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Abstract

In this paper we prove a Hölder and Lipschitz stability estimates of de-

termining all coefficients of a dynamical Lamé system with residual stress,

including the density, Lamé parameters, and the residual stress, by three pairs

of observations from the whole boundary or from a part of it. These estimates

imply first uniqueness results for determination of all parameters in the residual

stress systems from few boundary measurements. Our essential assumptions

are that the Lamé system possesses a suitable pseudoconvex function, residual

stress is small, and three sets of the initial data satisfy some independency

condition.

1 Introduction

We consider an elasticity system with residual stress. This system is anisotropic,
i.e. it describes elastic properties of materials different in various directions. The as-
sumption about isotropy is too restrictive in most important applications, although
it allows deeper mathematical analysis of direct and especially of inverse problems.
While theory of unique solvability of direct problems in quite general anisotropic
case is relatively well developed [3], almost nothing is known about determination of
anisotropic elastic parameters from additional boundary value data (i.e. about in-
verse problems). We handle simplest anisotropy known as Lamé system with residual
stress, which is a small perturbation of classical isotropic Lamé system by a scalar
anisotropic second order operator. Smallness of perturbation is motivated by appli-
cations to material science [13]. Assuming that speeds of propagation of shear and
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compression waves in unperturbed system satisfy some pseudoconvexity type condi-
tions (which exclude trapped elastic rays) and that three sets of initial conditions are
in certain sense independent, we obtain first uniqueness and stability results about
identification of all 9 elastic parameters of isotropic medium with residual stress
from lateral boundary observations. When observation time and observed part of
the boundary are arbitrary we explicitly describe a domain where coefficients are
guaranteed to be unique and we give a Hölder stability estimate. When observation
time is sufficiently large and observation is from the whole lateral boundary we derive
Lipschitz stability estimates. These estimates indicate the possibility of numerical
solution of inverse problem with high resolution and therefore a substantial applied
potential. While our assumptions exclude zero initial data (most natural in many
applications), recent progress in generating wave fields by interior sources in geo-
physics, material sciences, and medicine, and also substantial amount of historical
seismic data from earthquakes (which are interior sources) make our assumptions
more realistic.

Let Ω be an open bounded domain in R
3 with boundary ∂Ω ∈ C8. The residual

stress is modelled by a symmetric second-rank tensor R(x) = (rjk(x))
3
j,k=1 ∈ C7(Ω)

which is divergence free

divR = 0 in Ω (1.1)

and satisfies the boundary condition

Rν = 0 on ∂Ω, (1.2)

where divR is a vector-valued function with components given by

(divR)j =

3
∑

k=1

∂krjk, 1 ≤ j ≤ 3.

In this paper x = (x1, x2, x3) ∈ R3 and ν = (ν1, ν2, ν3)
⊤ is the unit outer normal

vector to ∂Ω. Here and below, differential operators ∇ and ∆ without subscript are
with respect to x variables. Let Q = Ω× (−T, T ) and u = (u1, u2, u3)

⊤ : Q→ R
3 be

the displacement vector in Q. We remind that ǫ(u) = (∇u + ∇u⊤)/2 is the strain
tensor. We consider the initial boundary value problem:

AEu := ρ∂2
t u− µ∆u − (λ + µ)∇(divu) − (∇λ)divu − 2ǫ(u)∇µ− div((∇u)R) = 0 in Q,

(1.3)

u = u0, ∂tu = u1 on Ω × {0}, (1.4)

u = g on ∂Ω × (−T, T ), (1.5)
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where ρ is density and λ and µ are Lamé parameters depending only on x and
satisfying inequalities

ε1 < µ, ε1 < ρ, ε1 < λ+ µ on Ω (1.6)

for some positive constant ε1. Hereafter, we use E to represent the set of elastic
coefficients in (1.3), i.e. E = (ρ, λ, µ,R). We will assume that ρ ∈ C6(Ω) and
λ, µ ∈ C7(Ω). The system (1.3) can be written as

ρ ∂2
t u− divσ(u) = 0,

where σ(u) = λ(trǫ)I + 2µǫ + R+ (∇u)R is stress tensor. Note that the term divR
does not appear in (1.3) due to (1.1). Also, due to the same condition, we can see
that

(div((∇u)R))i =

3
∑

j,k=1

rjk∂j∂kui, 1 ≤ i ≤ 3.

To make sure that the problem (1.3) with (1.4), (1.5) is well-posed, it suffices to
assume that

‖R‖C1(Ω) < ε0 (1.7)

for some (small) constant ε0 > 0. The assumption (1.7) is also motivated by material
science applications [13]. Indeed, residual stress of interest for engineers is due to
past thermal changes in steel production which do not significantly change elastic
properties of steel. It is not hard to see that if ε0 is sufficiently small, then the
boundary value problem (1.3), (1.4), (1.5) is hyperbolic, and hence for any initial data
(u0,u1) ∈ H1(Ω)× L2(Ω) and lateral Dirichlet data g ∈ C1([−T, T ];H1(Ω)), u0 = g

on ∂Ω × {0}, there exists a unique solution u(·;E;u0,u1,g) ∈ C([−T, T ];H1(Ω)) to
(1.3)-(1.5).

In this paper we are interested in the following inverse problem:

Let Γ be an open subset of ∂Ω with ∂Γ ∈ C1. Determine density ρ, Lamé
parameters λ, µ, and the residual stress R (total 9 functions) from Cauchy type data
(u, σ(u)ν) on Γ × (−T, T ), where u = u(·;E;u0,u1,g), given for a finite number of
pairs of initial data (u0,u1).

