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A CARLEMAN INEQUALITY FOR THE STATIONARY ANISOTROPIC
MAXWELL SYSTEM

MATTHIAS M. ELLER AND MASAHIRO YAMAMOTO

Abstract. A Carleman estimate for the stationary anisotropic Maxwell system is established. Its proof
adopts a technique pioneered by Calderón to an overdetermined systems with rough coefficients. As an
application, the conditional stability of the Cauchy problem is discussed.

1. Introduction and main result

Let Ω ⊂ R3 be an open set filled with an anisotropic electromagnetic medium and let E(t, x) and
H(t, x) be two vector-valued functions Ω → R3, denoting the electric field intensity and the magnetic
field intensity, respectively. Furthermore, the electric permittivity ε(x) and the magnetic permeability
µ(x) are 3× 3 positive definite, symmetric matrices with C1 entries. The stationary (or time-harmonic)
Maxwell equations derive from the dynamic Maxwell equations by assuming E(t, x) = E(x)eiωt and
H(t, x) = H(x)eiωt and consist of the following equations

iωε(x)E(x)−∇×H(x) = 0

iωµ(x)H(x) +∇× E(x) = 0

∇ · (ε(x)E(x)) = 0

∇ · (µ(x)H(x)) = 0

(1.1)

Here ∇× denotes the curl operator and ∇· is the divergence operator. In our case, where the coefficients
ε and µ are matrices, we say that the system is anisotropic. If the coefficients are scalars, the system is
referred to as isotropic. One of the important applications of the anisotropic Maxwell equations are the
equations of crystal optics [KK65]. Our main result is the following Carleman estimate for this system.

Theorem 1.1. Let Ω be an open set in R3 and let ψ ∈ C2(Ω) such that ∇ψ 6= 0 for all x ∈ Ω. Let
(E, H) ∈ H1(Ω)6 with compact support in Ω and assume that ε and µ are symmetric, positive definite
matrices with entries in C1(Ω).

Then there exist positive constants λ0 and C depending only on Ω and ψ such that

(1.2)

1
sλ

3∑

j=1

∫

Ω

e−λψ(|∂jE|2 + |∂jH|2)e2sφ + sλ2

∫

Ω

eλψ(|E|2 + |H|2)e2sφ ≤ C
[
‖esφ(iωεE −∇×H)‖2L2(Ω)

+‖esφ(iωµH +∇× E)‖2L2(Ω) + ‖esφ∇ · (εE)‖2L2(Ω) + ‖esφ∇ · (µH)‖2L2(Ω)

]

provided λ ≥ λ0 and s ≥ s0(λ). Here φ = eλψ − 1.

This estimate implies the unique continuation of solutions to the homogeneous Maxwell’s system (1.1)
across every C2- surface [H83, Chapter XXVIII].

Corollary 1.2. Let (E,H) ∈ H1(Ω) be a solution to Maxwell’s system and let S = {ψ(x) = ψ(x0)} be
a level surface of the function ψ ∈ C2(Ω) near x0 ∈ Ω such that ψ′(x0) 6= 0.

If (E, H) = 0 on one side of S, then (E, H) ≡ 0 in a full neighborhood of x0 ∈ Ω.
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Carleman estimates for linear partial differential operators and unique continuation for solutions to
homogeneous linear partial differential equations with non-analytic coefficients have been extensively
studied since Carleman’s work [C39]. By now the problem is rather well understood in the case of scalar
operators and equations [H83, Chapter XXVIII], [Ta95]. However, only few results pertain to systems of
partial differential equations. The only general result for systems is Calderón’s Theorem [Ca58] where
unique continuation is proved for a first order evolutions system provided certain assumptions on the
characteristics are satisfied.

