
UTMS 2006–23 September 8, 2006

New realization of the pseudoconvexity

and its application to an inverse problem

by

Oleg Yu. Imanuvilov, Victor Isakov

and Masahiro Yamamoto

�
UNIVERSITY OF TOKYO

GRADUATE SCHOOL OF MATHEMATICAL SCIENCES

KOMABA, TOKYO, JAPAN



NEW REALIZATION OF THE PSEUDOCONVEXITY

AND ITS APPLICATION TO AN INVERSE PROBLEM

Oleg Yu. Imanuvilov1, Victor Isakov 2 and Masahiro Yamamoto3

1Department of Mathematics, Colorado State University
101 Weber Building Fort Collins CO 80537 USA

e-mail: vika@iastate.edu
2 Department of Mathematics and Statistics, Wichita State University

Wichita Kansas 67260-0033 USA
e-mail: victor.isakov@wichita.edu

3 Department of Mathematical Sciences, The University of Tokyo
Komaba Meguro Tokyo 153-8914 Japan

e-mail:myama@ms.u-tokyo.ac.jp

Abstract. We consider a hyperbolic differential operator P = a0(x)2∂2
t −∆ with

variable principal term. We first give a sufficient condition for the pseudoconvexity
which yields a Carleman estimate and a necessary condition. The former condition
implies that level sets generated by the weight function in the Carleman estimate, is
convex with respect to the set of rays given by a0(x), and gives a more general explicit
condition of a0 for the pseudoconvexity. Second we apply the Carleman estimate to
an inverse problem of determining a0 by Cauchy data on a lateral boundary with
relaxed constraints on a0.

§1. Introduction.

We consider a hyperbolic differential operator

(1.1)

(Pu)(x, t) = (P (x,D)u)(x, t) = a0(x)2∂2
t u(x, t)−∆u(x, t), x ∈ Rn, t ∈ R,

where a0 > 0 is a function of C2-class, x = (x1, ..., xn) ∈ Rn, ∂t = ∂
∂t , ∂j = ∂

∂xj
,

1 ≤ j ≤ n, ∆ =
∑n

j=1 ∂2
j .

One of the fundamental problems is the uniqueness in the initial value problem

for the equation Pu = 0 or the unique continuation. For these purposes, a basic
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tool is a Carleman estimate, and for general theories, we refer to Hörmander [5],

Isakov [13] - [16], for example. Especially for hyperbolic operators, see further

Imanuvilov [6], Triggiani and Yao [26]. Here, according to Hörmander [5], we will

state a necessary and sufficient condition for a relevant Carleman estimate. Let us

define the principal symbol Pm(x, ζ) by

Pm(x, ζ) = −a0(x)2ζ2
n+1 +

n∑

j=1

ζ2
j ,

x ∈ Rn, t ∈ R, ζ = (ζ1, ..., ζn+1) ∈ Cn+1.(1.2)

We set

t = xn+1, ∂n+1 = ∂t, ∇′ = (∂1, ..., ∂n), ∇ = (∂1, ..., ∂n, ∂t),

ξ = (ξ1, ..., ξn, ξn+1) = (ξ′, ξn+1), ξ′ = (ξ1, ..., ξn)

and

(1.3) ϕ(x, t) = eλψ(x,t)

where λ > 0 is a parameter.

Then we directly see that P is principally normal (see Definition 8.5.1 in [5]), and

we notice that the results of Chapter VIII in [5] are applicable to P . Throughout

this paper, we assume that Q ⊂ Rn × R is a bounded domain. We set

Ω ≡ {x; (x, t) ∈ Q for some t ∈ R}.

Moreover let ψ, ϕ ∈ C2(Q) satisfy ∇ψ 6= 0 and ∇ϕ 6= 0 on Q. Then

Theorem A. (Theorems 8.4.1, 8.5.2 and 8.6.3 in [5]).

(i) (Sufficiency). We assume that
n+1∑

j,k=1

(∂j∂kψ)(x, t)
∂Pm

∂ξj
(x, ξ)

∂Pm

∂ξk
(x, ξ)

+
n+1∑

j,k=1

(
∂2Pm

∂ξj∂xk
(x, ξ)

∂Pm

∂ξk
(x, ξ)− ∂Pm

∂xk
(x, ξ)

∂2Pm

∂ξj∂ξk
(x, ξ)

)
(∂jψ)(x, t) > 0

(1.4)
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if (x, t) ∈ Q and ξ ∈ Rn+1 \ {0} satisfy

(1.5) Pm(x, ξ) =
n+1∑

j=1

∂Pm

∂ξj
(x, ξ)(∂jψ)(x, t) = 0

and

n+1∑

j,k=1

(∂j∂kψ)(x, t)
∂Pm

∂ζj
(x, ζ)

∂Pm

∂ζk
(x, ζ)

+s−1
n+1∑

k=1

Im
(

∂kPm(x, ζ)
∂Pm

∂ζk
(x, ζ)

)
> 0(1.6)

if (x, t) ∈ Q and ζ = ξ +
√−1s∇ψ, ξ ∈ Rn+1, s 6= 0, satisfy

(1.7) Pm(x, ζ) =
n+1∑

j=1

∂Pm

∂ζj
(x, ζ)(∂jψ)(x, t) = 0.

