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Abstract

The author gives a simple proof of the representation theorem for law invariant
convex risk measures which was obtained by Kusuoka [6], Frittelli-Gianin [3] and
Jouini- Schachermayer-Touzi [5].

1 Introduction

The idea of coherent risk measures has been introduced by Artzner, Delbaen, Eber and
Heath [1]. Then Föllmer and Scheid [4] extended this notion to convex risk measures. Let
me introduce the definition of convex risk measures first.

Let (Ω,F , P ) be a probability space. We denote L∞(Ω,F , P ) by L∞.

Definition 1 We say that a map ρ : L∞ → R is a convex risk measure if the following
are satisfied.
(1) ρ(0) = 0.
(2) For any c ∈ R and X ∈ L∞, we have

ρ(X + c) = ρ(X)− c.

(3) If X = Y, X, Y ∈ L∞, then ρ(X) 5 ρ(Y ).
(4) For any λ ∈ [0, 1], and X, Y ∈ L∞,

ρ(λX + (1− λ)Y ) 5 λρ(X) + (1− λ)ρ(Y ).

Also, we introduce the following notion.

Definition 2 We say that a convex risk measure ρ : L∞ → R is law invariant, if ρ(X) =
ρ(Y ) for any X, Y ∈ L∞ with the same probability laws.
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Let D be the set of probability distribution functions of bounded random variables,
i.e., D is the set of non-decreasing right-continuous functions F on R such that there are
z0, z1 ∈ R for which F (z) = 0, z < z0 and F (z) = 1, z = z1. Let us define Z : [0, 1)×D →
R by

Z(x, F ) = inf{z; F (z) > x}, x ∈ [0, 1), F ∈ D.

Z(x, F ) is a version of F−1(x). Z(·, F ) : [0, 1) → R is a non-decreasing and right contin-
uous function, and the probability distribution function of Z(x, F ) under the Lebesgue
measure dx on [0, 1) is F. We denote by FX the probability distribution function of a
random variable X.

For each α ∈ (0, 1], let ρα : L∞ → R be given by

ρα(X) = −α−1

∫ α

0

Z(x, FX)dx, X ∈ L∞.

Also, we define ρ0 : L∞ → R by

ρ0(X) = −Z(0, FX) = −ess.inf X X ∈ L∞.

Then it is easy to see that ρ·(X) : [0, 1] → R is a non-increasing continuous function for
any X ∈ L∞.

Let M[0,1] be the set of probability measures on [0, 1].
Then combining the results by [6], Frittelli-Gianin [3] and Jouini- Schachermayer-Touzi

[5], we have the following.

Theorem 3 Assume that (Ω,F , P ) is a standard atomless probability space. Let ρ :
L∞ → R. Then the following conditions are equivalent.
(1) There is a subset A of the set M[0,1] ×R such that

sup{b; (m, b) ∈ A} = 0

and

ρ(X) = sup{
∫

[0,1]

ρα(X)m(dα) + b; (m, b) ∈ A}, X ∈ L∞.

(2) ρ is a law invariant convex risk measure.

Our purpsoe of the present paper is to give a simple and direct proof for this Theorem.

Remark 4 One can easily prove that

ρα(X) = − inf{E[gX]; g ∈ L∞, 0 5 g 5
1

α
, E[g] = 1}, X ∈ L∞

for any α ∈ (0, 1]. Here we do not have to assume that (Ω,F , P ) is atomless. So we can
easily check that ρα, α ∈ [0, 1], are law invariant convex risk measures. Therefore it is
easy to prove that the condition (1) implies the condition (2) in Theorem 3.
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2 Preparations

Let N = 2. In this section, we consider a probability space (ΩN ,GN , PN) such that ΩN =
{1, . . . , N}, GN be the set of subsets of ΩN , and PN({ω}) = 1

N
, ω ∈ ΩN .

Our aim in this section is to prove the following.

Theorem 5 Let ρ : L∞ → R. Then the following conditions are equivalent.
(1) There is a subset A0 of the set M[0,1] ×R such that

sup{b; (m, b) ∈ A0} = 0

and

ρ(X) = sup{
∫

[0,1]

ρα(X)m(dα) + b; (m, b) ∈ A0}, X ∈ L∞.

(2) ρ is a law invariant convex risk measure.

By Remark 4, it is sufficient to prove that the condition (2) implies the condition (1).
So we prove the converse. Let ρ is a law invariant convex risk measure and let C be a
subset of L∞ ×R given by

C = {(a, b) ∈ L∞ ×R; ρ(X) = −
N∑

i=1

a(i)X(i) + b for all X ∈ L∞}.

Since ρ is a concave function defined in L∞ and L∞ is finite dimensional, we see that

ρ(X) = sup{−
N∑

i=1

a(i)X(i) + b; (a, b) ∈ C}, X ∈ L∞. (1)

Moreover, we have the following.

Proposition 6 For any (a, b) ∈ C, we have the following.
(1) a(i) = 0, i = 1, . . . , N.
(2)

∑N
i=1 a(i) = 1.

