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Abstract

We consider the initial value problem for the reaction-diffusion
equation ut = ∆u + f(u). In this paper we show the existence and
nonexistence of the global solutions in time. Especially, we extend the
condition of the nonlinear terms to more general. We have the results
of the existence and the nonexistence for the equation with the nonlin-
ear term f satisfying lim infs→0 f(s)/sp > 0 and lim sups→0 f(s)/sq <

∞ with some p > 0 and q > 0.
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1 Introduction and main theorems

We consider the nonnegative solutions of the initial value problem for the
equation {

ut = ∆u + f(u),
u(x, 0) = u0(x),

x ∈ Rd, t > 0,
x ∈ Rd,

(1)

where u0 is a nonnegative, bounded and continuous function in Rd, f satisfies

f ∈ C([0,∞)) and f(r) ≥ 0, f ′(r) ≥ 0 for r ≥ 0, (2)

f is locally Lipschitz in (0,∞). (3)

We let X be a set of f satisfying (2) and (3).

1



Problem (1) has one and over nonnegative and bounded solutions at least
locally in time. Let T ∗ = T ∗(u) be the maximal existence time of u. When
u is the unique solution of (1), it can be expressed T ∗ = T ∗(u0, f) with a
given initial value u0 and nonlinear term f . If T ∗ = ∞, the solution exists
globally in time. If T ∗ < ∞, the solution does not exist global in time and
there exists the solution that blows up in finite time such that

lim sup
t→T ∗

‖u(·, t)‖∞ = ∞, (4)

where ‖u‖∞ denotes the L∞-norm of u in space variables. We set

Zp =

{
g ∈ X; lim sup

r→0

g(r)

rp
< ∞

}
and Zp =

{
g ∈ X; lim inf

r→0

g(r)

rp
> 0

}
.

Note that if there exists f ∈ Zp1 ∩ Zp2, then p1 ≤ p2. Moreover, if f
satisfies limr→0 f(r)/rp = Cp with some p > 0 and Cp ∈ (0,∞), then we
have p1 ≤ p ≤ p2. For the nonlinear term f we set

J =

{
g ∈ X;

∫ ∞

a

ds

g(s)
< ∞ with some a ∈ (0,∞)

}
,

Jc = {g ∈ J ; g(r) is convex for r ≥ r0 with some r0 ≥ 0} .

For example eu, u(log(u + 1))b with b > 1 and up + uq with p or q > 1 are in
Jc (see [9] and [10]). We denote by BC the space of all bounded continuous
functions in Rd. For a ≥ 0 we put

Ia = {ξ ∈ BC ; ξ(x) ≥ 0 and lim sup
|x|→∞

|x|aξ(x) < ∞},

Ia = {ξ ∈ BC ; ξ(x) ≥ 0 and lim inf
|x|→∞

|x|aξ(x) > 0},
L∞

a = {ξ ∈ BC ; ‖ξ‖∞,a = sup
x∈Rd

< x >a |ξ(x)| < ∞},

where < x >= (|x|2 + 1)1/2. It is clear that Ia ⊂ L∞
a for a ≥ 0. We use the

notation S(t)ξ to represent the solution of the heat equation with an initial
value ξ(x);

S(t)ξ(x) = (4πt)−d/2

∫
Rd

e−|x−y|2/4tξ(y)dy. (5)

We briefly recall the history of the study on the blow-up and the global
existence of the solution to the equation (1). First of this field, the blow-up
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and the global existence of solutions of the equation (1) in the case f(u) = up

with p > 1,

{
ut = ∆u + up,
u(x, 0) = u0(x),

x ∈ Rd, t > 0
x ∈ Rd (6)

was studied by Fujita[4]. He proved that when 1 < p < 1 + 2/d, the solution
of (6) blows up in finite time for any continuous function u0 �≡ 0. On the
other hand he also proved that when p > 1 + 2/d the solution of (6) exists
globally in time if the initial value u0 is small and has an exponential decay.
The number pF = 1 + 2/d is called a critical blow-up exponent or Fujita
exponent (We call pF first cutoff.) for (6).