For sufficiently large λ > 0, we define ϕ(x, t) by (1.3). Then

there exist constants s0 > 0 and C1 > 0 such that

s

∫

Q

|∇u|2e2sϕdxdt + s3

∫

Q

u2e2sϕdxdt ≤ C1

∫

Q

|Pu|2e2sϕdxdt(1.8)

for s > s0 and u ∈ H2
0 (Q). Here the constant C1 > 0 depends on ψ.

(ii) (Necessity). We assume that (1.8) holds. Then

1
2C1

|ξ|2 ≤
n+1∑

j,k=1

(∂j∂kϕ)(x, t)
∂Pm

∂ξj
(x, ξ)

∂Pm

∂ξk
(x, ξ)

+
n+1∑

j,k=1

(
∂2Pm

∂ξj∂xk
(x, ξ)

∂Pm

∂ξk
(x, ξ)− ∂Pm

∂xk
(x, ξ)

∂2Pm

∂ξj∂ξk
(x, ξ)

)
(∂jϕ)(x, t)

(1.9)

if (x, t) ∈ Q and ξ ∈ Rn+1 \ {0} satisfy

(1.10) Pm(x, ξ) =
n+1∑

j=1

∂Pm

∂ξj
(x, ξ)(∂jϕ)(x, t) = 0.

Here and henceforth, for z ∈ C, Im α and Re z denote the imaginary part and

the real part respectively, and z is the complex conjugate.
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An estimate of form (1.8) is called a Carleman estimate with the weight function

ϕ, by which we can establish the unique continuation or stability in the Cauchy

problem (e.g., Isakov [13] - [16]), observability inequalities (e.g., Cheng, Isakov,

Yamamoto and Zhou [4], Kazemi and Klibanov [18], Klibanov and Timonov [21])

and inverse problems (e.g., Bukhgeim [2], Bukhgeim and Klibanov [3], Imanuvilov,

Isakov and Yamamoto [7], Imanuvilov and Yamamoto [8] - [11], Isakov [12], [13],

[15], [16], Isakov and Yamamoto [17], Khăıdarov [19], Klibanov [20], Klibanov and

Timonov [21], Yamamoto [27]). By the inverse problem, we mean the determination

of a0(x) by overdetermining data of u on some boundary of Q. Thus it is critically

important to find a weight function ψ satisfying (1.4) and (1.6) under conditions

(1.5) and (1.7) respectively. However the existing searches for ψ are restricted and

one mainly takes ψ(x, t) = |x−x0|2−βt2 where x0 ∈ Rn and β > 0 is a parameter,

and after such a fixed choice of ψ, we have to assume conditions on a0 in order that

conditions (1.4) and (1.6) are satisfied. That is, the following is known:

Proposition B. We assume that there exists x0 ∈ Rn \ Ω such that

(1.11) (∇′ log a0(x) · (x− x0)) > −1

for any x ∈ Ω. If we set

(1.12) ψ(x, t) = |x− x0|2 − βt2,

then with sufficiently small β > 0, (1.4) and (1.6) hold respectively under (1.5) and

(1.7). In particular, Carleman estimate (1.8) holds.

Here and henceforth (ζ · ζ̃) denotes the scalar product in Rn or Rn+1. For the

proof, it suffices to verity that (1.12) satisfies the conditions in Theorem A (i),

and see Imanuvilov and Yamamoto [10] for example. Condition (1.11) is quite
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restrictive, and we have to limit unknown coefficients to a class meeting (1.11)

when we consider the inverse problem of determining a0. We note that condition

(1.11) is merely one sufficient condition for (1.8). In other words, even though a0

does not satisfy (1.11), other choice of ψ may be able to satisfy (1.4) and (1.6).

The main purpose of this paper is to establish a sufficient condition of ψ for

Carleman estimate (1.8) which is more directly related with a0 and then to propose

more flexible choices of ψ in Theorem A to relax constraint (1.11) for the principal

term. Moreover we will also show a necessary condition for (1.8) which is similar but

weaker than the sufficient condition. Next we will apply such a Carleman estimate

to the inverse problem of determining a principal term within a more general class.

Now we will state our first main result which shows a sufficient condition and a

necessary condition for Carleman estimate (1.8).

Theorem 1.

(i) (Sufficiency). The following statement (a) implies (b):

(a). There exists β0 > 0, depending on Q and a0, such that a function d ∈ C2(Ω)

satisfies

(1.13) |∇′d(x)| 6= 0 on Ω.

and

inf

{
n∑

j,k=1

(∂j∂kd)(x)ξjξk + (∇′d(x) · ∇′ log a0(x)) ;

(x, t) ∈ Q, ξ′ ∈ Rn with |ξ′| = 1 and

(ξ′ · ∇′d(x)) = ±2βta0(x), 0 < β < β0

}
> 0.(1.14)

(b). There exist λ0 > 0 and β1 > 0, depending on Q and a0, such that if λ > λ0

and 0 < β < β1, then Carleman estimate (1.8) holds with ϕ(x, t) = eλ(d(x)−βt2).
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(ii) (Necessity). The following statement (b) in (i) implies (a’):

