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A CLASSIFICATION OF SUBSYSTEMS OF A ROOT SYSTEM

TOSHIO OSHIMA

ABSTRACT. We classify isomorphic classes of the homomorphisms of a root
system = to a root system X which do not change Cartan integers. We examine
different types of isomorphic classes defined by the Weyl group of X, that of
= and the automorphisms of ¥ or E etc. We also distinguish the subsystem
generated by a subset of a fundamental system. We introduce the concept of
the dual pair for root systems which helps to study the action of the outer
automorphism of Z on the homomorphisms.

CONTENTS
1. Introduction 1
2. Notation 3
3. A theorem 7
4. Lemmas 12
5. Proof of the main theorem 14
6. Dual pairs and closures 17
7. Making tables 19
8. Some remarks 23
9. List of irreducible root systems 29
10. Tables 30
References 40

1. INTRODUCTION

Root systems were introduced by W. Killing and E. Cartan for the study of
semisimple Lie algebras and now they are basic in several fields of mathematics. In
this note a subsystem of a root system means a subset of a root system which is
stable under the reflections with respect to the roots in the subset. The purpose of
this note is to study subsystems of a root system. It is not difficult to classify the
subsystems if the root system is of the classical type but we do it in a unified way.
The method used here will be useful in particular when the root system is of the
exceptional type.

Let = and Z’ be subsystems of a root system Y. We define that =’ is equivalent
to Z by ¥ and we write = -~ = if w(Z) = E' with an element w of the Weyl group

Wy of 3. By the classification in this note we will get complete answers to the
following fundamental questions (cf. Remark 10.2 for the answers).

Q1. What kinds of subsystems of ¥ exist as abstract root systems?
=/

Q2. Suppose E’ is isomorphic to = as abstract root systems, which is denoted
by &' ~ Z. How do we know =’ ~ =?

b3y
Q3. How many subsystems of ¥ exist which are equivalent to =7
Q4. Does the outer automorphism of = come from Wx?
1
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Q5. Suppose o is an outer automorphism of Z which stabilizes the irreducible
components of Z. Is ¢ realized by an element of Wx?

Q6. Suppose that Z is transformed to Z' by an outer automorphism of X. Is
= i~ =’ valid?

Q7. Is E equivalent to a subsystem (0) generated by a subset © of a fundamental
system ¥ of ¥7 How many elements exist in {© C ¥; (O) Y =}

For example, Q5 may be interesting if = has irreducible components which are
mutually isomorphic to each other. Namely an orthogonal system is a typical
example (cf. Remark 8.2).

To answer these questions we will study subsystems as follows. Let = and X be
reduced root systems and let Hom(Z, ¥) denote the set of maps of Z to ¥ which
keep the Cartan integers ZEZ;% invariant for the roots a and 3. Since the map is
injective and its image is a root system, the image is a subsystem of ¥ isomorphic
to E.

Let W=z and Wy denote the Weyl groups of = and X respectively and put
Aut(ZE) = Hom(E, E) and Aut(X) = Hom(X, X). We will first study the most re-
fined classification, that is, Wx\Hom(Z, ) after the review of the standard materi-
als for root systems in §2. In §3 we will give Theorem 3.3 which reduces the structure
of Ws\Hom(Z, X) to a simple graphic structure of the extended Dynkin diagrams.
The theorem is a generalization of the fact that an element of Wx\Aut(X) corre-
sponds to a graph automorphism of the Dynkin diagram associated to ¥ (cf. Ex-
ample 3.5) and the theorem is proved in §5 after the preparation in §4.

In §6 we introduce the dual pair of subsystems, which help us to study the action
of Aut(Z) on Hom(Z,3). In §10 we give the table of all the non-empty Hom(E, X)
with irreducible 3. The table includes the list of the numbers of the elements of
the cosets

Ws\Hom(Z, Y), Aut(X)\Hom(Zz,¥),
Ws\Hom(Z, ¥)/Aut(Z), Ws\Hom(Z,X)/Aut’(Z)

and the number of the subsystems generated by subsets of a fundamental system
of ¥ which correspond to a coset. Here Aut’(Z) is the subgroup of Aut(Z) defined
by the direct product of the automorphisms of the irreducible components of =.

In many cases #(Wyx\Hom(Z,¥)/Aut(Z)) = 1, which is equivalent to say that
the subsystems of 3 which are isomorphic to = form a single Wy-orbit. We will
also distinguish the orbits when the number is larger than one.

In §8 we give some remarks obtained by our study. For example, the induced
action of Wy on the orthogonal systems of type E7 and Eg will be examined.

In §9 we give the extended Dynkin diagrams and roots of the irreducible root
systems following the notation in [Bo], which is for the reader’s convenience and
will be constantly used in this note.

Dynkin [Dy] classified regular subalgebras of a simple Lie algebra in his study
of semisimple subalgebras. The classification is given by Table 11 in [Dy], where
Ag + Az and the second one of A7+ Ay should be replaced by Fg+ As and E7 + Ay,
respectively, and it corresponds to the classification of Aut(X)\Hom(E, ¥)/Aut(Z)
for S-closed subsystems (cf. Definition 6.6) in our table in §10. His table was ob-
tained by successive procedures taking maximal subsystems, which correspond to
removing one root from the (extended) Dynkin diagram of a root system. Our clas-
sification is based on Theorem 3.3, which gives the classification of Wy \Hom(Z, ).
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2. NOTATION

In this section we review the root systems and fix the notation related to them.
All the materials in this section are elementary and found in [Bo].

Fix a standard inner product ( | ) of R” and the orthonormal basis {e1,...,€,}
of R™. For aw € R™ \ {0} the reflection s, with respect to « is defined by

Sq: R» — R™
(2.1)
x = Ssex)i=x—2

Definition 2.1. A reduced root system of rank n is a finite subset ¥ of R™ \ {0}
which satisfies

(2.2) R" =3, s Ra,
(2.3) 5a(2)=%  (Yael),
(2.4) olald) 4 (Va, B €X),

(ala)
(2.5) RanN¥ = {+a} (Va € 3).

In general the rank of a root system X is denoted by rank 3.

Remark 2.2. i) In this note any non-reduced root system doesn’t appear and here-
after for simplicity a root system always means a reduced root system.
ii) We use the notation N for the set {0, 1,2, ...} of non-negative integers.

Definition 2.3. A fundamental system ¥ of the root system ¥ of rank n is a finite
subset {a1,...,a,} of ¥ which satisfies

(26) Rn = R(Jél + RO{Q —+ -4 Ran,
(2.7) o= ij(a)aj €¥ = (mi(a),...,...,mp(a)) € N" or —N".
j=1

The fundamental system ¥ exists for any root system ¥ and the root a € ¥ is
positive (with respect to ¥) if m;(a) > 0 for j = 1,...,n, which is denoted by
a> 0.

Definition 2.4. Let © be a finite subset of ¥ and put

(2.8) Wo := (84 ; a € ©) = the group generated by {s,; a € O},
(2.9) W= Wy = Wy,

(2.10) (0) := WO,

(2.11) 0t =0tny:={aec%;(a|3)=0 (VB€O)}.

The reflection group W generated by s, for a € ¥ is called the Weyl group of X.
A subset Z of ¥ is called a subsystem of ¥ if s,(E) = Z for any o € E. Then Z is
a root system with rank = = dim ) .= Ra. Note that () and © are subsystems
of ¥ and

2.12 rank(©) + rank O+ < rank 3.
(2.12)

Definition 2.5. The map ¢ of a root system Z to a root system X is a homomor-
phism if ¢« keeps the Cartan integers:

(@B) D) o s
(2.13) 2@le) ~ lala) TP

In this case ¢ is injective and ¢(Z) is a subsystem of X.
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The set of all homomorphisms of E to ¥ is denoted by Hom(Z, X) and define

(2.14) Aut(X) := Hom(X, ).
Note that Wy and Wz naturally act on Hom(Z, ¥) and
(2.15) L05q = S0t (t€Hom(E,X), acE).
Two homomorphisms ¢ and ¢/ of Z to ¥ are isomorphic if
(2.16) =wou
for a suitable w € Wy and we define
(2.17) Hom(Z,Y) := Ws\Hom(E, ¥) ~ Wx\Hom(ZE, X))/ W=,
(2.18) Out(X) := Wx\Aut(¥) = Hom(%, ¥) ~ Aut(X)/ Wy
(2.19) & {g € Aut(X); g(¥) = ¥}

The root system = is isomorphic to X, which is denoted by = ~ ¥, if there exists
a surjective homomorphism of = onto X.

Suppose X1 and Yo are the subsystems of 3 such that ¥ = 31 U35 and 31 L 3.
Then we say that ¥ is a direct sum of 1 and X5, which is denoted by ¥ = 31 + Xs.
The irreducible root system is a root system which has no non-trivial direct sum
decomposition. Note that every root system is decomposed into a direct sum of
irreducible root systems.

For root systems X7 and Yo there exists a root system X = X} + X4 such that
¥~ E} for 7 = 1 and 2. This root system X is determined modulo isomorphisms
and hence we simply write ¥ = 31 + X5. When 31 = X5, we sometimes write 23
in place of X1 4+ Xo.

For any two elements o and o’ in ¥, there exists an isomorphism ¢ of (o, ') to
one of the following four root systems with the fundamental system {3, 3’} such

that ¢(a) = 8 and (o) = 3"

’ ’ /
AL+ A =241 (B,0) = (e1,€2) 2000 —g, o@E)_0 £ &
’ /
Ay (B.B') = (e1 — 2.2 — €3) 2080 — 3, 28— 1 £ 8
’ /
By: (5,8) = (e1 — e2,¢2) 2B) — 1, 208)_ 5 B0

A/\
EE
=

)
/

Ga: (ﬂv ﬂ/) = (_251 + €2+ €3,€1 — 52) ([3“5) =—1, 2((5 ‘ﬁg)) =-3 gg%

The Dynkin diagram G(¥) of a root system ¥ with the fundamental system ¥ is
the graph which consists of vertices expressed by small circles and edges expressed
by some lines or arrows such that the vertices are associated to the elements of .
The lines or arrows connecting two vertices represent the isomorphic classes of the
corresponding two roots in ¥ according to the above Dynkin diagram of rank 2.
Here the number of lines which link 8 and 3’ in the diagram equals ([;T%‘(ig’)lg)'
Definition 2.6. A root « of an irreducible root system ¥ is called maximal and
denoted by amaq if every number m;(«) for j = 1,...,n in Definition 2.3 is maximal
among the roots of X. It is known that the maximal root uniquely exists.

Let ¥ = {ay,...,ay} be a fundamental system of ¥. Define

(2.20) Qo ‘= —Qmaz,
(2.21) U= WU {ag}.
The extended Dynkin diagram of 3 in this note is the graph G (@) associated to W

which is defined in the same way as G(¥) associated to ¥. We call ¥ the extended
fundamental system of 3.



A CLASSIFICATION OF SUBSYSTEMS OF A ROOT SYSTEM 5

A subdiagram of G(¥) is the Dynkin diagram G(©) with a certain subset © C WU,

In §9 the list of the extended Dynkin diagrams of all the irreducible root systems
is given, which is based on the notation in [Bo]. The vertex expressed by a circled
circle in the diagram corresponds to the special root ag. If the vertex and the lines
starting from it are removed from the diagram, we get the corresponding Dynkin
diagram of the irreducible root system. The numbers below vertices o; in the
diagram in §9 are the numbers m;(Qmaz)-

Remark 2.7. i) There is a bijection between the isomorphic classes of root systems
and the Dynkin diagrams.

The irreducible decomposition of a root system X corresponds to the decompo-
sition of its Dynkin diagram G(¥) into the connected components G(¥;). It also
induces the decomposition of the fundamental system ¥ = ¥, II---II ¥, such that
Y = (Uy) + -+ (U,,) is the decomposition into irreducible root systems. Then
we call each ¥; an irreducible component of V.

The irreducible root systems are classified as follows (cf. §9):

(222) An(n Z 1), Bn(n 2 2), C’n(n 2 3), Dn(n Z 4), Eg, E7, f?g7 F‘47 GQ.

We will also use this notation A,, ... for a root system or a fundamental system.
For example, As + 2B3 means a root system isomorphic to the direct sum of the
root system of type As and two copies of the root system of type Bs or it means
its fundamental system.

ii) Out(X) is naturally isomorphic to the group of graph automorphisms of the
Dynkin diagram associated to 3. If ¥ is irreducible, it also corresponds to the graph
automorphisms of the extended Dynkin diagram which fix the vertex corresponding
to a. Here we give the list of irreducible root systems ¥ with non-trivial Out(X):

Out(A,) ~ Z/ZZ (n >2),

Out(Dy) ~ (= the symmetric group of degree 3),
Out(Dy,) ~ Z/QZ (n>5),

Out(Es) ~ Z/27Z.

(2.23)

iii) The graph automorphism o of the extended Dynkin diagram G(¥) with the
following property corresponds to a transformation by an element of Wy.

A rotation of G() (X =A4,, Eg),

Any automorphism (E Bn, Cyn, Er),
(2.24) o((ao, 00, an—1,0n)) = (a1, 0, an, an—1) (X = Dy),

0((a0,a1,an,1,an)) = (an, ap—1,01,Qp) (E D,, n:even > 4),

0((a0,a1,an,1,an)) = (an,n—1,00,1) (X =Dy, n:odd)

When ¥ is irreducible, we have the bijection:

{w e Wy ( )= \Il} S Aoy € Y5 mi(amaz) = 1} U{ao}
(2.25) w w
o — o(ap)

To classify subsystems contained in a root system we prepare more definitions.
Definition 2.8. We put
(2.26) Aut'(Z) == Aut(Z;) x - x Aut(E,,) C Aut(Z),
(2.27) Out'(Z) := Aut/(E) /W=

for a root system = with an irreducible decomposition === + -+ - + =,,.
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Definition 2.9. Let =, 2/ and © be subsystems of X.

(2.28) 2 g & 3Jw € We such that ' = w(2),
(2.29) = fg g & 3Jg € Aut(O) such that =" = g(=).
If= P~ =’ (resp. E }éj; =), we say that =’ is equivalent (resp. weakly equivalent) to

E by ©. Since Aut(Z) ~ {+ € Hom(E, X); «(E) = E}, we have

(2.31) ~ Aut(X)\Hom(Z, X)/Aut(2)
~ Out(X)\Hom(E, ¥)/Out(=),
(2.32) Ws\Hom(Z, ¥)/Aut’(Z) ~ Hom(Z, X2)/Out’(Z).