Regarding the most relevant systems of mathematical physics uniqueness theorems and Carleman
estimates for isotropic dynamic Maxwell’s equations and the isotropic elastic wave equations have been
obtained in [EINT02] and [IIY03]. The key observation is that these systems can be reduced into weakly
coupled vector wave equations and then the theory for scalar operators mentioned above is applied. This
kind of reduction was done first by N. Weck for the stationary elastic equations [W69]. See also Dehman
and Robbiano [DR93], Imanuvilov and Yamamoto [IM04], Weck [W01].

There are a few works on the anisotropic Maxwell equations which we like to mention. V. Vogelsang
[V01] and T. Okaji [O02] both prove strong unique continuation in the time-harmonic case. However,
both works make structural assumptions on the coefficient matrices. Vogelsang requires that the matrices
ε and µ are equal to the identity matrix at the point of interest whereas Okaji requires the coefficients
to be scalar multiples of each other at that very point.

Note that our Theorem 1.1 makes no structural assumption on the coefficient matrices; moreover the
regularity of the coefficients is assumed to be only C1 whereas the reduction to a weakly coupled second
order system as in [EINT02] requires the coefficients to be C2.

The proof of Theorem 1.1 is based on the observation that the time-harmonic Maxwell system is a
weak coupling of two div-curl systems. The estimate (1.2) is a consequence of the following Carleman
estimate for the div-curl system.

Theorem 1.3. Let Ω be an open set in R3 and let ψ ∈ C2(Ω) such that ∇ψ 6= 0 for all x ∈ Ω. Assume
that w ∈ H1(Ω)3 has compact support in Ω. and that A(x) = ajk(x) is a 3×3 symmetric, positive matrix
with C1 entries.

Then there exist positive constants λ0 and C depending only on ψ and Ω such that

(1.3)
1
sλ

3∑

j=1

∫

Ω

e−λψ|∂jw|2e2sφ + sλ2

∫

Ω

eλψ|w|2e2sφ ≤ C
[
‖esφ∇× w‖2L2(Ω) + ‖esφ∇ · (Aw)‖2L2(Ω)

]

provided λ ≥ λ0 and s ≥ s0(λ). Here φ = eλψ − 1.

Indeed, the proof of Theorem 1.1 follows by adding the Carleman estimate of Theorem 1.3 applied to
the functions E and H,

1
sλ

3∑

j=1

∫

Ω

e−λψ(|∂jE|2 + |∂jH|2)e2sφ + sλ2

∫

Ω

eλψ(|E|2 + |H|2)e2sφ

≤ C
[
‖esφ∇×H‖2L2(Ω) + ‖esφ∇× E‖2L2(Ω) + ‖esφ∇ · (εE)‖2L2(Ω) + ‖esφ∇ · (µH)‖2L2(Ω)

]

for s and λ sufficiently large. The use of the triangle inequality gives (with a larger C)

1
sλ

3∑

j=1

∫

Ω

e−λψ(|∂jE|2 + |∂jH|2)e2sφ + sλ2

∫

Ω

eλψ(|E|2 + |H|2)e2sφ

≤ C
[
‖esφ(iωεE −∇×H)‖2L2(Ω) + ‖esφ(iωµH +∇× E)‖2L2(Ω) + ‖esφ∇ · (εE)‖2L2(Ω)

+‖esφ∇ · (µH)‖2L2(Ω) + ‖e2sφH‖2L2(Ω) + ‖e2sφE‖2L2(Ω)

]

Now the last two terms can be moved into the right hand side, provided s and λ are sufficiently large.
This yields (1.2).

This paper is structured as follows. Section 2 is dedicated to the proof of Theorem 1.3. We follow
Calderón’s approach as explained in [Ni73]. There are certain obstacles to be overcome: The div-curl
system is overdetermined which makes its diagonalization more difficult. Furthermore, the estimate for
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the first-order derivatives in (1.3) requires extra attention. Moreover, we show that the Caleronón’s
approach can be adopted to operators with C1 coefficients.

Section 3 contains applications of the Carleman estimate: The conditional stability of the Cauchy
problem and a boundary estimate for the Cauchy problem.