(a’). For arbitrarily given ε > 0, there exists β0 > 0, depending on Q and a0, such

that a function d ∈ C2(Ω) satisfies (1.13) and

inf

{
n∑

j,k=1

(∂j∂kd)(x)ξjξk + (∇′d(x) · ∇′ log a0(x)) ;

(x, t) ∈ Q, ξ′ ∈ Rn with |ξ′| = 1 and

(ξ′ · ∇′d(x)) = ±2βta0(x), 0 < β < β0

}
≥ −ε.(1.14’)

In our main theorem, we establish a sufficient condition and a necessary condi-

tion in the statements where x, t, ξ′ are more decoupled than in Theorem A. Thus

especially (i) gives more flexible choices of ψ. However, at the cost of such state-

ments, we do not have a sufficient and necessary condition. In particular, we do

not know whether ε = 0 can be taken in (a’).

Remark. We set

T = sup{|t|; (x, t) ∈ Q for some x ∈ Ω}.

Sine Q is bounded, we see that T < ∞. In Theorem 1, more precisely, β > 0 should

be sufficiently small such that βT is sufficienly small, but T
√

β is not necessarily

small. When we choose d(x) = |x − x0|2 with some x0 ∈ Rn \ Ω under condition

(1.11) and consider an inverse problem of determining a0 over Ω, it is necessary

that T
√

β should be proportional to

(
sup
x∈Ω

|x− x0|2 − inf
x∈Ω

|x− x0|2
) 1

2

(e.g., [7], [10]) and T
√

β cannot be small. The same remark is valid for the following

Theorem 2. Also see condition (3.3) for our inverse problem.
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Our main result is involved with t-variable (see (1.14)). On the other hand, since

our equation (1.1) is autonomous, it is reasonable for us to expect characterization

of d for Carleman estimate (1.8) which is described only by x-variable and should

relax (1.11). As such a sufficient condition, we show

Theorem 2. For some costant ε0 > 0, we suppose that d ∈ C2(Ω) satisfies (1.13)

and

n∑

j,k=1

(∂j∂kd(x))ξjξk + (∇′d(x) · ∇′ log a0(x)) ≥ ε0

for x ∈ Ω, ξ′ ∈ Rn with |ξ′| = 1.(1.15)

We define ϕ by (1.3) and ψ(x, t) = d(x) − βt2. Then there exist constants β0 > 0

and λ0 > 0 such that if 0 < β < β0 and λ > λ0, then Carleman estimate (1.8)

holds with ϕ.

By Theorem 2, we directly derive

Corollary. Let an n × n matrix (∂j∂ka0(x))1≤j,k≤n be non-negative definite for

x ∈ Ω and let |∇′a0(x′)| 6= 0 on Ω be true. Then Carleman estimate (1.8) holds true

with the weight function ϕ = eλ(a0(x)−βt2), where λ > 0 and β > 0 are sufficiently

large and small respectively.

In fact, we can choose a0(x) as d(x) in Theorem 2. Theorem 2 follows imme-

diately from Theorem 1 and we will prove Theorem 1 in Section 2, whose proof is

based on Theorem A.

We note that if in (1.15), we set d(x) = |x− x0|2, then (1.15) is rewritten as

(∇′ log a0(x) · (x− x0)) > −1 +
ε0

2
> −1

which implies (1.11). Therefore condition (1.11) is a special case of (1.15) with a

fixed choice d(x) = |x− x0|2.
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Remark. Theorem 2 really generalizes condition (1.11) in Proposition B. Let us

set

Ω =

{
x ∈ Rn;

√
9
10

< |x| < 1

}
, a0(x) = 1− 2

3
|x|2, x ∈ Ω.

Then (1.11) can not be satisfied for any x0 ∈ Rn. In fact, (1.11) is equivalent to

(1.16)
4|x|2 − 4(x · x0)

3− 2|x|2 < 1 if

√
9
10
≤ |x| ≤ 1.

For any x0 ∈ Rn, we can choose x1 ∈ Ω such that (x1 · x0) = 0 and |x1| =
√

10
11

for example, which breaks condition (1.16). However if we take d(x) = −|x|2 for

x ∈ Ω, then (1.15) holds trues: [the left hand side of (1.15)] = −2 + 8|x|2
3−2|x|2 ≥ 4 if

√
9
10 ≤ |x| ≤ 1.

Our condition (1.15) for the Carleman estimate can be interpreted in terms of

the ray. For the interpretation of (1.15), we define the ray (e.g., Chapter 3 in

Romanov [24]). Let us consider the three dimensional case and let L(x, x0) denote

an arbitrary smooth curve connecting x, x0 ∈ R3 and ds be an element of the arc

length of L(x, x0). Then a ray Γ(x, x0) is defined as L attaining an extremal of the

functional of L:
∫

L(x,x0)

a0dx.

