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Abstract: Thea-maximization technique proposed by Intriligator and Wecht allows us

to determine the exadt-charges and scaling dimensions of the chiral operators of four-
dimensional superconformal field theories. The problem of existence and uniqueness
of the solution, however, has not been addressed in general setting. In this paper, it
is shown that the-function has always a unique critical point which is also a global
maximum for a large class of quiver gauge theories specified by toric diagrams. Our
proof is based on the observation that thiunction is given by the volume of a three
dimensional polytope called “zonotope”, and the uniqueness essentially follows from
Brunn-Minkowski inequality for the volume of convex bodies. We also show a universal
upper bound for the exa@t-charges, and the monotonicity effunction in the sense
thata-function decreases whenever the toric diagram shrinks. The relationship between
a-maximization and volume-minimization is also discussed.

1. Introduction

One of the most important problems in quantum field theories is to understand the
renormalization group (RG) flows and the universality classes.

In two dimensions, we have a fairly satisfactory global picture of the moduli space
Mg grr Of quantum field theories. Zamolodchikov [35] introduced a real valued func-
tion ¢ : Maqorr — R and showed that the RG flow is a gradient flowcafith respect
to the metric defined by two-point correlation functions. In particulds monotoni-
cally decreasing along the RG flow. The critical pointaforresponds to a fixed point
of the RG flow i.e. a conformal field theory, and the critical value is the central charge
of the Virasoro algebra of the corresponding conformal field theory.

Considerable effort has been expended to generalize these ideas to to four dimen-
sions. As the Zamolodchikov'se-function is related the trace anomaly of the stress

* Partially Supported by Grants-in-Aid for Scientific Research and the Japan Society for Promotion of
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2 Akishi Kato

energy tensor, natural candidates for four dimensional theories are the coefficients
andc of trace anomaly [12]

9ij <TU> = —CLE4 — CI4

where
1 . g
Ei= 16 (R Rjjp — 4RV R;; + R?),
1 15kl % 1 2
I4Z_W(RJ Rijkl—QR]Rij—FgR ),

where R;;,; denotes the Riemann curvature of the background geometry. It is now
believed [9] thatz-function will play a similar role to Zamolodchikov's function: a
decreases along any RG flow.

It is usually difficult to computez-functions. The situation is much better if the
field theories has supersymmetry. Any four dimensional superconformal fields theory
(SCFT) has global symmetry supergra$ipy (2,2|1); SO(4,2) x U(1)p is its bosonic
subgroup. For the representation of the superconformal algebra on the chiral super-
multiplet [11,13], there is a simple relation between feharge and the conformal

dimensionA of a operatoi©
3

A(0) = §R(0).
The scaling dimension of chiral operators are protected from quantum corrections.
Anselmi et al. [3,4] have shown that tlié(1)z 't Hooft anomalies completely de-
termine thex andc central charges of the superconformal field theory:

3 1
B 32( 32
Here R denotes the generator of th&1)  symmetry and the traces are taken over all
the fields in the field theory. Thu$(1) r symmetry is extremely useful if correctly iden-
tified; it is in general, however, a nontrivial linear combination of all non-anomalous
globalU (1) symmetries.

The crucial observation by Intriligator and Wecht [22] is that the correct combination
should be free of Adler-Bell-Jackiw type anomalies i.e. the NSVZ exact beta functions
[31] vanish for all gauge groups. Denoting By, . .., F,, the global charges of non-
anomaloud/ (1) symmetries, the conditions are

a 3trR3—trR), c (9trR3—5trR).

{9trR2Fi:trFi (i=1,...,n) @

(tr RE;Fy)' -y : negative definite

where the second line is required by the unitarity of the conformal field theory. These
conditions are succinctly stated as “ex8ktl ) r charges maximize”:

Theorem 1.1 [22].Among all possible combination of abelian currents

n
Ry=Ry+» ¢'F,
=1
the correct/ (1) g currentis given by the which attains a local maximum of the “trial”
a-function
3

a(g) = §(3trR§’, —trRy).
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It is thus quite natural and important to investigate the existence and uniqueness of
the solution to thei-maximization. By continuity of the triak-function, a maximizer
always exists on every closed set. But this may not be a critical point; the anomaly-free
condition (1.1) requires that the point should be critical. On the other hand, if there
are several local maxima, which one gives the “corréttharges? If there is a critical
point which is not local maximum i.e. saddle point, what happens? How does the change
of toric diagrams influence the maxima of triafunctions? To the best of the authors
knowledge, however, no general answer to these questions is known.

The purpose of this paper is to answer these questions. We prove thafuthetion
has always a unique critical point which is also a global maximum for a large class of
quiver gauge theories specified by toric diagrams, i.e. two dimensional convex poly-
gons. The monotonicity of-function is also established in the sense thdtinction
decreases whenever the toric diagram shrinks. We derive these results purely mathe-
matically, although the setting of the problem is substantially based on the conjectural
AdS/CFT correspondence or gauge/gravity duality. Hopefully, our result will be useful
toward the proof of these conjectures.

The organization of the paper is as follows. In section 2, we briefly summarize the
rule how a toric diagram determines the tdafunction of a quiver gauge theory. Sec-
tion 3 is devoted to set up a mathematical framework-afiaximization and state our
main theorems. In section 4, we observe thatdkenction is given by the volume
of a three dimensional polytope called “zonotope”; the uniqueness of the critical point
then follows from Brunn-Minkowski inequality as we discuss in section 5. In Section
6 we show the existence of the critical point, i.e. the solution ta:theaximization. In
Section 7, we derive a universal upper boundisharges using the interpretation as
a volume. The monotonicity af-function is established in Section 8. In section 9, the
relationship between-maximization and volume minimization proposed by Martelli,
Sparks and Yau [28,29] is discussed. In particular, the Reeb vector is shown to be point-
ing to the zonotope center and the results of Butti and Zaffaroni [8] is rederived. In the
final section the results are summarized and a short outlook is given.

2. Toric diagrams and a-functions
There is a general formula far-functions based only on toric diagrams, which we

summarize below. For more details we refer the reader to [20,5, 8,14, 6] and references
therein.

Py
®

N
A\

v

Fig. 2.1. Toric diagramP and the con€'(P)

A toric diagram P c R? is a two dimensional convex integral polygon embedded
into height one; the coordinates of each vertex is of the farm, 1) € Z3 (Figure 2.1).
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Let 7 denote the set of toric diagrams. Foramon P € 7, denote its verticésby
v1,v9, ..., 0, iN counter-clockwise order, so that

(vs,v5,v) >0, (I1<i<j<k<n).

Here and throughout this papéw, v, w) denotes the determinant of thex 3 matrix
whose columns are, v, w € R3. We adopt the convention that the indices are defined
modulon, v; = v;y; thus{v;_1,v;,v;+1) > 0for all i. The cone’'( P) over the base
P is given by

C(P) = Rz(ﬂ)l + -+ Rzovn.

