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§1. Introduction and Key Lemma.

In an inverse problem, we are required to determine coefficients in a par-
tial differential equation in order that the solution to the differential equation
realizes prescribed data. As the mathematical topics for an inverse problem,
we mention the uniqueness and the stability, and additionally the existence
of a solution to the inverse problem is important. Usually the solution to
an inverse problem is given not by formulae which are involved by algebraic
operations and calculi, but is found through limit processes such as iterations
(for example, as a solution to an operator equation of the second kind). In
this paper, we will show a formula for solutions to an inverse problem which
is attached with underdetermining data.

Our formulation for the inverse problem is underdeterming and so cannot
guarantee the uniqueness for solutions to the inverse problem. Hence our
formula gives ”one” solution to the inverse problem under consideration,
and does not describe all possible solutions but includes sufficiently many
solutions in the sense that it admits a family of coefficients parameterized by
free functions in the spatial variable.

Among various inverse problems, for our approach, we will mainly discuss
an inverse problem with data at final time. For example, in Bouchouev and
Isakov [3], Isakov [5], such an inverse problem for the Black - Scholes equation
is considered: Determine a, b, c by w(x, T ), x ∈ I , in

α
∂w

∂t
= a(x)

∂2w

∂x2
+ b(x)

∂w

∂x
+ c(x)w.

Here T > 0 is fixed, I is an interval and α = const > 0. As for inverse prob-
lems with data at final time, we can further refer to Choulli and Yamamoto
[4], Prilepko, Orlovsky and Vasin [6] and the references therein.
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In the present paper, we construct a family of solutions of the inverse
problems, which is based on representation of solutions and coefficients.

Let D ∈ R
n be a domain and let us consider an evolution equation of the

following type:

m
∑

k=1

αk(v(x))
∂kw

∂tk
=

n
∑

i,j=1

aij(x)
∂2w

∂xi∂xj

+
n
∑

j=1

bj(x)
∂w

∂xj

+ c(x)w, (1.1)

where x = (x1, ..., xn) ∈ D ⊂ R
n, 0 ≤ t ≤ T , αk : R

n −→ R are smooth
functions for 1 ≤ k ≤ m, v(x) = (v1(x), . . . vn(x)) is a differentiable vector-
valued function such that

∣

∣

∣

∣

∣

∂(v1, ..., vn)

∂(x1, ..., xn)

∣

∣

∣

∣

∣

6= 0, x ∈ D

and aij = aji, 1 ≤ i, j ≤ n.
First we formulate a general approach for obtaining a representation for-

mula of solution w(x, t) and coefficients aij(x), bj(x), c(x).
Note that in the case where

α1 = α = const > 0, αk = 0, k = 2, 3, . . . ,m,

and
n
∑

i,j=1

aijηjηj > 0, η ∈ R
n, η 6= 0,

equation (1.1) becomes parabolic:

α
∂w

∂t
=

n
∑

i,j=1

aij(x)
∂2w

∂xi∂xj

+
n
∑

j=1

bj(x)
∂w

∂xj

+ c(x)w.

In the case of

α2 = α = const, αk = 0, k = 1, 3, . . . ,m

equation (1.1) becomes hyperbolic when α > 0, and elliptic when α < 0.
Moreover if α1 = −

√
−1 and α2 = · · · = αm = 0, then (1.1) is the Schrödinger

equation.
Lemma 1. Let D1 ⊂ R

n be a domain and βkℓ, βk, β ∈ C1(D1), 1 ≤
k, ℓ ≤ n such that βkℓ = βℓk, be given, and u ∈ C2(D) be a given function
such that u(x) 6= 0 for any x ∈ D. Let

F (y, t), y ∈ D1 ⊂ R
n, 0 ≤ t ≤ T
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satisfy the equation

m
∑

k=1

αk(y)
∂kF

∂tk
=

n
∑

k,ℓ=1

βkℓ(y)
∂2F

∂yℓ∂yk

+
n
∑

k=1

βk(y)
∂F

∂yk

+ β(y)F. (1.2)