Note that a−1
0 corresponds to the wave speed and that the ray is not necessarily

determined uniquely for given x and x0. Then (1.15) is interpreted that each surface

d(x) = C for any constant C is convex with respect to the set of rays, and, under

some conditions on a smooth real-valued function d, we know the following fact:

Let us assume that (1.15) holds for any ξ′ = (ξ1, ξ2, ξ3) ∈ R3 satisfying |ξ′| = 1

and ξ′ · ∇′d = 0. Then any ray touching the surface {x; d(x) = C}, belongs to the

domain {x; d(x) > C} at any other point.
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As for the details, see Chapter 3 in Romanov [24]. Intuitively we can understand

that rays remaining on a surface prevent us from detecting interior information of

solutions inside the domain, so that if such remaining rays exist, then the property

of unique continuation may be very complicated. Since the Carleman estimate

implies the unique continuation (e.g., Hörmander [5], Isakov [15]), the above fact

suggests that our condition (1.15) is reasonable for proving the Carleman estimate.

However we do not know whether (1.15) is a necessary condition for Carleman

estimates.

As related papers, for a more general hyperbolic operator ∂2
t−

∑n
j,k=1 ∂j(ajk(x)∂k),

Lasiecka, Triggiani and Yao [22] and Yao [28] introduce the weight function of the

form ϕ(x, t) = d(x) − βt2, where d is strictly convex with respect to the Riemann

metric derived by the elliptic part, and establish an inequality of Carleman’s type.

In our case of ajk(x) = δjka0(x)−2 where δjk = 1 if j = k and = 0 if j 6= k, we

can verify that d is strictly convex with respect to the Riemann metric if and only

if the following n× n matrix (mjk)1≤j,k≤n is positive definite in the domain under

consideration:

mjk(x) =

{
∂2

j d− 2a−1
0 (∂ja0)(∂jd) + a−1

0 (∇′a0 · ∇′d), if j = k,

∂j∂kd− a−1
0 (∂ja0)(∂kd)− a−1

0 (∂ka0)(∂jd), if j 6= k.

In [22], the second large parameter λ > 0 is not considered unlike in our paper and

such a parameter is generally useful for guaranteeing the relevant convexity (e.g.,

[5], [15]). In [22] and [28], the inequality of Carleman’s type yields observability

inequalities with a generous condition on the principal term, but their inequality

includes some extra lower order terms, so that it is not directly applicable to our

inverse problem and in [26] the authors proved a Carleman estimate without lower

order terms. As for weight functions with factor d(x) − βt2, see further Isakov
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and Yamamoto [17], Lasiecka, Triggiani and Zhang [23]. Bellassoued [1] proved a

sufficient condition of the principal part for Carleman estimate for an anisotropic

hyperbolic operator a0(x)2∂2
t −

∑n
j,k=1 ∂j(ajk(x)∂k) and discussed an inverse prob-

lem of determining one coefficient in the principal term. His method is based on

the Riemannian geometry like in [22] and [28]. As a recent paper, see Romanov

[25] where d(x) is chosen by means of the Riemannian distance.

§2. Proof of Theorem 1.

The proof will be done by Theorem A.

Proof of (a) =⇒ (b). We assume (1.4) and (1.6) under conditions (1.5) and (1.7)

respectively. First, for sufficiently small β > 0, we prove that any ζ = ξ+
√−1s∇ψ,

ξ ∈ Rn+1, s 6= 0, cannot satisfy (1.7). In fact, (1.7) is equivalent to

(2.1) (ξ′ · ∇′ψ(x, t)) = −2βta2
0(x)ξn+1

(2.2) |ξ′|2 − s2|∇′ψ(x, t)|2 = a0(x)2ξ2
n+1 − 4s2a0(x)2β2t2

and

(2.3) |∇′ψ(x, t)|2 = 4β2t2a0(x)2.

Since Q is bounded, we recall that

(2.4) T ≡ sup{|t|; (x, t) ∈ Q for some x ∈ Ω} < ∞.

In view of (1.13), we set

c1 = inf
x∈Ω

|∇′ψ(x, t)| = inf
x∈Ω

|∇′d(x)| > 0
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and M = ‖a0‖C(Ω). Therefore (2.3) implies βT ≥ c1
2M . Hence for sufficiently small

β > 0 there are no solutions (x, t) to equation (2.3). More precisely, it suffices to

choose β0 > 0 such that

(2.5) β0 < 1 and β0T are sufficienly small

and we assume that 0 < β < β0.

Thus we need not consider (1.6) for proving that (a) =⇒ (b), and we have only to

verify (1.4) under condition (1.5). We directly see that condition (1.5) is equivalent

to (2.1) and

(2.6) |ξ′|2 = a0(x)2ξ2
n+1.

We denote the left hand side of (1.4) by H(x, t, ξ). Henceforth we set ξ′ =

(ξ1, ..., ξn). Since ∂Pm

∂ξj
= 2ξj for 1 ≤ j ≤ n, ∂Pm

∂ξn+1
= −2a2

0ξn+1, ∂kPm =

−2a0(∂ka0)ξ2
n+1, 1 ≤ k ≤ n and ∂n+1Pm = 0, and noting that ∂n+1∂jψ = 0

for 1 ≤ j ≤ n, we can directly calculate to obtain

H(x, t, ξ) =
n∑

j,k=1

4ξjξk(∂j∂kψ) + 4a4
0(∂

2
n+1ψ)ξ2

n+1

+4a0ξ
2
n+1(∇′a0 · ∇′ψ) + 16βtξn+1a0(∇′a0 · ξ′).