With each toric diagran® € 7 there is associated a quiver gauge theory. A quiver is
a directed graph encoding a gauge theory which gives rise to a SCFT. For our purpose,
however, a specific form of the quiver is not important. Suppose the number of the
vertices and the edges of the quiver &igugeand Nmarer respectively. Each vertex is
in one-to-one correspondence witl/&\V ) factor of the total gauge group( V) Neause,
each edge represents a chiral bi-fundamental field. The number of gauge diQugps
and the total number of chiral bi-fundamental fieldgqer can be extracted directly
from the toric diagranP:

Ngauge: Z <Uiavi+1;33> = QAYGdP),
1<i<n

Nmater= Y [ {vi —vi1,v; —vj_1,€3)].
1<i<j<n

2.1)

Here| | denotes the usual absolute value apds the unit vector0,0,1) € Z3.
The R-charges of chiral bi-fundamental fields are given as follows.A be the set
of all the unordered pairs of edges Bf An element{{v;_1,v;},{v;_1,v,}} of B
will be simply denoted by, 7), with the convention that the oriented edgg_1, v;)
can be rotated tov;_1, v;) in the counter-clockwise direction with an angle180°.
For each(i, j) € B, we introduce a chiral fielé; ; of R-charge

R(®(ij)) =¢" + ¢+ 4 ¢/
with the multiplicity
K5y = <’Uz‘ —Vi-1,V; — 'Uj—1763> ) (Z}j) €B

which is non-negative by our convention. The varialiéare constrained as

¢+ @7+t =2 (2.2)
Thea-function of the quiver gauge theory is then given by
9N? 3
l9) = 753 {N gauget D, 11(ig) (R(2(i) = 1) |- (2.3)

(i,5)eB
Figure 2.2 is an example of a toric diagram and the chiral field content of the corre-
sponding quiver gauge theory.

1 As usual, we assume that all the vertices are extremal poirfs 8fpointv € P is called arextremal
point of a polytopeP if v cannot be expressed aa + b wherea, b are distinct points i anda, 3 are
positive numbers such that+ 8 = 1.
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(4, 4) |multiplicity | R-chargg
) (1,2) 17 o
| P U I B | (173) 7 ¢1+¢2
V3 ¢ y V] (2,3) 16 ¢?
a P L (2,4) 17 @2+ ¢
~ (3,4) 23 o
N T w5 @] 17 [§ 44
Ae 45| 23 51
V4 (5,1) 7 @0
(5,2) 16 ¢° + ¢!

Fig. 2.2. An example of toric diagram and the chiral fields of the associated quiver gauge theory

Benvenuti, Zayas, Tachikawa [7] and Lee, Rey [25] have shown that under the con-
straint (2.2), the:-function (2.3) can be neatly rewritten as

n

9 N2

_ . i 49 1k
(@) =355 D cund'do 2.4)
i,7,k=1
where
cije = | det(v;, vj, )] (2.5)

is proportional to the area of the triangle with vertiagsv;, v, sitting insideP (see
Figure 2.3). The formulas (2.4) and (2.5) make the starting point our investigation.

Uy

Vg
v; ‘

Fig. 2.3. The coefficient; ;;, of thea-function.

3. Mathematical setup and main results

In this section, we discuss the mathematical formulation-ofaximization and state
our main theorems.

Let P € 7 be a toric diagram and;,vs, ..., v, the vertices ofP in counter-
clockwise order, as described in Section 2. Define a homogeneous cubic polynomial

FP Ind): (¢1a¢27"'a¢n) by
Fp()= Y |det(vi,v,v5)| ¢'¢7 0. (3.1)

1<i<j<k<n
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Choose areal constant> 0 and fix it. Letp : RY, — R denote the linear function

p(@) ="+ 0"
and set

n=ot) = {o=0 o e Ry s Yo =
=1

which is ann—1 dimensional simplex.

Now F» is defined to be the restriction &f- to I',. Obviously,Fp is a model fota-
function (2.4), and, represents a physically allowed regionf®fcharges. The choice
of r is not important fol-maximization; the homogeneityp (A¢) = A3 Fp(¢) allows
us to choose any positive real number. Usually we set 2 to match the convention

2.2).
( F)or each toric diagran®? € 7, define itsmodulusby

3\* .
a(p)i= () mas Folo)
The modulusii(P) is independent of and is normalized so that the smallest toric
diagramP = {v; = (0,0,1),v2 = (1,0,1),v3 = (0,1,1)} has unit modulus. This
M is the quantity of our primary interest.

Let G be the subgroup of7L(3,Z) which leave invariant the set of lattice points
on hyperplangx, *,1). G induces integral affine transformations on this hyperplane:
G ~ GL(2,Z) x Z2. G acts naturally on the set of toric diagrams for g € G and
a polygonP with verticesv;, g(P) is the polygon with verticeg(v;). The G-action
defines an equivalence relatienon7:

P~qQ &L Jdg € G such thay(P) = Q.

We denote by P] the equivalence class &f. The functionst’» areG-invariant, Fp(¢)

= Fypy(9), becausei» depends or only through the areas of triangles inscribed

in P. The modulu is thus well-defined orff / ~. In the physical context, twé:-
equivalent toric diagramB and( are associated with the identical quiver gauge theory
and the same dual Sasaki-Einstein geometry, so there is no reason to distinguish the two.

In connection with RG flow, it is interesting to compa@& P) and9t(P’) for toric
diagramsP and P’ which are not necessaril§#-equivalent. The inclusion relation
on7 naturally induces a partial ordef on 7/ ~, namely,

[Pl < [P] <L 3Q,Q' e TsuchthaP ~Q, P' ~ @', Q € Q. (3.2)

The basic question we shall be concerned with is the existence and unigueness of
the critical point ofF'p; we want to establish this as a mathematical fact independent of
duality conjectures. This is not so simple as it appears. Consider the same problem for
a function of a slightly more general type:

F(¢) = Z Cijk ¢i¢j¢k = % Z Cijk ¢i¢j¢k

1<i<j<k<n i,5,k=1

where the coefficients;;;, satisfy
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— c¢j;, are non-negative integers,
— ¢, Is invariant under any permutation of indiceg, k, and
— ¢ijk = 0 unlessi, j, k are distinct.

Clearly, F» defined in (3.1) satisfies these three conditions; however, they do not guar-
antee the existence and uniqueness of the critical point. For example,

F(¢) = 20'9%0" + 801976 + 301 9°¢" + 6°¢%0*
has no critical points imelint(I}), the relative interict of I'y; it is maximized ap =
(3,%5,0, %) € 0, but this is not a critical point. On the other hand,

F(¢) =40'¢°0" + 20" 076" + 96 ¢°0" + 79°07¢"
+4¢1¢3¢5 +¢2¢3¢5 +¢1¢4¢5+ 10¢2¢4¢5 +4¢3¢4¢5
has two critical points imelint(/5); a local maximum and a saddle point. Hence, for
the existence and uniqueness, it seems important that the coefficigntse indeed

given by the areas of triangles inscribed in the toric diagram.
Our main results are as followis

Theorem 3.1 (Theorem 6.1)The functionF'r : I, — R has a unique critical point
¢« inrelint(7,) and ¢, is also the unique global maximum Bf.