Fujita’s results were also extended by some researcher. Hayakawa[6],
Kobayashi-Sirano-Tanaka[8] and Weissler[14] proved that when p = pF , the
solution of (6) blows up in finite time for any continuous u0 ≥ 0, �≡ 0. Lee-
Ni[11] considered the condition on the initial value whether the solution blows
up or not when p > pF . They proved that if u0 ∈ Ia with a < 2/(p−1), then
every nontrivial solution of (6) blows up in a finite time. They also had the
result that if u0 ∈ Ia with a > 2/(p − 1) and ‖u0‖∞,a is small enough, then
every solution of (6) is global. The words “nontrivial solution” denotes that
u �≡ 0 in this paper. Here we call the exponent a = 2/(p − 1) second cutoff
for initial value.

For the case p ≤ 1 Aguirre and Escobedo[1] studied and they got the
result that if p ≤ 1, then every solution of (6) is global in time.

Additionally, Garaktionov-Kurdyumov-Mikhailov-Samarskii[5, CapterIV,
§7, 3, 1 and 2] studied for the case f(u) = (1 + u)[log(1 + u)]β with β > 1,
and they have the result that if β < 1 + 2/d then the solution with u0 �≡ 0
blows up in finite time, and if β > 1 + 2/d, ‖u0‖∞ is small enough and u0

decays fast, then the solution is global in time.
In this paper, we have following results.

Theorem 1. Assume that f ∈ X\J . Let u0 ≥ 0 and ∈ BC. Then every
solution of (1) is global in time.

Remark. It is not necessary that solution of (1) is unbounded as much as
the case f(u) = up with 0 < p ≤ 1 (see [1]). For example, if f ∈ Zp1 with
p1 > 1 + 2/d and u0 ≤ C0e

−ν0|x|2 with sufficiently small C0, then the solution
is bounded (see [4] or Theorem 3).

Theorem 2. Assume that f ∈ Jc and u0 ≥ 0, ∈ BC and �≡ 0. If f and u0

satisfy the one of the following four conditions;

(i) f(0) > 0.
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(ii) f ∈ Zp with 0 < p ≤ pF = 1 + 2/d.

(iii) u0(x) ≥ Ce−ν0|x|2 for some ν0 > 0 and C = C(ν0) > 0 large enough.

(iv) u0 ∈ Ia with a < 2/(p − 1).

Then every solution of (1) blows up in finite time.

Remark. In Theorem 2 if (i) is hold, then it is possible to remove the con-
dition u0 �≡ 0.

Theorem 3. Assume that f ∈ Zp with p > pF . Let u0 ≥ 0. Suppose that

u0 ∈ Ia with a > 2/(p − 1) (7)

and ‖u0‖∞ is small enough. Then, every solution of (1) is global. Moreover,
if ‖u0‖∞,b is small enough for b ∈ (2/(p − 1), a), then we have the estimate
that

u(x, t) ≤ mS(t) < x >−b (8)

in Rd × (0,∞).

Remark. By comparison Theorem 3 implies that if u0 ≤ Ce−ν0|x|2 with some
ν0 > 0 and C sufficiently small, the solution of (1) is global (See Theorem
3.1).

If f satisfies limr→0 f(r)/rp = Cp and limr→∞ f(r)/rq = Cq with some
p > 0, q > 0, Cp > 0 and Cq > 0, then by Theorems 1, 2 and 3, the solution
of (1) satisfies following table.

p < 1 p = 1 1 < p < pF p = pF p > pF

q < 1 G G G G GB
q = 1 G G G G GB

1 < q < pF N N N N NB
q = pF N N N N NB
q > pF N N N N NB

In this table the signs “G”, “N”, “GB” and “NB” denote as following;

G: Every solution is global in time.

N: Any nontrivial solution is not global in time. (Of cource there does not
exist bounded nontrivial solution.)
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GB: Any solution is global in time and there exist also the bounded solu-
tions.

NB: There exist both bounded solutions and non-global solutions in time.
(There may exist the unbounded and global solution in time.)