Using (2.6), we have

H(x, t, ξ) =4|ξ′|2



n∑

j,k=1

(∂k∂kd)
ξj

|ξ′|
ξk

|ξ′| + (∇′ log a0 · ∇′ψ)




−8{βa2
0|ξ′|2 − 2βtξn+1a0(∇′a0 · ξ′)}.(2.7)

Here by (2.6) and ξ 6= 0, we see that |ξ′| 6= 0. Henceforth by the homogeneity of H

in ξ, we may assume that |ξ′| = 1. Then, in terms of (2.1) and (2.7), the variable

(x, t, ξ) has to satisfy

(2.8) (ξ′ · ∇′ψ(x)) = ±2βta0(x).
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By ε1, we denote the infimum in (1.14), and we see that ε1 > 0. Therefore by (2.7)

and (2.8), we have

H(x, t, ξ) ≥ 4ε1 − C(β + βT ).

Here and henceforth, C > 0 denotes generic constants depending only on a0 and Q.

Hence, if β ∈ (0, β0) is sufficiently small such that (2.5) and 4ε1 − C(β + βT ) > 0

are true, then H(x, t, ξ) > 0 for this β. Thus, in terms of Theorem A (i), the proof

of (a) =⇒ (b) is complete.

Remark. In proving Carleman estimate, we need not verify (1.6) if we can take

small β > 0. This fact is stated also in Isakov [16]. According to the terminology

in [5], (1.4) corresponds to the pseudoconvexity, while (1.4) with (1.6) correspond

to the strong pseudoconvexity.

Proof of (b) =⇒ (a’). By From (ii) of Theorem A, it follows that for ϕ =

eλ(d(x)−βt2) with λ > λ0 and 0 < β < β1, we have (1.9) under (1.10). We directly

verify that (1.10) is equivalent to (2.1) and (2.6). Let us denote the right hand side

of (1.9) by H1(x, t, ξ). Similarly to (2.7), in terms of (2.1), we can calculate H1:

H1(x, t, ξ) =4
n∑

j,k=1

ξjξk(λ2(∂jψ)(∂kψ)ϕ + λ(∂j∂kψ)ϕ)

−8a2
0ξn+1

n∑

j=1

ξjλ
2(∂jψ)(∂n+1ψ)ϕ + 4a4

0ξ
2
n+1{λ2(∂n+1ψ)2ϕ + λ(∂2

n+1ψ)ϕ}

+4a0λϕ(∇′a0 · ∇′ψ)ξ2
n+1 − 8a0λϕ(∇′a0 · ξ′)(∂n+1ψ)ξn+1

=


4λϕ

n∑

j,k=1

(∂j∂kψ)ξjξk + 4a0λϕ(∇′a0 · ∇′ψ)ξ2
n+1




−8a4
0βλϕξ2

n+1 + 16a0λϕβtξn+1(∇′a0 · ξ′).

By ξ 6= 0, (2.6) and the homogeneity of H1 in ξ, we can set |ξ′| = 1. Therefore

(2.9) H1(x, t, ξ) ≤ 4λϕ





n∑

j,k=1

(∂j∂kd)ξjξk + (∇′ log a0 · ∇′d)



 + CλϕβT.
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By (1.9) and (2.9), as long as 0 < β < β1, we see: if |ξ′| = 1 and (2.8) hold, then

n∑

j,k=1

(∂j∂kd)ξjξk + (∇′ log a0 · ∇′d) + CβT > 0.

That is, for any β ∈ (0, β1), we have

inf

{
n∑

j,k=1

(∂j∂kd)(x)ξjξk + (∇′d(x) · ∇′ log a0(x)) ;

(x, t) ∈ Q, ξ′ ∈ Rn with |ξ′| = 1 and

(ξ′ · ∇′d(x)) = ±2βta0(x)

}
≥ −CβT.(2.10)

Let ε > 0 be arbitrarily given. We set β0 = min
{

ε
CT , β1

}
. Then

inf
0<β<β0

{
n∑

j,k=1

(∂j∂kd)(x)ξjξk + (∇′d(x) · ∇′ log a0(x)) ;

(x, t) ∈ Q, ξ′ ∈ Rn with |ξ′| = 1 and

(ξ′ · ∇′d(x)) = ±2βta0(x)

}

≥ inf
0<β<β0

−CβT ≥ −ε.

Thus the proof of (b) =⇒ (a’) is complete. ¥

§3. Application to an inverse problem of determining principal terms.

Let Ω ∈ Rn be a bounded domain with C2- boundary ∂Ω and let us consider

(3.1) (Pku)(x, t) = (ak(x)2∂2
t −∆)u(x, t), k = 0, 1, x ∈ Ω, t ∈ R,

with given initial values u(·, 0) and ∂tu(·, 0). Here ak > 0 on Ω and ak ∈ C2(Ω).