Then the function
w(x, t) = u(x)F (v(x), t)

and the coefficients aij(x), bj(x), c(x) consecutively defined by linear systems
of algebraic equations (1.3), (1.4), (1.5), satisfy equation (1.1):

n
∑

i,j=1

aij(x)
∂vk

∂xi

∂vℓ

∂xj

= βkℓ(v(x)) (1.3)

n
∑

j=1

bj(x)
∂vk

∂xj

=
1

u



uβk(v) −
n
∑

i,j=1

aij

(

∂vk

∂xi

∂u

∂xj

+
∂vk

∂xj

∂u

∂xi

+ u
∂2vk

∂xi∂xj

)



 ,

(1.4)

c(x) =
1

u



uβ(v) −




n
∑

i,j=1

aij

∂2u

∂xi∂xj

+
n
∑

j=1

bj(x)
∂u

∂xj







 . (1.5)

The proof of the lemma is done by direct substitution of the solution
w(x, t) = u(x)F (v(x), t) into equation (1.1) in terms of (1.2) - (1.5).

We note that if we choose v(x) = x, u(x) = 1, βkℓ = akℓ, βk = ak and
β = c for 1 ≤ k, ℓ ≤ n, then (1.3) - (1.5) are true.

After choosing v = v(x), we set A = {u, {βkℓ, βk}1≤k,ℓ≤n, β}. Then, by
aij(A), bj(A), c(A), 1 ≤ i, j ≤ n, we denote aij, bj and c defined by (1.3)

- (1.5). We note that A is composed of n2+3n+4
2

functions in x. Then,

by Lemma 1 we can represent n2+3n+2
2

functions aij, bj, c in x by n2+3n+4
2

functions in x. In other words, our lemma gives representation formulae
of coefficients aij, bj, c which contains 1

(

= n2+3n+4
2

− n2+3n+2
2

)

free function
in x. Thus by our representation formula, we can give a pair of solution
(aij, bj, c) which realizes one extra data w(x, T ) = w1(x), x ∈ D. We notice
that our formula (1.3) - (1.5) are not involved with limit processes.

In particular, if coefficients αk, βkl, βk, β are constant in (1.2), then in
some cases it is possible to represent F (y, t) which is a solution to an initial
value problem. Moreover, if we a priori know F (y, t), then problem of search
for coefficients and solution obviously turns to the determination of only
functions u(x), v(x) = (v1(x), . . . , vn(x)).

We will consider a one-dimensional variant of Lemma 1 more precisely.
Let w(x, t) satisfy the following equation:

m
∑

k=1

αk(v(x))
∂kw

∂tk
= a(x)

∂2w

∂x2
+ b(x)

∂w

∂x
+ c(x)w, (1.6)
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x0 ≤ x ≤ x1, 0 < t < T,

where αk(y), y ∈ R
1, v(x), a(x), b(x), c(x) are some differentiable functions

and αk may be constant.
Lemma 2. Let

u(x), v(x), αk(y), β1(y), β2(y), β3(y), k = 1, 2, . . . ,m

be some twice differentiable functions and let

x0 ≤ x ≤ x1, y ∈ R
1, u(x) 6= 0,

dv

dx
≡= v′(x) 6= 0.

We assume that F (y, t), y ∈ R
1, 0 < t < T , satisfies the equation

m
∑

k=1

αk(y)
∂kF

∂tk
= β1(y)

∂2F

∂y2
+ β2(y)

∂F

∂y
+ β3(y)F, y ∈ R, t > 0. (1.7)

Then the functions w(x, t), a(x), b(x), c(x) defined by the following formulae

w(x, t) = u(x)F (v(x), t), a(x) =
β1(v(x))

v′2 ,

b(x) =
v′2uβ2(v) − β1(v)(2u′v′ + uv′′)

uv′3

c(x) =
u2v′3β3(v) − uu′′v′β1(v) − u′v′2uβ2(v) + 2u′2v′β1 + u′uv′′β1

u2v′3

satisfy the equation

m
∑

k=1

αk(u(x))
∂kw

∂tk
= a(x)

∂2w

∂x2
+ b(x)

∂w

∂x
+ c(x)w.