We will address uniqueness and stability issues. The focus is on the stability, since
stability implies uniqueness. This work is a sequel of our recent paper [10] where we
demonstrated uniqueness of only R assuming known constant ρ, λ, µ. Our method
is based on Carleman estimates techniques initiated by Bukhgeim and Klibanov [2].
For works on Carleman estimates and related inverse problems for scalar equations,
we refer to books [1] and [11] for further details and references. The method of [2]
was modified for scalar equations in the paper of Imanuvilov and Yamamoto [5]. It
was found by Imanuvilov, Isakov, and Yamamoto [7] that this modification allows to
obtain uniqueness and stability for coefficients of systems of equations, in particular in
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[7] there is a first uniqueness result for all three elastic parameters ρ, λ, µ of isotropic
elasticity. For further results on identification of the isotropic Lame system we refer
to [6]. For Carleman estimates and uniqueness of the continuation for the residual
stress system (1.3) and for identification of source term and R with given constant
ρ, λ, µ, we refer to [9], [10], [12]. In case of many boundary measurements and zero
initial data there only partial results on identification of residual stress [4], [14]. In
the present work we will show that we can determine all 9 parameters in(1.3)-(1.5) by
three pairs of Cauchy data. We will derive a Hölder stability estimate in the convex
hull of the observation surface Γ and a Lipschitz stability estimate for (ρ, λ, µ,R) in
Ω when Γ = ∂Ω and observation time T is large.

We are now ready to state main results of the paper. Let d = inf |x| and D =
sup |x| over x ∈ Ω. We will assume that

0 < d. (1.8)

For a function c ∈ C1(Ω) we introduce the following condition

θ2 < c and θ2c+ dθ
√
c|∇c| + 1

2
c x · ∇c < c2 on Ω. (1.9)

Let Eε0,M be the class of parameters defined by

Eε0,M = { ‖ρ‖C6(Ω) + ‖λ‖C7(Ω) + ‖µ‖C7(Ω) + ‖R‖C6(Ω) < M :

ρ, λ, µ satisfy (1.6) and c = µ

ρ
, c = λ+2µ

ρ
satisfy (1.9),

R is symmetric and satisfies (1.1), (1.2), and (1.7) }.

To study the inverse problem, we need not only the well-posedness of (1.3)-(1.5)
but also some extra regularity of the solution u. To achieve the latter property,
the initial and Dirichlet data (u0,u1,g) are required to satisfy some smoothness
and compatibility conditions. More precisely, we will assume that u0 ∈ H9(Ω),u1 ∈
H8(Ω) and g ∈ C8([−T, T ];H1(∂Ω))∩C5([−T, T ];H4(∂Ω)) and they satisfy standard
compatibility conditions of order 8 at ∂Ω × {0}. By using energy estimates [3] and
Sobolev embedding theorems as in [7] one can show that

‖∂α
x∂

β
t u‖C0(Q) ≤ C (1.10)

for |α| ≤ 2 and 0 ≤ β ≤ 5. We will use three sets of initial data (u0(·; j),u1(·; j)),
j = 1, 2, 3. To guarantee uniqueness in the inverse problem, we impose some non-
degeneracy condition on the initial data. Namely, let M denote the 18 × 13 matrix

















µ1∆u0(·; 1) + (λ1 + µ1)∇(divu0(·; 1)) divu0(·; 1)I3 2ǫ(u0(·; 1)) R(u0(·; 1))
µ1∆u1(·; 1) + (λ1 + µ1)∇(divu1(·; 1)) divu1(·; 1)I3 2ǫ(u1(·; 1)) R(u1(·; 1))
µ1∆u0(·; 2) + (λ1 + µ1)∇(divu0(·; 2)) divu0(·; 2)I3 2ǫ(u0(·; 2)) R(u0(·; 2))
µ1∆u1(·; 2) + (λ1 + µ1)∇(divu1(·; 2)) divu1(·; 2)I3 2ǫ(u1(·; 2)) R(u1(·; 2))
µ1∆u0(·; 3) + (λ1 + µ1)∇(divu0(·; 3)) divu0(·; 3)I3 2ǫ(u0(·; 3)) R(u0(·; 3))
µ1∆u1(·; 3) + (λ1 + µ1)∇(divu1(·; 3)) divu1(·; 3)I3 2ǫ(u1(·; 3)) R(u1(·; 3))
















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where I3 is the 3 × 3 identity matrix, R(v) a 3 × 6 matrix defined by

R(v) =
(

∂2
1v 2∂1∂2v 2∂1∂3v ∂2

2v 2∂2∂3v ∂2
3v

)

. (1.11)

We will assume that

there exists a 13 × 13 minor of M such that the absolute value of

its determinant is greater than ε0 on Ω.
(1.12)

One can check that u0(·; 1) = (x1x2, 0, 0)⊤, u1(·; 1) = (0, 0, 0)⊤, u0(·; 2) = (x1, x2, x3)
⊤,

u1(·; 2) = (0, x2, x3), u0(·; 3) = (x2
1, x

2
2, x

2
3)

⊤ and u1(·; 3) = (x2x3, x1x3, x1x2)
⊤ satisfy

(1.12). Here 13 row vectors from row 2,7-18 are linearly independent on Ω.
We will use the following notation:
C, γ are generic constants depending only on Ω, T, δ, ε0,M,u0(·; j),u1(·; j), j =