We discuss

Uniqueness in Inverse Problem. Let uk satisfy Pkuk = 0 in Ω × (−T, T ),

k = 0, 1. Then, with some positivity condition on u(·, 0), can we conclude that

a0 = a1 in Ω by

(3.2)





u0(x, 0) = u1(x, 0), ∂tu0(x, 0) = ∂tu1(x, 0), x ∈ Ω,

u0 = u1,
∂u0

∂ν
=

∂u1

∂ν
on ∂Ω× (−T, T )?
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Here and henceforth, ν = ν(x) is the unit outward normal vector to ∂Ω at x and

∂
∂ν denotes the normal derivative: ∂u

∂ν = ∇′u · ν.

In this kind of inverse problems, unknown coefficients appear in principal terms

and for the Carleman estimate which is the key, we have to assume conditions of

type (1.11) in Imanuvilov, Isakov and Yamamoto [7], Imanuvilov and Yamamoto

[10], [11], Isakov [12], [13]. Condition (1.11) definitely restricts an admissible set of

unknown coefficients and the relaxation of the condition for the Carleman estimate

is very desirable.

In this section, for simplicity, we mainly discuss the uniqueness in determining

a1(x) around a given a0(x). For known a0, we assume that there exists d ∈ C2(Ω)

satisfying (1.13) and (1.14) (or (1.13) and (1.15)). We set ψ(x, t) = d(x)− βt2 and

ϕ(x, t) = eλψ(x,t), where β > 0 and λ > 0 are defined in Theorem 1.

Now we are ready to state the main result on the uniqueness.

Theorem 3. We assume that for a0, there exists d ∈ C2(Rn) satisfying (1.13) and

(1.14). Let

(3.3) T >

√
supx∈Ω d(x)− infx∈Ω d(x)√

β
,

and let uk ∈ C2(Ω× [−T, T ]), k = 0, 1, satisfy ∂tuk ∈ C2(Ω× [−T, T ]),

(3.4) Pkuk = 0 in Ω× (−T, T ),

(3.5) u0(x, 0) = u1(x, 0), ∂tu0(x, 0) = ∂tu1(x, 0), x ∈ Ω,

and

(3.6) u0 = u1,
∂u0

∂ν
=

∂u1

∂ν
on ∂Ω× (−T, T ).
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Moreover let

(3.7) ∆u0(x, 0) > 0, x ∈ Ω.

Then

(3.8) a0(x) = a1(x), x ∈ Ω.

This theorem asserts the uniqueness, provided that strict positivity (3.7) of an

initial value is satisfied. Such positivity is not very practical but for applications

of Carleman estimates, we have to assume like in [1] - [3], [7] - [13], [17], [19], [20],

[27]. Moreover within a suitable admissible set of ak’s, we can prove the conditional

stability which estimates a0−a1 by means of u0−u1 and ∂u0
∂ν − ∂u1

∂ν on ∂Ω×(−T, T ),

but we will not discuss here, and for simplicity, we will consider the case where the

boundary observation is taken over the whole boundary ∂Ω (see (3.6)).

Proof. Now that we have established a Carleman estimate in Theorem 2, the proof

is done along the line of Imanuvilov and Yamamoto [8]. The difference y = u1−u0

satisfies

(3.9) P0y = R(x, t)f(x) in Ω× (−T, T ),

(3.10) y(x, 0) = ∂ty(x, 0) = 0, x ∈ Ω,

and

(3.11) y =
∂y

∂ν
= 0 on ∂Ω× (−T, T ).

Here we set

(3.12) f(x) = a2
0(x)− a2

1(x), R(x, t) = ∂2
t u1(x, t) =

1
a2
1(x)

∆u1(x, t),
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for x ∈ Ω and t ∈ (−T, T ).

For application of the Carleman estimate, we have to introduce a suitable cutoff

function. For this, we will define relevant level sets. We set

Q(δ) = {(x, t) ∈ Rn × R; ϕ(x, t) > δ}

for δ > 0 and

(3.13) ρ0 = inf
x∈Rn

d(x).

By (3.3), we can choose ε2 > 0 such that

(3.14) T =

√
supx∈Ω d(x)− (infx∈Ω d(x)− ε2)√

β
.

Without loss of generality, we may assume that ε2 > 0 is sufficiently small.

Moreover, by (1.13), the function d(x) cannot attain the minimum on Ω. Hence

infx∈Ω d(x) > ρ0. Setting ρ1 = infx∈Ω d(x)− ε2 and noting that ε2 > 0 is assumed

to be sufficiently small, we see that

{x ∈ Rn; d(x) > ρ1} ⊃ Ω, ρ1 > ρ0,

{x ∈ Rn; d(x) > ρ1} % {x ∈ Rn; d(x) > ρ}, if ρ > ρ1.(3.15)

Now we set

(3.16) δ1 = eλρ1 .

Therefore, by (3.14), we can easily verify that

(3.17) Q(δ1) ∩ (Ω× R) ⊂ Ω× (−T, T ).

In fact, let (x, t) ∈ Q(δ1) ∩ (Ω× R), that is, d(x)− βt2 > ρ1 and x ∈ Ω. Then

|t| ≤
√

d(x)− ρ1√
β

≤
√

supx∈Ω d(x)− (infx∈Ω d(x)− ε2)√
β

= T
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by (3.14). Thus (3.17) follows.

