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ABsSTRACT. We consider an inverse problem of determining a spatially varying factor
in a source term in a nonstationary Navier-Stokes equations by observation data in
a neighbourhood of the boundary. We prove the Lipschitz stability provided that
the t-dependent factor satisfies a non-degeneracy condition. For the proof, we show
a Carleman estimate for the vorticity equation of the Navier-Stokes equations.

§1. Introduction and the main results.

We consider the Navier-Stokes equations for an incompressible viscous fluid:

Ov(x,t) —vAv(z,t) + (v-V)v + Vp = R(x,t) f(z),

e, 0<t<T, (1.1)
divo(z,t) =0, re,0<t<T, (1.2)
v(x,t) =0, xred, 0<t<T. (1.3)

Here ) C R? is a bounded domain with C%-boundary 0Q, v = (v1,vs,v3)T, T

denotes the transpose of matrices, v > 0 is a constant describing the viscosity, and
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for simplicity we assume that the density is one. Let 0; = %, 0; = %, j=1,2,3,

A=37_102 V= (01,0087,

T
3 3 3

(U . V)’U = Z Ujaji}l, Z v]@jvz, Z vjﬁjvg

J=1 Jj=1 Jj=1

Moreover let v = (v1,72,73) € (NU{0})3, 97 = 871 95203° and |y| = 71 + 2 + 3.
Physically v denotes the velocity field of the incompressible fluid and the term
R(z,t)f(z) models the density of the external force causing the movement of the

fluid. In this paper, we consider the two forms:

R(x,t) = (ri(z,t), ro(z, t)ra(x, )T, f= f(z), r; = rj(z,t), 5 = 1,2,3: real-valued.
(1.4)
In the forward problem we are required to discuss the unique existence of solu-
tions in suitable senses to (1.1) - (1.3) for a given extrernal source term Rf and
there are a vast amount of works (e.g., Ladyzhenskaya [31], Temam [35] and the
references therein). The forward problem is important, but any practical studies
of the forward problem can be launched only after suitable modelling of physical
parameters such as the viscosity v, the force Rf. The inverse source problems are
concerned with such modelling. In our inverse problem, we are mainly discussing

the determination of a spatially varying function f(x) for given R(x,t).

Inverse Source Problem. Let w C Q be a given subdomain such that Ow D
00,0 < 0 < T and let v satisfy (1.1) - (1.83). Then determine f(z), © € Q by
observation data v,y o,1), v(7,0), € Q.

Inverse problems by this type of observations for the Navier-Stokes equations
have been not studied sufficiently by taking into consideration its physical sig-

nificance. See Imanuvilov and Yamamoto [16]. As for different kinds of inverse
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problems for the Navier-Stokes equations, see Prilepko, Orlovsky and Vasin [34]
and the references therein. In [34], the authors discuss inverse problems by final
overdetermining observation data u(x,T), x € .

In this paper, we study only one case where unknown f is real-valued, and in a
more comprehensive forthcoming paper, we will discuss a more general subdomain
w and establish stability estimates in determining vector-valued f in the case where
R(z,t) is a 3 X 3 matrix.

For a non-empty subdomain w; C §2 such that W7 C w and dw; D 901, let

n € C%(Q) satisfy
n>0 inQ, 7nea=0, |Vy >0 onQ\w;. (1.5)

As for the existence of 1, see Fursikov and Imanuvilov [10], Imanuvilov [12].

Example of 1. Let Q = {z € R3;p; < |z| < p2} with 0 < p; < py and wy = {x €
R3; pa — < |z| < p2} where § > 0 is sufficiently small. Then we can directly verify

that

n(x) = (p3™ — ™) (|l2[*™ = pi™)

satisfies (1.5) if m € N is sufficiently large for § > 0.