Definition 2.10 (fundamental subsystems). A subsystem Z of X is called funda-
mental if there exists © C ¥ such that = Y (©).

Remark 2.11. Suppose X is of type A,. Then it is clear that

(2.33) any subsystem of ¥ is fundamental,
(2.34) (

—/
= =

[1]
[1]

~ ~ Z') for subsystems Z and Z’ of .

Our aim in this note is to clarify the structure of

Hom(Z,Y), Out(X)\Hom(Z, ), Hom(E,X)/Out(Z), Hom(Z,X)/Out’(Z),
Out(X)\Hom(E, X)/Out(E) and fundamental subsystems of ¥.

For this purpose we prepare the following definition.

Definition 2.12. i) A root o € ¥ (resp. ¥) is an end root of ¥ (resp. W) if

(2.35) #{B € U (resp. ¥); (B,a) <0} < 1.

A root a € W (resp. W) is called a branching root of ¥ (resp. ¥) if

(2.36) #{B € U (resp. W) ; (B,a) <0} > 3.

The corresponding vertex in the (extended) Dynkin diagram is also called an end
vertex or a branching vertex, respectively.
ii) When ¥ is irreducible, we put

(2.37) Yhi={ae¥%; |a| = |mazl}
and denote its fundamental system by WZ. Then % is a subsystem of ¥ and

Al = A, BE =D, (n>2), Ct =nA, (n>3), DE =D, (n>4),

2.38
| ) EGL:EG’ E7L:E77 ESL:E& F4L:D47 GézAz.
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3. A THEOREM

In this section we will give a simple procedure to clarify the set Hom(Z, ) :=
Ws\Hom(Z, ¥) for root systems = and 3.

Remark 3.1. i) Note that
(3.1) Hom(Z, ¥ + Xo) ~ H (Hom(Z', ¥1), Hom((Z')*, %)),

Z/CE: component
(3.2) Hom(E; + Eg, %) ~ H (MHOYD(E% L(El)L))-
t€EHom(E,X)

=/

Here the component =’ of = is the subsystem of = such that = = Z' + (Z')*. The
empty set and = are also components of =.
The identification (3.2) follows from

(3.3) {wEWg,w|5—zd}— ':LCWE

for any ¢ € Hom(E, X)) (cf. [Bo]).

ii) The identifications (3.1) and (3.2) assure that we may assume = and ¥ are
irreducible. In fact, the study of the structure of Hom(Z, X)) is reduced to the study
of + € Hom(Z,Y) and «(Z)* for irreducible = and .

We may moreover assume L( N ZL # ) by considering the dual root systems
=V {(a‘a) ;€ H} and XV { a|a o€ E} in place of = and 3, respectively.

Definition 3.2. When G(®) is isomorphic to a subdiagram G(©) of G() with a
map ¢ : ® — © C U, it is clear that 7 defines an element of Hom(Z, ¥). In this case
we say that 7 is an imbedding of G(®) into G(®).

Recalling Definition 2.4, 2.6 and 2.12, we now state a theorem in this note, which
is a generalization of the description of Out(X) = Hom(X, X)) in Remark 2.7 ii).

Theorem 3.3. Let = and X be irreducible root systems and let ® and ¥ be their
fundamental systems, respectively. Denoting

(3.4) Hom'(Z, %) := {v € Hom(E, %) ; «(E) N £* # 0},
(3.5) Hom' (E, %) := Wy \Hom' (2, ),
we have the following claims according to the type of Z:
1) E s of type A
%/(E, ¥) & {Imbeddings ¢ of G(®) into G(V) with the end vertex ap}.
Let T be this graph imbedding corresponding to « € Hom(Z,X). Then
(3.6) WE) ~ (e T a Ll (D).
In the case #Ho—m/(E, ¥) > 1, we have #Ho—m/(E, ¥) =3 if (E,X) is of type (As, D4)
and 2 if otherwise. Moreover for T, 7 € m/(E, ¥)
“C and U are conjugate under an element of Out(X) or Out(Z)”

3.7
3.7 s u2)t =~/ (B

2) E is of type Dy, (m > 4).
Let ®,, = {ﬂo, ooy Bm—1} be a fundamental system of E with the Dynkin diagram

Bo B 52 “+ Bm—3 Bm—2

oot PO and my, denote the maximal integer m such that there is

i’ﬂmfl
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an imbedding T, of G(®,,) into G(¥L). We put ms = 0 if such imbedding doesn’t
exist. Then

0 (2 is of type Ay, Cpn, Ga2),
rankY (X is of type By, D, Es, F}),
5 (X is of type Es),

6 (X2 is of type Er)

my =

and
Hom'(D,,,X) #0 & (4 <)m < my
& #(Hom'(2,%)/0Out(2)) = 1.
3 is of type Eg, E7 or Eg.

2 (m=my),

1 (4§m<mz),
A1 (n:7),

0 (n=6,8).

#Hom(Dp,, ) = {

L(E)r ~ Dy + {

Y is of type Dy, By, or Fy (m <mn).

(X: Dy (m=n=4)),
(3: By, and D, (m =4 < n)),
(3:D,, (4 <m=n)),
(X:Fy (4=m), B, (d<m<mn), D, (4 <m<n)),
D,_., (v€Hom(D,,,D,
UE)E ~{ By (€ Hom(D,,, By,)
v € Hom(Dy, Fy)).

#Hom (2,%) =
),
),

(
3) E s of type By, (m > 2).

3 is of type By, with m < n,
Hom(Z,X) #0 < #Hom(Z,X) =1 and { X is of type C,, with m = 2,
¥ is of type Fy with m < 4,
(BN T, ~Ty n (T=B,C, F, Fy=By, Fi=A; and «(B3)* NF, ¢ ©¥).
4) = is of type Cy, (m > 3).
3 is of type Cy, with m < n,
Y is of type Fy with m < 4,
(B NT, ~Ty sy (T=C,F, Fy=0Cy Fy = Ay and 1(C3)t N F, c ©5).
5)

Hom(Z, %) #0 < #Hom(Z, %) =1 and {

[1]

is of type E,, (m =6, 7 and 8).
Hom(Z,X) & {Imbeddings © of G(®) into G(¥)} /~,
LE) ~ (e eV aLi(d)).

Here [~ is interpreted that all the imbeddings of G(®) are considered to be isomor-
phic except for (2,%) ~ (Es, Eg). Namely #Hom(Z,%) <1 if (£,%) # (Eg, Eg).
6) Z is of type Ga or Fy.

Hom(=,%) #0 < #Hom(=,X) =1 and 2~ X.
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Remark 3.4. i) In the proof of Theorem 3.3 2) we will have

<Zm>3 ((bmz))l m \I’) Zmz) (Bm)7 ce Zmz) (ﬁmz}—l)> (4 S m S mE - 2)

for the imbedding z,,,, with (Bms) = ap if 3 is of type D,,, Eg, Er or Eg.
Let ©,, be a subset of ¥ such that (©,,) ~ D,,. If ¥ is of type B,, or D,,, we
may assume that ¢, € Hom(D,,, ¥) satisfies ¢, (E) = (0,,) and then

L(E)l ~ {<Lm2 ((bmz)L N \I’> (mz —1<m< m2)7

(3.8) L (®m)t = (65 N D).

Suppose X is of type Eg, E7 or Eg. Let a,,, be the maximal root of (©y,,). Put
o) =—a!, . and O, = Oy U{an}t. We may assume ¢y, € Hom(D,,,Y) satisfies
tm(E) = (6,,) and ©,, C O,,,,. Then

(3.9) (@)t = (O N Oy, OF N T).

Note that G(0,,,,) is the extended Dynkin diagram of (6,,,) ~ D,,,,. See Exam-
ple 3.5 viii) and ix).

ii) Using a graph automorphism of G(\i/) corresponding to a suitable element
of Wy, we may replace oo by another element a; of ¥ with m,(amez) = 1 in
Theorem 3.3 i) and in the remark above (cf. Remark 2.7 ii)).

Example 3.5. (Hom(Z,Y) and =)

i) #Hom(As, A,) =2 and Ay N A, ~ A, 3 (n>2).
Two elements of #Hom(As, A,,) are defined by (ay, az) — (ag, 1) and (aq, as) —
(a0, i), respectively. They are isomorphic to each other under Out(As). Note

that the rotation of the extended Dynkin diagram corresponds to an element of
Wy, .

n

Q1 Qg 3 Qp—] an O41 Qo Q3 " Op—1 Qp
& 7.—Q O —@— 70
o e

Qg Qg

ii) #Hom(As, D4) = 3, #(Out(Dy)\Hom(Az, Ds)) = 1 and A3 N Dy = (.
The group Out(D,4) ~ &3 corresponds to the graph automorphisms of the extended
Dynkin diagram which fix ay.

« (07 «
>I<4 o4 *4

a J)ag o
O*O
J@Oéo J@Oéo éao

iii) #Hom(As, D,,) = #(Out(D,,)\Hom(As, Dy,)/Out(A3)) = 2 for n > 4.

ay Q2 043 044 045 TQp—2 Qp—1 al Qg Qg 044 045 TQp—2 Qp—1
Oo—oO0 ——0 oO—oO0 ——0
@ i04n <<L040 Qnp

A§- NnD, ~D,_3or D, 4 according to the imbeddings A3 C D,,.

iv) #Hom(As, Eg) = 1 and Ay NEg ~ 2A,. Then 34, C Eg and #Hom (345, Eg) =
#Hom(2A5,2A5) = 8 (cf. §8.2.5) .

Q1 a3 044 045 046
*—o

oQg

Qo
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V) :,PE)EI_IOHTL(A47 E@) = 2, #(Out(EG)\Hom(A4, Eg)) =1 and Ai N EG ~ Al.
Oo—O0

041 a3 (04 Q5 Qg a1 O3 (4 05 Qg
Ko @ € A OO ok
(%) (%)
gao 4:3040
vi) #Hom(As, E7) = #(Out(E7)\Hom(As, E7)/Out(As)) =
Qg (1 (3 Qg 045 046 047 Qp 1 (3 0&4 0&5 046 0&7
©®—0—0—0 ©—0—0—0—
(6] * Q9
A5l N E7 ~ Ay or A; according to the imbeddings As C FEr.
vii) #Hom (441, D4) = 6 and #(Out(D4)\Hom(4A;, Dy)) =1

.Oé4

a1 Q2 U

[ R S JO% ay = {ialv :l:Oé?,, :l:Oé4}
[o1e7))

viii) #Hom(Dy, E,,) = 1 (cf. Remark 3.4 1))

041 a3 4 A5 046 Qp 1 3 (4 Q5 Qg Q7 041 a3 g A5 046 047 048 040
O—0—oO0 [ ] * O—O0—~©O0 k [ ] O—O0—oO0
Oé(/)* Qo .a6 a9 e 056
*x
DinEg=10 Di NE; ~3A D} NEg~D
4 6 — 4 7= 1 4 8 = L4

ix) #Hom(D5, Dg) = #Hom(D5, By) = 1 (cf. Remark 3.4 i)).

ay Q2 Qg 044 045 046 047 048 Qy Qg 3 4 CY5 CYG Q7 g Qg
O—O0—O— 0—0—0—0 ——0—>0
(%)) iag Qo
Dé‘ﬁDgZD;l Dé‘ﬂBg’:B;;

X) #%(A;; + As, Eg) =2 and #(M(A; + As, Eg)/out(A4 + Az)) =1.
The two reductions Hom(Asg, Af) and Hom(A4, A3) given below lead to the same
result (cf. Remark 3.1). In particular (A4 + A)* N Eg ~ A;. Note that (A4, Ay)
and (Asg, Eg) are special dual pairs in Fg (cf. Definition 6.3).

Q1 3 Q4 045 Qe Q7 Qg O a1 3 Qg Q2 Q1 3 04 Q2
*o—0—0 O—O0—0—0© — O, k ® : k or * >k O
2 cH @
Q1 3 Q4 Q5 046 047 Ots Qg C¥1 a3 Qg 045 Otﬁ Q1 3 Q4 Q5 Qg
*—0—0—0— —CQ© — O—oO0 or [ ) *k O—oO0 k
Q2 Q2 Q2

: :

Corollary 3.6. i) Suppose Y is not of type A. Let G{awo, oj,,... 5, ,}) be a
mazimal subdiagram of G(¥) isomorphic to G(A.,) such that oy and «vj,, , are the
end vertices of the subdiagram and o , are not the branching vertex of G(¥) for

v=1,....,m—2. Then
#Hom (A, ) =1  (k=1,...,m),

(ijmfl is not a branching vertex of G(@))

— =0
Hom (4,11, ~
#tom (A1, X) {> 1 (oy,._, is a branching vertez of G(¥))
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with
( =
(3 = Dn,
(x= EG) (X = Er), 6 (X =Es),
3 (X =Fy), 2 (X =Gy).
Here v, , is the branching vertez if ¥ = B,, (n > 3), D,, (n >4), Es, E7 or Es.
il) We consider the following procedure for a Dynkin diagram X :

3), 1 (=B, Cp),

\\/ I\/

2
2 4),
3 4

If X is connected, we replace it by the subdiagram X' of the extended
Dynkin diagram X of X where the vertices of X' correspond to
the roots orthogonal to the mazimal root of X. If an irreducible
component of X' has no root with the length of the mazximal root,
we remove the component.

If X is not connected, we choose one of the connected component
of X and change the component by the above procedure.

Then Homl(rAl, X)) corresponds to the r steps of the above procedures starting
from G(V). The existence of these steps implies Hom'(rAy,%) # 0 and in this

case Hom/(rAl7 ) =1 if and only if any non-connected Dynkin diagram does not
appear except for the final step. In particular, we have the following:
Let r(X) be the mazimal integer r satisfying Hom'(rA;, %) # 0. Then

(3.10) r(S) =1+ r(%))

Here {3} is the set of irreducible components of ag such that X NS # 0 and

r(Ap) =1+1r(4p_2) = [”T“] (n>2), r(4)=1, r(Ay) =0,
r(Bp) =24 1(Bn_2) = 2[3] (n>4), r(Bs)=r(B2)=2,
r(Cpn)=14+7(Ch-1) =n (n>3), r(C2) =2,

7(Dn) =2+ 1r(Dp—2) = 2[5] (n>4), r(Ds3)=r(Dsg) =2,
r(Fs)=1+r(45) =4, r(E7)=1+r(Dg) =17,
r(Fs)=1+r(E7) =8,

r(Fy) =141r(Cs) =4, r(Gs) =1

Remark 3.7. i) If ¥ is of type A, D or E, then Hom(rA;,Y) is figured as follows
according to the procedures in Corollary 3.6 ii) and the notation in §9.