Theorem 3.2 (Theorem 7.1)The critical point¢, satisfies the universal bound
0< g gg (i=1,...,n).

Here, the equality), = £ holds for some if and only ifn = 3.

Theorem 3.3 (Theorem 8.1)The maximum value dfp is monotone in the following
sense: SupposP and P’ are toric diagrams satisfyingP] =< [P’]. ThenOM(P) <
M(P’). The equality holds if and only i ~ P’.

Some comments are in order here. The unitarity of the representation of super-
conformal algebra&5U (2, 2|1) requires that all gauge invariant chiral operators must
haveU (1) chargeR > % [11,13]. Theorem 3.2, however, yields opposite inequalities
¢. < 2 in the conventional normalization= 2 (see (2.2)). This is not a contradiction
because are R charges of gauge non-invariant bi-fundamental fields.

Theorem 3.3 can be regarded as a combinatorial analoguethiebrem”: thea-
function always decreases whenever the toric diagram shrinks.

There are two key ingredients in the proof of the main results. Firfiinction is
identified with the volume of a three dimensional polytope called “zonotope” (Proposi-
tion 4.1); Brunn-Minkowski inequality asserts that (cubic root of) volume function is a
concave function on the space of polytopes. This concavity guarantees the uniqueness
of the critical point (Proposition 5.2). Second key point is to show the monotonicity
of modulus®t under simple change of the toric diagrams, e.g. deleting a vertex. This
property is also used to prove the existence of the critical point.

Here is an application of our results. The uniqueness of the maximizer implies that
there is no spontaneous symmetry break dowsimaximization:

2 Forasetd C R?, relint(A) denotes the relative interior of, i.e. the interior as a topological subspace
of its affine hull. For exampleelint(Iy) = {¢ = (¢1,...,¢™) €R™ : 30 | ¢' =1, ¢' > 0}.

3 The integrality of vectors 1, . . ., v, is not necessary to show our main results although being important
for constructing quiver gauge theories or Calabi-Yau cones. Most claims in this paper are true for any convex
polygon P on a hyperplane not passing through the origin.
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Corollary 3.1. If a nontrivial elementy of G fixes a toric diagramP, then the critical
point ¢, of F'p is also fixed by;.

4. Polytopes and Zonotopes

Let R¢ denote al-dimensional real vector space. A sub&et R? is called convex if
(1—-X)x+\y € Cwhenever,y € C and0 < A\ < 1. For any sef§ C R?, its convex
hull conv(S) is, by definition, the smallest convex set containffg

conv(S):={dx+(1-NyecR?: z,yecS 0<A<1}

A polytopeis the convex hultonv(S) of a finite setS in R<.

c
Fig. 4.1. Minkowski sums

TheMinkowski sumor vector sumof two subsetsi andB in R is (see Figure 4.1)
A+B:={x+y : x€ A, yec B},
whereas thélilatation by the factor > 0 is
rA={rx : x € A}.

If AandB are polytopes, thed + B, r A are also polytopes. L&2¢ denote the family
of all convex polytopes iiR?. Two basic operations, Minkowski sum and dilatation,
make the familyP¢ a convex set: for anyl, B € P? and non-negative numbers 3
such thatx + 3 = 1 one hasvA + B € P

LetS,..., S, ben line segments, each of non-zero lengthRih The polytopez
defined as the Minkowski sum

Z=5++85,

is called azonotopeand Sy, ..., S, are called itsgenerators(Figure 4.2). For a fi-
nite collection of vectors\ = {zi,...,z,} C R% we putS; = conv(0,z;) (i =
1,...,n), and writeZ[X] the corresponding zonotope. Equivalently,

ZX]={xeR!: x=Nz1+ -+ \xp, 0< N, <1, 0i=1,...,n}

The zonotopeZ[X] is the image of am-dimensional cubg0, 1)” under a linear pro-
jection7 : R® — R< defined by thel x n matrix X. Z[X] may also be defined as the
convex hull of2™ points

{wi1+wi2+~-~+mikeRd 1< << < <, kzO,l,...,n}.
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(0) (d)

Fig. 4.2. A zonotope § = 3, n = 5) : generators (a), zonotope (b), cube (c) and zone (d).

Z[X] is centrally symmetric, and its center is located &ty + - - - + @,,).

The zonotopeZ[X] can be decomposed int@) d-dimensional parallelepipeds
calledcubes each of which is a translation of

Qiy,...ig = conv(0,z;, ) + conv(0,x;,) + - - - + conv(0, x;, ).

The crucial fact is that, although such decomposition is not uniqué;tailes{x;,

..., x;,} C X appear exactly once in any decomposition. Since the volume of each
cubeq);, ... i, is simply given bwol(Q;, ... ;,) = | det(;,, ..., x;,)], this leads to the
following volume formula for zonotopes, which will play a crucial role in this paper.

Theorem 4.1 (Shephard [33], attributed to McMullen).

vol(Z[X]) = S [det(@i,, ..., xi,)l- (4.1)

1<iy < <ia<n

In the rest of this paper, we will specialize #io= 3 case, i.e. three dimensional
zonotopes. If no three of thevectorsz, .. ., x,, are coplanar, all the facets (i.e. two
dimensional faces) of£[X] are parallelograms. For a given generatqr the faces
which has a edge parallel to, form azonegoing around a zonotope. Each zone con-
sists ofn—1 pairs of opposite faces, there are aItoget@r pairs of opposite faces,
n(n—1) pairs of opposite edges, and therefQ@Jrl pairs of opposite vertices.

The next Proposition is our key observation, which immediately follows by compar-
ing (3.1) and (4.1).

Fjroposition 4.1.Let P € T be atoric diagram with vertices,, ..., v,. The function
Fp(¢) defined in(3.1)is equal to the volume of the zonotope

Zp(¢) := ¢' conv(0,v,) + ¢* conv(0, v3) + - - - + ¢" conv(0, v,,). (4.2)
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The trial a-function(2.4)is therefore given by

a(9) = SN Fp(9) = SN vol(Zp(0))

5. Uniqueness of the critical point

In this section, the uniqueness of the critical pointfef is proved; the existence is
shown in the next section.
A real-valued functiory on a convex sef’ is concavef

F(L=XNz+Xy) = (1 =N f(x) + Af(y)

forall z,y € C'and0 < X < 1. If the above inequality can be replaced by

F(L=XNz+Ay) > (1 =N f(z) + Af(y),

thenf is strictly concaveWe will use the following well known properties of concave
functions:

Theorem 5.1.Any local maximizer of a concave functigrlefined on a convex sétof
R™ is also a global maximizer of. If in addition f is differentiable, then any stationary
point is a global maximizer of. Any local maximizer of a strictly concave functifn
defined on a convex s€tof R™ is the unique strict global maximizer ¢gfon C.