In fact, we have

Vn(z) = 2ma|z|*™ 2 (pI™ + p3™ — 2|z [*™)

L

1
2m 2m m 2m 2m \ om
and (%) " > |z| > py implies |Vn(z)| > 0. Since lim, oo <%> =

p2 by p2 > p1, we see that for small § > 0, we can choose large m € N such that

IVn(z)] >0if 2 € Q\ w;.
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We set

Q=0x(0,7)

and

Wy ?(Q) = {w; dyw, dJw € L*(Q), |7] < 2}

Throughtout this paper, we assume that the velocity field v and the pressure p are
sufficiently regular and bounded:

dlv,d (rotw) € Wy (Q), dlpe L*0,T; HY(Q)), j=0,1,2,

2

Z ||8§v||Loo(Q) + ||V’U||Loc(Q) + ||8tV'U||Loo(Q) S M. (16)

§=0
Remark. We can relax the regularity if we will use a Carleman estimate involv-
ing H'-norms. In this paper, however, for a simpler treatment, we will use a

conventional Carleman estimate without Sobolev norms of negative orders.

We are ready to state our first main result.

Theorem 1. Let w be a subdomain of Q) such that Ow D 0. Let 0 < 0 < T and

let R(x,t) = (ri(z,t),ro(z,t),r3(z,t))T satisfy
R(-,0) € C?(Q), &R, 8/ rotRe L®(Q), j=0,1,2
and f(z) be a real-valued function. We assume that
flo =0, R(z,0) x Vn(z)#0, z€Q\w. (1.7)

Then there exists a constant C = C(Q,T,0, R, M) > 0 such that

[ fllzr ) < Cllrotvllgso,r;02(w)) + 10l z20,183 w))

+llrotv(-, 0)llmaq) + lv(- 0) a2(0))- (1.8)
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For determination of f, we have to assume the non-degeneracy condition on R
given by (1.7). In Theorem 1, we notice that for w, we need the geometric constraint
Ow D 0f), which seems strange in view of the parabolicity of the equation. In fact,
in the corresponding inverse parabolic problem (e.g., Imanuvilov and Yamamoto
[15]), we need not any constraints for w. However, when we do not use data of
the pressure p(z,t), our inverse problem is involved with a first-order equation
rot Rf = g with given g, so that we have to assume some geometric conditions for

w. Here, for simplicity, we assume that dw D 0f2.

Example of (1.7). Let Q = {z € R3;p; < |z| < p2} with 0 < p; < py and
w={x € R3py —J < |z| < po} with sufficiently small § > 0. Then in the previous
example, if m € N is sufficiently large and = x R(z,0) # 0, z € Q \ w, then (1.7) is

satisfied.

With (1.7), our observation data yield the Lipschitz stability. We note that
@ > 0. If 6§ = 0, then our inverse problem is exactly an inverse problem to the
forward problem, that is, the initial/ boundary value problem. However, as the
corresponding inverse problem for a parabolic equation is open in the case of 6 =0

(cf. Isakov [23], [24]), our inverse problem with # = 0 is an open problem.

Our main methodology is based on Bukhgeim and Klibanov [7] which introduced
the application of a Carleman estimate to inverse problems (also see Isakov [22],
Klibanov [28], [29]). Our proof is by Imanuvilov and Yamamoto [15] which modified

the method in [7].

As for similar inverse problems, we refer to the following works: Amirov and

Yamamoto [1], Baudouin and Puel [2], Bellassoued [3], [4], Bellassoued and Ya-
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mamoto [5], Bukhgeim [6], Imanuvilov, Isakov and Yamamoto [14], Imanuvilov and

Yamamoto [17] - [21], Isakov [22] - [24], Isakov and Yamamoto [25], Khaidarov [26],

[27], Klibanov and Timonov [30], Li [32], Li and Yamamoto [33], Yamamoto [36].

This list is far from the complete and the readers can consult the references therein.
Our proof uses also a Carleman estimate for the Navier-Stokes equations, for

which we refer to Fernandez-Cara, Guerrero, Imanuvilov and Puel [8], [9]. See also

Fursikov and Imanuvilov [10], Imanuvilov [13].

§2. Key Carleman estimate.

We establish a key Carleman estimate in the case where dw D 0f). We consider

Ov(x,t) —vAv + (q(z,t) - V)o+ Vp=F(z,t), 2€Q,0<t<T, (2.1)

divo(z,t) =0, re,0<t<T, (2.2)
v(x,t) =0, reIN,0<t<T. (2.3)

Here ¢ = (q1,42,43)" € L=(0, T; W>2(Q)) with [|q| =), [VallL=(q) < M. Let

w,w; be subdomains such that @7 C w and wy # () and let n € C?(Q) satisfy (1.5).