As for other approaches to inverse problems by means of formulae, we
refer to Anikonov [1], [2].

§2. One-dimensional parabolic inverse problem with data at

final time.

As an example of using this way we consider an inverse problem for a one-
dimensional parabolic equation or a modifed Black-Scholes equation (e.g.,
[3]): Find functions

w(x, t), a(x), b(x), c(x), 0 ≤ t ≤ T, x ∈ R,

such that

α
∂w

∂t
= a(x)

∂2w

∂x2
+ b(x)

∂w

∂x
+ c(x)w, x ∈ R, t > 0 (2.1)
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and
w
∣

∣

∣

t=0
= w0(x), w

∣

∣

∣

t=T
= w1(x), x ∈ R. (2.2)

More precisely, represent the four functions w(x, t), a(x), b(x), c(x) by w0(x),
w1(x) and one real-valued auxiliary function. Here we assume that

w0(x) > 0, x ∈ R. (2.3)

Then we note that w1(x) > 0 for x ∈ R by the maximum principle.
Theorem. We choose δ ∈ R and a smooth function f0 > 0 for x ∈ R

such that

Φ(x) =
f0(x)

∫∞
−∞

1
2
√

πT
exp

(

− y2

4T

)

f0(x − y)dy
(2.4)

is an injective function in x ≥ δ. Furthermore we assume that

[

0, sup
x∈R

w0(x)

w1(x)

]

⊂ Φ([δ,∞)). (2.5)

We set

v(x) = Φ−1

(

w0(x)

w1(x)

)

, u(x) =
w1(x)

w1(v(x))
, x ∈ R. (2.6)

Then

a(x) =
1

(v′(x))2
,

b(x) = −2u′(x)v′(x) + u(x)v′′(x)

u(x)(v′(x))3
,

c(x) =
−u(x)v′(x)u′′(x) + 2(u′(x))2v′(x) + u(x)u′(x)v′′(x)

(u(x))2(v′(x))3
,

w(x, t) =
u(x)

2
√

πt

∫ ∞

−∞
exp

(

−(x − y)2

4t

)

w0(v(y))dy, x ∈ R, t > 0,

satisfies (2.1) and (2.2).
Example. Setting

f0(x) = e−x2

, x > 0,

we see that for any δ > 0, the function Φ is injective in x ∈ R. In fact,

∫ ∞

−∞

1

2
√

πT
exp

(

− y2

4T

)

e−(x−y)2dy =
1√

4T + 1
exp

(

− x2

4T + 1

)

,
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and so

Φ(x) =
√

4T + 1 exp

(

− 4Tx2

4T + 1

)

.

Thus under the assumption that

sup
x∈R

w0(x)

w1(x)
<

√
4T + 1,

we can rewrite (2.6) as

v(x) =

{

4T + 1

4T
log

(√
4T + 1

w1(x)

w0(x)

)}
1

2

and

u(x) =
w1(x)

w1(v(x))
,

so that the conclusion of the theorem holds.
Proof of Theorem. In Lemma 2, we set α1 = 1, α2 = · · · = αm = 0,

β1 = 1, β2 = β3 = 0. Then

F (y, t) =
1

2
√

πt

∫ ∞

−∞
e−

y
2

4t f0(x − y)dy

satisfies (1.7). We have

w0(x) = u(x)f0(v(x)), w1(x) = u(x)F (v(x), T ).

Eliminating u(x) in these equations, we obtain

w0(x)

w1(x)
=

F (v(x), 0)

F (v(x), T )
= Φ(v(x)).

Therefore we have

v(x) = Φ−1

(

w0(x)

w1(x)

)

and

u(x) =
w0(x)

F
(

Φ−1
(

w0(x)
w1(x)

)

, 0
) =

w1(x)

F
(

Φ−1
(

w0(x)
w1(x)

)

, 0
) .

Hence, by Lemma 2, the proof of the theorem is complete.
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