1, 2, 3, any other dependence will be indicated, ‖ · ‖(k)(Q) is the norm in the Sobolev
space Hk(Q). Q(ε) = Q ∩ {ε < |x|2 − θ2t2 − d2

1} and Ω(ε) = Ω ∩ {ε < |x|2 − d2
1},

where d1 ≥ d. Let u(; 1; j) and u(; 2; j) be solutions of (1.3), (1.4) with initial data
(u0(; j),u1(; j)), for j = 1, 2, 3, corresponding to coefficients E1 and E2, respectively.
We will consider the Dirichlet data (displacements) as measurements (observations).
We introduce the norm of the differences of the data

F =
∑3

j=1

∑4
β=2(‖∂

β
t (u(; 2; j) − u(; 1; j))‖( 5

2
)(Γ × (−T, T ))

+‖∂β
t σ(u(; 2; j) − u(; 1; j))ν‖( 3

2
)(Γ × (−T, T ))).

We first state the Hölder type estimate of determining coefficients in Ω(ε).

Theorem 1.1. Assume that the domain Ω satisfies (1.8), θ satisfies

θ2 <
d2

T 2
, (1.13)

and for some d1,

|x|2 − d2
1 < 0 when x ∈ (∂Ω \ Γ), and D2 − θ2T 2 − d2

1 < 0. (1.14)

Let the initial data (u0(; j),u1(; j)), j = 1, 2, 3, satisfy (1.12).
Then there exist ε0 and constants C, γ ∈ (0, 1) such that for E1, E2 ∈ Eε0,M with

λ1 = λ2 and µ1 = µ2 on Γ, (1.15)

one has

‖ρ1 − ρ2‖(0)(Ω(ε)) + ‖λ1 − λ2‖(0)(Ω(ε)) + ‖µ1 − µ2‖(0)(Ω(ε)) + ‖R1 − R2‖(0)(Ω(ε)) ≤ CF γ .
(1.16)
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Remark 1.2. If d1 < D, then the second condition of (1.14) and (1.13) imply that

D2 − d2
1

θ2
< T 2 <

d2

θ2
.

In other words, the observation time T needs not be too large. In this case, we can
determine elastic parameters in the domain Ω(ε). The domain Ω(ε) is discussed in
[8], section 3.4.

If Γ is the whole lateral boundary and T is sufficiently large, then a much stronger
(and in a certain sense best possible) Lipschitz stability estimate holds.

Theorem 1.3. Let d1 = d. Assume that

D2 < 2d2, (1.17)

and

D2 − d2

θ2
< T 2 <

d2

θ2
. (1.18)

Let the initial data (u0(; j),u1(; j)), j = 1, 2, 3, satisfy (1.12) and Γ = ∂Ω.
Then there exist an ε0 in (1.7) and C such that for E1, E2 ∈ Eε0,M satisfying the

conditions

ρ1 = ρ2, R1 = R2, ∂
αλ1 = ∂αλ2 and ∂αµ1 = ∂αµ2 , on Γ when |α| ≤ 1,

(1.19)

one has

‖ρ1 − ρ2‖(0)(Ω) + ‖λ1 − λ2‖(0)(Ω) + ‖µ1 − µ2‖(0)(Ω) + ‖R1 − R2‖(0)(Ω) ≤ CF
(1.20)

Let us show compatibility of conditions (1.18). From conditions (1.17) we have

D2 − d2

θ2
<
d2

θ2

and hence we can find T 2 between these two numbers.
As mentioned previously, the proofs of these theorems rely on Carleman estimates.

We briefly described needed Carleman estimates in Section 2. Using this estimate we
will prove in Section 3 the Hölder stability estimate (1.16). In Section 4, we derive
the Lipschitz stability estimate for our inverse problem.
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2 Carleman estimate

In this section we will describe Carleman estimates needed to solve our inverse prob-
lem. Their proofs can be found in [9] and [10]. Let ψ(x, t) = |x|2 − θ2t2 − d2

1 and
ϕ(x, t) = exp( η

2
ψ(x, t)), where θ is chosen in (1.13). Due to condition (1.9) and

known sufficient conditions of pseudoconvexity [8], Theorem 3.4.1, we can fix (large)
η > 0 so that the phase function ϕ is strongly pseudoconvex on Q with respect to

ρ

µ
∂2

t − ∆,
ρ

λ + 2µ
∂2

t − ∆.

Theorem 2.1. There are constants ε0 and C such that for E ∈ Eε0,M

∫

Q
(τ |∇x,tu|2 + τ |∇x,tdivu|2 + τ |∇x,tcurlu|2 + τ 3|u|2 + τ 3|divu|2 + τ 3|curlu|2)e2τϕ

≤ C
∫

Q
(|AEu|2 + |∇(AEu)|2)e2τϕ

(2.1)

for all u ∈ H3
0 (Q) and

∫

Q

(τ 2|u|2 + |divu|2 + |curlu|2 + τ−1|∇u|)e2τϕ ≤ C

∫

Q

|AEu|2e2τϕ (2.2)

for all u ∈ H2
0 (Q).