The rest of the paper is organized as follows. In section 2 we show the
local existence of the solution for the equation (1) in time together with the
comparison principle. For the proof of the blow-up result, we prepare some
tools in section 3. In section 4 we note some preliminary results for the proof
of the global existence of the solution of (1). Finally, we give the proof of
Theorems 1, 2 and 3 in section 5.

2 Local existence in time

First we show the local existence of the solutions of (1).

Theorem 2.1. Assume that f ∈ X and u0 ≥ 0, ∈ BC. Then there exists
T > 0 such that (1) admits a nonnegative and bounded classical solution u
in [0, T )×Rd. Moreover, if f(r) is locally Lipschitz function for r ∈ [0,∞),
then the solution is unique.

Remark. If f(r) is locally Lipschitz function for r ∈ [0,∞), then the condi-
tion f ∈ X can be changed to only f ∈ C([0,∞)).

First, we proof the case f(r) is locally Lipschitz function for r ∈ [0,∞).

Proof of Theorem 2.1 (the case f is locally Lipschitz in [0,∞)). Although we
follow the same argument as in [1, Lemma (1.3)], we give the outline of the
proof for reader’s convenience. For arbitrary T > 0, let

ET = {u : [0, T ] → L∞; ‖u‖ET
= sup

t∈[0,T ]

‖u(·, t)‖∞ < ∞}. (9)

We consider in ET the related integral equation

u(x, t) = S(t)u0(x) +

∫ t

0

S(t − s)f(u(x, s))ds. (10)

where S(t) is defined in (5). Note that in the closed subset PT = {u ∈
ET ; u ≥ 0} of ET , (1) is reduced to (10). First, we show in the case
limu→0 |(f(u) − f(0))/u| < ∞. Define Ψ(u)(x, t) = (S(t)u0(x) + Φ(u)(x, t)),
where Φ(u)(x, t) =

∫ t

0
S(t − s)f(u(x, s))ds. Then we can easily obtain that

‖S(·)u0‖ET
≤ ‖u0‖∞, ‖Φ(u)‖ET

≤ T‖f(u)‖ET
.
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For some v1, v2 ∈ BR = {un ∈ ET ; ‖un‖ET
≤ R}, we have

‖Ψ(v1) − Ψ(v2)‖ET
(x, t) ≤

∫ t

0

S(t− s)
∣∣∣f(v1(x, s)) − f(v2(x, s))

∣∣∣ds.

We consider this expression in BR ∩ PT for R sufficient large. Thus we
have ‖Ψ(v1) − Ψ(v2)‖ET

(x, t) ≤ CTF sups∈[0,t] ‖v1(·, s) − v2(·, s)‖∞, where
F = F (R) = supu1,u2∈[0,R] |(f(u1) − f(u2))/(u1 − u2)|. Since f is locally
Lipschitz in [0,∞), F is bounded. Take T is small enough. Then we obtain
‖Ψ(v1) − Ψ(v2)‖ET

≤ CTF‖v1 − v2‖ET
≤ ρ‖v1 − v2‖ET

for some ρ < 1.
Then Ψ is a strict contraction of BR ∩ PT into itself, whence there exists a
unique fixed point u ∈ BR ∩ PT which solves (10). Thus we obtain a unique
nonnegative and bounded solution u(t) to (1) in Rd× [0, T ) for some T .

Next, we show the more general case with following lemma.

Lemma 2.2. Assume that u(x, t) and u(x, t) are solutions of

{
ut = ∆u + f(u),
u(x, 0) = u0(x),

x ∈ Rd, t > 0,
x ∈ Rd,

(11)

and {
ut = ∆u + g(u),
u(x, 0) = u0(x),

x ∈ Rd, t > 0,
x ∈ Rd,

(12)

where u0, u0 ≥ 0 ∈ BC, f , g ∈ X and f or g is locally Lipschitz in [a,∞)
with some a ∈ R. If u0(x) ≥ u0(x) ≥ a for x ∈ Rd and f(s) ≥ g(s) for
s ≥ a, then u(x, t) ≥ u(x, t) for x ∈ Rd × [0, T ∗(u0, f)).