Ay An_2 An—4 An—ﬁ tt Dy ——= Dy 2+ Ay — -
a €1+-tes—estester—es €4 — € €r— € e — €

Eg — > A; 2 Ay "4 22 Es——LE;

—€3 — €4 4A1 —— 3A1

€7 — €8 —€5 — €g /
FEr Dg Ds+ Ay 241 —=> A ——= ()
€6 — €5 %
T Dy — 34,

There appears 34; twice in the above. They are distinguished by the structure of
(341)* N E; but isomorphic in Eg (cf. §7.2, §7.3 and §8.2.3).
For example, it follows from the procedures shown above that

:,PE)EI‘IOII?1(51417 E7) = #HOHI(4A1, Dg) = #HOIH(3A1, D4 + Al)
(311) = #HOHI(ZAl, D4) + :,PE)EI‘IOIH(ZAl7 4A1)
= #Hom(A;,3A1) + 4#Hom(A;,34;) =3 +4-3 =15.
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ii) For an irreducible root system ¥, we can easily calculate #Hom(Z,Y) and
2L NX for any root system Z in virtue of Theorem 3.3 together with Remark 3.1
(cf. Example 3.4 x)). The complete list for non-trivial Hom(Z,¥) is given in §10.
More refined structures related to the actions of Out(X) and Out(Z) etc. are also
given in §10, which will be studied in later sections.

4. LEMMAS

In this section we always assume that ¥ is a fundamental system of an irreducible
root system X and W is the corresponding extended fundamental system.
First note that for a € ¥ N X we have

(4.1) 2(()"5) c {{07_1} (VB € (¥ \ {a}) and 3 > 0),

(o]x) {0,1} (VB e (¥\{a}) and § <0).

Here we put ¥\ {a} =V if a ¢ 0.

Lemma 4.1. If a subset © of ¥ contains o and the diagram G(©) is connected,
(4.2) Ot =(acV;al0)

Proof. Note that (a;|a;) <0for 0 <i<j<n.
We will prove the lemma by the induction on #0O.

We may put © = {«ap, a1, ..., qn,} and we may assume ©’ := {ag, a1,...,Qmn-1}
is empty or forms a connected subdiagram.

Let a = E?:l mj(a)a; € ©F with mj(a) > 0. Then the induction hypothesis
for ©’ implies m;(a) = 0 for j < m and

n

0= (amla) = Y my(a)(amlay).

j=m+1

Hence (am|aj) # 0 means m;(a) = 0. O

Lemma 4.2. Fiz © C V. The fibre of the map

po : s — N#©
W %

B=>n,comi(Bai — (mi(3))a,co
is a single Wy\e-orbit except for the null fiber pcf)l(O).
Proof. Fix 0 # m = (m;)aco in the image of pg and put
Em::Eﬂ(Z mio; + Z Ra).
;€0 a€W\O

Let g be the complex simple Lie algebra with the root system X and let X, € g
be a root vector for a € ¥. We denote by gy\e the semisimple Lie algebra generated
by {Xa; @ € ¥\ ©}. Then the space

Vm:i= Y CX,Cg
QEYm

is a gy\e-stable subset in the adjoint representation of g, which is an irreducible
representation of gg\e as is shown in [OO, Proposition 2.39 ii)].
Let me be the orthogonal projection of R" onto ¢\ g R with respect to (| ).

Put vm =Y, co Mi®% — T6(D_,,co Mii). Then

mo(a) = a = vm, (Te(@)[Te()) = (a|a) = (tm|vm) (Vo € Em).
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The set of the weights of the irreducible representation (gg\e, V) is me(Xm) and
the set of the weights with the longest length (i.e. extreme weights) is 7o (pg' (m)).
Hence 7o (pg'(m)) is a single Wy g-orbit. O

Lemma 4.3 (roots orthogonal to the end root). Suppose oy is an end root of ¥
with oy € L. Then the set

(4.3) Q={a=01+)> mj(@)a; € "; (alar) = 0}
j=2

is empty if W is of type A and it is a single Wy, 11 -orbit if otherwise.

Proof. We may assume #W¥ > 1. Then there is a unique 8 € ¥ with (a1]8) < 0.
We may assume (5 = as and we have

n
Q={a=wo +2ay +ij(a)aj extl
=3

Then Q = 0 if and only if ¥ is of type A. If ¥ is not of type A, Lemma 4.2 assures
that Q is a single Wy {q, a5}-0rbit. Here af = (¥ \ {o1, a2}). O

Lemma 4.4 (special imbeddings of Ay and Ajz). Let W/ C V. If V' #£ U, we
assume that we can choose o/ € W NXL with o ¢ V. If V' =V, we put o’ = ay.
Define

Qu:={B e (¥)NT"; (Bla) <0},
Q2 := {(B1,82) € (¥) N =F) x ((¥') N TF);
(Br,a’) = (B2]a’) < 0 and (51|32) = 0},
0 :={aeV; (a|a’) <0},

O :=0nxk.
Then Oy, is the set of complete representatives of Q1/Wyne. Moreover if W' # VU,
Q2/#Wyne = #O0L(#60L — 1)

+{a € OL; G(V,) is not of type A or not an end root of G(V,)}.

Here W', is the irreducible component of U’ containing o € Op,.

Proof. Let 8 € Q1. It follows from (4.1) that there exists a,, € ¥’ satisfying

(4.4) B=am+ Y, miBay,
ajE\I/’\@
(4.5) (am|8) < 0.

Since ay, € Wynef by lemma 4.2, o, € Op.

Let aum, am € O with m # m/. It is clear o € Wyn e, and therefore Of
is the set of complete representatives of Q1/Wyne.

Let (61,0) € Q2. We may assume 1 = o € O, by the argument above and
is of the form (4.4) with o, € Op,.

If k # m, we may similarly assume 8 = o, and (ag, @) € Q2.

Qp
/ / / ©
ar o Qm o Qm [0 am/
o~—0—o0 0—o0 o e} O
k=m k:m\oéq

Suppose k = m. If a, is the end root of ¥, it follows from Lemma 4.3 that ¥/, |
is not of type A and (o, 3) corresponds to a unique element of Q2/Wyn e.
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If @y, is not the end root of Wi, , W, is of type A and it is easy to see that
(ax, ) also corresponds to a unique class in Q2/Wyne. In fact, we may put
{a € ¥,,,; (alam) <0} = {ap, ag} and

B=0am+ap,+ag+ Z m;(5)B € .
a; eV’
J#m, p, q
Note that the roots 3 with this expression are in a single Wy (a,,.a,,a,}-0rbit.
Thus we have the lemma. O

5. PROOF OF THE MAIN THEOREM

Retain the notation in Theorem 3.3 to prove it.
1) Let Z be of type A;,+1 with the fundamental system ® = {fy,..., S} and

Go By BB

the Dynkin diagram
First note that 7 naturally corresponds to an element of Hom'(Z, %) and then
(3.6) follows from lemma 4.1. We will prove the theorem by the induction on m.
Let ¢ € Hom'(Z,%). Since {a € ¥; |a| = |tmaz|} = Wsmaz, the theorem is
clear when m = 0. Suppose m > 1. By the induction hypothesis we may assume
that there exists a unique sequence («o, . .., q,—1) of element of U and an element
w € Wy, such that wo«(8;) =« for j =0,...,m—1.
Bo B1 - Bm—1Pm
O——O0— O O O

VU S G S

ayg Qp - QT
Put o), = wo«(B,) and
UV ={aec¥;(aaj)=0 (j=0,...,m—2)},
O ={aeV; (a|ay-1) < 0}.
Since (a),|a;) = 0 for j = 0,...,m — 2, o, € (V). Applying Lemma 4.4 to

o' = Qy_1, we have a,,, € ONTL and w' € Wyn e such that w'(a;,,) = o, Hence
w'w o ¢ corresponds to a required imbedding of G(®) into G(¥).
The uniqueness of a,, € © N XF is proved as follows. Suppose there exists

w € Wy, such that
woj =0o; forj=0,....,m—1 and wan, ceonxk
Then w € Wy e and Lemma 4.4 assures woi, = Q.

Thus we have proved the first claim and then Lemma 4.1 assures (3.6). The
last claim is easily obtained by applying the claims we have proved to the extended
Dynkin diagrams in §9.

2) Let E is of type D,, with m > 4. We may assume that ¥ is of type By, D,,
E, or F,.

Let ¢ € Hom'(Z,%). Theorem 3.3 1) assures that there exists a unique sequence

g, Oy, ..., 05, . in ¥ and an element w € Wy such that
(5.1) wou(fy) =a;, (v=0,...,m—3) with jo=0.
Putting
V={aec¥l, (doy,)=0 (¥=0,...,m—4)},
0={ac¥; (vaqa;,_,)) <0}, @Jﬂﬂrg,Q

A .
a = a]m—ga

(5; 6,) = (w o L(ﬂm72), w o L(ﬂmfl)), 6777,71
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we have (3, 3/ € (') and we can apply Lemma 4.4 as in the case when = is of type
A. Thus

#Ws\{¢ € Hom'(Z, %) ; 3w € Wy, such that (5.1) holds. }

= (#(@ N ZL)) (#(@ nxk) — 1) + #{a € O©N XL : the irreducible component of

U’ containing « is not of type A or « is not an end vertex of the component}.

Hence Hom'(D,,, %) = 0 if ¥ is of type A,, C,, or G2 or m > rank ¥. Moreover we
have #Hom(D,,, Y) shown in the following table under the notation in §10.

by = o’

D4 D4 {041,043,044} ~ 3A1

Ds Dy | O\ {a2} ~ A; + A3(3 a3 : not an end root)
D, (n>6) Dy | W \ {042} ~Ai+D,_o

B4 D4 \If\{ag} ’iAl +Bg

F4 D4 v \ {al} >~ C?,

D, (4<m=n) m {an—17 an} ~ 24

D, (4<m<n—2) m {am—h R an} ~ Dn—m+1

D

Dy, (4<m=n—1) | Dm | {@n—2,0n_1,0n} ~ A3(3 a2 : not an end root)
D
D

B, (4<m<n) m {amflv cie an} ~ Bynomy1
Es Dy | O\ {a2} ~ A5(3 a4 : not an end root)
D5 {041,04370[5,@6}’:2A2
Er Dy | W\ {a1} =~ Dg
Ds | {ag,a4,...,a7} ~ A5(3 a4 : not an end root)
D¢ | {azg, a5, 6,7} =~ A1 + A3(3 a5 : an end root)
Eg Dy | V\{as} ~ Er

D5 {al,...,aﬁ}:Eﬁ
D6 {041,...,045}21)5
D7 | {a1,a2,a3,a4} ~ A4(3 a4 : not an end root)
Dg | {ag,a1,a3) ~ A1 + Ay

Here msy is the rank of the maximal subdiagram of type D,, contained in the
extended Dynkin diagram of 3% and then

MHHHH[\D»—*»—‘[\?»—‘H»—*H[\DHWWW@:H:

n (3 is of type By, or D),
(5.2) my = . .
5,6,8 (X isof type Eg, E7 or Eg, respectively).
o] Qg (3 Q4 Op—2 Op—1 o] g (3 Oy Ap—1 Qp
o) O—O—O0— —O0—O0—-oO0 O—O—O0—0— —O0—O0—0:>0
Qo Qp Qo

(53) Q1 (i3 Q4 5 QO Qp (1 (i3 g Q5 Qg Oy a1 A3 04 05 Qg Q7 Qg Q)
% ® *

O—O0—-o0 k ©—O0—O0—O0—-O0 >k O—O0—O0—O0—0—0—~0
(65 (%) L (6%
)]

Fix + € Hom(D4, Fy). Since Hom(Dy, Fy) is a single Wpg,-orbit, for any ¢ €
Aut(Dy) there exists wy, € Wg, with 1o g = wy ot. Here wy is uniquely determined
by g because rank Fy = rank D,. Hence we have

Aut(Dy) ~ Wg, D Aut(By) = Wp, D Wp,,

5.4
(54) Out(Dy) ~ &3, Wp,/Wp, ~7/2Z.

Let ¢ : Dy C D,, (C By) be the natural imbedding given by the realization in §9
and let g € Aut(Dy) be a non-trivial rotation of G(D4). Then it is easy to see
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tog# wo. for any w € Wg_. Hence if n > 4, we have

(5.5) #(Hom(Dy, Dy,)/Out(Dy)) = #(Hom(Dy, By,)/Out(Dy)) =1

because # (Hom(Dy, D)) = #(Hom(Dy, By,)) = 3 and moreover we have

(5.6) D:ND,~D, i, D-NB,~B,

for m = 4. Here Dy = D1 = By = ), Dy ~ 2A;, By ~ Af and Af is the root space

of type Ay such that A7 N (B,)F = 0.
Note that

(5.7) Aut(D,,) ~ Wg, and Out(D,,) := Auwt(D,)/Wp, ~7Z/2Z (n >5)
under the natural imbedding D,, C B,, of root spaces. Thus we have
(5.8) #(Hom(D,,,X)/Out(D,,)) =0 or 1 if m > 4 and ¥ is irreducible

and therefore {¢(D,,)*; + € Hom(D,,,Y)} is a single Wy-orbit if it is non-empty.

Thus we have (5.6) for 4 < m < n since it does not depend on the imbedding of
D,,.

Let n € {6,7,8} and put m = mpg,. There exists « € Hom(D,,, E,) such that
v corresponds to the imbedding of ®,,. to ¥ with +(8y) = ag. Then we have
Df NEg =0, Di N E; ~ Ay and Dg N Eg = () from Lemma 4.1.

Moreover there exists ¢ € Hom(D,,,_1, E,,) such that

L/(Dmfl) - {L(ﬁo)v R L(5m73)7 L(5m73) + L(5m72) + L(ﬂmfl)}

and it is clear that D=, N E, ~ Dt N E,.