Carleman estimates of Theorem 2.1 is our basic tool for treating the inverse prob-
lem. The basic idea in proving Theorem 2.1 is to reduce (1.3) to an extended system
of dimension 7 for (u,divu, curlu). The resulting new system is not principally di-
agonalized. However, when the residual stress R is small, the second derivatives of
u can be bounded by first derivatives of divu and curlu. We refer to [9] and [10]
for detailed computations. For the case considered here, we only need to verify the
strong pseudoconvexity of ϕ on Q. Under conditions (1.9) and (1.13), one can check
that ϕ satisfies the required property when ε0 is small and η is large (see [8] or [9]).
An estimate similar to (2.2) was also derived in [7].

In order to use (2.1), it is required that the Cauchy data of the solution and the
source term vanish on the lateral boundary. To handle non-vanishing Cauchy data,
the following lemma is useful.

Lemma 2.2. For any pair of (g0,g1) ∈ H
5

2 (∂Ω× (−T, T ))×H
3

2 (∂Ω× (−T, T )), we
can find a vector-valued function u∗ ∈ H3(Q) such that

u∗ = g0, σ(u∗)ν = g1,AEu∗ = 0 on ∂Ω × (−T, T ),

and

‖u∗‖(3)(Q) ≤ C(‖g0‖( 5

2
)(∂Ω × (−T, T )) + ‖g1‖( 3

2
)(∂Ω × (−T, T ))) (2.3)

for some C > 0 provided ε0 in (1.7) is sufficiently small.
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Proof. By standard extensions theorems for any g2 ∈ H( 1

2
)(∂Ω × (−T, T ) we can

find u∗∗ ∈ H3(Q) so that

u∗∗ = g0, σ(u∗∗)ν = g1, ∂
2
νu

∗∗ = g2 on ∂Ω × (−T, T )

and

‖u∗∗‖(3)(Q) ≤ C(‖g2‖( 1

2
)(∂Ω×(−T, T ))+‖g1‖( 3

2
)(∂Ω×(−T, T ))+‖g0‖( 5

2
)(∂Ω×(−T, T ))).

Since ∂Ω× (−T, T ) is non-characteristic with respect to AE provided (1.6) holds and
ε0 is small, the condition AEu∗∗ = 0 on ∂Ω×(−T, T ) is equivalent to the fact that g2

can be written as a linear combination (with C1 coefficients) of ∂2
t g0 and tangential

derivatives of g0 (up to second order) and of g1 (up to first order) along ∂Ω. In
particular,

‖g2‖( 1

2
)(∂Ω × (−T, T )) ≤ C(‖g1‖( 3

2
)(∂Ω × (−T, T ) + ‖g0‖( 5

2
)(∂Ω × (−T, T )).

Choosing g2 as this linear combination we obtain (2.3). 2

To handle ∇λ and ∇µ in (1.3), we need other Carleman estimates. We first derive
the estimate needed in the proof of Theorem 1.1. Let d1 be given as in Theorem 1.1.
Then we can see that ∂Ω(ε) = (Γ ∪ {|x|2 = d2

1 + ε}) ∩ Ω̄.

Lemma 2.3. Let f ∈ C1(Ω) satisfy f |Γ = 0. Then

τ

∫

Ω(ε)

|f(x)|2e2τϕ(x,0)dx ≤ C

∫

Ω(ε)

|∇f(x)|2e2τϕ(x,0)dx. (2.4)

Proof. Denote ϕ0(x) = ϕ(x, 0). Let g = eτϕ0f , then eτϕ0∇f = ∇g − τ∇ϕ0g. Note
that g|Γ = 0. We observe that ∇ϕ0(x) = ηxϕ0(x) and thus on ∂Ω(ε) \ Γ with the
unit outer normal ν(= −x/|x|)

∂νϕ0(x) = ∇ϕ0 · ν = −η|x|ϕ0(x). (2.5)

Using integration by parts and (2.5), we have that
∫

Ω(ε)
|∇g − τ∇ϕ0g|2

=
∫

Ω(ε)
|∇g|2 + τ 2

∫

Ω(ε)
|∇ϕ0g|2 − 2τ

∫

Ω(ε)
∇g · ∇ϕ0g

≥ −τ
∫

Ω(ε)
∇ϕ0 · ∇(g2)

= −τ
∫

∂Ω(ε)\Γ
∂νϕ0g

2 + τ
∫

Ω(ε)
∆ϕ0g

2

= τ
∫

∂Ω(ε)\Γ
η|x|ϕ0(x)g

2(x)dΓ(x) + τ
∫

Ω(ε)
(3η + η2|x|2)ϕ0g

2(x)dx

≥ C
∫

Ω(ε)
g2,

which implies (2.4). 2

The following estimate is useful in proving Theorem 1.3 (see also [7, Lemma 3.6]).

Corollary 2.4. Let f ∈ C1(Ω) and f = 0 on ∂Ω, Then we have

τ

∫

Ω

|f(x)|2e2τϕ(x,0)dx ≤ C

∫

Ω

|∇f(x)|2e2τϕ(x,0).
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3 Hölder stability for the determination of coeffi-

cients

In this section we prove the first main result of the paper, Theorem 1.1. Let us
denote u(; j) = u(; 2; j) − u(; 1; j) for j = 1, 2, 3, and F = (f1, f2, · · · , f9, R)⊤, where
f1 = ρ1 − ρ2, f2 = λ1 − λ2, f3 = µ1 −µ2, (f4, f5, f6)

⊤ = ∇f2, (f7, f8, f9)
⊤ = ∇f3, and

R⊤ =

















r11

r12

r13

r22

r23

r33

















=

















r1,11 − r2,11

r1,12 − r2,12

r1,13 − r2,13

r1,22 − r2,22

r1,23 − r2,23

r1,33 − r2,33

















.