Proof. If f is locally Lipschiz in [a,∞), then from (11) and (12) we have

(u − u)t = ∆(u− u) + f(u) − g(u) ≥ ∆(u− u) + f(u) − f(u).

Put w = u − u. Then w satisfies

{
wt(x, t) = ∆w(x, t) + a(x, t)w(x, t),
w(x, 0) = (u0 − u0) (x),

x ∈ Rd, t > 0,
x ∈ Rd,

(13)

where a(x, t) =
∫ 1

0
f ′(θu + (1 − θ)u)(x, t)dθ. By the maximum principle (see

[13, CHAPTER 3, SECTION 6, THEOREM 10]), we have w(x, t) ≥ 0. Thus
we have u ≥ u. When g is locally Lipschiz in [a,∞), we can show this by
same argument.

Proof of Theorem 2.1 (general case). We put gn(r) = cnr (0 ≤ r ≤ 1/2n),
= f(r) (r > 1/2n), where cn = 2nf(1/2n). Here {gn} is a sequence of locally
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Lipschitz continuous functions in [0,∞) for any fixed n > 0. Consider now
the approximating problems for (1);

{
(un)t −∆un = gn(un),
un(x, 0) = u0(x) + 1/n,

t > 0, x ∈ Rd,
x ∈ Rd.

(14)

Define Ψn(un)(x, t) = (S(t)un(x, 0) + Φn(un)(x, t)), where Φn(un)(x, t) =∫ t

0
S(t − s)gn(un)(x, s)ds.
Let BR = {un ∈ ET ; ‖un‖ET

≤ R}. If R is large enough and T > 0 is
small enough, Ψn is a strict contraction from BR ∩ PT into itself by using
same argument as the case limu→0 |(f(u) − f(0))/u| < ∞. Whence there
exists a unique fixed point un ∈ BR ∩ PT which solves

un(x, t) = S(t)un(x, 0) +

∫ t

0

S(t− s)gn(un(x, s))ds, (15)

Thus we obtain a unique nonnegative and bounded solution un(t) of (14)
in Rd × [0, T ) for some T . Furthermore, we can show un(x, t) ≤ um(x, t)
for n ≥ m by Lemma 2.2, where we use the argument of [1, Lemma (1.3)].
Therefore, the sequences {un(t)} are nonincreasing with respect to n and
bounded below. So, we can define u(x, t) = limn→∞ un(x, t). Then we can
conclude that u(t) satisfies (10) (see [1]).

To complete the proof of Theorem 2.1, let u(x, t) be the nonnegative
and bounded solution of (10) that has been obtained in [0, T )×Rd for some
T > 0. By (10), u(x, t) is continuous in [0, T )×Rd. Moreover, by considering
the difference quotients (1/h){u(x + ejh, t)− u(x, t)} with h → 0, one easily
sees that ∂u(x, t)/∂xj is locally bounded in Rd× [τ, T ) for j = 1, 2, . . . , d and
any τ such that 0 < τ < T , where ej is j-th unit vector of Rd. Then f(u)
are locally Hölder continuous functions in space uniformly with respect to
time. It then follows from the representation formula (10) that u is a classical
solution of (1) in Rd × (0, T ) (see [3, Chapter 1, Theorem 10] ).

Remark. By Theorem 2.1, solutions are unique when limu→0(f(u)−f(0))/u <
∞. If this assumption is dropped, this result is false in general (see [1]).

3 Preliminaries for blow-up

In this section we prepare some tools for proving main theorems. First, we
consider the case f is more general form. Let f ∈ Jc and f(s) > 0 for s > 0.
Then, we can take a convex and strict increasing function f̃ satisfying

f̃(s) > 0 for s > 0, f̃ ∈ Z p̃ ∩ J with some p̃ > 1, f(u) ≥ f̃(u). (16)
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We consider the equation{
ût = ∆û + f̃ (û),
û(x, 0) = u0(x),

x ∈ Rd, t > 0,
x ∈ Rd.