We set
@)\77(37) — @2>\||77||L°0(Q)
t) = 2.4
o(a,1) T (2.4)
eAn(x) 05
t) = .

with large parameter A > 0, and

Qu =w x (0,7).

We can state our key Carleman estimate:
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Theorem 2.1. Let 0w D 02. Then there exists a constant A = A(Q,w,T) >
0 such that for A > A, we can choose constants C = C(A\, M) > 0 and sg =

so(A, M) > 0 such that

/ S—5|v|2 + S—3|Vv]2 + 8—4]7’0tv|2
o \t°(T — 1) t3(T —t)3 t4(T — t)*

2

4 5 |V7"0tv|2> e dxdt

2(T —¢)

s sa s
SC/Q mhﬁOtFPGZ dl‘dt+0€c (Hat(?"OtU)H%z(Qw) + HUH2L2(O,T;H3(w)))

for all s > so and all v € Wy2(Q) such that rotv € Wy 2(Q) and v satisfies (2.1
2 2

- (2.3) and ||v| Lo (@), [[Totv||Lee (@) < M.

The Carleman estimate for the Navier-Stokes equations has been studied for
the controllability and see Ferndandez-Cara, Guerrero, Imanuvilov and Puel [8], [9],
Fursikov and Imanuvilov [10], Imanuvilov [13]. In the case where dw D 0%, we
can derive a Carleman estimate on the basis of the vorticity equation (i.e., the
parabolic equation in rotwv), so that we need not treat Vp which is different from

the Carleman estimate by [8], [9].

For the proof, we show two Carleman estimates.

Lemma 2.1. Let
Pyy =0y —vAy+ A(z,t) - Vy+ Agy =g in Q, (2.6)

where || Al L (@), Aol < M, g € L?(Q). Then there exists a constant A>0

such that for A > X, we can choose constants C; = C1(Q,w, T,\, M) > 0 and
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so = So(A) > 0 such that

/ L\v |2+L| 12| 25 dudt
o\ 2@ =2V T —prY

S
< / ez dadt + CreC (1020 + 1912200 2z 0n)
Q t(T — t) LQ(Q&)) L2(07T7H2( )) (2.7)

for all s > sq and all y € W, 2(Q).

Here and henceforth C, C; denote generic constants which are dependent on
Q,w, T, X\, M, but independent of s.

This is a Carleman estimate which is global in @ and is with a singular weight
function. As for the proof, see Fursikov and Imanuvilov [10], Imanuvilov [12]. In
fact, if y|lpax(o,r) = 0, then the conclusion follows directly from [10], [12]. Let
Ylaax,r) # 0. Henceforth, without loss of generality, we may assume that dw
is sufficiently smooth. If not, then we can take a subdomain ' C Q such that
ow' D 0N and 0w’ is smooth. Therefoe, by the extension theorem, we can find a

function y such that ¥y = y in @), and

19ey]l 22(@) + 19l 20,7 52(0)) < CUIO w200y + 1Yl L2 0, 1382(0)))- (2.8)

Set v = y —y. Then, noting that dw D 0N, we see that Pyv = g — Pyy =
g— (O —vAy+ A-Vy + Apy) and v|paxo,r) = 0 and v|q, = 0. Therefore the

Carleman estimate in [10], [12] yields

/782 Vol? + o) e dade
o \E(T— 2 T e

S S
< 2 2s« 5 AT 4. _ A 5 2en
_C/Qt(T—t)|g| e dxdt-l—C’/Qt(T_t)mty VAT + A - V7§ + Agg|?e***dadt
SC/ S |g|2€25adxdt+cecs/(|8t§|2+|A?7|2+|V§|2+|§|2)dxdt.
Q (T —1t) o

This and (2.8) yield the conclusion (2.7).