Recall that the familyP? of polytopes inR? is a convex set under the operations
Minkowski sum and dilatation. Thus it makes sense to talk about the concavity of a
function defined orP?, such as volume function. The following is a fundamental result
in the theory of convex bodies (for extensive survey, see [32,15]).

Theorem 5.2 (Brunn-Minkowski inequality). The d-th root of volume is a concave
function on the family of convex bodiesRfi. More precisely, for convex bodiels B
R4 and for0 < A\ < 1,

(vola((1 = M)A+ AB)Y4 > (1 — A) (vola(A) Y + X (volg(B))/?.

Equality for somed < A < 1 holds if and only ifA and B either lie in parallel
hyperplanes or are homothetit.

In Proposition 4.1Fp(¢) is identified with the volume of a three dimensional zono-
tope. Actually, we are interested in the “family” of zonotopgs(¢) parametrized by
¢ = (¢t,...,¢") € I,. In order to apply Brunn-Minkowski inequality to this family,
let us investigate under what conditions two zonotopes are homothetic to each other.

Lemma5.1.For ¢,¢" € RY, two zonotope£r(¢), Zp(¢') of nonzero volume are
homothetic if and only i = k¢’ for somex > 0. In particular, two zonotope&p(¢),
Zp(¢') with ¢, ¢’ € I, are homothetic if and only b = ¢'.

4 Two setsA, B C R™ are callechomothetidf A = kB + ¢ for somex > 0 andt € R™, or one of them
is a single point.



Zonotopes and four-dimensional superconformal field theories 11

Proof. SupposeZp(¢) andZp(¢’) are homothetic. By assumption, they have nonzero
volume and cannot be in a hyperplane. Thus there existsO andt € R? such that
Zp(a) = kZp(b) + t. In factt = 0 because both zonotopes have= (0,0, 0) as the
bottom vertex. Each of them have a unique edge starting &oand parallel to; for

all i. Homothethy implies)’ conv (0, v;) = k¢’ conv(0,v;), SO¢’ = k¢ holds for

all 5. In particular, if¢, ¢’ € I,, thenr = p(¢) = p(k¢d') = kp(¢') = kr, SOk = 1.

O

Here we come to the key point of our analysis.

Proposition 5.1.The function

A~ 1 3 < n
(Ep(#)"” = (vol Zp(¢))/* : RL, — R (5.1)
is concave. Moreover, its restrictithp)l/ 3. I, — Ris strictly concave.

Proof. Let us denote the function (5.1) bfp. It suffices to show that for any =
(at,...,a"), b= (b,...,b") € RY,,

Fr((1=Na+Xb) = (1= N fp(a) +Afp(B)  (0<A<1)

and the equality holds if and only if = s b for somex > 0. One can easily check that

n

Z((l —A)a’ + Ab') conv(0,v;) = (1 — \) Z a’ conv(0,v;) + A Z b conv(0, v;)
i=1 i=1 i=1

holds as an equality i®<. Using the notation (4.2), this is written as
ZP((l - /\)a + /\b) = (1 - /\)Zp(a) + )\Zp(b)
Then the claim immediately follows from Theorem 5.2 and Lemma 501.

Since the function: — z'/3 : R>o — R is a strictly increasing functionfp
is maximal (resp. critical) ap if and only if (Fp)l/3 is maximal (resp. critical) ap.
Combining Theorem 5.1 and Proposition 5.1, we have established the uniqueness of the
solution toa-maximization:

Proposition 5.2. Suppose. is a critical point or a local maximum of’p : I, — R.
Theng, is the unique critical point and is also the global maximum olgr

A remark is in order hereF’s is not necessarily concave although the cubic root
(Fp)'/3 is. The conifoldv; = (1,1,1), v = (1,0,1),v3 = (1,0,0),v4 = (1,1,0),

Fp(9) = ¢°¢°0" + 01 00" + ¢10°0" + ¢'¢%¢°, (0" +¢* + ¢ + 9" =2)

is already a counterexample; the HessianFpfat ¢ = (1,1,2,2) is not negative
definite.
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6. Existence of the critical point

This section is devoted to the proof of Theorem 3.1 (Theorem 6.1). The key idea is as
follows. The continuous functiof’s always has a global maximum on the closed set
I,,. If the maximum point is imelint (7, ), then from Proposition 5.2 it is also a critical
point and there is no other local maxima. But if the maximum point is on the boundary
oI, itis not necessarily a critical point. Therefore to establish Theorem 3.1, it suffices
to show that a point on the bounda®y’, can never be a local maximum 6p.

For this purpose, we investigate the behavior of the maximum values under the
change of toric diagrams. More precisely we will prove the following

Proposition 6.1.Let P be a toric diagram with verticesq, ..., v, in counterclock-
wise order. Let) be a toric diagram obtained by deleting, from P, i.e. the convex
hull of n—1 verticesvy, ..., v,_1 as in Figure 6.1. Then, for any € relint(I5,—1),
there exits) € relint(1,) such thatFo(¢) < Fp(¢).

P
LN

v

vo Up—1

I

Fig. 6.1. Shrink a toric diagram by deleting a vertex

n—2

Note that under the natural inclusion
I C Iy, p=(¢",.... 0" ") = (¢',...,0"1,0),

the point¢ € relint(I,_1) corresponds to a point on the boundary falggt = 0} of
I',, andFy is none other than the restriction B to this facet. Clearly, any boundary
point of I';, is obtained in this manner. Thus Proposition 6.1 immediately implies

Corollary 6.1. No boundary point of;, can be a local maximum dfp : I,, — R.

Corollary 6.2. Suppose a toric diagrarg is obtained from another toric diagram®
by removing one vertex, th&m(Q) < M(P).

By the argument given in the first paragraph of this section, we deduce from Corol-
lary 6.1 the following

Theorem 6.1.SupposeP is a toric diagram with vertices, ..., v,. ThenFp : I, —
R has a unique critical poing.. in relint (7, ) andg. is also the unique global maximum
of Fp.

Let us turn to the proof of Proposition 6.1. Our strategy is to show that for any
¢ € relint(I5,—1) C O, there is at least one “inward” direction in whiéfp is strictly
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increasing. Consider two straight paths(t), v ;;(t) in I,, emanating fromp, defined
by

ot —t ifi=1, onl—t ifi=n-—1,
Yi(t) =t if i =n, and YL () =<t if i =n,
ol otherwise o otherwise

for 0 < ¢ < min(¢!,¢"1). It suffices to show that eithef;|,_ Fp(v;(t)) > 0 or

% |t:0FP(¢11(t)) > 0.