(17)

By Lemma 2.2 we see u ≥ û, where u is solution of (1). Put

Gε(t) =

∫
Rd

ρε(x)û(x, t)dx (18)

for ε > 0, where ρε(x) = (ε/π)−d/2e−ε|x|2 . Then, we have

G′
ε(t) =

∫
Rd

ρε(x)
(
∆û(x, t) + f̃ (û(x, t))

)
dx.

Since ∆ρε(x) ≥ −2dερε(x) and f̃(u) is convex, we have

G′
ε(t) ≥ −2dεGε(t) + f̃ (Gε(t)) . (19)

by Green’s inequarity and Jensen’s inequarity. We consider the equation{
g′

ε(t) = −2dεgε(t) + f̃ (gε(t)),
gε(0) = Gε(0).

(20)

We see that gε(t) ≤ Gε(t) by comparison. If gε(t) blows up in finite time,
Gε(t) does, too.

If Gε(0) satisfies

f̃(Gε(0)) > 2dεGε(0), (21)

we see that limt→T gε(t) = ∞ for some T ∈ (0,∞]. (Because −2dεs + f̃(s) is
strict increasing function for s satisfying c0f̃(s) > 2dεs.) Next, we estimate
T . From (20), we have T =

∫ ∞
Gε(0)

dξ/(f̃ (ξ) − 2dεξ) < ∞. Thus gε(t) blows

up in finite time with Gε(0) satisfying (21), and Gε(t) blow up in finite time,
too.

This fact shows the following Lemma.

Lemma 3.1. Let Gε(t) satisfy differential inequality (19). If (21) hold for
some ε > 0, then Gε(t) blows up in finite time.

In fact, for u0 satisfying (21) for some ε > 0 with (18), the solution û(x, t)
of (17) blows up in finite time.

Since f̃ ∈ Zp, we can put

â = ã(f, p, c1) = sup {a : f(r) ≥ c1r
p for r ≤ a} (22)

for some c1. If we confine to ε < c1â
p−1/2d, we can change (21) to

Gε(0) > (2dε/c1)
1

p−1 . (23)

with some c1 > 0. Thus, we have following result.
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Proposition 3.2. Let Gε(t) satisfies defferential inequality (19). If (23) is
satisfied for some ε ∈ (0, c1â

p−1/2d), then Gε(t) blows up in finite time, where
â is defined in (22)

With this proposition, we have following lemmas.

Lemma 3.3. Let f̃ be a strict increasing function, f̃ ∈ J ∩Zp̃ with 1 < p̃ <
pF , u0 ≥ 0, �≡ 0, ∈ BC. Then, solution of (17) blows up in finite time.

Proof. Since u0 ∈ BC and �≡ 0, we can assume u0 ∈ L1(R) and
∫
Rd u0(x)dx >

0. By the Lebesque dominated convergence theorem, we have that there exist
ε0 ∈ (0, âp−1/2d) such that

Gε(0) =
( ε

π

)d/2
∫
Rd

u0(x)e−ε|x|2dx ≥ 1

2

( ε

π

)d/2
∫

Rd

u0(x)dx

for any ε ∈ (0, ε0]. Since p̃ < a + 2/d and 2/(p̃ − 1) > d by assumption, that
the codition (23) of Proposition 3.3 is satisfied if ε is sufficiently small. Thus
Gε(t) blows up in finite time, and u(x, t) does, too.

Lemma 3.4. Let f̃ be a strict increasing function and û(x, t), and f̃ ∈ Z p̃∩J
with p̃ > 1. Suppose the following two conditions.

(I) u0 ∈ Ia with a < 2/(p̃ − 1).

(II) u0 ≥ Ce−ν0|x|2 for some ν > 0 and some C large enough.

Then, solution of (17) blows up in finite time.

Proof. First we show the case (I). From assumption, we have

Gε(0) =
( ε

π

)d/2
∫

Rd

u0(x)e−ε|x|2dx = π−d/2

∫
Rd

u0(ε
−1/2x)e−|x|2dx.