By subtracting equations (1.3) for u(; 1; j) from the equations for u(; 2; j) we yield

AE2
u(; j) = A(u(; 1; j))F on Q, (3.1)

where

A(v)F = −f1∂
2
t v + (f2 + f3)∇(divv) + f3∆v + divv(f4, f5, f6)

⊤

+2ǫ(v)(f7, f8, f9)
⊤ +

∑3
j,k=1 rjk∂j∂kv,

and

u(; j) = ∂tu(; j) = 0 on Ω × {0}. (3.2)

Differentiating (3.1) in t and using time-independence of the coefficients of the system,
we get

AE2
U(; j) = A(U(; 1; j))F on Q, (3.3)

where

U(; j) =





∂2
t u(; j)
∂3

t u(; j)
∂4

t u(; j)



 and U(; 1; j) =





∂2
t u(; 1; j)
∂3

t u(; 1; j)
∂4

t u(; 1; j)



 .

By extension theorems for Sobolev spaces there exists U∗(; j) ∈ H2(Q) such that

U∗(; j) = U(; j), σ(U∗(; j))ν = σ(U(; j))ν on Γ × (−T, T ), (3.4)

and

‖U∗(; j)‖(2)(Q) ≤ C(‖U(; j)‖( 3

2
)(Γ × (−T, T )) + ‖σ(U)(; j)ν‖( 1

2
)(Γ × (−T, T ))) ≤ CF

(3.5)
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for all j = 1, 2, 3, due to the definitions of u(; j),U(; j), and F . We now introduce
V(; j) = U(; j) −U∗(; j). Then

AE2
V(; j) = A(U(; 1; j))F − AE2

U∗(; j) on Q (3.6)

and

V(; j) = σ(V)(; j)ν = 0 on Γ × (−T, T ). (3.7)

To use the Carleman estimate (2.2), we introduce a cut-off function χ ∈ C2(R4)
such that 0 ≤ χ ≤ 1, χ = 1 on Q( ε

2
) and χ = 0 on Q \Q(0). By the Leibniz’ formula

AE2
(χV(; j)) = χAE2

(V(; j)) + A1V(; j) = χAF − χAE2
U∗(; j) + A1V(; j)

due to (3.6). Here (and below) A1 denotes a first order matrix differential operator
with coefficients uniformly bounded by C(ε). By the choice of χ, A1V(; j) = 0 on
Q( ε

2
). Because of (3.7) and of the first condition of (1.14), the function χV(; j) ∈

H2
0 (Q), so we can apply to it the Carleman estimate (2.2) to get

∫

Q

τ |χV(; j)|2e2τϕ ≤

C

∫

Q

(|F|2 + |AE2
(U∗(; j))|2)e2τϕ + C

∫

Q\Q(ε

2
)

|A1V(; j)|2e2τϕ ≤

C(

∫

Q

|F|2e2τϕ + F 2e2τΦ + C(ε)e2τε1) (3.8)

where Φ = supϕ over Q and ε1 = e
ηε

4 . To get the last inequality we used the bounds
(3.5) and (1.10).

On the other hand, from (1.3), (3.1), (3.2) we have

ρ2∂
2
t u(; j) = A(u(; 1; j))F,

ρ2∂
3
t u(; j) = A(∂tu(; 1; j))F

on Ω×{0}. We now want to rearrange the formulas above. Let akj = −∂2+k
t u(, 0; 1; j),

bkj = ∇(divuk(; j)), ckj = ∆uk(; j)+∇divuk(; j), Bkj = divuk(; j), Ckj = 2ǫ(uk(; j)),
and Rkj = R(uk(; j)) (see the definition of R in (1.11)), where k = 0, 1 and j = 1, 2, 3.
Using that u(; 1; j) = u0(; j), ∂tu(; 1; j) = u1(; j) on Ω × {0} we have

















a01 B01I3 C01 R01

a11 B11I3 C11 R11

a02 B02I3 C02 R02

a12 B12I3 C12 R12

a03 B03I3 C03 R03

a13 B13I3 C13 R13







































f1

f4
...
f9

r11
...
r33























= ρ2

















∂2
t u(, 0; 1)
∂3

t u(, 0; 1)
∂2

t u(, 0; 2)
∂3

t u(, 0; 2)
∂2

t u(, 0; 3)
∂3

t u(, 0; 3)

















−

















b01 c01

b11 c11

b02 c02

b12 c12

b03 c03

b13 c13

















(

f2

f3

)

(3.9)
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on Ω. From the system (1.3) at t = 0 and from this system differentiated in t and
taken at t = 0, we obtain

akj = −µ1

ρ1
∆uk(; j) − λ1+µ1

ρ1
∇(divuk(; j)) − divuk(; j)

∇λ1

ρ1

−2ǫ(uk(; j))
∇µ1

ρ1
−

∑3
ℓ,m=1 r1,ℓm∂ℓ∂muk(; j)

= −µ1

ρ1
∆uk(; j) − λ1+µ1

ρ1
∇(divuk(; j)) − Bkj

∇λ1

ρ1

−Ckj
∇µ1

ρ1
− ∑3

ℓ,m=1 r1,ℓm∂ℓ∂muk(; j)

(3.10)

when k = 0, 1 and j = 1, 2, 3.
We now consider the matrix on the left hand side of (3.9). Using (3.10), one can

add to the first column the remaining columns multiplied by suitable factors such
that −divuk(; j)