Note that for three vectors, b, c € R3, the relation(a, b, c) = (a x b) - ¢ holds,
wherea x b denotes the cross product anid the standard inner product. Lgte R?
be a vector defined by

E = E QSZQS]’UZ' X v;.
1<i<j<n—1
It is easy to see

%LZOFP(%(U) - Z (Cijn — Cij 1)¢l¢J =¢- (vn - 'vl)7

1<i<j<n-—1
d . .
L Bu®)= Y (egn - cyn)6'd =& w0 - va).
=0 1<i<j<n—1

Thus it suffices to show eithér- (v,, —vy) > 00ré& - (v, —v,—1) > 0 holds.
Let us choose three vectows, v,,_1, v,, as a basis dR? and express othar;’s as

v; = 2,01 + Yivn—1 + (1 — 25 — y;)v,.

In the affine coordinatese;, y;), the toric diagranP and( looks like polygons sitting
in the first quadrant oR?, as depicted in Figure 6.2. Note thaty; > z;y; for all
1<i<ji<n-—1.

(Tn—1,9n—1) = (0,1)

(xn,yn) = (0,0)  (z1,91) = (1,0)

Fig. 6.2. Toric diagrams in théz, y)-coordinates.

A straightforward calculation shows
£ (vn—v1) =det(vy, v, 1,00) Y 6 (y; — i),
1<i<j<n—1

£ (vn —vpo1) =det(v,vp1,0,) Y ¢ (x; — ).

1<i<j<n—1
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Sincedet(v1, v,—1,v,) > 0, the claim follows from the next lemma.

Lemma6.1.Leto!, ¢2, ..., ¢" ! be positive numbers and
(x1,91), (T2,92)s -+ s (Tn—2,Yn—2), (Tn-1,Yn—1)
ben — 1 points inR%,, satisfying
riy; — w5y >0 (1<i<j<n-—1). (6.1)

Then, at least one of the following inequalities holds:

> o (wi—x) >0, or Y d Yy —v) >0 (6.2

1<i<j<n—1 1<i<j<n—1
Proof. Definecy, ca,...,c,_1 by
c=d(T - ¥ v)
1<j<i i<j<n—1
Clearlye; < 0ande,_; > 0, and the sequencg, %, cel (‘;2,:11 is strictly increasing
since 5t — S = ¢’ + ¢'' > 0. Hence there exists (2 < k < n — 1) such
thateq, ca, ..., ck—1 < 0 andceg, cgy1,...,cn—1 > 0. The expressions is (6.2) can be
rewritten as
n—1 k—1 n—1
Z @'Y (x; — ) = *Zcﬂi :Z|Ci|$i*2|0i|xiv
1<i<j<n—1 i=1 i=1 i=k 6.3)
n—1 k—1 n—1
S G Y-y =) cavi=—Y lalui+ Y leilyi.
1<i<j<n—1 i=1 i=1 i=k

Suppose that, contrary to our claim, neither of (6.2) is true. Then two expressions in
(6.3) are both non-positive, which means

k—1 n—1 n—1 k—1
0< Z leilx; < Z || and 0< Z leilys < Z iy (6.4)
i=1 i=k i=k i=1

On the other hand, from (6.1),

k—1 n—1
> lel(@ye—1 —ap-ay) >0, and Y e (@yr — 2rys) <0. (6.5)
=1 i=k

It follows from (6.4) and (6.5) that

—1 k—1
Y Z?:k: |cilyi < D i leilyi < Yp—1
o = Y elws T S el T @k

thereforexy _1yr — zryr—1 < 0. This contradicts (6.1). O

3
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7. Bounds on critical points

In this section, we establish Theorem 3.2 (Theorem 7.1). As we will see, an upper
bound on the coordinates of the critical point is easily obtained using the interpretation
as volumes.

Let P be a toric diagram with vertices,, ..., v,. As mentioned before, the zono-
tope Zp(¢) can be cut into the union df;) cubes and“p(¢) = vol(Zp(¢)) equals
the sum of the volumes of all cubes. We arbitrarily choose such a decomposition. For

anys(s=1,...,n),let Zl[f] (¢) denote the union of those cubes which has at least one

face belonging ta-th zone. Itis obvious thatol(ZI[;f] (¢)) < vol(Zp(¢)) forall s. The
main result of this section is the following

Theorem 7.1.1f ¢, € I}, = p~1(r) is the critical point ofF'p, then
r vol(25(9))
3 vol(Zp(¢))’

In particular, the critical point satisfies the inequalities

o5 = (s=1,...,n).

0< ¢l < g (i=1,...,n).
where the equality! = 3 holds for some if and only ifn = 3 i.e. when the toric
diagramP is a triangle.
Theorem 7.1 follows immediately from Lemmas 7.1 and 7.2 below.

Lemma 7.1.At the critical pointo,,

OFp 3.

foralls=1,2,...,n.

Proof. The critical point,. is characterized as an extremal point of the function
G(9) = Fp(9) = A (30" =),
=1

where ) is a Lagrange multiplier to impose the constraiit)) = r. The condition

dG = 0leads to .
OFp
0t

() =X (i=1,...,n). (7.2)

SinceE’» is homogeneous of degree three, we h@eﬁi% = 3Fp(¢). Multiply-

ing (7.1) by¢* and summing ovei, we have\ = %Fp(qﬁ*) which is the desired result.
0

Lemma 7.2. .
s aFP(¢)

vol(Z(0) = 0" =5 =

(s=1,...,n). (7.2)
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Proof. Since every term i’»> defined by (3.1) is at most linear in the variable

VOI(ZE](gf))) = Z Cijk¢i¢j¢k

1<i<j<k<n
se{i,jk}
0 o IEp ()
— S AT AR s P O
¢) afbg Z Cz]k¢¢¢ ¢ 6¢g .
1<i<j<k<n
It should be noted that summing (7.2) owet 1, ..., n and using the homogeneity of

Fp(¢), we havey ", vol(Zl[ﬁ] (¢)) = 3vol(Zp(¢)). This corresponds to the fact that
each cube belongs to three distinct zones.

8. Non-extremal points and monotonicity of the modulugt

This section is devoted to the proof of Theorem 3.3 (Theorem 8.1).

In the preceding sections, we have assumed that all the vegtors, ..., v, are
extremal points of the toric diagraf. Under this hypothesis, it is shown in Theorem
6.1 that the critical poind,. of Fp is driven away from the boundary &f,. Occasion-
ally we want to relax this assumption to deal with the geometry such as a suspended
pinch point shown in Figure 8.1.

