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Abstract. We discuss an operator equation Kf = g where X, Y are reflexive
Banach spaces of functions in bounded domains Ω ⊂ RN and Ω0, and K : X −→ Y
has no continuous inverse. Let V and V1 be another reflexive Banach spaces of
functions in Ω and D ⊂ Ω respectively such that the embedding V ⊂ X is continuous.
In order to stably reconstruct g by noise data gδ with ‖g − gδ‖Y ≤ δ: noise level,
we consider the Tikhonov regularization: Minimize ‖Kf − gδ‖2Y + α‖f‖2V . We prove

that if α = c0δ2 with a constant c0 > 0 and the V1-norms of the regularized solutions
fδ are bounded uniformly in δ, then the exact solution f is in V1. This property can
be applied to the determination of non-smooth points of a function f for example in
the case of X = L2(Ω), V = H`(Ω) and V1 = H`(D) with ` ∈ N and small ball D.

§1. Introduction.

In terms of an operator equation, we can describe inverse problems for partial

differential equations or integral equations such as determination of coefficients.

Throughout this paper, let X, Y be reflexive Banach spaces and let K : X −→ Y

an injective continuous operator. Then the inverse problem is given by an operator

equation:

Kf = g.

We note that K may be nonlinear. Henceforth we assume that V ⊂ X is another

Banach reflexive space and the embedding V −→ X is continuous, V is dense in
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X. We assume that

(1.1) Kf0 = g0, f0 ∈ X.

We discuss a stable reconstruction scheme from noisy data gδ:

(1.2) ‖g0 − gδ‖Y 5 δ.

Here δ > 0 is a noise level and we assume that g0 cannot be known but gδ is available

data with known noise level. Then our task is to establish a stable reconstruction

method satisfying the following requirements:

(1) We can stably find fδ from gδ.

(2) fδ −→ f0 in a suitable norm as δ −→ 0.

For it, the Tikhonov regularization is widely used. We set

(1.3) Fα(f, g) = ‖Kf − g‖2Y + α‖f‖2V .

Here α > 0 is a parameter which we have to choose appropriately, and α is called

a regularizing parameter. Then under suitable assumptions (see Lemmata 2.1 and

3.1 below) we can prove that there exists a minimizer fδ of Fα(f, gδ) over a suitable

admissible set and that fδ satisfies the above requirements. As for the Tikhonov

regularization, we have many works and here we refer only to books by Banks and

Kunisch [2], Baumeister [3], Engl, Hanke and Neubauer [4], Groetsch [5], Hofmann

[6], Kirsch [7], Kress [8], Tikhonov and Arsenin [9].

In order to guarantee the convergence of fδ to f0 with concrete convergence

rate, the choice of regularizing parameter α is important and in general we have

to assume extra regularity on f0 which is called a source condition. Such a source

condition means that f0 should belong to some subspace e.g., V of X. In the case
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where V = X is a Hilbert space, we refer to [5] as one typical source condition. The

determination of interfaces, non-smoothness or discontinuities is a practically very

demanded class of inverse problems and the edge detection is one typical example.

In those cases, we are mainly concerned with a not smooth exact solution f0.

The main purpose of this paper is to prove the asymptotic behaviour of the

regularized solutions for a non-smooth exact solution f0. More precisely, we prove

that if the exact solution is not in a space V1 of locally smoother functions, then

the V1-norms of the regularized solutions blow up. The property can be applied in

order to detect irregular points of a function as the exact solution, and in a forth-

coming paper, we will develop a numerical method for detecting irregular points of

a function. In the case where the solution of Kf = g is a numerical differentiation,

more detailed studies and applications to the edge detection problem, are done in

Wan, Wang and Yamamoto [10], Wang, Jia and Cheng [11].

§2. Main result - linear case.

In this section, we assume that K is a linear operator. Hence a Banach space V is

called to be uniformly convex if for any ε > 0, there exists δ = δ(ε) ∈ (0, 1) such

that ‖x‖V 5 1, ‖y‖V 5 1 and ‖x−y‖V ≥ ε imply ‖x+y‖V 5 2(1− δ) (e.g., Adams

[1], Yosida [12]).