Then, it follows that

ε−1/(p̃−1)Gε(0) ≥ Cε−
1

p̃−1
+a

2 π−d/2

∫
Rd

|x|−ae−|x|2dx >

(
2d

c1

)1/(p−1)

for ε ∈ (0, c1â
p−1/2d), with â defined in (22) . Thus, we see that Gε(t) blows

up in finite time by Proposition 5.2, and u(x, t) blows up, too.
Next, we consider the case (II). We have

Gε(0) ≥ C
( ε

π

)d/2
∫

Rd

e−(ε+ν0)|x|2dx = C

(
ε

ε + ν0

)d/2

.
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So, if we choose ε = c1â
p̃−1/4d and

C >
â

21/(p̃−1)

(
1 +

4dν0

c1âp̃−1

)d/2

,

the condition of Proposition 3.3 is also satisfied in this case.

Next, we consider the case limr→0 f(r)/rpF > C with some constant C .
For showing this case, we should following propositions.

Proposition 3.5. Let u0 �≡ 0, ∈ BC and û be the solution of (17) with
initial data u0. Then for any τ > 0, there exist constants ν > 0 and C =
C(ν0, u0) > 0 such that û(x, τ ) ≥ Ce−ν|x|2.

Proof. (cf. [2, Lemma 2.4]) Assume for instance that u1,0 �≡ 0. Since u(x, t) ≥
S(t)u0(x), it follows that

û(x, t) ≥ exp(−|x|2
2t

)(4πt)−d/2

∫
Rd

exp(−|y|2/2t)u0(y)dy.

Define û(x, t) = u(x, t + τ1) for some τ1 > 0. Then, we obtain

ū(x, 0) = û(x, τ1) ≥ C exp(−ν|x|2) (24)

with

ν =
1

2τ1
, C = (4πτ1)

−d/2

∫
Rd

exp

(
−|y|2

2τ1

)
u0(y)dy. (25)

Proposition 3.6. Let u0 ≥ 0, �≡ 0, ∈ BC and limr→∞ f(r)/rpF > C. As-
sume that p = pF . Then the solution of (17) satisfying that

û(x, t) ≥ Ct−d/2e−|x|2/t log(t/2b)

for t ∈ (b, T ∗) with any b ∈ (0, T ∗) and C > 0 sufficientry small.

Proof. By Proposition 3.5, we may assume u0(x) ≥ Ce−µ|x|2 for some C > 0
and µ > 0 without loss of generality. From (10), we have

û(x, t) ≥ S(t)u0(x) ≥ C(4µt + 1)−d/2e−|x|2/(4t+1/µ.
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By using (10) again, we have

û(x, t) ≥
∫ t

0

S(t− s)f(u(x, s))ds ≥ C1

∫ t

0

S(t − s)up(x, s)ds

≥ C2

∫ t

0

(4µs + 1)−dp/2S(t − s)e−p|x|2/(4s+1/µ)ds

with p = pF . Since

S(t)e−p|x|2/(4s+1/ν) ≥ C3

{
2pt

4s + 1/ν
+ 1

}−d/2

e−|x|2/2t.

We obtain

û(x, t) ≤ C4

∫ t/2

t/4

(4sµ + 1)−dp/2e|x|
2/2(t−s)ds ≤ C5t(t + 1)−dp/2e−|x|2/t.

By using (10) one more time. Then we have

û(x, t) ≥ C6

∫ t

0

sp(s + 1)−dp2/2

{
2p(t − s)

s
+ 1

}−d/2

e−|x|2/2(t−s)ds

≥ C7(t + 1)−d/2e−|x|2/t

∫ t/2

b

s{−d(p2−1)+2p}/2ds

for small b > 0. Since d(p2 − 1) − 2p = 2, then we have

û(x, t) ≥ C8(t + 1)−d/2e−|x|2/t log(t/2a).

Lemma 3.7. Let f̃ be a strict increasing function satisfying limr→0 f(r)/rpF >
0 with some constant C > 0 and u0 ≥ 0, �≡ 0, ∈ BC. The the solution of
(17) blows up in finite time.