(0,1) (1,1)
]

J
(_170) (07 0) (170)
Fig. 8.1. Suspended pinch point

In this section, we allowP to be simply a set of integral vectors of a fo(m x, 1),
not necessarily the vertices of a convex polygon. SHahill be referred to as @en-
eralized toric diagramthe set of generalized toric diagrams will be denoted/ky.
The definitions of the zonotop&p(¢), the functionFp = vol(Zp(¢)) and M(P)
goes through without any change for aRye 74en, We agree that the coefficient;;,
is always given by det(v;, v;,vy)| even if the triangleA(v;,v;, v;) has negative
orientation or contain othar; inside.

The next Proposition shows that if a non-extremal poinexists, the maximization
process drives us to the bounda#y = 0. Therefore, as far as the maximization of
Fp is concerned, the non-extremal points are safely ignored. In the physical terms, the
corresponding global symmetry “decouples” as a resuitfaximization.

Proposition 8.1.Let P = {vi,...,v,} € Tgenbe a generalized toric diagram. Sup-
posewv,, is not an extremal point of the convex hulll®f Then the volumé’p : I, — R
attains its maximum on the boundady’, corresponding to the hyperplare = 0. In
other words, if we puP’ := P\ {v,} = {v1,...,vp_1,Vps1,...,Vn} € Tgen then

F = Fpi(9).
e Fr(9) = max Fp(9)
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Corollary 8.1. For any P € Tgen the maximum values dfp is solely determined
by the convex hull of; if P and Q are two generalized toric diagrams such that
conv(P) = conv(Q), thenM(P) = M(Q).

Up
Up
Vq

Fig. 8.2. Left, case (i)vp = av, + Bvy. Right, case (i) vy = ave + Bop, + yve.

Proof. (of Proposition 8.1) There are two cases to be handled (i 0P, or (i)
v, € relint(P) (Figure 8.2).

(¢ + BeP)vy,

Fig. 8.3. Elimination of the non-extremal vecter, = av, + fvp.

g (‘ébvb (¢" + agP)v,

Consider the case (i) first. Let us assumeis on a edgeelint(conv(v,, vy)); put
v, = v, + P, for somew, 8 > 0, a + 5 = 1. Suppose that, contrary to our claim,
the maximum ofFp is attained atp = (¢',..., ¢, ..., ") with ¢? > 0. Then we
have a following proper inclusion (Figure 8.3):

$°[0,v,] + ¢°[0,vp] + ¢P[0,v,] = ¢%[0,v,] + ¢°[0, 1] + ¢P[0, av, + fvy)
C (0" + ag?)[0,v4] + (6" + Be")[0, vy].

Adding} .4, #'[0, v;] to both sides of (8.1), we hav@p(¢) & Zp (s ), Where the
point¢, € 01, is defined by

(8.1)

o + agP, ifi=a,

¢i _ ¢b+ﬂ¢p7 |fZ:b,
* o, if 1 =p,
&, otherwise

Thus we haveFp(¢) = vol(Zp(¢)) < vol(Zp(¢ps)) = Fp(¢e). More explicitly,

Fp(¢s) = Fp(¢) = af Y |det(ve,vp,v;)|6"0"0" > 0.

i#a,b,p

This contradicts the assumption thfais a maximum point.
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(¢€ + P )vc

e (/)pvp

ol (" +adPwa (6 + AP,

Fig. 8.4. Elimination of the non-extremal vecter, = av, + Svp + Yve

The case (ii) is similar. There exist three vertiags vy, v. (a, b, c # p) such that
v, € conv(vg, vy, v.). Leta, 8,y be three nonnegative numbers such thats+~ =
1l andv, = av, + Bvy + yv.. To obtain a contradiction, suppose tifgi takes its
maximum atp = (¢',...,¢P,...,¢") € I, with ¢ > 0. We have a following proper
inclusion (Figure 8.4)

¢°[0,va] + ¢°[0,v3] + ¢°[0, v ] + ¢¥[0, v,)]
= ¢a [07 ’Ua] + ¢b[07 Ub] + ¢C [07 ’Uc] + ¢p [07 Qv + ﬂvb + ¢Cvc] (82)
C (9" + ad?)[0,v4] + (8" + BP?)[0, v] + (6% + 7¢°)[0, ¢ v.].

Adding >, b0 #'[0,v;] to both sides of (8.2), we havBp(¢) C Zp(¢pe) Where
the pointg, € 01, is defined by

% + agP, ifi=a,

¢t + Bor, ifi=0b,
Py = ¢ +9P, ifi=c,

0, if i =p,

&, otherwise

Thus we haveFp(¢) = vol(Zp(¢)) < vol(Zp(¢e)) = Fp(¢e). More explicitly, the
volume increases by
Fp(gs) — Fp(¢) = aBy |det(va, vy, v.) [0 ¢"6°
+af Z | det(vy, vy, v;) |67 !

i#a,b,p

+ By Z | det(vy, ve, ;)| B
i#b,c,p

+ ya Z | det(ve, vq, ;) |0 0% ¢" > 0.
i#c,a,p

This is a contradiction. O

We investigate a few more ways of changing toric diagrams.

Proposition 8.2. Suppose a toric diagran® is obtained from a toric diagrand) by
elongating one or two edges @fas in Figure 8.5. Then,

M(Q) < M(P).
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I A

Fig. 8.5. Elongating one or two edges of a toric diagram

Proof. Consider the toric diagrarf® in Figure 8.5 on the lefw; is non-extremal point
of P, thus

M(P) = M({va,...,Vn-1,Vn})
= M({v1,v2,...,Vn-1,0n}) by Corollary 8.1
> M({vy,v2,...,V0-1}) by Corollary 6.2
= M(Q).

The toric diagrams on the right of Figure 8.5 can be handled in much the same way.

Proposition 8.3.Suppose a toric diagran® is obtained from a toric diagrand) by
pushing out one vertex 6f as depicted in Figure 8.6 on the left. Th&R(Q) < M(P).

’U/

1
| | R o | |
BTN 3" N
s NP
nV\ vy - v -4 v n
Q B ] Q -
tv'n,fl : tvnfl
* IR

Fig. 8.6. Pushing out a vertex of a toric diagram

Proof. Label the vertices of” and Q as in Figure 8.6. Construct another polygon
R = {v{,vs,... ,u,_1,v,} by extending the edgév,,, v;) into the direction of
vy until it touches the edgév’, vs) at v/ (Figure 8.6, right). Clearly) € R C P.
Applying Proposition 8.2 twice, we havg(Q) < M(R) < M(P). O

Now supposeP and P’ are two toric diagrams satisfying C P’. It is clear that
there is a sequence of toric diagrams (or rational polygons)

P:Q()CQlCQQC"'CQk—lCQk:P/
such that); (1 < i < k) is obtained fron);_1, either
5 The coordinates of the vertaX/ are rational numbers in general; the polyg@ris not a toric diagram

in the strict sense. The conclusion is true, however, because all the results used here are proved with no
assumption on the integrality of the vertices.
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— by adding an extra vertex 1@;_; (Proposition 6.1),
— by elongating one or two edges @f_, (Proposition 8.2), or
— by pushing out one vertex @j; _; (Proposition 8.3).