Next we show a conventional Carleman estimate for A.
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Lemma 2.2. There ezists a number A > 0 such that for any X > X, we can choose

constants sg = so(A) > 0 and Cy = C3(Q,w, \) > 0 such that

85

3
- - t 3 t 2 2sad dt
/Q(t?’(T—t)3|vv(x’ )| +—t5(T—t)5|U(x’ )| >e x

2
S S« S
SCQ/C:Qm’AU(LE,t)’QGQ d$dt+02€c2 HUH%Q(O,T;HQ(LU)) (29)
for allv € L*(0,T; H*(Q)) and all s > so.
Proof of Lemma 2.2. By the Sobolev extenstion theorem, we can find v(z,t)

such that v = v in @), and

101l 20,712 (02)) < CollvllL2(0,7: 152 () - (2.10)

Setting V = v — 0, we have V(-,t) € H3(Q) for almost all t € (0,T) by dw D 9.
Therefore, by |Vn| # 0 on 2\ wi, we can apply a classical Carleman estimate for

A (e.g., Hormander [11]) in terms of V' =0 in @, so that
/ (T|VV (2, )2 + 73|V (2, 1)[?) exp(21e @) d
Q

= [TV 0P+ IV @) exp(2re o
O\w

<C / |Av(z,t) — AV(z, t)|? exp(27e @) dx:
)\
for 7 > 79: a constant. Hence

/ (T|Vu(z, t) > + 73 |v(x, t)]?) exp(27e* @) dx
Q
SCQ/ ‘A'UCL',t)|2eXp<27'e)‘77(m)>dx

Q

+Cy / (|A’17(x,t)|2 + T]Vi?(x,t)|2 + 7'3]5(513,t)|2) exp(276’\”(w))da}.
Q

We fix s; > 0 sufficiently large, so that t(;—it) > %51 > 19. Then, if s > s9 =
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max{sp, $1}, then 7 = t(TS—_t) > 79. Therefore

s3 5
Y\ a 2+ —— 2 2sp(x,t)
/Q (tS(T—t)3|vv(x’ I+ t5(T—t)5‘U(x’t>’ ) e dx

2
S
<C ——|A t)|%e?*?d
— Z/gvth(T_t)2| 'U(x, )| € T

82 83 85
AT 2 ~ 2 ~ 2 2sp
== (7#@_@2' B O + g V@ + gyl ) )e dx

2Amll L oo ()

for all s > s5. Multiplying the both hand sides with exp (—256t(T7_t)>, noting
that Cs is independent of ¢ and integrating in ¢ € (0,7"), we obtain

3 5
5 2, 87 2\ 2ea

2
S 2 2s«a
SCQ \/Cj) m|AU(.’L‘,t)| e dl‘dt

e2sa 25

2sa
5 e ~ 2 ~ 2 (& ~ 2
+Css /Q <—t2(T_t)2\Av(a:,t)| + —t?’(T—t)?’WU(x’m + —t5(T—t)5|v(x’t)‘ ) dxdt.

Since

1
max e2sa(:c,t)

= (5 < o0,

(@.t)€Qk=1,3,5 | LF(T — t)* ’
the last term at the right hand side is bounded by CC3s° H'ﬁH%Q(O 7.12(q)) 10 terms
of (2.10), the proof of the lemma is complete.

We proceed to

Proof of Theorem 2.1. Set z = rotv. Then, by noting that rotrot w = —Aw +

Vdivw, (2.1) - (2.3) imply

3
Oz —vAz + Z Vg; x 0ju+ (¢-V)z=rot F' in Q, (2.11)
j=1
and
Av = —rot 2 in Q, (2.12)

v(x,t) =0 on 99 x (0, 7). (2.13)
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Applying Lemma 2.1 to (2.11), we have

5° 2 st 2 2
- - - - S dxdt
/;2 eVl + e

S
<C ?|Vq|*e* dadt
e R A R

s s s
—I—C/ 0T —1) rot F|2e2**dxdt + Ce®*(||dyrot ’UH%z(Qw) + ||U||%2(0,T;H3(w)))
N (2.14)

for all large s > 0.