Let 4 < k < 6. Then D,J; N FEg D D,J; N Dg ~ Dg_;, and we can conclude
Df; N Es ~ Ds_;, because rank(D,J; N Es) < 8 — k and there is no root system
containing Dg_j as a proper subsystem such that its roots have the same length
and its rank is not larger than 8 — k.

Since Dg N By ~ Ay and Df N Dg ~ 2A;, Df N E; D 34; and we have
Dj N E; ~ 3A; by the same argument as above.

Thus we have obtained the claims in the theorem and therefore Remark 3.4 1) is
also clear.

3) Suppose = is of type B, with m > 2.

Note that for any 3 € Z\ =, there exists 81, 32 € ZF such that 3 = %(51 + [2)
and (31|32) = 0. Hence ¢ € Hom(Z,Y) is determined by ¢|z.. Note that =% is of
type D,, with Dy ~ 2A; and D3 ~ As.

Then Hom(Z, ¥) # () means X is of type By, (n > m) or Fy if m > 2.

If m > 2 or if ¥ is of type Fy, #Hom(ZL, %) = 1 and therefore #Hom(Z,Y) = 1.
If m =2 and ¥ = B, or Cy, it is easy to see that

{L € Hom(24,,Y); %(L(ﬁl) + L(ﬁg)) € E}

is a single W-orbit and we have also #Hom(Z, %) = 1. Here ZL = (51) + (B2) ~
24;.

4) When ¥ is of type C,,, we have the theorem from the case 3) by considering
the dual root systems ¥ and XV.

5) We first examine Hom(Eg, Fs) and Hom(E7, Eg) under the notation in §9.
Since #Hom (A5, Eg) = #Hom(Ag, Fg) = 1, we may assume
E§ D Wy, = {ag = —€7 — €8, g = €7 — €6, iy = €6 — €5, (g = €5 — €4, (5 = €4 — €3}
for the imbedding Eg ~ E§ C Es. Let & € ® \ ¥4,. We have

0 (j=0,8675),

8
&:ZCjEjEEgCEgi <5¢,Oéj>_{ .
= -1 (=1).
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Thus
Q= c1€1 + coeg + 0(63 + €4 + 65) + (C — 1)(66 + €7 — 68).
Since @ is a root of Fg, we have ¢ = % and hence
a = a4 = %(:l:(&l+62)+63+64+65—66—67+68).
Since as = €1 + €2 is orthogonal to a; (j = 0,5,6,7,8) and s4,a4 = a_, we have
#Hom(Fg, Es) = 1 and
(Eig)l N ES =~ \IIXE, N ai N E8 a1 03 4 05 Og A7 g (X
N * * k O—O0—0—0—0
= (a1, a3) + (a2)) Nax

= (a1, a3) >~ A,.

* Q2 Oy

Let By ~ E¢ C Eg. Then we may moreover assume oy = €3 — €2 € E7 and the
condition & L ay implies & = ay. Hence #Hom(E7, Eg) = 1 and
(B9 N Eg ~ (a1,a3) Nag = (a1) ~ Aj.

Now we examine Hom(Fg, E7). Since As C Fg ~ E$ C Er, the argument in 1)
assures that we may assume

/
Eg D W) = Va, U{ag =¢1 + e} or Bg D Wy, i= Uy, U{as =e4 — €3}
,_ _ _ 1
W, i={ap =€s — €7, a1 = 5(€1 —€2 — €3 — €4 — €5 — €6 — €7 + €8),
Q3 = €3 — €1, i = €3 — €2}

Then there exists & = Z?:1

cjej € E§ C Er such that
(@loy) =0 (j=0,1,4), Qp O] i3 Qg Q5 Qg oy
5 ©——0——0——0——0 sk ok
(alas) = -1, X
Oy 02
Then the condition (&|ag) = 0 implies ¢z = ¢g = 0 and
a= (C + 1)61 + 0(62 + 63) + cq€4 + C5€5 + Co€6,
l—c—c4—c5—cg=0,
(2¢+1)(c—cq) =0.
Hence ¢ =0, Eg D Wy, and & = €1 + €5 or €1 + €. Since
\I/is NE; = <Oé7> = <66 — 65>
and Se,—. (€1 + €5) = €1 + €6, we have #Hom(Z,X) = 1 and (E)* N E7 = 0.
If #Hom(=E,X) = 1, any element of Hom(E, X) is isomorphic to the imbedding
¢ corresponding to the graphic imbedding ¢ given in the claim. Since ((Z)+ D
(T NEE)L) and (E)T ~ (T N(Z)1), we have () = (T Ni(Z)1).
6) If = is of type G2 or Fy, the theorem is clear and thus we have completed the
proof of the theorem.

6. DUAL PAIRS AND CLOSURES

Definition 6.1. For a subsystem = of a root system ¥ and a subgroup G of Aut(X)
we put

(6.1) Nc(E):={9€G;g(E) =&}, Zg(E):={g€G;glz =id},
(6.2) Auts (2) := Ny (E)/Zwy (E) C Aut(E),

(6.3) Outx(2) := Autg(E)/Wa ~ Ny, (E)/(Wa x Wzi) C Out(E).

Note that the isomorphism in (6.3) follows from the equality Zw,, (E) = Wz..
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Proposition 6.2. Let = be a subsystem of ¥. Put Z, = ={. Then there is a
homomorphism

(6.4) w : Outg(Z;) — Outs(Zs) ~ Outs(Zy)

and

(6.5 1

(6.6) Outx(Z1) = Out(Zy) if #(Hom(Zy,X)/Out(Z;)) = #Hom(Z4, %),
(6.7) Outx(Z2) = Out(Z2) if #(Hom(Zz,%)/Out(Z2)) = #Hom(Z,, ).
Proof. Since Ny (Z1) C Nwy(Z2) and =5 D Zy, (6.4) is well-defined and (6.5)
is clear. Suppose #(Hom(El,E)/Out(El)) = #Hom(Z;,%). Then for any g €

Aut(E;) there exists w € Wy with w|g, = g|z, and (6.6) is clear. We have also
(6.7). The isomorphism in (6.4) follows from the following definition. d

) w is bijective if 23 =2

)

Definition 6.3 (dual pairs). A pair (£1,Z2) of subsystems of a root system X is
called a dual pair in ¥ if

(6.8) Ef =Z; and Z5 =Z.

If (21,Z9) is a dual pair, the map w in Proposition 6.2 is an isomorphism. The
dual pair is called special if the map w is the isomorphism

(6.9) @ : Out(B;) = Out(Xs).
For a subsystem Z of %, its L-closure = is defined by = := (). Then (E, =)
is a dual pair if and only if = is L-closed (i.e. (%)% = Z) and hence (Z,Z1) is

always a dual pair. We say that = is L-dense in ¥ if 2+ = %
Corollary 6.4. Let (21,Z2) be a dual pair in 3. Then

#(Hom(Z1,%)/Out(Z1)) < #Hom(Z1,Y)
(6.10) Out(E1) £ Out(Ze) = < or

#(Hom(Z2,%)/Out(Zz)) < #Hom(=2, X).
Suppose #Hom(Z3,%) = 1. Let « € Hom(Z1,%). Then we have
(6.11) (E1,E2) is a special dual pair < # Out(Z1) = # Out(Es),
(6.12) Jw € Wy such that 1(Z1) = w(E;) < L(El)l ~ =,
Proof. Note tha_t(G.lO) is the direct consequence of Proposition 6.2.

Suppose #Hom(E3, X)) = 1. Then Proposition 6.2 implies
Out(Z1) D Outx(Z;) = Out(Zs)
and (6.11) is clear. Then if ((Z1)+ ~ Zy, there exists w € Wy, with +(2{) = w(Z2)
and therefore ¢(Z21) = w(E;), which implies the claim. O
Example 6.5. i) The followings are examples of the triplets (X, Z1,Z3) such that
(21, 22) are special dual pairs in X.
(Dmtns DmyDy)  (m>2,n>2,m#4,n#4),

(B, As,2A1), (E7,As,As), (E7,As + A1, As), (E7,3A1,Dy),
(Es, Eg, As), (Es, As, Ay + A1), (Es, A4, As), (Es, Dg,24A1), (Es, D5, A3),
(Es, D4, Dy), (Es, Dy + A1,3A;1), (Fg,242,2A45),

(Es, As + A1, As + A1), (Es,4A1,4A1), (Fy, Aa, Ag).
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In these examples except for (Dy,241,24,) and (Es,4A1,4A;), #Hom(Z,, %) = 1
and the triplet is uniquely determined by the data (X,Z;,Zs) up to the automor-
phisms defined by Ws. If the imbedding 4A4; C Fjg satisfies (44)+ ~ 4A;, we have
a special dual pair (A4, A4) in Eg, which is also uniquely defined. The imbedding
2A; C Dy is unique up to Aut(Dy).

ii) The isomorphism w € Out(2As) defined by the dual pair (243,2A42) in Es
satisfies

(6.13) @ (Out(Az) x Out(Az)) # Out(Az) x Out(As)
because #(Hom(llAg7 Eg)/ Out/ 4A2)) #Hom(2A,, Eg) = 1. See §8.2.5.

iii) For example, if (¥,21,22) is (Eg, A5, A1) or (E7, Dg, A1), (E1,E2) is a dual
pair in ¥ satisfying Out(Z1) #£ Out(E3) and #Hom(Z9,¥) = 1, which implies
#Hom(Z1,%) > 1.

Definition 6.6 (S-closure). A subsystem Z of ¥ is S-closed if and only if
(6.14) a,fe€=Z and a+pfe€eX = a+[E€E.

Remark 6.7. i) Let g be a complex semisimple Lie algebra with the root system X
and let X, be root vectors corresponding to o € ¥. Then the root system of the
semisimple Lie algebra g= generated by {X, ; a € Z} is the S-closure of =.

Let =1 and =5 be S-closed subsystems of ¥. Then

(6.15) l92,,95,] =0 < E; L Ea.

Hence if (21,E2) is a dual pair with rank Z; + rank 25 = rank X, the dual pair of
root systems gives a dual pair in semisimple Lie algebras (cf. [Ru]).

ii) Suppose X is irreducible and there exist a, § € ¥ with a+ 8 € ¥\ Z. Then
a L pand (o, 8, + B) is of type By, which implies that ¥ is of type B,, or Cp,
or Fy. For example, D, C C,, is not S-closed and the S-closure of D,, equals C,,
(n>2).

iii) If = is a fundamental subsystem, then

E~X
> N Z Ra
ac®
for a subset © C ¥ and hence Z is S-closed. If Z = (E4)+, then Z is S-closed.

7. MAKING TABLES

We are ready to answer the questions in the introduction by completing the
tables in §10. In this section we do it when the root system X is of the exceptional
type. Following the argument in §3, we easily get all = satisfying Hom(E,X) # 0
together with #Hom(Z,¥) and Z+ by Theorem 3.3. In fact, we start from the
irreducible = and then examine other E by using (3.2) in a suitable lexicographic
order (as in the table) to avoid confusion (cf. Example 3.5 x)).

As a result we finally get (21)+ and the dual pairs. Moreover (6.11) tells us
whether the dual pair is special or not. We will calculate #{© C ®; () ~ =} in
§7.5.

Now we prepare the lemma to examine the action of Wy on the imbeddings of
a root system Z into X.

Lemma 7.1. Let Z1 and Z5 be subsystems of ¥ with Zo C Ef‘ Then
#(Hom(Z1,%)/0ut(Z1)) = #(Hom(Zz, Z1 )/out(_z)) =1

= #(Hom(El + =, )/Out =1 + ._2)) 1,
#(Hom(E,, ¥)/Out’(Z1)) = # (Hom(=z, Ei)/out (Z2)) =1

= #(Hom(El + 2, %) /0ut/ (1 + =5 )

(7.1)

(7.2)
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#(Fom(Z,, 2)/Out(Z,)) = #(Out(Z¢)\Hom(Zp, 5t)/Out’ (Z,))
=1

(73) Out'(Z1) ~ Out(Zy) and (Z1,Z1) is a special dual pair
= #(Hom(Z; 4 Z2,%)/Out’(E1 4+ Z2)) =1,
gy RN/ OM(E) = #(Fom(2, =)/ 0n(Z,) = 1
and 1(E2)t ~Z; (Vi € Hom(Es, %)) = #(Hom(Ez, X)/Out(Z,)) = 1.

Proof. The claims (7.1) and (7.2) are clear because for ¢ € Hom(E; + =g, X) the
assumptions assure that there exists w € Wy such that ¢(21) = w(Z1) and hence
we may assume ((Z;) = Z; in Hom(Z; + E3,3). Under the assumption in (7.3)
there exists w € Wy such that w o ¢ stabilizes every irreducible component of =
and therefore it also stabilizes =1 and we have (7.3).

The claim (7.4) is also clear because for ¢+ € Hom(Z5,3), Jw € Wy such that
wo 1(Z3)t = Zy, which implies w o 1(Z2) C Z1-. O

7.1. Type Eg. The automorphism group of G(¥) is of order 6, which is generated
by a rotation and a reflection. Since the rotation has order 3, it corresponds to an
element of Wg, and the reflection corresponds to a non-trivial element of Out(Eg).

Qy 07

O\Oég a5/ * K * K *. _°
Oél/ o O

o i I i
L f i i

The set Hom(Ay, Eg) has two elements which are shown in Example 3.5 v). It
also shows that Out(Fs) non-trivially acts on this set. If A4 is imbedded to Eg
given as in the above imbedding G(A4) C G(Eg) with the starting vertex {ao},
the non-trivial action by Out(A4) changes the starting vertex as is shown above.
Then by an element of Wy, with A5 = («g, ag, a1, as, ag) the imbedding is trans-
formed as is shown by the second arrow. Then the result corresponds to a reflec-
tion, which implies that Out(A4) also acts non-trivially on Hom(Ay4, Eg) and hence
4 (Hom(Ay, Eg)/Out(Ay)) = 1.