Let Ω ⊂ RN be a bounded domain with smooth boundary ∂Ω. Then it is known

(e.g., Adams [1]) that Lp(Ω) and the Sobolev spaces W `,p(Ω) with 1 < p < ∞ and

` ∈ N are uniformly convex. As is directly checked, every Hilbert space is uniformly

convex.

Lemma 2.1. Let α > 0 and let the embedding V −→ X be compact.

(i) There exists a minimizer to F (f, g) over V for an arbitrarily given g ∈ Y .
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(ii) Moreover let V be uniformly convex. Then the minimizer is unique.

The lemma is well known, but for convenience we will give the proof in Appendix

I. For the existence of a minimizer, we need not assume the linearity of K.

For example as X and V , we can set X = L2(Ω) and V = H`(Ω) with ` ∈ N.

Our aim is the behaviour of the regularized solutions fδ if the exact solution f0 is

not in V . Moreover for an effective reconstruction of non-smooth points of f0 6∈ V ,

we will observe the V -norms of fδ locally in Ω. For it, we introduce subspaces

V1 = V1(D) and X1 = X1(D) as follows. Let Ω be a bounded domain in RN with

smooth boundary ∂Ω and let X and Y be reflexive Banach spaces of functions

defined in bounded domains Ω and Ω0 respectively such that C∞0 (Ω) ⊂ V ⊂ X

topologically. We arbitrarily choose a domain D ⊂ Ω such that the boundary ∂D

is smooth. Let X1 = X1(D) and V1 = V1(D) be reflexive Banach spaces such that

the weak convergence in V1 implies the convergence in

(C∞0 (D))′ (i.e., in the distribution sense in D) and V1 ⊂ X1 topologically.

Moreover the restriction Rf of a function in Ω to D, is defined by Rf = f|D.

We assume that

RX ⊂ X1, RV ⊂ V1.

Henceforth f ∈ X and f ∈ V are regarded as f ∈ X1 and f ∈ V1 by means of R,

respectively.

Example. Let X = L2(Ω), V = H`(Ω), X1 = L2(D) and V1 = H`(D) with ` ∈ N.

Then if fn −→ f0 weakly in V1 then fn −→ f0 in (C∞0 (D))′.

Let fα
δ be a minimizer of Fα(f, gδ) over V . We note by Lemma 2.1 (i) that fα

δ

exists and by Lemma 2.1 (ii) that fα
δ is unique if K is linear and V is uniformly

convex.
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Theorem 2.1. We assume that the embedding V −→ X is compact and that

(2.1) lim
n→∞

Kfn = Kf in Y implies lim
n→∞

fn = f in (C∞0 (Ω))′.

Let c0 > 0 be arbitrarily fixed. If supδ>0 ‖f c0δ2

δ ‖V1 < ∞, then f0 ∈ V1.

Proof. We set fδ = fc0δ2

δ . For f0 ∈ X and n ∈ N, by the density of V in X, we

can find hn ∈ V such that

(2.2) ‖hn − f0‖X 5 1
n

.

Then we may assume that

(2.3) sup
n∈N

‖hn‖V = ∞.

In fact, let supn∈N ‖hn‖V < ∞. Then, by the reflexiveness of V , there exists a

subsequence hn and h̃ ∈ V such that hn −→ h̃ weakly in V . On the other hand,

we see from (2.2) that hn −→ f0 strongly in X. Therefore f0 = h̃ ∈ V and we have

already proved the theorem.

We assume (2.3).

(2.4) δn =
1

‖hn‖2V
, n ∈ N.

Then we see that limn→∞ δn = 0.

Since supn∈N ‖fδn‖V1 < ∞, by the reflexiveness of V1, we can choose a subse-

quence fδn and f̃ ∈ V1 such that

fδn −→ f̃ weakly in V1.

By the assumption on the weak convergence in V1, we see that

(2.5) fδn −→ f̃ in (C∞0 (D))′.
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On the other hand, by the definition and (2.4), we have

‖Kfδn
− gδn

‖2Y + c0δ
2
n‖fδn

‖2V 5 ‖Khn − gδn
‖2Y + c0δ

2
n‖hn‖2V

5(‖Khn −Kf0‖Y + ‖Kf0 − gδn‖Y )2 + c0δn.