2. Proof of Theorem1.3

It will suffice to prove Theorem 1.3 locally, i.e. for a function w ∈ H1(Ω) compactly supported in a
small open neighborhood W of some point x0 ∈ Ω [H63, Chapter 8].

The essence of Calderón’s approach is to consider the system as an evolution in direction normal to
the level surfaces of ψ. Hence we will introduce new coordinates in which the level surfaces of ψ become
the surfaces y3 = constant. Then we will delete one equation to obtain a 3 × 3 system which is then
diagonalized by the means of pseudo-differential operators, see equation (2.11) below. This diagonal
system allows certain integral estimates which then can be returned to the original variables.

2.1. Change of coordinates. Consider the level surface S = {x ∈ W ; ψ(x) = ψ(x0)}. Assuming that
W is sufficiently small we introduce geodesic local coordinates in W with respect to the level surface S.
We denote these coordinates by {y1, y2, y3} and assume that {y1, y2} are orthogonal coordinates in S and
that y3 = ψ(x)− ψ(x0) is the normal coordinate. The corresponding coordinate mapping is denoted by
x = Φ(y) and Φ′(y) > 0 for all y ∈ Φ−1(W ). We note that Φ−1(S) = {y ∈ Φ−1(W ) : y3 = 0} ⊂ R2 and
assume that Φ−1(W ) is a cylinder Φ−1(S)× (−h, h) for some h > 0.

The standard Euclidean metric in R3 induces the Riemannian metric with metric tensor

G(y) = tΦ′(y)Φ′(y) =




g1 0 0
0 g2 0
0 0 g3




in Φ−1(W ). For future reference we set g(y) = detG(y). The differential basis of vector fields will
be denoted by {∂/∂y1, ∂/∂y2, ∂/∂y3} or by {∂1, ∂2, ∂3} and the corresponding orthonormal basis by
{f1, f2, f3} where f1 = ∂1/

√
g1, f2 = ∂2/

√
g2 and f3 = ∂3/

√
g3. Since ψ ∈ C2(W ) the metric tensor

G(y) ∈ C1(W ).
Given a vector field w(x) with respect to the standard Euclidean basis {e1, e2, e3} we find a represen-

tation u with respect to the new basis vectors {f1, f2, f3} by

(2.4) u(y) = tΨ(y)w(Φ(y)) where Ψ(y) = Φ′(y)G−1/2(y)

Every vector field in Ω ∩W can be represented in the form u = u1f1 + u2f2 + u3f3. We represent the
operators curl and div with respect to the coordinates {y1, y2, y3} [C96, p. 362].

divu =
1√
g1

∂u1

∂y1
+

1√
g2

∂u2

∂y2
+

1√
g3

∂u3

∂y3
+ L1 · u

where L1 = L1(y) is a vector with three components and

curlu =
(

1√
g2

∂2u3 − 1√
g3

∂3u2

)
f1 +

(
1√
g3

∂3u1 − 1√
g1

∂1u3

)
f2 +

(
1√
g1

∂1u2 − 1√
g2

∂2u1

)
f3 + L2u

where L2 = L2(y) is matrix function. The system

(2.5) P (x,D)w = (∇× w,∇ · (Aw)) = F (x)

becomes, after the change of coordinates

(2.6) P̃ (y, D)u = L(y)u + F̃ (y)

where the symbol of P̃ is

p̃(y, ξ) =




0 −g3ξ3 g2ξ2

g3ξ3 0 −g1ξ1

−g2ξ2 g1ξ1 0∑3
j=1 ã1jgjξj

∑3
j=1 ã2jgjξj

∑3
j=1 ã3jgjξj
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Here gj = 1/
√

gj for j = 1, 2, 3, and F̃ and Ã = (ãjk) are derived from the functions F and A in (2.5).
More precisely, using (2.4) we have

Ã(y) = tΨ(y)A(Φ(y))Ψ(y)

F̃ (y) =
(
tΨ(y)(F1(Φ(y)), F2(Φ(y)), F3(Φ(y))), F4(Φ(y))

)

The function L(y) is a 4 × 3 matrix function and depends on L1, L2 as well as the first derivatives of
the entries of Ã. One verifies that the matrix Ã(y) is positive definite and symmetric and has C1 entries
since A has these properties.