The same argument works for = = As, A + A; and Az + A;. Similarly
(a2, a, a5, ) is transformed to (o, as, o, a2) by an element of W4, and fur-
thermore to (ag, ae, g, a3) by a rotation. Hence a non-trivial element of Out(As)
for A2 = (ap,a2) induces the transposition of two irreducible components of
Ay ~ Ay + A, which implies # (Hom(245, Eg)/Out’(242)) = 1

From our construction of the representatives of Hom(Z, E¢) it is obvious to have
#(Hom(Z, Eg)/Out’(E)) = 1 for £ = Ds (cf. (5.3)) and Eg and we can easily
calculate # (Out(Eg)\Hom(Z, Fg)). Put ¥ = Fg and let (Z1, Z2) be any one of the
pairs (AQ + Al,Al), (2A2,A1), (2142,142), (2141,143), (A4,A1) and (A5,A1). Then
applying (7.2) to ¥ and (21, Z2), we have # (Hom(Z; + 22, ¥)/Out’ (21 + Zp)) = 1.

7.2. Type E;. Note that G (E7) has an automorphism of order 2 and it corresponds
to an element of Wg. because Wg, = Aut(Er).

Let X = E7 and let (El,Eg) be any one of (Al,Dg) (AQ,AQ) (AQ,AQ + Al)
(AQ,A3), (AQ,A3 + Al), (A3,A3) and (A3,A3 + Al) We have #(Hom(_ +
E2,%)/Out’'(Z1 4+ E2)) = 1 by (7.2). Here we note that A ~ Dg, Ay ~ As
and A3 ~ Az + A;. We can apply (7.3) to (21,Z2) = (D4, kA;) with 1 <
k < 3 and we have the same conclusion. Applying (7.1) to (As,3A1), we have
#(Hom(Az + 34, E7)/Out(As + 34,)) = 1.
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The subsystems = of F7 which are isomorphic to 34; and satisfy =+ ~ 4A4; are
mutually equivalent by 3. Hence =+ ~ 44; also have this property. Namely

#(We,\{t € Hom(44:, E7); (1(4A1) )" = 1(4A1)}/ Aut(44,)) = 1.

Put (A1) = (o). We have G((A1)}) as is given in the following first diagram.
Put (241)o = (a0, ap). Then the extended Dynkin diagrams of the components
of (241)% = (a9, a3, a4, as,ar) ~ Dy + Ay are also given by the following second
diagram. These diagrams correspond to the last figure in Remark 3.7 i). Here we
put

—ap = (a2 taz+ - +ar)+ (a4 + a5+ ag) = €5 + €,

—ag =z +az+ 2a4 + a5 = €3 +€4.

.aq
Qg 1 3 a5 Qg Q7
0y @ K @K@K ©
040 041 Qa3 g Q5 Qg A7 Qo 1 Q3 i a5 Qg Q7
00000 — @ f OO0tk ® —> o0z  eQp
(6] Oép Qo .O[p @Oéq

ap a1 Az L a5 Qg Qy
[ ) k O—O—-~0 X ]
a9 [ Yo

In the above diagrams the vertices expressed by asterisks are considered to be
removed and the diagrams are (extended) Dynkin diagrams for other roots.

There are two equivalence classes in the imbeddings of 34; to FEr, whose repre-
sentatives are

(3A41)1 = (o, ap, g), (341)2 = (ao, ap, v7),
which satisfy
(341)1 = (a2, a3, a5, a7) =~ 444, (341)7 = (a2, a3, as,a5) ~ Dy.

Thus the image of the imbedding of 44, to E7 is equivalent to one of the following
subsystems (441); of Er:

(441)1 = (a0, ap, ag, a7), (4A1)1 = (a2, a3, a5),
(441)2 = (a0, ap, ag, a5), (4A1)y = (a9, a3, a7),
(441)3 = (a0, ap, ag, a2), (4A1)5 = (a3, a5, a7),
(4A1)4 = (o, ap, g, 3), (4A1)1 = (ag, as, az).

In view of Remark 3.4 ii) the above procedures for 34; C Eg can be also explained
by the following isomorphic ones.

©0g
Qg a3 04 5 Qg Q7
ot © ke @k @k @
g 1 Q3 Qg Q5 Qg O o a3 0y 05 Qg QL
00—01—03—04—(@5 *6 07 — oO—L—(@?’ *4 05 *6 07 — oQr 0az
16 a J;a a 0s
v 2 rooem ay | a3 o a5 a5 ar
O—O0—~@ k @ * L ]
Qe [ Yo '5))
_ _ 1 _
Here a, = —a, and as = —ay. In fact ap, ap € (g, 03,04, a5,a7)" = (Ds +
At ~ Ay As mr(ap) < 0 and mz(ay) > 0, we have o, = —a,. Similarly we have
o, = —ayg from ag, o € (040,042,053,045,oz7,oz,,>L ~ A;. This is also easily verified
by the Dynkin diagrams with the coefficients m,;(—ag) in §9.
Note that
<C¥2,C¥3,0é5> ~ <C¥2,063,0é7> ~ <C¥1,C¥4,0é7> ~ <C¥3,C¥5,0é7>.

(as,06,07) (an,a2,03,a4) (a1,03, ,a7)
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Thus we can conclude

1) = <a3,a5,o¢7>l- - <a0,a2,ar,as> ~4A (] = 1a273)a
(7.5) (@A) e
= (@, 01, a3,y 5) ~ Dy (j =4).

Since (441) j‘ for j = 1,2, 3 are equivalent to each other by Fjg, so are the subsystems
(441); = ((ZlAl)jL)L for j =1,2,3. Moreover we have

(7.6) (a0, qp,aq,az) ~ (a, a2, g, a7) ~ (ag, a3, a5, aey).
(a2,a3,...,a7 (2,304, 005)

Put P = {© C ¥;(0) ~ E}. It is easy to see that if © € P4, satisfies
©n{a,as} #0, () ~ (3A41)1. Moreover if © € Psy, satisfies © N {a1, a3} =0,
7

then © = {ag, a5, ar}. We will have #Bs4, = 11 in §7.5.

Applying (7.4) to (Z1,E2) = (241,541) and (A41,6A;) with ¥ = E7, we have
#(Hom(Z3,%)/Out(Z2)) = 1, respectively. Similarly applying (7.1) to (21,Z2) =
(541, A1) and (541, 2A;), we have #(Hom(Z; + =5, %) /Out(Z; + Zp)) = 1, respec-
tively.

7.3. Type Eg. Applying (7.4) to (341,5A4;) and then (7.1) to (5A1, A1), (5A41,24,)
and (5A1,3A;), respectively, we have #(Hom(kA;, Eg)/Out(kA;)) = 1 for k =
5,6,7 and 8. See §8.2.3 to get further results on Hom(kA;, Eg) with 1 < k <8.

If (21,Z1) is any one of the pairs (As, Eg), (A4, A4), (D4, Dy), (D5, Az) and
(Dg, A1), we have

Hom(Zs,Z1) # 0 = #(Hom(Z; + Es, Eg)/Out’(E; + Z,)) = 1

by applying (7.3). Hence if E contains Aa, A4, Dy, D5 or Dg as an irreducible
component, the value of the column indicated by #= equals one. Moreover (7.1)
can be applied to (Z1,E2) = (A43,341), (A3,44;) and (A45,2A;1). The number
#(Ho—m(E,Eg)/Out/(E)) for = = Az + 341, A3 + 4A; and A + 2A; is easily
obtained from (A3 + A;)* ~ Az + Ay and AF ~ Ay + A;.

Put

(A7)0 = <0¢1,043, .. .,Oég> C (Ag)o = <(147)0,040>7
(D)o = {+ei+¢j;3<i<j<8 ={ag a3}t
P ={6 C{ai,...,as}; (©) ~E}.

Then we note the following for ©1, ©s € P=.
(S21 Y O if ©; C (Ag), for j =1, 2 and ©1 ~ Oa.

If ©1 3 {ag, a3}, then OF = OF N (Dg),.
Using these facts, we can easily examine Ps. For example, any © € Py, satisfies
(0) ~ (4A1)0 == {2, as, a6, ag). Here (4A41)F = (ap, as)t N Dg =~ 44;.
8
7.4. Type F; and Gs. It is easy to examine the cases when > = F; and G2 by
using Theorem 3.3 together with Remark 3.1, (2.38) and (5.4).

7.5. Fundamental subsystems. We will give the number of the elements Pz :=
{© C ¥; (0) ~ E} for a subsystem = of 3 when ¥ is of the exceptional type. If
#0O = #U — 1, it is easy to specify = that is isomorphic to (O) and we get the
corresponding #P=. Other (0) are fundamental subsystems of these maximal ones
and hence it is also easy to know whether Pz = ) or not. Note that rank(©) = #06.

The number # P= can be inductively calculated as follows. Let denote the num-
ber by [E,X]. For simplicity }; m;A; may be denoted 1™ -2™2 ... with omitting
the terms satisfying m; = 0.

If ¥ is of type E,, we divide P= into the subsets according to the relation with
the end root ay,. For example, suppose ¥ = Eg and © C U satisfies (0) ~ 24;.
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Then if ag € O, one component of © is in ag ~ Ay. If ag € O, O is contained in
U\ {ag} ~ Ds. Thus we have [12, Eg] = [1, A4] + [12, D5]. Now it is quite easy to
have [1, A4] = 4 and [12, D5] = 6. We will show such calculations except for quite
easy cases.

[12, B] = [1, A4] + [1%, Ds] = 4+ 6 = 10,

[12, B7] = [1, Ds] + [12, Eg] = 5 + 10 = 15,

(12, Es] = [1, Bg] + [12, E7] = 6 + 15 = 21,

[13, Bg] = [1%, A4] + 13, D5] =3 +2 = 5,

(13, E;] = [12,D5] + [13,Eg] =6 + 5 = 11,

[13, Bg] = [1%, Eg] + [13, B7] = 104 11 = 21,

14, E7] = [13,D5] + [1*, Eg] =2+ 0 = 2,

14 Bl =13, Es] + 14, E7] =5+2 =T,

[2-1,E6) = [1,As + A1] + [2, A4] + [2-1,D5] = 3+ 3+ 4 = 10,
2-1,B7] = [1,A4] + [2,D5) + [2- 1, Eg] =4+ 4+ 10 = 18,
[2-1,Es] =[1,D5]+[2,E6] +[2-1,E7] =5+ 5 + 18 = 28,

[2-1% E7] = 12, Ag) + [2-1,D5] +[2- 1%, Eg) =3 + 4+ 5= 12,
[2-12, Eg) = [12,Ds] + [2- 1, Bg] + [2- 1%, E7] = 6 + 10 4 12 = 28,
[2-13 Eg] = [13,D5] +[2- 1%, FEs] +[2- 13, E7] =2+ 5+0 =71,

[22, B7] = [2,A4] + 2%, E6) =3 +1 =4,

(22, Eg] = [2,D5) + 2%, E7] =4+ 4 =38,

2% 1, Bs] = [2- 1D5]+[22,E6]+[22-1,E7]=4+1+4=9,
[22-1% Eg] = [2-1%,D5] +[22 - 1,Eg] + 22 1, E7] = 1+ 1+ 0 =2,
3-1,E7]=[1,As+ A1)+ [3,Ds) + [3-1,Eg] =3 +4+4 = 11,
[3-1,E8] = [1,A4] + [3, E] + [3- 1, E7] = 4+ 5 4 11 = 20,
[3-12, Eg] = 12, A] + [3- 1, E¢] + [3- 12, E7] =3+ 4+ 3 = 10,
[3-2,E5) = [2,A4] + [3,Ds] + [3- 2, E7] = 3+ 4+ 3 = 10,
3-2-1,Fg]=[2-1,A4] +[3-1,D5] +[3-2,Es] + [3-2- 1, Ev]

=2+140+1=4,

(3%, Es] = [3, A4] + [3%, E7] =2+ 0 = 2,

[4-1,B7)=[1,A1]+ [4,Ds|+[4-1,Es) =1+2+2=5,
[4-1,E)=[1,As + A1)+ 4, Eg] + [4-1,E7] =3+ 4+ 5 = 12,
[4-2,Bs] =[2,A0+ A1)+ [4,D5] +[4-2,E7] =1+2+1=14.

8. SOME REMARKS

8.1. Some results from the tables. By our classification we have the following.

Remark 8.1. Let = be a subsystem of an irreducible root system X..
i) Let o be an outer automorphism of ¥. Then o(Z) i~ = if (X,Z) does not

satisfy the following condition.
(8.1) Y ~ D,, with an even n, Z -~ >_;myAj and Y2 (7 + L)m; = n.

ii) Suppose Z is irreducible. Then =+ MY is also irreducible if (X, Z) is not
isomorphic to any one in the following list:
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) = =+ by = =t

By (n>3) | A1 Bn 2+ Ay or Byoq || Cp (n>3) | A1 Cha+Ayor Cp_y
Dn (n>4) Ay Dy o+ Ay

D5 A3 2A1 or (Z) DG A3 A3 or 2A1

Dy (n>7) | An—3 24, Dy, (n>6) | Dn—2 24,

EG A2 2A2 EG A3 2A1

E7 A3 A3 + A1 E7 D4 3A1

FEg As Ay + Ay FExg Dg 24,

Remark 8.2 (orthogonal systems). A subsystem = of ¥ which is isomorphic to mA;
with a certain positive integer m is called an orthogonal system of ¥.. An orthogonal
system is called maximal (resp. strongly orthogonal) if =+ = ) (resp. S-closed).
Suppose X is irreducible. Let = = (a1,...,am) and 2/ = (of,...,al,) be or-
thogonal systems of ¥ with rank m.
i) The rank of a maximal orthogonal system is given in Corollary 3.6 i) when
Y =Xl If © # %L, the rank equals rank 3.

ii) If one of the following conditions is satisfied, then = !

T E
8.2) = and =’ are strongly orthogonal maximal systems,
(8.3) Y is of type Ay, Eg, E7 or Eg and (X, Z) is not isomorphic to
(E7, 3A1), (E7,4A1) or (Eg, 4A1)
iii) Let ¢ be a bijective map of Z to E' with (¢(a;)|e(ej)) = (ele) for j =
1,...,m. Suppose m > 2. Then there exists w € Wy with ¢ = w|z if one of the
following conditions is satisfied.

(8.4) Y is of type A,, B2, Fg, Fy or Gs.
(8.5) ¥ is of type E7 with m < 2.
(8.6) 3 is of type Eg with m < 3.

See §8.2.2 and §8.2.3 for more details.

Remark 8.3 (fundamental subsystem). For a subsystem = of an irreducible root
system Y. and a subset © C ¥

[1]

(8.7) (©)~= and O)NZL =0t = (O) §

if (¥, Z) is not isomorphic to any one of the following list.