Hence

‖Kfδn
− gδn

‖Y 5 ‖K‖
n

+ δn +
√

c0δn

by (1.2). Therefore

‖Kfδn −Kf0‖Y 5 ‖Kfδn − gδn‖Y + ‖gδn −Kf0‖Y

5‖K‖
n

+ δn +
√

c0δn + δn −→ 0

as n −→ ∞. Hence Kfδn −→ Kf0 in Y . By assumption (2.1), it follows that

fδn −→ f0 in (C∞0 (Ω))′. Note that C∞0 (D) ⊂ C∞0 (Ω) topologically, by the 0-

extension. Therefore if fδn −→ f0 in (C∞0 (Ω))′, then fδn −→ f0 in (C∞0 (D))′.

Since the limit of a sequence in (C∞0 (D))′, is unique, it follows from (2.5) that

f0 = f̃ . By f̃ ∈ V1, we see that f0 ∈ V1. The proof is complete.

In the case of V1 = V , we have a sharper result.

Proposition 2.1. Let the embedding V −→ X be compact. Then f0 ∈ V if and

only if supδ>0 ‖f c0δ2

δ ‖V < ∞.

Here we note that we need not assume (2.1) and the linearity of K, but only the

density of V in X.

Proof. (i) Let f0 ∈ V . By the definition of fδ ≡ f c0δ2

δ , we have

‖Kfδ − gδ‖2Y + c0δ
2‖fδ‖2V 5 ‖Kf0 − gδ‖2Y + c0δ

2‖f0‖2V 5 δ2 + c0δ
2‖f0‖2V .

Hence ‖fδ‖2V 5 1
c0

+ ‖f0‖2V . Thus the the proof of the ”only if” part is complete.
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(ii) Since sup∈N ‖fδn
‖V < ∞, by the reflexiveness of V , we can choose a subse-

quence fδn
and f̃ ∈ V such that

fδn
−→ f̃ weakly in V .

Hence, since the embedding V −→ X is compact, we see that

(2.6) fδn
−→ f̃ strongly in X.

In the same way as the proof of Theorem 2.1, we can choose hn ∈ V and δn > 0,

n ∈ N, and we can prove Kfδn −→ Kf0 in Y . By (2.6) and the continuity of K,

we have Kfδn −→ Kf̃ in Y . Consequently Kf0 = Kf̃ . Since K is injective and

f̃ ∈ V , the proof is complete.

Scheme for finding D where f0 is not smooth, that is, f0 6∈ V1(D).

(i) Find a minimizer fδ of Fα(f, gδ) over V .

(ii) If supδ>0 ‖fδ‖V < ∞, then f0 ∈ V . We can stop.

(iii) If supδ>0 ‖fδ‖V = ∞, then f0 6∈ V by Proposition 2.1.

We start a localization process of singular points of f0 to proceed to (iv).

(iv) For D ⊂ Ω, if supδ>0 ‖fδ‖V1(D) = ∞, then it is possible that D may contain

points x0 where f0 6∈ V1(U(x0)). Here U(x0) is a neighbourhood of x0 ∈ Ω.

For the scheme, we can replace the minimizer fδ by a quasi-minimizer f̃δ satis-

fying

‖Kf̃δ − gδ‖2Y + α‖f̃δ‖2V 5 inf
f∈V

‖Kf − gδ‖2Y + α‖f‖2V + ε

with a fixed small ε > 0. In a forthcoming paper, we will develop a numerical

method on the basis of the above scheme.

Since the converse of Theorem 2.1 is not true, we note that in (iv) we may still

have f0 ∈ V1(D). If we assume that f ∈ V if and only if f ∈ V1(D) for any
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subdomain D ⊂ Ω, then f0 6∈ V means that there exists some D ⊂ Ω such that

f0 6∈ V1(D). Therefore supδ>0 ‖fδ‖V1(D) = ∞. Thus the above step (iv) can be

considered effective for finding such D.