In either case, we know tha(Q;_1) < M(Q;). Consequently, we have demonstrated
the following monotone property of the maximum valug-f, or modulu(P), with
respect to the change of the toric diagrams:

Theorem 8.1.Let P and P’ be two toric diagrams satisfying?] < [P’], where= is
the partial order defined i§3.2). Thendt(P) < Mi(P’). The equality holds if and only
if P ~ P, i.e. equal up to integral affine transformations Bf.

9. Relation to volume minimization

In the preceding sections we have concerned ourselves with the extremization of homo-
geneous polynomiaty : R%, — R whereg € I',, or equivalently,

pld) =¢' +---+¢" =r, (9.1)
is the only constraint. Now consider a following variant of the extremization problem.
As before, letP € T be a toric diagram and, ..., v,, be its vertices in counter-

clockwise order. Define a map : R%, — R3 by

wp(9) =) d'vs.
i=1

The image ofrp is the coneC'(P) over the toric diagranP (Figure 2.1). In terms of
the zonotopeZp(¢), b = mp(¢) is the location of the vertex opposite to the origin
and%b is the center (see Figure 9.1). As we will sees C'(P) can be identified with
the Reeb vector of a Sasaki-Einstein manifold.

v; v;

0

Fig. 9.1. Zonotope and Reeb vectbr

Due to the fact that each; is of the form(x, x, 1), the constraint (9.1) factors
through the projection p:

piRL, I O(P) — R
U U u
rn, = P — {r}
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Herer P denotes the toric diagraf dilated by factor, namely the horizontal slice of
the coneC'(P) at heightr.

For a generid € C(P), the fiberr,' (b) of the projectiontp : RZ, — C(P) is
an (n—3)-dimensional convex polytope. This fibration structure allows us to extremize

Fp : I, — Rin two steps: first in the fiber direction, and then in the base direction
(Figure 9.2):

maxﬁp(¢):max{ max FP(¢)}.

€l berP Loerp! (b)

7pl(b)

RY,

T op®) T~——

L

b c(p)

Fig. 9.2. Fibrationrp : Ry, — C(P) and fiberwise critical point p (b).

The following theorem shows the first maximization step is rather straightforward
and admits an explicit solution.

Theorem 9.1. Letr > 0 andb be a pointinrP C C(P).
(i) The restrictionﬁp|ﬂ;1(b) of F'p along the fiberr ! (b) is a quadratic polynomial.

(i) The quadratic ponnomian|W;1(b) has a unique critical point(b) and it is

also a maximum. The point-(b) is determined as follows: Lé}> : R3 — R”™ be a
vector-valued rational function defined by

i o (Vi—1,0i,Vit1) 3
lp(b) := Bror 105 (b v vy’ (beR’, i=1,...,n).
Then
i T .
op(b) = Vp(b)ép(b), (i=1,...,n) (9.2)
where

The critical value is given by

¢Eljrlgf<(b) Fp(¢) = Fp(op(b)) = Vo)
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Before we turn to the proof of Theorem 9.1, it is useful to take a small detour into
the AdS/CFT correspondence and the volume minimization.

The AdS/CFT-correspondence [27,18,34,2] has brought a novel insight into the
relation betweenV=1 SCFT and Sasaki-Einstein manifolds. The world-volume the-
ory on the D3 branes living at conical Calabi-Yau singularities is dual to a type IIB
background of the formldS; x Y, whereY is the five dimensional horizon manifold
[24,1,30]. Supersymmetry requires thatis a Sasaki-Einstein manifold and the cone
X = C(Y) over the basé&  is a Calabi-Yau threefold with Gorenstein singularity.

If Y is toric, i.e. its isometry group contains at least three torus, ffida a toric
Calabi-Yau singularity. It is known [23] that every toric Gorenstein Calabi-Yau singu-
larity is obtained as a toric variet){ p associated with a faf’(P), the cone over a
toric diagrampP. The toric varietyX p is equipped with a moment map: Xp — R?
associated with th&3 c (C*)3 action. The image of is the dual con€'(P)", and the
generic fiber ofu is T3. The corresponding Sasaki-Einstein manifiile has a canoni-
cally defined constant norm Killing vector field, called Reeb vector field; it is identified
with a vectorb in C(P) via moment mag. Each vertex; of P determines a toric divi-
sorD; in X p, which is a cone over a certain calibrated three dimensional submanifold
P in Yp.

The Calabi-Yau con& p can be also constructed as a symplectic quotient [19, 26,
10] (up to some finite abelian group)

Xp~C"//(CH"3, (9.3)

The standardC*)™ action onC" can be decomposed int@*)"~3 and(C*)?3 corre-
sponding to the exact sequence

0—R"3 S R* IR —0.

The(C*)"~2 action, defining the quotient action in (9.3), is called baryonic symmetries
in physics literature(C*)? acting nontrivially onXp is referred to as flavor symme-
tries. The flavor (resp. baryonic) symmetry corresponds to the base (resp. fiber) direc-
tion of the fibrationrp : RZ, — C(P).

According to the prediction of AAS/CFT correspondence, the central chabhe
SCFT and the volume of the internal manifold are related as [16]

N273
~ 4vol(Y)’
while the exactR-charges of chiral fields are proportional to volumes of three cycle
X, CYp [17]
7 vol(X;)
"3 vol(Y)

Itis usually quite difficult to obtain Einstein metrics explicitly; it thus appears impos-
sible to compute these volumes. Remarkably, Martelli, Sparks and Yau [28,29] proved
that the volumes ofp andY;’s can be computed without actually knowing the metric,
provided the Reeb vectdrc 3P is known for the Calabi-Yau cofie

vol(X;) = 2205 (b),

s - 71'3
i=1

6 The numbes of b € 3P is due to the fact thatim¢ X p = 3.
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Here, the functiong’, (b) andVp(b) of b are nothing but those defined in Theorem 9.1.
Even more importantly, these authors showed that the correct Reeb vector is character-
ized as the vectds € 3P which minimize the “trial volume functionVp(b). This is a
beautiful geometrical counterpart of themaximization.

It should be clear now how the volume minimization amdriaximization in two
steps” are related. Theorem 9.1 can be summarized as the following

Theorem 9.2.(i) For b = (x,x,r) € relint(rP), the trial volume functiorVp(b) is
inversely proportional to the maximum of thdunction in the fibem;l(b):

r

max Fp(¢) = .
e (b) (#) Vp(b)
(i) The a-maximization and the volume minimization are equivalent in the sense
that ,
ma. F =
¢€p*1)§r) r(9) min  Vp(b)
berelint(rP)
Theorem 9.2 is due to Butti-Zaffaroni [8], although their derivation is rather different
from ours.