Y is of type B, (n >2), C,, (n>3) or D,, (n >4)

(8:8) and = has an Az component or more than one A; components.
(8.9) (E7,4A1), (E7, As +2A4), (E7,As5 + Aq),

(Es,441), (Es, As + 2A1), (Fs,2A4s), (Es, As + A1), (Es, A7).
(8.10) (Er7,344), (E7,As), (E7,As + Ay).

If (X,Z) is isomorphic to one of the pairs in (8.10) and Z is a fundamental
subsystem, then (8.7) is valid.

If (X, E) is isomorphic to one of the pairs in (8.10), there exist ©1, ©3 C ¥ such
that 2 ~ (01) ~ (02), (©1) 7; (02) and = Y (61) or (O3).
8.2. Further study of the action of the Weyl group. As for Q4 in §1, that is,
“Is Out(E) realized by Wx?” can be answered from the table in §10 by the condition
# = #= and the answer is “yes” in most cases in the table. We will consider the
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cases when the answer is “no”, namely, we will study the group Outg(E) in Out(=)
(cf. Definition 6.1). Under the notation in §10 we have

(8.11) #(Out(Z)/Outs(T)) = #/#=.

If ¥ is of the classical type, it is easy to analyze Outy(Z) because the action of
Wy, is easy. If Z is irreducible, Wx(Z) is understood well by Theorem 3.3 using
Dynkin diagrams. Moreover since Ny, (Z) C Ny, (2 + Z+), we have

}

by (6.3) and therefore the group Outs (Z) is described by Outs(Z+ =1). Hence we
may assume = is 1 -dense.

(8.12) Outg(Z) ~ {g € Outs(E+E1); 9(2) =

(1]

8.2.1. Dual pairs. If E is not irreducible, Outy(Z) may be understood as a dual
pair. For example the dual pair (Dg,24;) in Fg is special and the imbedding
D¢ + 2A; C Eg is unique up to the transformations by Wg,. Hence there exists
w € Nwp, (D + 2A1) which swaps two A;’s. Then w always defines a non-trivial
element of Out(Dg). Namely Outs(E) is the diagonal subgroup of Out(Dg + 2A4;)
through the isomorphism Out(Dg) ~ Out(2A;). The following cases are understood
in this way.

Dp+ Dy, CDpyn (m>22,n2>22 m#4,n#4),
As 4+ 2A; C Eg,
2A3+ A1 C E7, As + Ay C E7, Dy + 3A; C E7,
E¢+ Ay C Eg, As+ A+ Ay C Eg, Ay + Ay C Eg, D¢ +2A; C Eg,
Ds+ A3 C Eg, Dy + Dy C Eg, Ay + Ay C Fy

For the imbedding = C ¥ in this list, a still more concrete description of Outy (=)
is desirable if Out(E) % Z/2Z x Z/2Z.

For the imbedding D,,, + D,,, ~ D% + D" C Day, under the notation in §10, the
swapping of two D,,,’s under the generators given there is in Outp,,, (D% + D) and
therefore Outp,,, (D, + Dyy,) is clear. Similarly for 244 C FEg, if we fix A3 + A4 C
Ay+ Ay C Eg and A3+ Ay C Ag C Eg, we can also specify the swapping of two Ay’s
in Outp, (244). Other cases in the list are described by the study of the imbedding
of TA, C E7 and 8A; C Eg through 44; C D, as is shown later.

8.2.2. Strongly orthogonal systems of the maximal rank. Suppose X is of type A,,
By, Cn, Dy, Es, Fy or G2 and put m = 2[3]. Then under the notation in §9 the
strongly orthogonal system Oy of ¥ with the maximal rank is weakly equivalent to

(8.13) O4, :={€1 —€2,63 —€4,...,€20_1 — €2},
(8.14) Op, :={e1 —€a,€1 +€o,€63 —€4,€3+ €4,...,€2m_1+ €2m},
(8.15) Op, = {@D" (n =2m),

Op, U{en} (n=2m+1),
(8.16) Oc¢, = {2€1,...,2¢,},
(8.17) Op, :={€1 —€2,€1 + €2,€63 —€q,€3 + €4},
(8.18) Og, = {e1 — €2,€1 + €2 — 2e3}.
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Then Outy(©yx) is identified with the subgroup of the permutation group of Oy,
which is also identified with the permutation group Gxe,, of {1,...,#0x} accord-
ing to the expression of ©x by the above ordered set. Then

Outx(Ox) ~ Gxoey (3 is of type A, Cy, Eg, Fy),
OUtG2(®GQ) = {1}7
((12)(34),(13)(24),

_ (13--2m—1)(24---2m)) ~Wp, (n=2m),
Out, (O.) = ((12),(13)(24),
(13---2m—1)(24---2m)) ~Wg,, (n=2m+1).

Here the generators of Outp, (©p,, ) are expressed by products of circular permuta-
tions. Note that the group Outp, (©p, ) is isomorphic to Wp,, or Wg, if n =2m
or 2m + 1, respectively.

8.2.3. 84; C Es and TA; C E7. Since Out(8A4;) is isomorphic to the symmetric
group &g, Outg, (8A4;) is identified with a subgroup of Gg. Since #/#= = 30,
# Outp, (841) = 8!/30 = 1344 = 26 .3 . 7. To be more precise, we fix 84; C Es:

— 7 8
(SAl)o = {iag,iag,ia5,iaq + ar, iozp,iao,iao} C Eg,
(8.19) Qg = €1 + €3, (3 = €3 — €1, (5 — €4 — €3, (7 = € — €5,
8 7
Qp = —€5 — €6, Qg = —€3 — €4, Qg = —€7 — €8, (g = €7 — €38.

048 Q1 a3 Q4 Q5 Qg Q7 A8 0‘8 Q1 a3 Q4 Q5 Qg Q7 A8 0‘8
[ ) k O—O0—O0—0—->0 >k L ) o) O—O0—O0—O0—0—0—-~20

(8.20)
(0% Qayp J)Oég (e77

Here we used the notation in §7.2 and §10. In particular E; C Es. Note that o
and of are negatives of maximal roots of Fg and E;, respectively. We identify
S5 with the permutation group of the set {1,2,3,4,5,6,7,8} of numbers and this
ordered set is also identified with the ordered set given as generators of (84;), in
(8.19).

Since (a8)+ = Er, the left figure above corresponds to the first diagram in §7.2.
Since (Dg), := {az,as,...,as,ad) is of type Ds, its extended diagram is given in
the right figure of (8.20) with the negative ay of its maximal root. Here we note that
al <0 and oy > 0. Since (Dg)+ N (a8) ~ A; by denoting (Dg), = (az,...,az),
we have oy = —af. Then Out(py), ((841),) is generated by

(8.21) g1=(1357)(2468),
(8.22) g2 = (13)(24),
(8.23) g5 = (12)(3 4).

Here the generators g; are expressed by products of cyclic permutations in Gs.
Note that # Out(py), ((841),) = 2341 =263,
Now we will consider the other diagram in §7.2.

7 s 8
Oéoij)ioézs Q4 O5 Q6 A7 a8 o Q= —ap, a5 = —ay
Qr Q2
This shows that the element
(8.24) g1=(24)(67)

which corresponds to an element of the Wi,z 4, a5.a,) = Wp, is in Outp, ((8A41)0)

and not in Out(py,), ((8141)0). Then we can conclude that Outg, ((8141)0) is gener-
ated by g; (j = 1,2,3,4), which is clear by considering the order of the groups.
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Put (7TA1), = (841), \ {£al}. Since E; = (af)t, it is easy to see that
Outg,((7A1),) is generated by go, g3, g4 and

(8.25) g, =(135)(246).
Here we naturally identify Out(74;) with &7 and we have

(8.26) Outp, ((841)0) = (91,92, 93, 94), #Outp, ((841),) =2°-3-7 = 1344,
(8.27) Outp, ((TA1)o) = (9,92, 93,94), #Outp, ((7TA41),) =2°-3-7 =168.

Put (6A1), = {*az, tas, +as, tag, Tar, +a,} C {af, a8}t ~ Dg and (54;), =
{+az, tas, tas, +ay, +ar} C {ap,a?, a8}t ~ Dy + A;. Note that (Dg,24;) and
(D4 + A1,3A;) are special dual pairs in Eg and therefore Outg, (Dg) = Out(Dg)
and Outg, (D4 + A1) = Out(D4 + Ay). Then we have easily

(8.28) Outg, ((7A1)o) < Outg, ((TA1)o),

(8.29) Outp,((641)0) = (91,92, (1 2)) =~ Whp,, # Outp, ((641),) = 48,
(8.30) Outg, ((641)0) = (91,92, 93) ~ Wp,, # Outp, ((641),) = 24,
(8.31)  Outpg, ((5A1)0) =((12),(23),(34)) ~Wa,, #Outg,((541),) =24,
(8.32) Outg, ((5A1)0) = (g2, (1 2)) ~ Wp,, # Outp, ((5A1)0) = 8.
Put (441), = {£ag, a3, fas, oy}t and (4A;1); = {*ag, tas, tas, tar}. Then

(4141)0L N s X~ D4, (4141)0ll ~ D4 and (4141)1l mEg >~ 4A1 and (4141)1ll = (4141)1

8.2.4. 2D, C Eg, Dy +4A, C Eg and D4+ 3A; C E;. Retain the notation in the
previous section (cf. (8.20)) and put

(833) (2D4)0 = <oz2,oz3,a4,oz5,aq> + <a7,ozt,oz8,a(8),ozp) C Fg,
(8.34) (Dy +4A1)0 = (a2, a3, 04, a5, q) + {07, it ag, ap) C Fy,
(8.35) (Dg + 3A1)0 = (a2, a3, 0, (5, () + (7, Qg Q) C Es.

Then we have the natural identification

Out g, ((2D4)0) D Outg, (D4 + 3A1),)
~ {g € Outg, ((8A )o ) g(ag) = ag and g(ad) = ao}

together with (2.19) and therefore Outg, ((D4 + 341),) is generated by
(12)(56): ag < ag, a7 < ag and (13)(67): as < as, ar < .

Here the first element corresponds to an element in W(p,) and the second el-

ement equals gogs. Moreover Outg, ((2D4),) contains (1 5)(2 6)(3 7)(4 8) and
Out g, ((D4 + 4A1)0) contains Out(zp,), ((D4 + 4A1)0). Hence

Outp, (D +341),) = <( 2)(5 6), (13)(6 7)),

#OutE7( (D4 + 344 )0)

Outg, ((2D4)o)

# Outp, ((2D4),)

1)o)

)o)

56), (13)(67), (15)(26)(37)(48)),

Outg, (D4 + 441),

<

12

< 78), (58)(6 7), Outg, ((2Da)o)),
# Outp, (D4 +44,),) = 48.
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8.2.5. 4As C Es, 3A2 C Er and 3A; C Es. First note that as groups, Out(44s)
and Out(34;) are isomorphic to Wp, and Wp, and their orders of the groups are
24 .41 and 23 - 3!, respectively. Fix a representative 44, C Eg:

6 1
ay =€ +€, ayg=—5(e+ex+e3+eqs+e5— e —eg+eg),

1 1
az =€ —€1, a1 =5(€1+e€)—5(e2+€3+ €4+ €5+ €5+ €r),

a5 = €4 — € Qg = €5 — €
5 4 35 Z 5 45 Oéla N o Ofk7 as ag
Qg = €7 — €5, (g = —€7 — €g, \03a4 >
*°
6 8
(442)0 = <{04270407043;0417045;046;0487040}>7 Py
_ 6 !
(3A2)0 = <{042,CY0,C¥3,061,C¥5,066}>. Oég

Then the permutation group of the 8 generators of (4A4s2), is identified with &g as
in the case of (841), C Es. Then Out((4A2)o) = (q1,92,93) and Out(?)(Ag)o) =

(g1, 92, 93) (cf. (8.21)—(8.25)). Note that
# Outp, ((342)0) = # Out((342),)/8 =6
# Outp, ((342),) = # Out((342),)/4 =12
# Outp, ((442)0) = # Out((443),)/8 = 48
Out g, ((342),) C Outp, ((442),).
Since (243,2A5) is a special dual pair in Eg, we have
(8.36) (3243 C (442), such that wla, = id) = w =id

for w € Outg, ((442),). We will choose elements in Outpg, ((242),). The rotation
of the extended Dynkin diagram of Es comes from Wg, and therefore the element

(8.37) hy = (135)(246)

is contained in Outg, ((342),). The argument §7.1 shows that in view of the trans-
formation of an element of Wias o, a4.a5.a6) (1 6)(25) or (1 6)(2 5)(3 4) should be

in W, ((342),). Owing to (8.36), we can conclude that
(8.38) ha=(16)(25)(34)

is contained in the group and Outg, ((342)0) = (h1, ha).
Since Hom(FEg, E7) = 1, Outg, ((3A2),) contains

(8.39) hs = (3 5)(4 6).