Proof. Let ei ∈ L∞, i = 1, . . . , N, such that ei(i) = 1, and ei(j) = 0, j 6= i. Then we
have for any c > 0

0 5 −c−1ρ(cei) 5 a(i)− c−1b

Lettig c →∞, we have the assertion (1).
Note that for any c ∈ R, we have

0 = −ρ(c)− c 5 c(
N∑

i=1

a(i)− 1)− b

So we have for any c > 0

(
N∑

i=1

a(i)− 1)− c−1b 5 0 and (
N∑

i=1

a(i)− 1) + c−1b = 0.
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Lettig c →∞, we have the assertion (2).
Let SN be the set of permutations on ΩN . Then for any a ∈ L∞, there is a σa ∈ SN

such that
a(σa(N)) 5 a(σ(N − 1)) 5 · · · 5 a(σa(1))

Then we have the following.

Proposition 7 (1) For any (a, b) ∈ C, and σ ∈ SN , (a ◦ σ, b) ∈ C.
(2) Let (a, b) ∈ C and let ma be a measure on [0, 1] be given by

ma({
j

N
}) = (a(σa(j))− a(σa(j + 1)))j, j = 1, . . . , N − 1,

ma({1}) = a(σa(N))N and ma([0, 1] \ { 1

N
,

2

N
, . . . , 1}) = 0.

Then ma ∈M[0,1] and

max{−
N∑

i=1

(a ◦ σ)(i)X(i); σ ∈ SN} =

∫
[0,1]

ρα(X)ma(dx), X ∈ L∞.

Proof. Let X ∈ L∞. Then it is obvious that random variables X and X ◦ σ−1 has the
same probability law. Therefore we have

ρ(X) = ρ(X ◦ σ−1) = −
N∑

i=1

a(i)X(σ−1(i)) + b = −
N∑

i=1

a(σ(i))X(i) + b.

This implies the assertion (1).
Now we will prove the assertion (2). Let X ∈ L∞. Then there is an τX ∈ SN such that

X(τX(1)) 5 X(τX(2)) 5 · · · 5 X(τX(N)).

It is easy to see that

X(τX(k)) = N

∫ k/N

(k−1)/N

Z(x; FX)dx, k = 1, . . . , N,

an so
k∑

j=1

X(τX(j)) = −kρk/N(X), k = 1, . . . , N.

Then we have
N∑

i=1

a(i)X(i) =
N∑

i=1

a(σa(i))X(σa(i))

=
N∑

i=1

(a(σa(N)) + a(σa(i)− a(σa(N)))X(σa(i))

= a(σa(N))(
N∑

i=1

X(σa(i))) +
N−1∑
i=1

(
N∑

j=i+1

(a(σa(j − 1)− a(σa(j)))X(σa(i))
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= a(σa(N))(
N∑

i=1

X(σa(i))) +
N∑

j=2

(

j−1∑
i=1

X(σa(i)))(a(σa(j − 1)− a(σa(j)))

= a(σa(N))(
N∑

i=1

X(τX(i))) +
N∑

j=2

(

j−1∑
i=1

X(τX(i)))(a(σa(j − 1)− a(σa(j)))

= −
∫

[0,1]

ρα(X)ma(dα).

Note that

N∑
i=1

a(σa ◦ τ−1
X (i))X(i) =

N∑
i=1

a(i)X(τX ◦ σ−1
a (i)) = −

∫
[0,1]

ρα(X)ma(dα).

So letting X = 1, we see that ma([0, 1]) = 1. These also imply the assertion (2).
Now let

A0 = {(ma, b) ∈M[0,1] ×R; (a, b) ∈ C}

Then we see from Equation (1) and Proposition 7, that the condition (1) is satisfied for
this A0. This completes the proof of Theorem 5.

3 Proof of Theorem 3

By Remark 4, it is sufficient to prove that the condition (2) implies the condition (1).
Let ρ is a law invariant convex risk measure, and let

A =
{

(m, b) ∈M[0,1] ×R ; ρ(X) =
∫

[0,1]

ρα(X)m(dα) + b, for all X ∈ L∞(Ω)
}

.

Then it is sufficient to prove the following.

ρ(X) 5 sup
{∫

[0,1]

ρα(X)m(dα) + b ; (m, b) ∈ A
}

. (2)

Since (Ω,F , P ) is atomless standard probability space, we may think that Ω = [0, 1),
F = B

(
[0, 1)

)
, and P is a Lebesgue measure on [0, 1). For any n = 1, let

Fn = σ
{
1[(k−1)2−n,k2−n) ; k = 1, 2, . . . , 2n

}
.

Then we see that

F1 ⊂ F2 ⊂ F3 ⊂ · · · and σ
( ∞⋃

n=1

Fn

)
= F .

Let

An =
{

(m, b) ∈M[0,1] ×R ; ρ(X) =
∫

[0,1]

ρα(X)m(dα) + b for all X ∈ L∞(Ω,Fn, P )
}

.
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Then we have

A1 ⊃ A2 ⊃ A3 ⊃ · · · ⊃ A.