On the other hand, applying Lemma 2.2 to (2.12) and (2.13), we have

3 5
S 2 S 2\ 2sa
—— |V )+ ——— t dxdt
/Q (tg(T_t)3| ’U(IL’, )I t5<T—t)5|v(x’ )| )6 T

2
S 2 2sa Cas||, (12
SCQ/Q tz(T—t)2|Cz| e drdt + C2e™*[[v]|L2 (0,112 () (2.15)

for all large s > 0. Inequalities (2.14) and (2.15) yield

s* 2 s° 2 s> 2 st 2) 2
—=|V —_— — |V SA e dt
L (v gt + Ve el e

gCMz/ t(TS t)|Vv\2ezso‘d:cdt+C/ ﬁho’cﬂzezmdxdt
Q - Q o

+Ce“ (|| 9yrot UH2L2(Qw) + ||UH%2(O,T;H3(¢U))>

for s > so. Here we used also ||Vq| p~(g) < M. Taking s > 0 large, we can absorb
the first term at the right hand side into the left hand side, so that we complete
the proof of Theorem 2.1.

We conclude this section with a Carleman estimate of a first-order equation.

Lemma 2.3. Let o € C*(Q) and

3
Lf(x) :Zaj(m)ﬁjf(x), x €€,

3

where a; € C*(Q), 1 < j < 3, and let us set p(x) = > =1 aj(w)dja0(x), x € €.

Then there exists a number A > 0 such that for any \ > X, we can choose s3 =
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s3(A) > 0 satisfying: there exists a constant C' = C(Q,w, A) > 0 such that
2 2 c 2 2\ 2sap(x)
SN (@) = — | (FI7 + [V fP)e™ 0 da
<C [ (VNP + 1L da
Q
for all s > s3(\) and all f € HZ(Q).

Proof of Lemma 2.3. For simplicity, we set g = €°*° f and Log = e**°L(e™*“0g).

Then

/|Lf]26280‘0d:v:/ |Log|?dz.
Q Q

Direct calculations show that Log(z) = Lg(x) — su(x)g(z). Therefore, by integra-

tions by parts, we obtain

3
HLOQH%Z(Q) = ”LQH%Z(Q) + SQHHQH%?(Q) - QSAZaj(Ojg)ugdx
j=1
3
252/ MQ(I')QQ(I')CZZE—S/ Zajuaj(gz)dx
Q (o
7j=1

3
232/ u2(x)g2(x)dx+s/ Zaj(aj,u)dea:.
Q Qi
Therefore
52/ <,u2(:c) — g) | f|?e** ¥ dx < C’/ |Lf|?e**0dx. (2.16)
Q § Q

Setting Lf = h, we have L(Oxf) = Oxh — zjle(akaj)ajf. Since O f = 0 on 01,

we repeat the above argument to obtain

2 [ (/f(:c) - 9) O fP 0 du
Q S

gc/ \Vh|2628a0da:+c/ |V f2e**dy, 1<k<3,
Q Q

that is,

S

52/ <u2(x) C) IV f?e*5*0dx < C’/(|Vh|2 + |V f|?)e?**odw.
Q Q
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Hence

2 2 ¢ 2 2saq 2 2,y C C 2 2sap
s/Q(u@:)—;)Wﬂe deS/Q(u(w) )|Vf|e dn

s s2

§C’/ |Vh|2e?5%0 dy
Q

for all large s > 0. This and (2.16) completes the proof of the lemma.

§3. Proof of Theorem 1.

Without loss of generality, we may assume that § = % Because we can choose
small £ > 0 such that 0 < § —k < 8+ < T and we can discuss the whole problem
in the time interval (6 —k,0+ k). Regarding § — k and 0+« as 0 and T respectively,

we Ccan argue.

Let us set w; = dyv and we = ?v. Then
v —vAv+ (v-V)v+ Vp=Rf

8tw1 — qul + (’U . V)w1 + (w1 . V)’U + V(atp) = (8,5R)f

Orwy — vAwy + (v - V)wg + 2(wy - V)wy + (wy - V)v

+V(9;p) = (0;R)f

divv =divw; =divwy =0 in @

and

v=w; =wy =0 on 002 x (0,T).