Condition (2.1) means that the topology in X induced by K−1 is stronger than

(C∞0 (Ω))′. That is, we define a norm ‖f‖X−1 by ‖f‖X−1 = ‖Kf‖Y . Since K is

injective, ‖ · ‖X−1 defines a norm in X. Then the topology generated by ‖ · ‖X−1

is stronger than (C∞0 (Ω))′. It is usually considered that the distribution (C∞0 (Ω))′

gives a weak topology, so that condition (2.1) seems generous. However (2.1) is not

satisfied by a backward heat equation.

Backward heat problems. We consider




∂tu(x, t) = ∂2
xu(x, t), 0 < x < π, t > 0,

u(0, t) = u(π, t) = 0, t > 0,

u(x, 0) = f(x), 0 < x < π.

We set X = Y = L2(0, π) and

(Kf)(x) =
∞∑

n=1

(f, ϕn)e−n2T ϕn(x), f ∈ X,

where

ϕn(x) =

√
2
π

sin nx, 0 < x < π, (f, ϕn) =
∫ π

0

f(x)ϕn(x)dx.

The backward heat problem of determining f(x) = u(x, 0), 0 < x < π by g(x) =

u(x, T ), 0 < x < π, is described by an operator equation Kf = g. Let fn = e
n2T

2 ϕn,

n ∈ N. Then limn→∞ ‖fn‖X−1 = 0, but fn do not converge to 0 in (C∞0 (0, π))′.

In fact, ‖fn‖X−1 = e−
n2T

2 −→ 0 as n −→ ∞. Let ψ ∈ C∞0 (0, π) be not identically

zero and let us assume that limn→∞(fn, ψ) = 0. Then

(2.7) ψ =
∞∑

n=1

anϕn in L2(0, π).
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Choosing a bounded neighbourhood U in C of [0, π], we have

(2.8) |ϕn(z)| 5 C1e
C2n, n ∈ N, z ∈ U.

By limn→∞(fn, ψ) = 0, we have limn→∞ ane
n2T

2 = 0. Therefore

(2.9) |an| 5 C3e
−n2T

2 , n ∈ N.

By (2.8) and (2.9) the series (2.7) is convergent uniformly in z ∈ U ⊂ C, so that ψ

is holomorphic in U . By ψ ∈ C∞0 (0, π), the unicity theorem yields that ψ = 0 in U .

This contradicts that ψ 6≡ 0, and so fn, n ∈ N do not converge to 0 in (C∞0 (0, π))′.

Thus in the next section, we give a criterion for f0 6∈ V1 without (2.1) for non-

linear K.

§3. Main result - nonlinear case.

We treat general K which may be nonlinear. However, in order to prove the corre-

sponding result to Theorem 2.1, we have to modify the regularization scheme. We

consider a minimization problem:

(3.1) inf
f∈V,‖f‖X5M

‖Kf − g‖2Y + α‖f‖2V

for a fixed constant M > 0. In other words, we will consider the Tikhonov functional

over a bounded set in X. From a numerical viewpoint, this extra constraint of the

X-boundedness can be expected not to be a serious inconvenience, but we have to

take extra cares of the constraint ‖f‖X 5 M in the numerical implementation.

We can prove the existence of a minimizer of problem (3.1) by the same manner

as Lemma 2.1 (i) and for convenience the proof is given in Appendix II.

Lemma 3.1. Let K be compact. Then there exists a minimizer of (3.1).

Here we do not know the uniqueness of a minimizer.
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We assume that X and Y are reflexive Banach spaces of functions defined in

bounded domains Ω and Ω0 with smooth boundaries respectively, and V ⊂ X

topologically. Moreover let V1 and X1 be reflexive Banach spaces of functions in

a subdomain D ⊂ Ω and V1 ⊂ X1 topologically. We set Fα(f, g) = ‖Kf − g‖2Y +

α‖f‖2V .

Now we are ready to show our main result for general K.

Theorem 3.1. We assume that K is compact and that the weak convergence in

X implies the weak convergence in X1. Let c0 > 0 be an arbitrarily fixed con-

stant and let fc0δ2

δ be a minimizer of Fc0δ2(f, gδ) over {f ∈ V ; ‖f‖X 5 M}. If

supδ>0 ‖f c0δ2

δ ‖V1 < ∞, then f0 ∈ V1.