Note thatM[0,1] is a compact subset of the dual space of C([0, 1];R) with weak * topology.
Since ρ·(X) : [0, 1] −→ R is continuous for all X ∈ L∞, A, An, n = 1, 2, . . . , are closed in
M[0,1] ×R.

Proposition 8 Let A∞ =
⋂∞

n=1An. Then A∞ = A.

Proof. Let (m, b) ∈ A∞. Let X ∈ L∞(Ω,F , P ), and fix it. Let Y ∈ L∞ be given by
Y (ω) = Z(ω; FX), ω ∈ Ω = [0, 1). Since random variables X and Y have the same
probability law, we see that ρ(X) = ρ(Y ). Let Yn, n = 1, 2, . . . , be random variables
given by

Yn(ω) = Z(
k

2n
−; FX),

k − 1

2n
5 ω <

k

2n
, k = 1, 2, . . . , 2n.

Then we see that Yn(ω) ↓ Y (ω), for any ω ∈ Ω. Since (m, b) ∈ An, n ≥ 1, we have

ρ(Y ) = ρ(Yn) =
∫

[0,1]

ρα(Yn)m(dα) + b, α ∈ [0, 1].

It is easy to see that ρα(µYn) ↑ ρα(Y ), and so we have

ρ(X) = ρ(Y ) =
∫

[0,1]

ρα(Y )m(dα) + b =

∫
[0,1]

ρα(X)m(dα) + b.

This implies that A∞ ⊂ A. It is obvious that A∞ ⊃ A , and so we have the assertion.
Now let us prove Theorem 3. For each W ∈ L∞(Ω2n ,G2n , P2n), let Un(W ) : Ω → R

be given by

Un(W )(ω) =
2n∑

k=1

W (k)1[(k−1)2−n,k2−n)(ω).

Then Un : L∞(Ω2n ,G2n , P2n) → L∞(Ω,Fn, P ) is bijective. Let ρn : L∞(Ω2n ,G2n , P2n) → R
be defined by ρn(W ) = ρ(Un(W )). Then it is easy to see that ρn is law invariant, convex
risk measure and that

ρn(W ) =
∫

[0,1]

ρα(W )m(dα) + b, W ∈ L∞(Ω2n ,G2n , P2n)

if and only if

ρ(X) =
∫

[0,1]

ρα(X)m(dα) + b, X ∈ L∞(Ω,Fn, P )

for any (m, b) ∈M[0,1] ×R. This observation and Theorem 5 show that

ρ(X) = inf
{∫

[0,1]

ρα(X)m(dα) + b ; (m, b) ∈ An

}
, X ∈ L∞(Ω,Fn, P ). (3)

Let us take an arbitrary X ∈ L∞(Ω,F , P ) and fix it. Let Y and Ỹn, n = 1, 2, . . . , be
random variables given by Y (ω) = Z(ω, FX), ω ∈ [0, 1), and

Ỹn(ω) = Z(
k − 1

2n
∨ 0; FX),

k − 1

2n
5 ω <

k

2n
, k = 1, 2, . . . , 2n.
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Then we see that
Z(x; FỸn

) = Ỹn(x) ↑ Y (x−), x ∈ (0, 1),

and so we see that

ρα(Ỹn) ↓ ρα(Y ) = ρα(X), n →∞, α ∈ (0, 1].

Also, we see that
ρ0(Ỹn) = −Ỹn(0) = −Y (0) = ρ0(X)

So we see that ρα(Ỹn) converges to ρα(X) uniformly in α ∈ [0, 1].
Since Ỹn ∈ L∞(Ω,Fn, P ), we see from Equation (2) that there exists (mn, bn) ∈ An,

for each n ≥ 1, such that

ρ(Ỹn) 5
∫

[0,1]

ρα(Ỹn)mn(dα) + bn +
1

n
.

Note that

0 = ρ(0) =
∫

[0,1]

ρα(0)mn(dα) + bn = bn

and that

−||Ỹn||∞ = ρ(||Ỹn||∞) 5 ρ(Ỹn) 5
∫

[0,1]

ρα(Ỹn)mn(dα) + bn +
1

n
5 ||Ỹn||∞ + bn + 1.

So we have
0 = bn = −2||Ỹn||∞ − 1 = −2||X||∞ + 1.

Since M[0,1] is compact, there are a subsequence {nk; k = 1, 2, . . .} and (m, b) ∈M[0,1]×R
such that

(mnk
, bnk

) → (m, b), n →∞, in M[0,1] ×R.

It is obvious that (m, b) ∈ Ank
, k = 1, 2, . . . , and so we see that (m, b) ∈ A∞. Also we

have ∫
[0,1]

ρα(Ỹnk
)mnk

(dα) →
∫

[0,1]

ρα(Y )m(dα).

On the other hand, we see that

ρ(Ỹn) = ρ(Y ) = ρ(X)

So we see that

ρ(X) 5
∫

[0,1]

ρα(X)m(dα) + b.

This proves that

ρ(X) 5 sup{
∫

[0,1]

ρα(X)m(dα) + b; (m, b) ∈ A}.

This completes the proof of Theorem 3.
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