2.2. The diagonalization. We will write equation (2.6) as an evolution equation in y3 direction. For
that purpose the third curl equation can be dropped since it does not involve any derivatives in normal
direction. Moreover, leaving that equation out of p̃ results in a square matrix. Set

p(y, ξ) =




g3ξ3 0 −g1ξ1

0 g3ξ3 −g2ξ2

ã1jgjξj ã2jgjξj ã3jgjξj




and observe that

detp(y, ξ) = g3ξ3

(
ξ3ã

3jgjξj + g2ξ2ã
2jgjξj + g1ξ1ã

1jgjξj

)
= g3ξ3g

kξkakjgjξj = g3ξ3(tξAξ)

where the Einstein summation convention is used and A is the matrix with the entries ajk = ãjkgjgk ∈
C1(W ). The vector tξ is the transpose of the column vector ξ and tξAξ = ajkξjξk.

We write the principal part of equation (2.6) - without the third curl equation - in the form p(y, e3)D3u+
P (y, D′)u where

p(y, e3) =




g3 0 0
0 g3 0

a31 a32 a33




is invertible and P (y,D′) does not contain any derivatives with respect to y3.
In what follows ξ′ = (ξ1, ξ2, 0). Hence we can write equation (2.5) without the third curl equation as

(2.7) D3u + [p(y, e3)]−1P (y, D′)u = F + Lu

with obvious definitions for F and L.
We denote the symbol of [p(y, e3)]−1P (y, D′) by −m(y, ξ′). Next we will find the eigenvalues and

eigenvectors of m(y, ξ′) which will let us diagonalize equation (2.7). In the following all summations will
be from j or/and k = 1 to 2.

det(αI −m(y, ξ′)) = det[αI + [p(y, e3)]−1p(y, ξ′)] = det[p(y, e3)]−1detp(y; ξ′, α)

=
1

a33
α

(
ajkξjξk + 2αa3jξj + a33α2

)

Hence the three eigenvalues of m(y, ξ′) are

(2.8) α1 = 0 and α2,3 = −a3jξj

a33
±

√(
a3jξj

a33

)2

− ajkξjξk

a33

Note that the eigenvalues α2 and α3 are non-real since by the Cauchy-Schwartz inequality (a3jξj)2 <
a33ajkξjξk since the vectors e3 = (0, 0, 1) and ξ′ = (ξ1, ξ2, 0) are not collinear. Here the assumption that
A is positive definite is critical.

Next we compute the eigenvectors of m(y, ξ′). Note that m(y, ξ′)bj = αjbj results in p(y; ξ′, αj)bj = 0.
Using α1 = 0 we have




0 0 −g1ξ1

0 0 −g2ξ2

ã1jgjξj ã2jgjξj ã3jgjξj







b11

b12

b13


 =




0
0
0
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which gives b13 = 0 and b1kãkjgjξj = 0. Thus b1 = t(−ã2jgjξj , ã
1jgjξj , 0). For k = 2, 3 we obtain

bk = t(g1ξ1, g
2ξ2, g

3αk) since

g1ξ1(ã1jgjξj + ã13g3αk) + g2ξ2(ã2jgjξj + ã23g3αk) + g3αk(ã3jgjξj + ã33g3αk)

= α2
ka33 + 2αka3jξj + ajkξjξk = 0

because of (2.8). In the following we will work with eigenvectors of unit length, i.e. qj = bj/|bj | where
|bj | denotes the Euclidian length of the vector bj and introduce the symbol q(y, ξ′) = (q1, q2, q3). The
matrix q diagonalizes the symbol m

q−1(y, ξ′)m(y, ξ′)q(y, ξ′) =




α1 0 0
0 α2 0
0 0 α3


 = j(y, ξ′)