∇λ1

ρ1
, −2ǫ(uk(; j))

∇µ1

ρ1
, and −

∑3
ℓ,m=1 r1,ℓm∂ℓ∂muk(; j) are eliminated

from the first column of this matrix. Then we multiply the first column of the new
matrix by the minus. We end up with the matrix M defined in Section 1. Obviously,
determinants of corresponding minors of the matrix on the left side of (3.10) and of
the matrix M are the same. It follows from the condition (1.12) and bounds (1.10)
that

|F|2 ≤ C
(

3
∑

j=1

3
∑

β=2

|∂β
t u(0; j)|2 + |f2|2 + |f3|2

)

on Ω. (3.11)

Since χ(·, T ) = 0,
∫

Ω

|χ∂β
t u(0; j)|2e2τϕ(x,0)dx = −

∫ T

0

∂t(

∫

Ω

|χ∂β
t u(; j)|2e2τϕ(x,t))dx)dt ≤

∫

Q

2χ2(|∂β+1
t u(; j)||∂β

t u(; j)| + τ |∂tϕ||∂β
t u(; j)|2)e2τϕ + 2

∫

Q\Q(ε

2
)

|∂β
t u(; j)|2χ|∂tχ|e2τϕ

where β = 2, 3. The right side does not exceed

C(

∫

Q

τ |χU(; j)|2e2τϕ + C(ε)

∫

Q\Q(ε

2
)

|U(; j)|2e2τϕ) ≤

C(

∫

Q

τ |χV(; j)|2e2τϕ + C(ε)

∫

Q\Q(ε

2
)

|U(; j)|2e2τϕ + τ

∫

Q

|U∗(; j)|2e2τϕ)

because U(; j) = V(; j) + U∗(; j). Using that χ = 1 on Ω( ε
2
), ϕ < ε1 on Q \ Q( ε

2
)

and ϕ < Φ on Q from these inequalities, from (3.8), (3.5), and (1.10) we yield
∫

Ω( ε

2
)

|∂β
t u(0; j)|2e2τϕ(,0) ≤ C(

∫

Q

|F|2e2τϕ + C(ε)e2τε1 + τe2τΦF 2) (3.12)

for β = 2, 3 and j = 1, 2, 3. Using that χ = 1 on Ω( ε
2
), from (3.11) and (3.12) we

obtain
∫

Ω( ε

2
)

|F|2e2τϕ(,0) ≤ C(

∫

Q(ε

2
)

|F|2e2τϕ + τe2τΦF 2 + C(ε)e2τε1 +

∫

Ω( ε

2
)

(|f2|2 + |f3|2)e2τϕ(,0))

(3.13)
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where we also split Q in the right side of (3.12) into Q( ε
2
) and its complement, and

used that |F| ≤ C and ϕ < ε1 on the complement.
To eliminate the first integral in the right side of (3.13) we observe that

∫

Q(ε

2
)

|F|2(x)e2τϕ(x,t)dxdt ≤
∫

Ω( ε

2
)

|F|2(x)e2τϕ(x,0)(

∫ T

−T

e2τ (ϕ(x,t)−ϕ(x,0))dt)dx.

Due to our choice of function ϕ we have ϕ(x, t) − ϕ(x, 0) < 0 when t 6= 0. Hence by
the Lebesgue Theorem the inner integral (with respect to t) converges to 0 as τ goes
to infinity. By reasons of continuity of ϕ, this convergence is uniform with respect to
x ∈ Ω. Choosing τ > C we therefore can absorb the integral over Q( ε

2
) in the right

side of (3.13) by the left side and arrive at the inequality
∫

Ω( ε

2
)

|F|2e2τϕ(,0) ≤ C(τe2τΦF 2 +C(ε)e2τε1 +

∫

Ω( ε

2
)

(|f2|2 + |f3|2)e2τϕ(,0)). (3.14)

On the other hand, to eliminate the last integral on the right side of (3.14), we use
Lemma 2.3 with the condition (1.15) to get

∫

Ω( ε

2
)

(|f2|2 + |f3|2)e2τϕ(,0) ≤ C

τ

∫

Ω( ε

2
)

(|∇f2|2 + |∇f3|2)e2τϕ(,0). (3.15)

Using (3.15) with large τ and the inequality τ ≤ eτ , we absorb the last integral in
the right side of (3.14) into the left side and obtain

∫

Ω( ε

2
)

|F|2e2τϕ(,0) ≤ C(e2τ (Φ1+1)F 2 + C(ε)e2τε1).

Letting ε2 = e
ηε

2 ≤ ϕ on Ω(ε) and dividing the both parts by e2τε2 we yield
∫

Ω(ε)

|F|2 ≤ C(τe2τ (Φ+1−ε2)F 2 + e−2τ (ε2−ε1)) ≤ C(ε)(e2τ (Φ+1)F 2 + e−2τ (ε2−ε1)) (3.16)

since τe−2τε2 < C(ε). To prove (1.16) it suffices to assume that F < 1
C

. Then

τ = −logF
Φ+1+ε2−ε1

> C and we can use this τ in (3.16). Due to the choice of τ ,

e−2τ (ε2−ε1) = e2τ (Φ+1)F 2 = F
2

ε2−ε1
Φ+1+ε2−ε1

and from (3.16) we obtain (1.16) with γ = ε2−ε1

Φ+1+ε2−ε1
. The proof of Theorem 1.1 is

now complete. 2

4 Lipschitz stability for the determination of co-

efficients

In this section we will prove Theorem 1.3. The key ingredient is the following Lips-
chitz stability estimate for the Cauchy problem for the system AEu = f .