Example. Let X = L2(Ω) and X1 = L2(D). If fn −→ f weakly in X, then

fn −→ f weakly in X1. Then the assumption in Theorem 3.1 is satisfied. In fact,

we have limn→∞
∫
Ω

fnϕdx =
∫
Ω

fϕdx for any ϕ ∈ L2(Ω). In particular, the limit

holds for any ϕ ∈ L2(Ω) with ϕ|Ω\D = 0, which means that fn −→ f weakly in

X1 = L2(D).

Proof. In the same way as the proof of Theorem 2.1, we can find hn ∈ V satisfying

(2.2) and (2.3). We choose δn > 0 defined by (2.4) and set fδn = f
c0δ2

n

δn
, n ∈ N. The

reflexiveness of V1 yields a subsequence {fδn}n∈N and f̃ ∈ V1 such that

(3.2) fδn −→ f̃ weakly in V1.

Moreover, in the same manner as Theorem 2.1, we can prove

(3.3) Kfδn −→ Kf0 weakly in Y .

Here we note that for nonlinar K we can still obtain that limn→∞ ‖Khn−Kf0‖Y =

0 by limn→∞ ‖hn − f0‖X = 0 by (2.2). On the other hand, by ‖fδn‖X 5 M for
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n ∈ N, we can extract a subsequence, denoted by the same notations, such that

fδn
−→ f̃0 weakly in X. By the compactness of K, we see that Kfδn

−→ Kf̃0

in Y . Hence (3.3) yields Kf0 = Kf̃0, so that f0 = f̃0 by the injectivity of K.

Consequently fδn
−→ f0 weakly in X. By the assumption of the theorem, we see

that fδn −→ f0 weakly in X1. On the other hand, since V1 ⊂ X1 topologically,

(3.2) implies that fδn
−→ f̃ ∈ V1 weakly in X1. Hence f0 = f̃ ∈ V1. Thus the

proof of the theorem is complete.

Appendix I. Proof of Lemma 2.1.

Let us set µ = inff∈V Fα(f, g) = inff∈V ‖Kf − g‖2Y + α‖f‖2V .

Proof of (i). We can choose a sequence fn ∈ V such that limn→∞ Fα(fn, g) = µ.

We see that α‖fn‖2V is bounded, and by α > 0 and the reflexiveness of V , we

can extract a subsequence of fn, n ∈ N, which is denoted again by the same

notations, such that fn converge to some f̃ weakly in V , and so strongly in X by

the compactness of the embedding V −→ X. Since K is continuous, we see that

limn→∞Kfn = Kf̃ in Y . Moreover the weak convergence in V yields ‖f̃‖V 5

lim infn→∞ ‖fn‖V (e.g., Section 1 in Chapter V in Yosida [12]). Therefore

µ = lim
n→∞

Fα(fn, g) ≥ ‖Kf̃ − g‖2Y + α‖f̃‖2V .

Noting that µ = inff∈V Fα(f, g), we see that Fα(f̃ , g) = µ. This means the exis-

tence of a minimizer.

Proof of (ii). Assume contrarily that there exist two minimizers f1 and f2:

(1) ‖Kf1 − g‖2Y + α‖f1‖2V = ‖Kf2 − g‖2Y + α‖f2‖2V = µ

and

(2) ‖f1 − f2‖V ≥ ε
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with some ε > 0. First, in a Banach space Z, by the triangle inequality we can

directly verify that

s‖x‖2Z + (1− s)‖y‖2Z − ‖sx + (1− s)y‖2Z

≥s(1− s)(‖x‖Z − ‖y‖Z)2 ≥ 0, 0 5 s 5 1, x, y ∈ Z.(3)

Next, by (3) with s = 1
2 , we have

Fα

(
f1 + f2

2
, g

)
=

∥∥∥∥K

(
f1 + f2

2

)
− g

∥∥∥∥
2

Y

+ α

∥∥∥∥
f1 + f2

2

∥∥∥∥
2

V

=
∥∥∥∥

1
2
(Kf1 − g) +

1
2
(Kf2 − g)

∥∥∥∥
2

Y

+ α

∥∥∥∥
1
2
f1 +

1
2
f2

∥∥∥∥
2

V

51
2

(‖Kf1 − g‖2Y + α‖f1‖2V
)

+
1
2

(‖Kf2 − g‖2Y + α‖f2‖2V
)

= µ.

