

This model was investigated in Hagan-Kumar-Lesniewski-Woodward [4] and [12]. In Theorem
3.1 [12], we gave the energy function as follows.

L o YL P p 4Gy L)
1 —

— ]
e(y) 52T og(

p 22T 7
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where

Then the parameters are given by

b = a0(20)’T, by = So(x0)’a® (ao’(wo) + vp)T?,

2
8 2
by = (§a60($0)40,($0)2 + 30460()(0)50"(%0) + 6vpo(29)* o’ (v9)a”
2
+ 2y2p20($0)4044 + §CY40'(III0)4V2)T33
2 2T2
L =TT (0200 (a0)? + ow0)o" (20) + dwpac (o) + 7).

gfl(y) — V\l/T log( \/1 — 2:0C(y) ;‘_C(py)Z —p+ C(y) )

We present a numerical results of the asymptotic expansion formula comparing with Monte
Carlo simulation. Here we assume o(x) = x”.

22%
20%
S 18%
©
£
2 16% r
el
2
a
£ 14% |
. —— Asymptotic Formula
12% - Monte Carlo
10%
0.25 0.5 0.75 1 1.25 1.5 1.75 2
Strike

Figure 2: Implied volatility smile of SABR model, asymptotic expansion vs Monte Carlo simu-
lation with zg =1, a =0.15, 3 =0.5, v =0.2, p=-0.2, T = 10.

Applying the formula (7.2) for SABR model, we obtain

1) = K, [2a(wo)a"(wo)—a'(xo)2 1 2—3p2y2]T>_

2 - /
T 51 o+ prac (o) + 54
This is almost the same as original SABR formula given in [4].
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Appendix

A Special functions

In this section, we investigate some properties of functions defined in Section 1. First we consider
¢n, n > 0 defined by (1.16).

LEMMA A.1. The functions p, have the following properties.
(1)  op(z) >0, z>0.
(2)  limg 0o 2", (z) = nl.

(3) supmn(pn Y < 00, n > 1.

Proof. (1) is easy to check. We prove (2). Putting y = zz

o) 2 o0 2
son(x)Z/O exp(—y——y)(g)”@z ! /0 Y exp(—y — o) dy

222 x’ oz pntl 22
Then we know ~
lim 2"y, (z) = / y"e Ydy = nl.
T—00 0
The following is easy to check.
LEMMA A.2. The functions {yn} satisfy the following recurrence relations.
pn+1(z) = —won(z) + npn1(z),
P (7) = —n-1(@).

EXAMPLE A.3. p; (0 < i < 3) are given as follows:

1,2 o] Z2
ooz zexp(—)/ exp(—;)dz,

@3(z) = — (2% + 32) o (z) + 2° + 2.
Next we consider the function h € C*°([0, 1] x R} ) defined by (6.2).
LEMMA A.4. The n-times differentiation of logh(t,y) with respect to t is given as follows.

We define 0 in (6.1).

0.\n 1
(E) log h(t,y) = —0n(h(ty), t€[0,1], y>0,

where 6, € Cp[0,00], n > 1 are given inductively as follows:

01(z) = p1(),
Oni1(z) = nby(z) + 0, ()01 (7).
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Proof. In the case n =1, since f(h(t,y)) =tf(y), we have

oh ) _ S(h(ty)

ot ~tf(h(ty)
Since . (@)
/ _ (1t Pp2(T
fi(z) = (m +x+—¢1(m))f(a:) <0, z >0,
we have f(a) (2)y 1
()= oy = (e +e ) = e,
It is easy to check that 8; € Cp([0, 00]) and z6(x) € Cp([0,00]). We have
0
5 los h(t,y) = %91(h(t,y))-
Since
0,1 1
57 (GaOn(h(t:)) = oz (=nOu(h(t9)) + 0, (h(t,9))01 (h(E y) Dt y)
it is easy to prove our lemma. O

B The implied volatilities of put options
In this section, we discuss about the implied volatilities for the case K < x). We define the

forward value of a put option of strike rate K and maturity 7" by
P.(T,K) = E[(K — X:(T))*]

Since we have put-call parity, the implied volatility of the put option is the same as the implied
volatility of a call option with strike rate K and maturity 7. Since

P.(T,K) = E[(-X:(T) = (-K))+] = E[(-(X2(T) — zp) = (—(K - xp)))+]

It is enough to discuss in the case z§ = 0. B -
Let x = (z!,...,2") € R". We denote & = (—x',2%,...,2"). We define X, (t) = X.(¢). Then
we have

d
dXI(t) =Y Vii(t, X (1) dWk () + Vi (¢, Xo(t))dt, 1 <i<N,
k=1
where
_ Vit z) (1<k<d
Vithay = e (Lsksd
VihE)  (1<k<d j#1).

Since the associated Riemaniann metric g (¢, ) = Zzzl ‘:/lj‘:/,g is given by

gu(t,l’) = gll(tvx)v gli(tvm) = _gli(tvm) (Z # 1)7 gij(tvx) = gij(tvx) (27] # 1)7

we have

by =01, by=—by, b3=0b;y, L=L.
Therefore Theorem 1.1 and Theorem 1.3 still hold for K < x(l).
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