Taking ρ2, ρ3 > 0 such that 0 < ρ1 < ρ2 < ρ3 and |ρ1 − ρ2| + |ρ1 − ρ3| is

sufficiently small, so that

{x ∈ Rn; d(x) > ρ3} ⊃ Ω,

{x ∈ Rn; d(x) > ρj} % {x ∈ Rn; d(x) > ρj+1} j = 1, 2,(3.18)

in terms of (3.15). We set

(3.19) δ2 = eλρ2 , δ3 = eλρ3 .

For j = 1, 2, 3, we note that

(3.20) (x, t) ∈ ∂Q(δj) if and only if t = ±
√

d(x)− ρj√
β

.

By (3.18) and (3.20), we see that Q(δj+1) $ Q(δj) for j = 1, 2. Therefore we can

define χ ∈ C∞0 (Q(δ1)) such that 0 ≤ χ ≤ 1 and

(3.21) χ(x, t) =
{

1, (x, t) ∈ Q(δ3),

0, (x, t) ∈ Q(δ1) \Q(δ2).

We set

(3.22) z = (∂ty)esϕχ ∈ C2(Ω× [−T, T ]).

Then, by (3.9), we have

P0z = f(∂tR)esϕχ + s{−2(∇′ϕ · ∇′z) + 2a2
0(∂tϕ)∂tz + (P0ϕ)z}

−s2(a2
0|∂tϕ|2 − |∇′ϕ|2)z

+2esϕ{a2
0(∂

2
t y)∂tχ− (∇′(∂ty) · ∇′χ)}+ (∂ty)esϕP0χ in Q(δ1) ∩ (Ω× R).

(3.23)

In fact,

∂jz = (∂j∂ty)esϕχ + s(∂jϕ)z + (∂ty)esϕ∂jχ,
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and

(3.24) (∂j∂ty)esϕχ = ∂jz − s(∂jϕ)z − (∂ty)esϕ∂jχ.

Hence, by (3.24), we see

∂2
j z = (∂2

j ∂ty)esϕχ + (∂j∂ty)s(∂jϕ)esϕχ + 2(∂j∂ty)esϕ(∂jχ) + s(∂2
j ϕ)z + s(∂jϕ)∂jz

+(∂ty)s(∂jϕ)esϕ∂jχ + (∂ty)esϕ∂2
j χ

=(∂2
j ∂ty)esϕχ + s(∂jϕ){∂jz − s(∂jϕ)z − (∂ty)esϕ∂jχ}

+s(∂2
j ϕ)z + s(∂jϕ)∂jz + 2(∂j∂ty)esϕ(∂jχ) + (∂ty)s(∂jϕ)esϕ∂jχ + (∂ty)esϕ∂2

j χ

=(∂2
j ∂ty)esϕχ + 2s(∂jϕ)∂jz + s(∂2

j ϕ)z − s2(∂jϕ)2z

+2(∂j∂ty)esϕ∂jχ + (∂ty)esϕ∂2
j χ.

Substitution into (a2
0∂

2
n+1 −∆)z yields (3.23).

Moreover, setting w = (∂ty)χ, we obtain

P0w = f(∂tR)χ + 2a2
0(∂

2
t y)∂tχ− 2(∇′(∂ty) · ∇′χ)

+(∂ty)P0χ in Q(δ1) ∩ (Ω× R).(3.25)

By (3.11), (3.17) and (3.21), it follows that w ∈ H2
0 (Q(δ1) ∩ (Ω × R)), so that we

can apply Theorem 1 to w in Q ≡ Q(δ1) ∩ (Ω× R):

∫

Q

(s3w2 + s|∇w|2)e2sϕdxdt ≤ C

∫

Q

f2|∂tR|2χ2e2sϕdxdt

+C

∫

Q

|2a2
0(∂

2
t y)∂tχ− 2(∇′(∂ty) · ∇′χ) + (∂ty)P0χ|2e2sϕdxdt

≤C

∫

Q

f2χ2e2sϕdxdt + Ce2sδ3

(3.26)

for all sufficiently large s > 0. At the last inequality, we have used

(3.27) ∂tχ = |∇′χ| = P0χ = 0 in Q(δ3) ∪ (Q(δ1) \Q(δ2)),
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which follows from (3.21), and e2sϕ ≤ e2sδ3 in Q(δ2)\Q(δ3). Noting that z = wesϕ,

we can rewrite (3.26) in terms of z:

(3.28)
∫

Q

(s3|z|2 + s|∇z|2)dxdt ≤ C

∫

Q

f2χ2e2sϕdxdt + Ce2sδ3

for sufficiently large s > 0.

We set Q− = {(x, t) ∈ Q; t < 0}. We multiply (3.23) by ∂tz and integrate over

Q−:

I1 ≡
∫

Q−
(P0z)∂tzdxdt =

∫

Q−
f(∂tR)esϕχ∂tzdxdt

+
∫

Q−
s{−2(∇′ϕ · ∇′z) + 2a2

0(∂tϕ)∂tz + (P0ϕ)z}∂tzdxdt

−s2

∫

Q−
(a2

0|∂tϕ|2 − |∇′ϕ|2)z∂tzdxdt

+
∫

Q−
{2a2

0(∂
2
t y)∂tχ− 2(∇′(∂ty) · ∇′χ) + (∂ty)P0χ}esϕ∂tzdxdt ≡ I2.