Proof. From Proposition 3.6, we obtain

S(t)u(0, t) ≥ C1t
−d

2 log

(
t

2b

) ∫
Rd

e−5|x|2/4dx ≥ C2t
−d

2 log

(
t

2b

)
(26)

in b < t < T ∗ with b ∈ (0, T ∗).
We should show T ∗ < ∞. Assume that T ∗ = ∞. Then by Proposition

3.2, it hold that

Fε(t) =
( ε

π

)∫
Rd

u(x, t)e−ε|x|2dx ≤ Aε1/(p−1)
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for any t ≥ 0 and ε ∈ (0, ε0) with some ε0 > 0. Thus, choosing ε = (4π)−1,
we obtain

F1/4t = S(t)u(0, t) ≤ A(4t)−1/(p−1) = A(4t)−d/2 (27)

for t > 1/4ε0. If T ∗ = ∞, the contradiction is caused in (26) and (27). Thus
we have T ∗ < ∞.

4 Preliminaries for global existence

In this section, we consider the case f ∈ Zp with p > pF . In the case,
the solution of (1) can be bounded with some inital value u0. We put g(u)
satisfying g(u) ≥ f(u) and some condition. Next lemma, we use this g(u).
For γ > 0 we set

ηγ(x, t) = S(t) < x >−γ (28)

Lemma 4.1. Define ηa such as (28). Then

ηa(x, t)p ≤ C(1 + t)(a−pmin{a,d})/2ηa(x, t) i Rd × (0,∞).

Proof. See [7, Lemma 4.2] or [12, Lemma 5.2].

We define the Banach space Eη,a of u(x, t) such that ‖u‖Eη,a ≡ |‖u/ηa|‖∞ <
∞, where |‖w|‖∞ = sup(x,t)∈Rd×(0,∞) |w(x, t)|. We consider the integral equa-
tion (10) in Eη,a.

Lemma 4.2. Let ǔ(x, t) satisfy

{
ǔt = ∆ǔ + g(ǔ),
ǔ(x, 0) = u0(x),

x ∈ Rd, t > 0,
x ∈ Rd,

(29)

where g(s) ∈ C([0,∞)), = Csp for s ≤ 1 with some p > pF and C > 0. If
u0 ∈ Ia with a > 2/(p− 1) and ‖u0‖∞ is small enough. Then, every solution
ǔ(x, t) is global. Moreover, if ‖u0‖∞,b is small enough, we have a decay
estimate that ǔ(x, t) ≤ mS(t) < x >−a in Rd× (0,∞) with b ∈ (2/(p−1), a).

Proof. (See [7], [11] or [12].) Let u = ǔ in this proof. Assume that u0 ∈ Ib

with b ∈ (2/(p − 1), a) and ‖u0‖∞,b is small enough. Let ‖u0‖∞,b ≤ m/2.
Define Mη,m,b = {u ∈ Eη,b; ‖u‖Eη,b

≤ m} and Pη,b = {u ∈ Eη,b; u ≥ 0}. Let

u ∈ Mη,m,b with m < 1. Put Φ(u(x, t)) =
∫ t

0
S(t− s)g(u)ds and Ψ(u(x, t)) =

S(t)u0(x) + Φ(u(x, t)).

12



First, from the definition of Eη,b we have

‖S(·)u0‖Eη,b
≤ C ′‖u0‖∞,b. (30)

with some C ′.
Next, since u ∈ Mη,m,b, then Φ(u(x, t)) ≤ C

∫ t

0
S(t − s)ηp

b (s)ds|‖u/ηb|‖p
∞.