12



Theorem 4.1. Suppose that Ω and T satisfy the assumptions of Theorem 1.3. Let
u ∈ (H3(Q))3 solve the Cauchy problem

{

AEu = f in Q

u = σν(u) = 0 on ∂Ω × (−T, T )
(4.1)

with f ∈ L2((−T, T );H1(Ω)) and f = 0 on ∂Ω × (−T, T ). Furthermore, assume that
(1.7) holds for sufficiently small ε0.

Then there exists a constant C > 0 such that

‖u‖2
H1(Q) + ‖divu‖2

H1(Q) + ‖curlu‖2
H1(Q) ≤ C‖f‖2

L2((−T,T );H1(Ω)). (4.2)

This estimate was proved in [10].
By virtue of (4.2) and an equivalence of the norms ‖u‖(1)(Ω) and of

‖divu‖(0)(Ω) + ‖curlu‖(0)(Ω) + ‖u‖(0)(Ω)

in H1
0 (Ω) (e.g., [3], pp.358-359), it is not hard to derive the following

Corollary 4.2. Under conditions of Theorem 4.1

‖u‖(0)(Q) + ‖∇x,tu‖(0)(Q) + ‖∂t∇u‖(0)(Q) ≤ C‖f‖L2((−T,T );H1(Ω)). (4.3)

Now we are ready to prove Theorem 1.3. We will use the notations in Section 3.
Recall that

AE2
U(; 1; j) = A(U(; 1; j))F

where

A(U(; 1; j))F = −f1∂
2
t U(; 1; j) + (f2 + f3)∇(divU(; 1; j)) + f3∆U(; 1; j)

+divU(; 1; j)(f4, f5, f6)
⊤ + 2ǫ(U(; 1; j))(f7, f8, f9)

⊤

+
∑3

j,k=1 rjk∂j∂kU(; 1; j).

So, from (1.19) we have

AE2
U(; j) = 0 on ∂Ω × (−T, T ). (4.4)

Furthermore, in view of Lemma 2.2, there exists U∗(; j) ∈ H3(Q) such that

U∗(; j) = U(; j), σ(U∗(; j))ν = σ(U(; j))ν, AE2
U∗(; j) = 0 on ∂Ω × (−T, T ),

(4.5)

and

‖U∗(; j)‖(3)(Q) ≤ C(‖U(; j)‖( 5

2
)(∂Ω × (−T, T )) + ‖σ(U)(; j)ν‖( 3

2
)(∂Ω × (−T, T ))) ≤ CF

(4.6)
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due to the definition of F . As before, we set V(; j) = U(; j) − U∗(; j). Due to (4.4)
and (4.5), we get

V(; j) = σ(V)(; j)ν = 0, AE2
V(; j) = 0 on ∂Ω × (−T, T ). (4.7)

With (4.7), applying Corollary 4.2 to (3.6), (3.7) and using (4.6) gives

‖V(; j)‖2
(0)(Q) + ‖∇x,tV(; j)‖2

(0)(Q) + ‖∂t∇V(; j)‖2
(0)(Q) ≤ C(‖F‖(1)(Ω)2 + F 2)

(4.8)

for j = 1, 2, 3.
On the other hand, as in the proof of Theorem 1.1 we will bound the right side of

(4.8) by V. To use the Carleman estimate (2.1) we need to cut off V(; j) near t = T
and t = −T . We first observe that from the definition

1 ≤ ϕ(x, 0), x ∈ Ω,

and from the condition (1.18)

ϕ(x, T ) = ϕ(x,−T ) < 1 when x ∈ Ω.

So there exists a δ > 1
C

such that

1 − δ < ϕ on Ω × (0, δ), ϕ < 1 − 2δ on Ω × (T − 2δ, T ). (4.9)

We now choose a smooth cut-off function 0 ≤ χ0(t) ≤ 1 such that χ0(t) = 1 for
−T + 2δ < t < T − 2δ and χ(t) = 0 for |t| > T − δ. Using (4.7) and according to
[12], Lemma A.1, χ0V(; j) ∈ H3

0 (Q). Using the Leibniz’ formula

AE2
(χ0V(; j)) = χ0A(U(; 1; j))F−χ0AE2

U∗(; j)+2ρ2(∂tχ0)∂tV(; j)+ρ2(∂
2
tχ0)V(; j)

and Carleman estimate (2.1), we yield
∫

Q

χ2
0(τ

3|V(; j)|2 + τ |∇V(; j)|2)e2τϕ ≤

C(

∫

Q

(|F|2 + |∇F|2 + |AE2
U∗(; j)|2 + |∇(AE2

U∗)(; j)|2)e2τϕ+

∫

Ω×{T−2δ<|t|<T }

(|V(; j)|2 + |∇x,tV(; j)|2 + |∂t∇V(; j)|2)e2τϕ) ≤

C(

∫

Q

(|F|2 + |∇F|2)e2τϕ + e2τΦF 2 + e2τ (1−2δ)

∫

Ω

(|F|2 + |∇F|2)),

where we let Φ = supQ ϕ and used (4.6), (4.8), (4.9). Since U(; j) = V(; j) + U∗(; j)
from (4.6) we obtain

∫

Q

χ2
0(τ

3|U(; j)|2 + τ |∇U(; j)|2)e2τϕ ≤
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C(τ 3e2τΦF 2 +