Considering in (4g), = (a1, a3, a4, as, ag, a7, ag,a8) ~ Ag, there is an element
w € Wiy, such that

w(ar) = a1, w(az) = as wlay) = ag, wlas) = ar, wlag) = aq, wlar) = as.
Then it also follows from (8.36) that
(8.40) hys=(12)(57)(68)

is in Outg, ((4A2)o). Calculating the order of the group, we have

(8.41) Outp, ((342),) = (h1, ha), # Out g, ((342)0) = 6,
(8.42) Outg, ((342),) = (h1, ha, h3), # Outg, ((342),) = 12,
(8.43) Outp, ((442),) = (b1, ha, ha), # Outp, ((442),) = 48.
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9. LIST OF IRREDUCIBLE ROOT SYSTEMS

aq (6%) az ... Op—2 QOp_—1 Qp (67 (6751

E:{i(ei—ej);1§i<j§n+1},
aj=¢—€cr1 (G=1...,n), g =61 —€1 (n>1), #W=(n+1)L

- Qp2 Qp_1 Qn Qo Q2 aq
B, o 0 By =0y g—=0—0
2 2 2 2 1

Z:{i(ei—ej), t(e; +¢€5), ter; 1 <i<j<n, 1§k§n}

- n
aj=¢—¢€41 (G=1,...,n—1), ap =€, ap=—€1 —€3, F#FW =2"-nl
C (67} (6731 Qg ... Op_—2 Qnp_1 (67%

n
2 2 2 2 1

E:{i(ei—ej), t(ei +¢€j), 2,31 <i<j<n, 1§k;§n}

Q5 = €5 — €541 (j:].,...,n—].), Oén:26n, ()40:—261, #WIan'

N={*(6—¢), Hlat+e);1<i<j<n}
A =6 TG (j:]‘""7n_1)7 Op = €p—1 + €n,
ag=—e1 — €y, #W =2""nl

Dy =0, Dy~A;+ A, D3~ A3

A1 ~ Bl >~ Cl
a1 Qs (%] (073 (6753
Es o O
1 2 3 2 1
Q2
2
Qo

™
|

{£(ei —€j), £(ei+€j), £3(es —er — e+ Zizl(—l)”(k)ek) ;
1<i<j <5, Zizl v(k) is even}

Q) = %(614-68) - %(62+63+64+65+66+67),

€1+e, a;j=¢_1—¢€_2 (3<5<6),

ap=—2(e1+e+ez+estes—€s—ertes), H#HW=27.3".5

Q2
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S ={t(ei— ), £ +¢), ter —es), £3(er—es + Ty (1) Per);
1<i<j<6, Yo_, v(k)isodd}

a1 = 3(e1+es) — S(e2+e3+€s+ €5+ €6+ €r),

ar=€1+€, aj=¢_1—€_2 (B3<j<T),

ap=€7—es, H#W =219.34.5.7

a3 o1 Qs Qe Q7 asg Qo

©
4 6 5 4 3 2
(6]
3

2= {£(e — ), £lei+¢5), £33, (=1)"Pey;
1<i<j<sg, Zi:l v(k) is even}

a1 = 3(e1+es) — S(e2+ €3+ €1 + €5 + €6+ €7),

=€ +e€, aj=¢_1—€_2 (3<7<8),

)= —€er —eg, FW =21.35.52.7

aq
Eg O
2

Fy e O O——=0 O

Y= {:I:(ei —¢€j), £(ei+¢€5), Le, :I:%(el textestey);

1<i<j<4,1<k<A4},

] = €3 — €3, (g = €3 — €4, (3 = €4, Q4 = %(61 —62—63—64)7

ap = —€1 — €9, #W:27'32.

o o o

Gy 0 1 2
2 3
Y= {i(ei —¢€;), F(2e1 — €2 —€3), F(2e2 — €1 —€3), £(2€3 — €1 —€2);
1<i<j<3},

a1 = —2€1 + €3+ €3, g = €1 — €2, g = €1 + €5 — 2€3, FW =12.

10. TABLES

In this section we assume that ¥ is an irreducible and reduced root system and
we will classify Hom(Z, ¥) under a suitable isomorphisms for every root system E.

Definition 10.1. For ¢, / € Hom(E, X) we define that ¢ is weakly equivalent to ¢/
if and only if there exists g € Aut(X) = Hom(X, X) with /(E) = g o «(E), that it,
J(Z) ﬁz\:“, Z. Then Hom(Z, ¥) is decomposed into the equivalence classes.
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In many cases Hom(Z, X0) itself is the equivalence class but if it is not so, we will
identify every equivalence class Hom(E, ¥), contained in Hom(Z, ¥) by a suitable
geometric condition.

In the tables in this section we will list up all = with Hom(Z, X) # () and classify
them with some data with the following notation.

Aut(2) := Hom(E,E), Aut(X) := Hom(X,X)

Aut'(Z) H Aut(=Z;) C Aut(E) for the irreducible decomposition
j=1
E=E1t+EZn
# + #(Ws\Hom(E, ¥),)
#z= : #(Ws\Hom(E,X),/Aut(E))
#= : #(Wx\Hom(Z, X),/Aut’(2))
#x #(Aut(Z)\Hom(E,E)O)
o (2 =Z and (6.9) is valid)
= x (2 = = but (6.9) is not valid)
{(EL)L E#3)
P:#{©CT;(O) § Z}  (if Z is fundamental)
S : S-closure (if E is not S-closed (cf. Definition 6.6))
Giseeordm) Qg 0h,) (under the notation in §9)

)
(\j) = (¥ \{ey})
For subsystem = C ¥ and a subgroup G of Aut(X) we put

Hom(Z,Y), := {¢t € Hom(Z, %) ; «(E) ig =}

=} (cf. Definition 2.8),

O :={0CX; WO =06 and
d =},

O=z:={0CX; WegO =0 an
Ng(E) :={g9€G;g(E) =Z}.

©
)

w
~
%
~
%

Then

0¥ ~ Hom(E, X),/Aut(Z) ~ Aut(E)/Naus) (5,
Oz ~ Wx/Nw, (2),
(10.1)  #0Z/#0= = #(W=\Hom(E, X)),/ Aut(Z)) = (#=),
)

[me

(10.2)  (#)/(#=) = #(Ws\Hom(Z,X),) / #(Ws\Hom(Z, £)o/Aut(2))
= #(Out(2)/Outx(2))
= #(0ut(®) / (Nws(2)/(Wz x W=1))),

(#) - #Wz / ((#=) - # Out(Z) - #W= - #Wz1).

Here (#), (#z), (#=/) and (#x) are numbers given in the columns indicated by #,
#=, #= and #x in the table below, respectively. Since 1 < (#z) < (#=), (#=)

may not be written if (#=/) = 1. If Out(X) is trivial, (#5) = (#) and therefore
(#x) may not be written.

(10.3) #0=
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Remark 10.2. The answers to the questions in the introduction are given by the
table in this section as follows.

Answers to Q1 and Q2 are given in the table.

The number in Q3 is obtained by (10.3) with the table.

The answer to Q4 is yes if and only if (#z) = (#) (cf. Remark 10.7 iii)).

The answer to Q5 is yes if and only if (#=z/) = (#).

The answer to Q6 is yes if and only if (#z) =1 (cf. Remark 8.1 i)).
The number in Q7 is obtained by the column P in the table (cf. Remark 8.3).

10.1. Classical type. (X : A,, By, C,, Dy,)

= : Irreducible

% = Hl#= | #= | BT SR P
A, Ay 111 1 | A2 X n
An (1<m<n—2) Am 2 1 1 Ap_m—1 X n—m-+1
Ay (o) A, 12 1] 110 5 2
Ay (no2) A, |2 1] 10 5 1
b)) (n 2 5) = # #5 #E EJ‘ EJ‘J‘ P
Dn Al 1 1 1 Dn_g + A1 X n
Dn A2 1 1 1 Dn,3 A3 n—1
Dn Ag 1 1 1 Dn—4 D4 n—2
(D3) 1 1 1 D, 3 (n#7) | © 1
Dy (n=T7) X
Dy (a<i<n—3) | Ak 1] 1 1 | Dy Diy1 n—k+1
D, Apa | 1 1 1 {0 by 3
Dn (n:odd) Apq 2 1 1 0 X 2
D, (n:even) 2 2 1
D, Dy 3 1 3 Dn—4 (n>6) 2 1
(n=5) by
Dn (4<k<n—2) Dy, 1 1 1 Dy O (k#n—4) 1
X (k=n—4)
Dy (no0) Doal 11 1 110 5 1
D, D, 2|1 1 {0 Dy 1
S (n>2) = | #= | #» | 2T o= 3
B, AL 1] 1 1 | B2+ Al |o n—1
A (1] 1 1 |Bu 5 1
Bn (n>3) A2 1 1 1 Bn_g Bg n—2
Bn (n>4) AS 1 1 1 Bn74 B4 n—3
Bn (n>3) (Dd) 1 1 1 B, 3 Bs
Bn (4<m<n) Am, 1 1 1 By_m—1 Bwrz+1 n—m
Bn (n>4) D4 3 1 3 Bn74 B4
Bn (4<m<n) D, 1 1 1 By m B,
By (2<m<n) B, 1 1 1 Bnm © 1
Cn A7 1] 1] 1 [Chat+A? n—1
A 11| 1 |Cos 5 I
Cn (n>3) A2 1 1 1 Cn_g 03 n—2
Cn (n>4) As 1 1 1 Ch_y4 Cy n—3
Cn (n>3) (D3) | 1] 1 1 | Cns Cs S:C3
Cn (4<m<n) Am, 1 1 1 Cn—m,—l Cvrz+1 n—m
Chn (n>4) Dy 3| 1 3 | Chos Cy S:Cy
Cn (4<m<n) Dy, 1 1 1 Chnm Cr, S:Cp
Cn (2<m<n) Cm 1 1 1 Cn—m, o 1
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Suppose n > 4. Then #Hom(A,_1,D,) = 2 and the non-trivial element g €
Out(D,,) maps its element to the other. Let A,_; C D, by the notation in §10.
Then h € Aut(Dy) defined by h(e;) = —¢; (j = 1,...,n) induces the non-trivial
element of Out(A,—_1). Here h is not an element of Wp, if and only if n is odd.
Hence #(Hom(A,—_1, Dy,)/Out(A,—1)) = 1 if and only if n is odd.

¥ =Dy

S| E [#|#=|#=|#=|E [EHL]P
D4 A1 1 1 1 1 3 1 X 4
Dy| Ay | 1 1 1 1 [} by 3
Dy| A3 | 3 3 3 1 [ DM 3
Dys| Dy | 6 1 1 1 [ by 1
Dy |2A, | 3 3 3 1 |24, o 3
D4 3A1 6 1 6 1 A1 X 1
Dy|4A1 | 6| 1 6 1 [ by

3: not of type Dy
We still assume that ¥ is irreducible and of classical type. We will examine
Hom(Z,Y) when Z may not be irreducible. It is not difficult because the root
system and its Weyl group are easy to describe. The subsystems of ¥ can be
imbedded in the root space By with a sufficiently large N. We should distinguish
two subsystems which are isomorphic as root systems but they are not equivalent
by BN.
Under the notation in §9 they are the followings:

A ={£(e1 — e2)},

Bl = {i€1} ~ Al,

Dy = (e1 — €2,€1 + €2) > 24,

Az = (€1 — €2,62 — €3, €3 — €u),

D3 = (€1 — €2, €2 — €3, €2 + €3) =~ A3.
Let {e1,...,en} be an orthonormal basis of RY with a sufficiently large positive
integer N. Let o be an element of O(N) defined by o(e;) = €j41 for 1 < j < N
and o(ey) = €1. Let A, B,, C, and D,, denote the corresponding root spaces

given in §9 and we identify them with finite subsets of RY and put Q¢ := o*(Q,)
for @ = A, B, C and D. For example

3 N
A4: <E4—65,65—66,67—68,68—69> CcR

For m = (my,ma,...), k = (k1,ks,...), n = (n1,n9,...) € N¥ with

oo
(10.4) k1 =0 and Z|mj+kj+nj| < 00
j=1
define
k:.7_]‘ .
. v ‘?—1 . .
Em = U U A;H_l) i m ijAjv
i>1 v=0 i>1
M(m) =Y "(j + 1)m;,
i>1

ki—1 .

_ — M(m)+jv+307 ik .

Emk = Zm U U U D; 2i=t i ith Dy = (€1 — €2, €1 + €2)
§>2 v=0
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M(m, k) : —l—ij:j,

j>2
pD(m,k) = ((m1 + 2kg, mao, m3 + k3, my, .. .), (0, 0,0, ky, ks, . . )),

ki—1 .
. i—1 ;1.
Emden = Zmi U [ | BT wien By = (e)

j>1 v=0
~ ijAl —|—Zk iD; +Zn] s
N i>1 j>2 j>1
M(m,k,n) = M(m,k)+ Y jnj=> (G +)m;+ Y ik +ny),
Jj>1 Jj>1 Jj>1
pp(m,k,n) = ((m1 +n1 + 2ko, ma, mg + k3, my,...),(0,0,0, ky, ks, .. .),
(0,n2,n3, .. ))
Suppose n > M (m, k, n). Then Em k,n is naturally a subsystem of B,, and
(10.5) Zm, k aNBn >~ kilA + Bn—M(m,k,n)

and if there exists w € Aut(B,,) = Wp, such that
Em,k,m - w(Em’,k’,n’)v
then (m,k,n) = k', n’). B

(m’, o
Fix elements m = (m1,ms,...), k = (ki,k2,...) and & = (A, na,...) in NY
satisfying

(10.6) ki =ky=ks=n; =0.
Proposition 10.3 (type B, (n > 2)). Let
(10.7) Emkn = Z JAj+ > kiDj+Y 0B
j>1 j=4 j=2
Then
(10.8) Hom(Z4, g 5, Bn) = 11 Hom(Zp, & a1y Bn) (mjen)s
pB(mk n) (Iﬁ,R,ﬁ)
M(m,k,n)<n

Hom(Z4, K 2> Bn)(mkn) =1t € Hom(~m ki
w € Wp, such that w(Emxn) = t(Emkal)

B,,) ; there exists

and

& pp(m,k,n) = (m,k,n) and M(m,k,n) <n
Assume this condition. Then
3ka . (m1 +n1 + Zkg)! . (m3 + k}3)'

(10.10) - #(Wg,\Hom(Z s ks Bn)(amkem)) = =37, T el ol L
(10.11) #(Wp, \Hom(Es, i n, Bn)(mkn) /At Cnia)) = 1,

(10.12) ‘:‘m,k,n N By, ~m1A1 + By_M(mk,n)>

(10.13) Emkn =Emkn & Mmo=mg=---=ky=kz=---=0, 3,5, n; <1,
(10.14) Emkn 18 fundamental < ko =ks=---=0and >, n; <1

The S-closure of Emkn €quals Em k (s, . Here )" n;B; changes into sz g

2 J'”j)V

By taking the dual root systems, we have
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Proposition 10.4 (type C,, (n > 3)). Let
(10.15) Emin = A+ Y kiDi+ Y 10
jz1 j=>4 j=2
Then the statements in Proposition 10.3 with replacing By and By, _pr(mxn) by Cn
and Cy,_ p(m k,n), Tespectively, are valid except for the last statement on S-closure.
The S-closure of this Emkn 5 ZEm,0,(n1,ka+noks+ns,...), Which is obtained by
replacing > k;D; by > k;C;.