Here and henceforth we set

3

D= Z 18F rot vl 2(q.) + 0]l m2(0.7:m3 (w))- (3.1)
k=1
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Therefore applications of Theorem 2.1 to v, wy, ws yield

/ ( nE Z |87 rot v]? + ( nE Z IV rot v|?
Q

7=0
+L§:yaj P+LZWV 2 e dwdt
<C [ g ot (fw - TR + ot (s - W)un) 2+ ot (s - 9)e) e
o _

) 2
rot Z IR f
j=0

e dxdt + CeC*D2.

¢ /Q t(TS— 0

Here
3
rot ((wy - V)v) = (Opv - V)rot v + Z V(0wv;) x 0jv,
j=1
3
rot ((wy - V)wy) = (Opv - V)Orot v + Z V(0wv;) x 0:0;v,
j=1
3
rot ((wy - V)v) = (0?v - V)rot v + Z V(07v;) x O;v
j=1
and

[rot (w1 - V)o)? + [rot ((wi - V)w1)[* + [rot (w2 - V)v)|*

<CM?*(|Vrotv|? + |V(dsrot v)|* + |VOw|? 4 |VOIv|?)

by the bounds in (1.6). Therefore

&2
/ ( e Z |87rot v|? + T 12 Z |V rot v|?
Q

s 2 3

5—_5 |8Z"U|2+3—_3 \6’,{Vv|2 628ad£€dt
15(T — 1) 3(T — 1) Z
Jj=0 Jj=0

_|_

SC’MQ/ t(TS D (|Vrot v|? + |V(dsrot v)|? + |[VOw|? 4 |[VOZu|?) e dxdt
o _

+G/ t(TS t)(|f|2+|Vf|2)€25“dasdt+(]ec$p2 o)
Q —
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for all large s > 0.
The first term at the right hand side can be absorbed into the left hand side of
(3.2) by taking s > 0 sufficiently large, so that

2
/ mz Z |@]37r0tv|2 QSadlL’dt

7=0]~|<1

S
< 2 2\ 2s« CSD2 3.3
_C/Qt<T_t)(]f] + IV 2)e2 0 dadt + Ce (3.3)

for all large s > 0.
Noting that e25®(#.0) = 0 for z € Q, we have

/ > atmrotv(x —)

lv|<1

T/2
/8t / Z 0,07 rot v|?e?*“dt | da

[v|<1

2
eZsa(m,T/2)dl,

T/2
// 2 Z (0:97r0t v - D297 Tot v) + 25(0sx) Z 10:97rot v|?  e**“dxdt

lv[<1 lv|<1

SC’/ Z |0:97rot v|? 4 |00 ot v|? 3 e*5“dxdt
Q

lv|<1

+C/ ﬁ > [0y07rot v|*e*** dadt.
o -

[v|<1

Here we used

C —

< 2T 1) (z,t) € Q.

2t =T

|Oru(,t)| = PT 1?2

(BAW(«’E) _ €2>\||77||L00(Q))

Hence (3.3) implies

/

2
e2so¢(w,T/2)dx

T
(9,5871“0‘0 v (:c, 5)

+ |V f|?)e**“dxdt + CeC*D? (3.4)
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for all large s > 0.
On the other hand, operating rot to (1.1), similarly to (2.11), we have
rot (R(z,T/2)f(x)) = Orotv(z, T/2) — vArotv(x,T/2)
3
—l—Z Vuj(z,T/2) x 0jv(x,T/2) + (v V)rotv(z,T/2), €.

j=1

We set ag(x) = a(x,T/2). Therefore

|Vrot (R(z,T/2)f)|e®** < [0,V (rotwv)(z,T/2)|e**® + Cesao{]V(Arot v(z,T/2))|

3
+Z |V (Vvj(z,T/2) x d;v(x,T/2))| 4+ |V((v- V)rot v(m,T/2))|}, x € .

j=1

Hence
/ |Vrot (R(z,T/2) f(x))[*e***dx
Q
S/Q |0;V (rot v)(z, T/2)|*e**°dz + Ce* (||1"0t (-, T/2)|I s ) + ||U('7T/2)||%{2(Q)> -