(3.29)

By (3.11) and (3.21), we integrate I1 by parts:

I1 =
∫

Q−
(a2

0(∂
2
t z)∂tz − (∆z)∂tz)dxdt =

∫

Q−

{
1
2
∂t(|∂tz|2a2

0) +
1
2
∂t(|∇′z|2)

}
dxdt

=
∫

Ω

1
2
(|∂tz|2a2

0 + |∇′z|2)νn+1dx

where νn+1 is the (n + 1)-component of the unit outward normal vector to ∂Q−.

Hence (3.7), (3.9), (3.10) and (3.22) imply

I1 =
1
2

∫

Ω

|(∂tz)(x, 0)|2a2
0(x)dx

=
1
2

∫

Ω

a2
0(x)|(∂2

t y)(x, 0)|2χ2(x, 0)e2sϕ(x,0)dx

=
1
2

∫

Ω

f2(x)
|∆u1(x, 0)|2
a2
0(x)a4

1(x)
χ2(x, 0)e2sϕ(x,0)dx

≥C1

∫

Ω

f2(x)χ2(x, 0)e2sϕ(x,0)dx.(3.30)
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For I2, we use Schwarz’s inequality and (3.27), (3.28) to obtain

(3.31) I2 ≤ C

∫

Q

f2χ2e2sϕdxdt + Ce2sδ3

for all large s > 0. Consequently (3.30) and (3.31) yield

∫

Ω

f2(x)χ2(x, 0)e2sϕ(x,0)dx ≤ C

∫

Q

f2χ2e2sϕdxdt + Ce2sδ3

for all large s > 0. By (3.18), we see that x ∈ Ω implies ϕ(x, 0) > eλρ3 = δ3, which

yields χ(x, 0) = 1 by (3.21). Consequently

(3.32)
∫

Ω

f2(x)e2sϕ(x,0)dx ≤ C

∫

Q

f2e2sϕdxdt + Ce2sδ3

for all large s > 0.

On the other hand, by (3.17), we see that Q ⊂ Ω× (−T, T ). Hence,

∫

Q

f2e2sϕdxdt ≤
∫

Ω

(∫ T

−T

e2sϕ(x,t)dt

)
f2(x)dx

=
∫

Ω

f2(x)e2sϕ(x,0)

(∫ T

−T

e2s(ϕ(x,t)−ϕ(x,0))dt

)
dx.

Recalling the definition of ϕ and applying the Lebesgue theorem, we have

sup
x∈Ω

∣∣∣∣∣
∫ T

−T

e2s(ϕ(x,t)−ϕ(x,0))dt

∣∣∣∣∣ = sup
x∈Ω

∣∣∣∣∣
∫ T

−T

exp(2seλd(x)(e−λβt2 − 1))dt

∣∣∣∣∣

≤
∫ T

−T

exp(2seλd0(e−λβt2 − 1))dt = o(1),

where d0 = infx∈Ω d(x), as s −→∞. Therefore

∫

Q

f2e2sϕdxdt = o(1)
∫

Ω

f2(x)e2sϕ(x,0)dx,

with which inequality (3.32) yields

(1− o(1))
∫

Ω

f2(x)e2sϕ(x,0)dx ≤ Ce2sδ3
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as s −→ ∞. By (3.18), there exists ρ4 > ρ3 such that {x ∈ Rn; d(x) > ρ4} ⊃ Ω,

that is, x ∈ Ω implies that ϕ(x, 0) > eλρ4 ≡ δ4 > δ3. Hence

(1− o(1))e2sδ4

∫

Ω

f2(x)dx ≤ Ce2sδ3 ,

so that
∫

Ω

f2(x)dx ≤ Ce−2s(δ4−δ3)

as s −→∞. Consequently, by letting s −→∞, we see by δ4−δ3 > 0 that f(x) = 0,

x ∈ Ω. Thus the proof of Theorem 3 is complete. ¥
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dynamical Lamé system with two sets of boundary data, Comm. Pure Appl.
Math. 56 (2003), 1366–1382.



22 O.Y. IMANUVILOV, V. ISAKOV AND M. YAMAMOTO

8. O. Yu. Imanuvilov and M. Yamamoto, Global uniqueness and stability in deter-
mining coefficients of wave equations, Commun. in Partial Differential Equa-
tions 26 (2001), 1409–1425.

9. O. Yu. Imanuvilov and M. Yamamoto, Global Lipschitz stability in an inverse
hyperbolic problem by interior observations, Inverse Problems 17 (2001), 717–
728.

10. O. Yu. Imanuvilov and M. Yamamoto, Determination of a coefficient in an
acoustic equation with a single measurement, Inverse Problems 19 (2003), 157–
171.

11. O. Yu. Imanuvilov and M. Yamamoto, Carleman estimates for the non-stationary
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