Let us now turn to the proof of Theorem 9.1. We first prove the following
Lemma 9.1.

Z gbj(j)kvj X 'vk).

1<j<k<n

Fr(o) = (o) -
=1
Proof. The right hand side can be rewritten as follows:

Yood ¢ (v v

i=11<j<k<n

n n n
=( E + E + E )¢ ¢’ ¢" (vi,vj, Vi)
1<i<j<k<n 1<j<i<k<n 1<j<k<i<n

n

= D PP (i vy o) + (v), v, v1) + (Vg vi,v;5)

1<i<j<k<n
n
= Z ¢Z¢j¢k(<viavjavk> - <’U7',,’Uj,’Uk-> +<viavjavk’>)
1<i<j<k<n
n
= 3 FF (i vs o) = Fp(e). 0
1<i<j<k<n

The first claim of Theorem 9.1 follows immediately from Lemma 9.1; the restriction
of Fip to the fibem;l(b) equals a quadratic polynomial

n

Q@)=Y  (bvju)d’e,  (pemp'(b)).

1<j<k<n
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To obtain the critical point of), introducen x n symmetric matrixA = (A;;)
defined by

1
Aij:Aji:§<b,’U7;,’Uj>, (ISZSJSTL)
so thatQ(¢) = 37,1 Aijé'.

The extremization of) : 7 1(b) — R is equivalent to that of a functiof defined

by
Q= Z Aid'e? — X (Z ¢'v; — b)
=1

i,j=1

whereX € R3 is the Lagrange multiplier imposing the constraint(¢) = b. The
equationd@ = 0 gives

or equivalently,
1 - U)\ ) — 9
52 v;. (’L—l,...,n) (5)

In Appendix A, the inverse matriX¥—!, which exists ifb € relint(C/(P)), is explicitly
calculated. Applying Proposition A.1 (i) to (9.5), we have

Jp(b)i _ |:(A1)“1)\ S+ (Afl)iz)\ S, + (Afl)iiJrl)\ Vi1
<vi—17viavi+1>
(b,vi—1,v;) (b, v, vi41)

(A-b) lh(b), (i=1,...,n).

b (9.6)

l\.’)\r—* N = N

Summing ovet and using the constraint= Y., op(b), one has
r - r
2im tp(b)  Vp(b)

The formula (9.2) follows from (9.6) and (9.7). The critical value is then given by, from
(9.4) and (9.7),

%(,\ b) = ©9.7)

n

Q(op(b) = Y ap(b)'(Ayor(b) ZUP ‘(A
ij=1
- %)\ - 7p(op(b)) = %)\ b= Tj(b).

Along the similar lines as the proof of Proposition 5.2, it is easy to show that the critical
pointo(b) of @ is also a maximum. This completes the proof of Theorem 9.1.
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10. Summary and outlook

In this paper, we proved that for any toric diagrégmthea-maximization always leads

to the unique solution, which satisfies a universal upper bound. A combinatorial ana-
logue ofa-theorem is also established: thdunction always decreases when a toric
diagram gets smaller. The relation betweemaximization and volume minimization

is also discussed.

A tacit assumption in this paper is that a quiver gauge theory is uniquely determined
by a toric diagram. The formulae (2.4) and (2.5) are associated with toric diagrams so
naturally that there seems to be no other choice. However, the brane-tiling technique
[21,14] allows us to produce many examples of gauge theories whose matter content
is different from what we studied in this paper; they are regarded as realizing different
“phases” of the same SCFT. The gauge theory studied in this paper is called “minimal”
in [8]; conjecturally the number of chiral fields given in (2.1) is smaller than that of any
other possible phases. It is interesting to stuelypaximization of those non-minimal
phases and compare with the minimal ones.

Since the polynomiaF'r is defined over the integers, the maximum valuefpf
or M(P) is always an algebraic number. Does this critical value characterize SCFT
uniquely? In two dimensions, there are examples of non-isomorphic CFTs with equal
Virasoro central charges. The situation is not clear for higher dimensions. As we have
seen, the-maximization defines a natural map

Mm: T/~ — QnNRso.

Theorem 8.1 asserts th#it is strictly decreasing along any descending chain (totally
ordered subset) df / ~. Although AredP) shares this property, they just encode the
number of gauge fields; there are many toric diagrams of the same area but different
modulus. It seems that modulf® is far more sensitive to the shape of toric diagrams
than the area. We conjecture that the MAps injective.

Probably the most important question is why zonotopes comes into playniax-
imization. We believe that a deeper understanding of this will shed new light on the
AdS/CFT correspondence.
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A. A symmetric matrix and its inverse

Proposition A.1. Letb, v, ..., v, be vectors irR3 and A = (A;i;) be ann x n sym-
metric matrix given by
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Define ann x n symmetric ‘almost tridiagonal’ matri8 = (B;;) by

<b, Vi1, ’Uz'+1>

_ Cifj =1,
<b7 UZ'717/U’L'> <b7 Ui7vi+1> J
L ifj=i+1
77 = 7/ )
Bij = Bﬂ = <ba Ui7vi+1> J
1
[ ifi=1andj =
<b,'171,’0n>7 ! J "
0, otherwise

for1 <i < j <n.Herevy :=wv, andv, ;1 := v;.

()For1<i<n,

<Ui—1, Vi, U¢+1>
b. A.l
(b,v;—1,v;) (b, Vi, vit1) (A1)

Bii—1vi1 + B v + By ip1Vip1 =

Here we assum®,; o := —B; , and B, ,+1 := —Bjp 1.
(i) The matricesA and B are inverse to each other.

Proof. (i) Suppose fora momentthaf_,,v;, v, are linearly independent. Expand-
ing b asb = av,;_1 + Bv; + yv,;+1, it is easy to check that the both sides of (A.1) are
equal to

1

ary <’Ui717 Vi, Ui+1>

(avi_1 + v +YViq1).

Since (A.1) is an equality of a rational functions®fs andb, (A.1) is true in general
by the continuity argument.

(i) 1t suffices to verifyBA = I, entry by entry. Foll <i < j < n,

(BA)i; = Bii-1Ai—1,j + BiiAij + Biit14i41j

1 1 1

= §Bi,i71 (b,vi_1,v;) + §Bi7i (b,v;,v;) + §Bi,i+1 (b,viy1,v5)
1

=3 (b, (Bii—1vi—1 + B; v; + B; i11Vit1), ;) ,

which vanishes by (A.1). SimilarlyBA);; = 0 for 1 < j < ¢ < n. On the other hand,
forl <i<mn,

(BA);i = Bii—14i—1 + Biiv14it1,
=B 1,41+ Biit14ii+1
1 1 1 1
- vV~
(b,vi_1,v;) 2< »in1, V) + (b,vi,vi41) 2
il
202

<ba Vit1, 'Ui>

With extra care for signs, the casesicf 1, n are similarly verified. O
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