∫

Ω

(

∫ T

−T

e2τϕ(x,t)dt+ e2τ (1−2δ))(|F|2 + |∇F|2)(x))dx. (4.10)

Utilizing (3.2) and (1.12), similarly to deriving (3.11), we get from (3.9) that

|F|2 + |∇F|2 ≤ C(

3
∑

j=1

∑

β=2,3;k=0,1

|∂β
t ∇ku(0; j)|2 +

∑

k=0,1

(|∇kf2|2 + |∇kf3|2)). (4.11)

Therefore, by (4.11) and using Corollary 2.4 (with conditions (1.19) for Lamé coeffi-
cients), we have

∫

Ω

(|F|2 + |∇F|2)e2τϕ(,0)

≤ C(

∫

Ω

3
∑

j=1

∑

β=2,3;k=0,1

|∂β
t ∇ku(0; j)|2e2τϕ(,0) +

∫

Ω

∑

k=0,1

(|∇kf2|2 + |∇kf3|2)e2τϕ(,0)) ≤

−C
∫ T

0

∂t(

∫

Ω

3
∑

j=1

∑

β=2,3;k=0,1

χ2
0|∂β

t ∇ku(; j)|2e2τϕdx)dt +
C

τ

∫

Ω

(|F|2 + |∇F|2)e2τϕ(;0).

Choosing τ large we eliminate the last term and obtain

∫

Ω

(|F|2 + |∇F|2)e2τϕ(,0) ≤

C

∫

Q

χ2
0

3
∑

j=1

∑

β=2,3;k=0,1

(|∂β
t ∇ku(; j)||∂β+1

t ∇ku(; j)| + τ |∂tϕ||∂β
t ∇ku(; j)|2)e2τϕ+

C

∫

Ω×(T−2δ,T )

χ0|∂tχ0|
3

∑

j=1

∑

β=2,3;k=0,1

|∂β
t ∇ku(; j)|2e2τϕ.

Now as in the proofs of section 3 the right side is less than

C(

∫

Q

τχ2
0(|U(; j)|2 + |∇U(; j)|2)e2τϕ +

∫

Ω×(T−2δ,T )

(|U(; j)|2 + |∇U(; j)|2)e2τϕ) ≤

C(

∫

Q

τχ2
0(|U(; j)|2 + |∇U(; j)|2)e2τϕ + e2τ (1−2δ)(‖F‖2

(1)(Ω) + F 2)).

where we used equality U(; j) = U∗(; j) + V(; j) and (4.6), (4.8). From the two
previous bounds and (4.10) we conclude that

∫

Ω

(|F|2 + |∇F|2)e2τϕ(,0) ≤ C(τ 3e2τΦF 2 +

∫

Ω

(

∫ T

−T

e2τϕ(,t)dt+ e2τ (1−2δ))(|F|2 + |∇F|2)).

(4.12)
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Due to our choice of ϕ, 1 ≤ ϕ(, 0), ϕ(, t) − ϕ(, 0) < 0 when t 6= 0. Thus by the
Lebesgue Theorem as in the proofs of section 3, we have

2C(

∫ T

−T

e2τϕ(,t)dt+ e2τ (1−δ)) ≤ e2τϕ(,0)

uniformly on Ω when τ > C. Hence choosing and fixing such large τ we eliminate the
second term on the right side of (4.12). The proof of Theorem 1.3 is now complete. 2

5 Conclusion

While natural in some applications, assumption about smallness of residual stress is
restrictive. In our opinion it can be relaxed by using methods of papers [7], [10], and
of this paper. More restrictive and much more difficult to remove is the condition
that the initial data are not zero. At present, even for scalar isotropic hyperbolic
equations global uniqueness of speed of propagation or of potential from few lateral
boundary measurement is an open outstanding research problem (see, for example,
[8]). Also of substantial interest is uniqueness in inverse problems for more general
anisotropic systems, for example, for dynamical elasticity system with transversal
isotropy. For such systems there are no Carleman estimates or uniqueness of the
continuation results. On the other hand, they are quite important for applications
to geophysics, material science, and medicine, and they are notorious mathematical
challenges.

Acknowledgements

The work of Victor Isakov was in part supported by the NSF grant DMS 04-
05976. The work of Jenn-Nan Wang was partially supported by the grant of National
Science Council of Taiwan NSC 94-2115-M-002-003.The work of Masahiro Yamamoto
was partly supported by Grant 15340027 from the Japan Society for the Promotion
of Science and Grant 15654015 from the Ministry of Education, Cultures, Sports and
Technology.

References

[1] A.L. Bukhgeim, Introduction to the Theory of Inverse Problems, VSP, Utrecht,
2000.

[2] A.L. Bukhgeim and M.V. Klibanov, Global uniqueness of a class of multidi-
mensional inverse problems, English translation, Soviet Math. Dokl., 24 (1981),
244-247.

[3] G. Duvaut, J.L. Lions, Inequalities in Mechanics and Physics, Springer-Verlag,
1976.

16



[4] S. Hansen, G. Uhlmann, Propagation of Polarization in Elastodynamics with
Residual Stress and Travel Times, Math. Ann., 326 (2003), 536-587.

[5] O. Imanuvilov, M. Yamamoto, Determination of a coefficient in an acoustic
equation with a single measurement, Inverse Problems, 19 (2003), 157-173.

[6] O. Imanuvilov, M. Yamamoto, Carleman estimates for the nonstationary Lamé
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