Since u ∈ Bη,m,b with m < 1, we have u < 1. Then, by Lemma 4.1, we have

Φ(u(x, t)) ≤ Cηb(x, t)
∫ t

0
(1 + s)(1−p)b/2ds|‖u/ηb|‖p

∞. Since (p − 1)b > 2 in the

assumption, we have Φ(u(x, t)) ≤ C̃ηb(x, t)|‖u/ηb|‖p
∞ for some C̃. Then, we

have

‖Φ‖Eη,b
≤ C̃‖u‖p

Eη,b
. (31)

From (30) and (31), we can choose m sufficiently small such that

‖Ψ‖Eη,b
≤ m

2
+ C ′mp < m

in Bη,m,b ∩ Pη,b.
We should show that Ψ is a strict contraction of Bη,m,b ∩Pη,b for m small

enough. For v1, v2 ∈ Mη,m,b ∩ Pη,b we have

|Ψ(v1) − Ψ(v2)| ≤
∣∣∣∣C

∫ t

0

S(t − s)

((
v1

ηb

)p

−
(

v2

ηb

)p)
ηp

b (x, s)ds

∣∣∣∣
Since v1, v2 ∈ Mη,m,b ∩ Pη,b and from Lemma 4.1, we have

|Ψ(v1) − Ψ(v2)| ≤ Cpmp−1

∣∣∣∣
∥∥∥∥v1 − v2

ηb

∣∣∣∣
∥∥∥∥
∞

∣∣∣∣
∫ t

0

S(t − s)ηp
b (x, s)ds

∣∣∣∣
≤ Cpmp−1

∣∣∣∣
∥∥∥∥v1 − v2

ηb

∣∣∣∣
∥∥∥∥
∞

∣∣∣∣
∫ t

0

(1 + s)(1−p)b/2ηb(x, t)ds

∣∣∣∣
by definition of ηb. Since pmin{b, d} − b > 2

‖Ψ(v1) − Ψ(v2)‖Eη,b
≤ C̃mp−1‖v1 − v2‖Eη,b

with some C̃ . If m is sufficiently small, then Ψ is a strict contracion in
Pη,b ∪Mη,m,b. Thus we can take u(x, t) ≤ mS(t) < x >b and u(x, t) is global
in time.

Finally, take a > b. Then by Lemma 2.2, the condition of u0 may be
replaced with the condition u0 ∈ Ia with a ≥ b ≥ 2(p − 1) and ‖u0‖∞ is
sufficiently small. In fact, b > 2/(p−1) is arbitary, we need only a > 2/(p−1)
for global existence of the solution in time.

13



5 Proof of Thoerems

In this section, we proof Theorems 1, 2 and 3.
First we consider the case∫ ∞

m

ds

f(s)
= ∞ (32)

with m = m(f) satisfying f(s) > 0 for s > m.

Proof of Theorem 1. Let v̄ be the solution of (1) with the initial data ‖u0‖∞+
m + 1 = M . From Lemma 2.2, we have v̄(t) ≥ u(x, t) for x ∈ Rd × [0, Tv̄),
where Tv̄ = T ∗(M, f). It can be assumed that limt→Tv̄ v̄(t) = ∞ for some
Tv̄ ∈ (0,∞]. (If this assumption is dropped, v(t) does not blow up in finite
time.) But from (32), it seems easily that Tv̄ =

∫ ∞
M

ds/f(s) = ∞. Thus, v̄ is
global in time, so u is, too.

Secondly, in the case f ∈ Jc, we consider the solutions blowing up in finite
time.

Proof of Theorem 2. We can put strict increasing function f̃ satisfying f̃ ∈
Jc ∩ Zp with 1 < p ≤ pF such that f(u) ≥ f̃(u) for u > 0. We consider the
solution u of (1) with the nonlinear term exchanged for f̃ . From Lemmas 3.3,
3.4 and 3.7, u blows up in finite time. Thus from Lemma 2.2, the solution u
of (1) blows up in finite time.

Finally, we estimate the condition of u0 and f ∈ J for the solution existing
global in time.

Proof of Theorem 3. Let f̂ (s) = max{Csp1 , f(s)} for u > 0, where C suffi-
ciently large satisfying f̂ (u) ≥ f(u) for u near 0. We consider the solution u
of (1) with the nonlinear term replaced with f̂ . From Lemma 4.2, u is global
in time. Thus, from Lemma 2.2, the solution u of (1) is global in time.
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