For [, [rot (R(z,T/2)f(x))|*e***°dx, we can similarly argue and apply (3.4) to

obtain
/ (IVrot (R(z,T/2)f)? + [rot (R(z, T/2) f)|*)e****dx
Q
<C / — 2 _(If + [Vf]})eXdwdt + CeCD? + CeC3E? (3.5)
o t(T —1)
for all large s > 0. Here and henceforth we set
& = |[rot v(-, T/2)| s + lo( T/2)[ 520
On the other hand, setting R(x,T/2) = a(z) = (a1(z), az(z),az(x))T, we have
vot (R(x, T/2) f(x)) = Vf(x) x a(z) + f(z)rot a(z)

:((agazf — CLQ@gf), (a183f — a381f), (ag(?lf — a182f))T + f(.’.E)I‘Ot CL(%)

E(L1f7 L2f, L3f)T + f(.’]?)I‘Ot CL(.CC)
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Note that
4\ .
Ojap = ﬁe)‘nﬁjn, j=1,2,3.
Denote
0 81(1/0 AN
pi(z) =1 az |-| Qo | = T2 — e (az309m — az03n),
—ag dza
—as 81040 A\
MQ(LL’) = 0 . (9204() = ﬁ@ ”(alagn — agam),
a1 (9304()
as 01 4\
pa(x) = | —ar | - | Qg | = =72 e (ag01m — a109m).
0 83060
That is,

(11(2), 12 (2), s ()" = (V' x a(a))

Applying Lemma 2.3 to the first-order differential operators Lq, Lo, L3, we have
2 2 2 2 3C 2 2\ 250
< pi() + pa(2) + pa(z) — — | ([f(@)]° + [V f(2)[7)e™*dz
SC/(IV(YO’UR(QJ,T/2)f(93))!2+|1f0tR(fc,T/2)J‘?($)|2)62s°‘0dm
Q
c/ (V(f(@)rot a(2))? + |f(2)rot a(x)[2)e*dz.
Q
Therefore (3.5) and f|, = 0 yield
16)\ S
3 / ( eI s al = 22 ) (@) + VAR
Nw

F@)] + |V f(2)[?)e*** dxdt

+C (If(x )\24—\Vf(x)|2)625a°dx+Cecs(D2+52).
Q\w

17

By (1.7), we can take s > 0 sufficiently large, so that we can absorb the second

term at the right hand side into the left hand side. Hence
# [ @R+ 9@

<C's )|2+\Vf( )| Je 2So‘davdt—1—0608(2?24—82).

QNw

(3.6)
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We set ((t) = t(T —t). By (2.4), we have d;a(x,T/2) =0 for x € Q and
20082 = L) (1)

Da(x,t) = B0 (M@ — 2o,
G(e(e)e" () — £'(t)%) , o
da(z,t) = 6 0 () (M) — 2Alnlizee @)
for (z,t) € @, so that
2 €o
ata(x7t)§_£3(t)7 ('Tat)EQ
with some constant ¢y > 0, and
3 >0, 0<t< I,
6)t Oé(ZC, t){ T
<0, s <t<T, z€Q

Therefore by the mean value theorem, we can choose a constant k = k(z,t) €

(0,7/2) for (z,t) € Q such that « is between ¢ and £, and
1 T\* 1 T\°
alz,t) = a(x,T/2) + 5(9,5204(1',0 (t — 5) + 60?04(1’, k(z,t)) <t - 5)

2
SCY(IIJ,T/Z) — Zﬁ)’(;—o—t)?’ (t — %) s (LU,t) < Q

Consequently, by ¢g > 0 and ﬁ < —%, we obtain

/OT t(Tl_ 5 25t < Ce2s0(®) /OT t(Tl_ e (-ﬁ <t - %>2> dt
oo [ (s (- 3) ) e (A (-3) )
<Ce?sao /OT exp (— (%)3 co(s —1) ((t - %)2> dt
<(Ce?s0 /_Z exp <— (%)3 co(s — 1)52) d¢ =C (T;) \/g\/%e?mo(x).

Hence

g 1 2 2\ 25
o] g e+ 9@z
1

= [ _Qs@P +19s@P) ( / me%adt) s

Cs 2 2\ 250 x
= [ @R 19 @1

<
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Substituting (3.7) into (3.6), we obtain

(- [ @+ [VI@P e < 0 (D +2%),

Taking s > 0 sufficiently large, we see the conclusion of Theorem 1.
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