Since µ is the minimum, we have

µ =
∥∥∥∥K

(
f1 + f2

2

)
− g

∥∥∥∥
2

Y

+ α

∥∥∥∥
f1 + f2

2

∥∥∥∥
2

V

=
1
2

(‖Kf1 − g‖2Y + α‖f1‖2V
)

+
1
2

(‖Kf2 − g‖2Y + α‖f2‖2V
)
,

that is,

{
1
2
‖Kf1 − g‖2Y +

1
2
‖Kf2 − g‖2Y −

∥∥∥∥K

(
f1 + f2

2

)
− g

∥∥∥∥
2

Y

}

+α

{
1
2
‖f1‖2V +

1
2
‖f1‖2V −

∥∥∥∥
f1 + f2

2

∥∥∥∥
2

V

}
= 0.

By (3), the two terms within the brackets are non-negative, so that

1
2
‖f1‖2V +

1
2
‖f2‖2V =

∥∥∥∥
f1 + f2

2

∥∥∥∥
2

V

.

By (3) with s = 1
2 , we have 1

4 (‖f1‖V − ‖f2‖V )2 = 0, that is, β = ‖f1‖V = ‖f2‖V .

By f1 6= f2, we have β 6= 0.

On the other hand, let β > 0. Then, for any ε > 0, there exists δ = δ(β, ε) ∈ (0, 1)

such that ‖x‖V = ‖y‖V = β and ‖x− y‖V ≥ ε imply
∥∥x+y

2

∥∥
V

5 (1− δ)β.
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In fact, by setting x1 = x
β and y1 = y

β , the definition of the uniform convexity yields

the conclusion.

Hence we see that

(4)
∥∥∥∥

f1 + f2

2

∥∥∥∥
V

< β = ‖f1‖V = ‖f2‖V .

Moreover

(5)
∥∥∥∥K

(
f1 + f2

2

)
− g

∥∥∥∥
2

Y

5 1
2
‖Kf1 − g‖2Y +

1
2
‖Kf2 − g‖2Y

again by (3). Therefore (4) and (5) yield

∥∥∥∥K

(
f1 + f2

2

)
− g

∥∥∥∥
2

Y

+ α

∥∥∥∥
f1 + f2

2

∥∥∥∥
2

V

<
1
2
(‖Kf1 − g‖2Y + α‖f1‖2V ) +

1
2
(‖Kf2 − g‖2Y + α‖f2‖2V ) = µ.

This contradicts that µ is the minimum of Fα(f, g) over f ∈ V . Thus the proof of

(ii) is complete.

Appendix II. Proof of Lemma 3.1.

Let fn ∈ V , ‖fn‖X 5 M be a minimizing sequence. That is, limn→∞ Fα(fn, g) =

µ ≡ inff∈V,‖f‖X5M Fα(f, g). Moreover {‖fn‖V }n∈N is a bounded sequence, so that

the reflexiveness of V implies that there exists a subsequence of {fn}n∈N, denoted by

the same notations, so that fn −→ f̃ weakly in V and ‖f̃‖V 5 lim infn→∞ ‖fn‖V

(e.g., [12]). Moreover, by the reflexiveness of X and ‖fn‖X 5 M , we can again

extract a subsequence, denoted again by {fn}n∈N, such that fn −→ f0 weakly in

X. Since the embedding V −→ X is continuous, we see that the weak convergence

in V implies the weak convergence in X. Therefore fn −→ f̃ weakly in V means

that fn −→ f̃ weakly in X. Hence f0 = f̃ ∈ V . Since K is compact, it follows that

Kfn −→ Kf̃ in Y . Therefore µ = lim infn→∞ Fα(fn, g) ≥ Fα(f̃ , g). Furthermore
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‖f̃‖X 5 lim infn→∞ ‖fn‖X 5 M by the property of the weak convergence (e.g.,

[12]). Since f̃ ∈ V , ‖f̃‖X 5 M and µ is the minimum, we see that Fα(f̃ , g) = µ.

That is, f̃ is a minimizer. Thus the proof of the lemma is complete.
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