Proposition 10.5 (type D,, (n >5)). Let

(10.16) Emi = miAj+ Y kD
Jj=1 j=>4
Then
(10.17) Hom(Zy, ¢, Dy) = 11 Hom(Z, kv Dn) (mo)»
pp (m,k)=(m,k)
M(mk)<n
Hom(Z4 &, Dn)(mx) = {t € Hom(ZE g, Dn) ; there exists w € W,

such that w(Emx) = (Em &k}
(10.18)  Hom(Eg &, Dn)(mx) # ¢ < pp(m,k) = (m, k) and M(m, k) < n.
If (10.18) holds,
3k (my + 2ka)! - (m3 + k3)!

(1019)  #(Wp,\Hom(Es &> Dn) k) = €155, ol el Fal
(10.20) #(Wp,\Hom(Z, &, D) (mx)/Aut(Em &) = €2,

(10.21) #(Aut(Dy,)\Hom (E;, &, D) (m 1) /Aut(Em £)) =

(10.22) Sk ~ MAL + Dy pi(mk),

(10.23) Emk =Zmk © ka=ks=---=0and M(m,k) #n— 1,
(10.24) Emx s fundamental < >0,k < 1.

Here

)2 if M(m,k)=n,
= 1 if M(m,k) <mn,

2 if M(m,k)=n and may, =k,11 =0 (v=1,2,...),

€2 = .
1 otherwise.

Moreover we have easily the following proposition if ¥ is of type A,,.

Proposition 10.6 (type A,). Let Em =) ;5 m;A;. Then

(10.25) Hom(Zm,4n) #0 & M(m) <n+1
and if M(m) <n+ 1, we have
(10.26) #Hom (S, A,) = 225225 |
(10.27) #(Hom(Zm, A,)/Out(Em)) =1,
_ 1 ~omj =0),
(10.28) #(Out(A,)\Hom(ZEm, 4,)) = {Q(mej)_l gjzmj - 037
(10.29) Em N An = Ay ()
(10.30) Em=Zm & ) j5my <1 and M(m) # n.

Any subsystem of A, is fundamental.
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10.2. Exceptional type. (X : Eg, E7, Es, Fy, Go)

X E # | #= | #= [ B O p

EG A1 1 1 1 A5 X 6

EG Ag 1 1 1 2A2 X 5

EG A3 1 1 1 2A1 O 5

FEs Ay 2 1 1 Ay A5 4

EG A5 2 1 1 A1 X 1 <\2>

Eg Dy 1 1 1|0 3 1

Eo D5 21 1 [ 1|0 > 2 [ (\1), (\6)

Eg Eg 21 1 1|0 3 1

EG 2A1 1 1 1 A3 O 10

Es 34, 1 1 1 | A As 5

Eg 44, 1 1 1|0 3

Es Ay + Ay 2 1 1 | A, 245 10

EG Ag + 2A1 2 1 1 (Z) E 5 C 3Ao

EG 2A2 4 1 2 A2 X 1

EG 2A2 + Al 4 1 2 (Z) E 1 <\4> C 3A2

Es 34, 8| 1 | 4 |0 > §8.2.5

FEs Ag + A 2 1 1 Ay A5 4

Eg | As+ 24, 2 1 | 1|0 > §8.2.1

BEs | At A4 2 1 | 1|0 > 2 [ (\3), (\5)

Es As + Ay 2 1 110 b

by = # | #= [#= | ET Bt P

E7 A1 1 1 1 D6 X 7

E7 Ag 1 1 1 A5 o 6

FEr As 1 1 1 As+ A |o 6

E, A, 1| 1 T | A A 5

Er A5 7 T 1| 1 |4 o 1 [(2,4,5,6,7)
I T 1 1 |4, Ds 2 1(3,4,5,6,7)

E- Ag 1 1 1|0 3 1] (\2)

Ex Az 1 1 110 b

E7 D4 1 1 1 3A1 o 1

Ex Ds 1 1 1 | A Dg 2

E7 DG 2 1 1 Al X 1 <\1>

E; B 1| 1] 10 )y 1 (\7)

E- E- 1 1 1|0 3 1

E7 2A1 1 1 1 D4 + A1 X 15

E, 341 | 1] 1 | 1 |Ds o 12,57
I T 1 | 1 |44, X 10| (3,5,7)

E, 14, | 41 1 | 4 |34, X 2 [(2,3,5,7)
I 111 134 D,

Ex 54, 15] 1 15 | 24 Dy+ Ay §8.2.3

E. 64, 30 1 | 30 |4 Dy §8.2.3

Er A 300 1 | 30 [0 > §8.2.3

E; Ay + Ay 1 1 1 | As As+ A; |18

E, Ay + 24, 1] 1 1 | A Ds 12

Ex Az + 344 1 1 110 by 1

E, 24, 2 | 1 1 | A, As 4

FEr 245 + Aq 2 1 1 0 b 3 | c34,

E- 34, 1] 1 T |0 ) §8.2.5
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Er As+ A 7 1] 1 | 1 |4 5 2 [ (2,5,6,7)
' T[T [ 1 [24; DitA |9 ](3,567)
E7 A3 + 2A1 ]N 2 1 2 Al DG 3 3(Az + At = A3
" 11 1 1 V(Az + At =24,
FEr As + 34, 3 1 3 0 by C 2A3 + Ay
E7 Ag + Ag 2 1 1 Al DG 3 C 243 + Ay
Er | As+ Ay + Ay 2 1 1 0 by 1 <\4> C 243+ Ay
E7 2A3 2 1 1 A1 DG C 2A3 4+ Ay
E; 245 + Ay 2 | 1 1 [0 ) §8.2.1
Ex A+ Ay 1 1 1|0 b )
Er Ay + Ay 1] 1 110 ) 1 | (\b)
E; A+ A7 [T [ 1 [ 1[0 5 1 | 4 = 45, (\3)
| 1 1 1|0 b AL = A
E; As + Ay 2 | 1 1 [0 ) §8.2.1
FEr Ds+ Ay 3 1 1 24, X 1
E7 Dy + 2A1 6 1 1 A1 DG
E: | Dai+34; 61 1 | 110 s §8.2.4
E- Ds + A, 1 1 1|0 3 1 | (\6)
FEr D¢ + A; 2 1 1 0 by
by E # | #= | #= | ET =t P
Eg A1 1 1 1 E7 o 8
Eg Ag 1 1 1 E6 o 7
Eg A3 1 1 1 D5 o 7
Eg A4 1 1 1 A4 o 6
FEg Asx 1 1 1 Ay + Ay o 4
Es A 1| 1 1 | A E. 3
Es A; 17 1] 1 | 1 |4 Er
g 1|1 110 by 1 {(\2)
Es Asg 1 1 1|0 b
Eg D4 1 1 1 D4 (¢} 1
Eg D5 1 1 1 A3 o 2
Eg DG 1 1 1 2A1 (¢} 1
Es D 1T 1] 10 x 1 (\D)
Eq Dg 21 1 1|0 3
Es Es 1 1 1 | As o 1
Eg E7 1 1 1 Al (¢} 1 <\8>
Es Es 1 1 1|0 D) 1
Fs 24, 1| 1 1 | Dg o 21
Es 34, 1 1 1 | Ds+A4; |o 21
Es 4A, 7 1] 1 | 1 |Ds D,
I T 1 | 1 |44, o 7 1 12,3,6,8)
Eg 54 5 1 5 | 34 D4+ Ay §8.2.3
Es 6A; 15] 1 15 | 24, Dg §8.2.3
Fs 74, 30| 1 | 30 |4 Er §8.2.3
By 84, 30 1 | 30 [0 > §8.2.3
Eg A2 + A1 1 1 1 A5 (¢} 28
Eg Az + 244 1 1 1 | As Ds 28
Eg Ag + 3A1 1 1 1 A1 E7 7
Es Ay + 44 1 1 1|0 b
Eg 2A2 1 1 1 2A2 o 8
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FEs 24, + A4 2 1 1 | As FEs 9
Eg 2A2 —|— 2A1 2 1 1 (Z) E 2 C 4Ao
FEs 34, 4 1 1 | As FEs
Eg 3142 + Al 4 1 1 (Z) E C 4Ao
Fs 1A, 81 1 | 1|0 > §8.2.5
Eg Ag + A1 1 1 1 Ag + A1 o 20
Es| As+2A )7 [ 1] 1 | 1 |4 Ds
P TT[ 1 [ 1 |24 Ds 10 [ (2,3,4,6,8)

FEs A3 + 34, 3 1 3 Ay FEr
FEg Az +4A; 3 1 3 0 by C Az + Ds
Fs As + Ay 1| 1 1T |24, Dg 10
Es | A3+ A+ A 2 1 1 Aq FEr 4
Eg A3 + A2 —|— 2A1 2 1 1 (Z) E C Dg +2A,
Fs 243 |” 1| 1 1 |24, De

I T 1 [ 110 ) 2 (2,3,4,6,7,8)
FEs 245+ A4 2 1 1 | A E;
Eg 2A3 —|— 2A1 2 1 1 (Z) E C Dg +2A,
FEs As+ A 1 1 1 | As FEs 12
Fs Ay + 24, 1|1 1|0 ) 5
FEg Ag+ A 2 1 1 Aq FEr 4
Eg A4 + Ag + Al 2 1 1 (Z) by 1 <\4> C 2A4
FEg Ag+ Az 2 1 1 0 hM 1 <\5> C 244
Fs 24, 2 | 1 1 [0 ) §8.2.1
FEyg A5 + A1 ]H 1 1 1 A2 FEg

1114 E, 3 (1,4,5,6,7,8)

Eg As + 24, 2 1 2 10 b C As + Ag + A,
FEs A5 + As 2 1 1 Ay FEr
Eg | As+Ax+4; | 2| 1 1 [0 b £8.2.1
Eq Ag + A 1 1 1|0 3 1| (\3)
FEs A+ A 1 1 110 by
Eg D4 + Al 1 1 1 3A1 (¢} 2
FEg Dy +2A; 3 1 1 244 Dg
FEs Dy +3A; 6 1 1 Ay FEr
Es | Da+ 44, 61 1 | 110 s §8.2.4
Fs Dy + Ay 1|1 1|0 ) 1
FEyg Dy + As 3 1 1 0 hM C 2Dy
Fs 2D, 61 1 | 1 |0 ) §8.2.4
FEs Ds + A 1 1 1 | A E; 3
FEs Ds +24, 1 1 110 by
Eg D5 + A2 2 1 1 (Z) by 1 <\6> C D5 + Az
By D5 + A3 21 1 | 1 |0 s §8.2.1
FEs Dg + Ay 2 1 1 Ay FEr
Es | D+ 24, 21 1 | 1 |0 s §8.2.1
Eq E¢+ A 1 1 1|0 3 1| (\7)
FEg Eg + A 2 1 1 0 b 88.2.1
Fs Er + Ay 1|1 1|0 by
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by E # | #= [#= | ET ML P
F4 AlL 1 1 1 03 o 2
A7 1 1 1 | Bs o 2
Fy AL 1] 1 1 | A3 o 1
A3 1 1 1 | AZ o 1
y AL 1 1 1|0 by
Ag 1 1 1 @ by S : 03
Fy DE 1] 1 1|0 )
D3 1 1 110 b S Fy
F4 Bg 1 1 1 Bg o 1
y B3 1 1 1 | A7 o 11 (\4)
Fy Cs 1] 1 1 | AL o RN
y By 1 1 1|0 b
Fy Cy 1] 1 1|0 by
y y 1 1 1|0 D)
Fy 2AT 1] 1 1 | By B
214*1S 1 1 1 Bg BQ S : Bg
AT + AY 1] 1 1 [AF+A7 | x 4
y 3AT 1 1 1 [ AP Cs
AT +2A7 1] 1 1 [ A7 Bs
Ey 4AT 1 1 1|0 by
4AY 1 1 110 by St Fy
2A7 + 2AF 1|1 110 by S: By + 2AF
F, AL + A7 1] 1 1[0 ) 1 1(\3)
A5 + AT 1 1 1 |0 b 11(\2)
F, A5 + AL 11 1|0 ¥
Fy B, + AT 1] 1 1 [ AP Cs
By + A‘lb 1 1 1 A‘lb Bs S : B3
Fy B, +2AF 1] 1 1|0 )
Fy By + Bs 1 1 1 0 by
F, Cs + AT 1] 1 1|0 by
Fy B3 + A‘ls 1 1 1 0 b S : By
> = # | #= [ #= |20 =T [P
Ga Al 1] 1] 1 [47 o 1 [(\2)
A7 1 1 1 [ AF o 11 (\1)
Ga A 11 [ 110 p
A3 1] 1 1|0 by
G Go 1 1 1|0 b 1
G- A7 + AT 1] 1 1|0 )
We explain some symbols used in the above table.
Remark 10.7. i) In the table above we use following notation.
Sti={aeX; |8l <lo| (V8eD)},
AS ~ AL ~ A, AL ol AY nxl =4,
DS ~ DL ~ D DL =xt  DInxl=09.

m

m

ms

m

m




40 TOSHIO OSHIMA

ii) The symbols ]’ and ]” in the column X.
Suppose X is irreducible and of exceptional type. Then #Hom(Z,%)/Out(Z) < 2.
When #Hom(Z, ¥)/Out(Z) = 2, X is of type E; or Eg and then the symbols [Z]’
and [E]” are used in [Dy] to distinguish the equivalence classes of the imbeddings
E C 3. Then [Z]’ means that there is a representative in the equivalence class such

that
(10.31) ECA,CYX=E,

with n = 7 or 8. For example, #Hom(4A;, F7)/Out(44;) = 2 and the symbols
[4A1])" and [4A;]" are used in [Dy], which are expressed by ]’ and ]” respectively
in the column ¥ in our table (cf. (7.6)).
iii) The structure of Outy(Z).
If (#) = # Out(E) or (#) = 1 in the table, it follows from (10.2) that # Outg(Z) =
1 or Outg(Z) = Out(Z), respectively. In the column P in the table, a reference
such as §8.2.3 gives the description of Outs(Z) for other non-trivial cases.
FE=2+Z CZ =5 +Zf C X and Out(Z) < Out(Z;) x Out(Zz) and
E+ =), we have

(10.32) Outs(E) ~ Nauty (=) (E2)/W=.

The symbol C Z’ is indicated in the column P if Outx(Z) is easily obtained by this
relation. For example, Outg, (D5 + A3) is isomorphic to Outg, (D5 + A3) through
the imbedding D5 + Ay C D5 + A3 C Es.
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