We point out that q,q−1,m,j are essentially classical symbols with C1 coefficients, i.e. q, q−1 ∈ C1S0
cl and

m, j ∈ C1S1
cl. Strictly speaking, in order to obtain a classical symbol the singularity at ξ′ = 0 has to be

removed by a cutoff function. Moreover, all four symbols are C1 functions in y3 as well.
Given u ∈ H1

0 (Φ−1(W )) we set v = Q−1u ∈ H1(Φ−1(W )) where Q−1 is the operator with the symbol
q−1. Note that v(−h) = v(h) = 0 since Q−1 is a tangential operator, this is an operator with symbol
independent of ξ3. Now we make use of the operator algebra for operators with classical symbols with
C1 coefficients as discussed in Proposition 4.2A [T91]. This yields

(2.9) u(y) = Q(y, D′)v + K(y, D′)u

where K is a continuous linear operator from Hm(Φ−1(S)) → Hm+1(Φ−1(S)) for −1 ≤ m ≤ 0 which is
also continuously differentiable in y3. Going back to equation (2.7) we have

D3(Qv + Ku)−M(Qv + Ku) = F + Lu

Applying the operator Q−1 to both sides of the this equation gives

Q−1D3Qv + Q−1D3Ku−Q−1MQv −Q−1MKu = Q−1F + Q−1Lu

Using the operator algebra for classical symbols with C1 coefficients [T91, Proposition 4.2A] we obtain

D3v + R0v + R−1D3v + R−1D3u− Jv = R0F + R0u

where R0 : L2(Φ−1(W )) → L2(Φ−1(S)) and R−1 : L2(Φ−1(S)) → H1(Φ−1(S)) are continuous mappings.
Since D3u = Mu + F + Lu and v = Q−1u we obtain

(2.10) D3v − Jv = R0F + R0u

Now we introduce the function z = vesφ = vexp
(
seλ(y3−ψ(x0)) − 1

)
. Then z will satisfy the equation

D3z + isλeλψz − Jz = esφ(R0F + R0u)

or

∂3z − sλeλψz − iJz = iesφ(R0F + R0u) =: G

where the last equation defines G. For the components of z we obtain the following equation

∂3z1 − sλeλψz1 = G1

∂3z2 − sλeλψz2 + Tz2 + iSz2 = G2

∂3z3 − sλeλψz3 − Tz3 + iSz3 = G3

(2.11)

Here T (y, D′) is the operator with the symbol t(y, ξ′) = =α2 ∈ C1
clS

1 and S is the operator with the
symbol s(y, ξ′) = −<α2 ∈ C1

clS
1. Both operators have real symbols. These three equations are now used

to obtain estimates.
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2.3. The integration. Given two square integrable scalar functions ϕ1(y), ϕ2(y) we introduce the L2

norm and the scalar product on the surfaces parallel to Φ−1(S) by

|ϕ1(y3)|2 =
∫
|ϕ1(y)|2

√
g(y)dy1dy2 and 〈ϕ1, ϕ2〉(y3) =

∫
ϕ1(y)ϕ2(y)

√
g(y)dy1dy2

where g(y) is the determinant of the metric tensor G(y). In the original coordinate system these integrals
are surfaces integrals over the level surfaces of ψ. The corresponding L2 norm and scalar product in
Φ−1(W ) by

‖ϕ1‖2 =
∫ h

−h

|ϕ1(y3)|2dy3 and (ϕ1, ϕ2) =
∫ h

−h

〈ϕ1, ϕ2〉(y3)dy3

Note that
∫

W
|w(x)|2dx = ‖u‖2, see (2.4). Based on these L2 norms one can also introduce Sobolev

norms. These norms will be introduced by subscripts, e.g. |v(y3)|1 is the norm on the space H1(Φ−1(S)).
Using integration by parts in the y3 variable the first equation in (2.11) gives

(2.12) ‖G1‖2 = ‖∂3z1 − sλeλψz1‖2 = ‖∂3z1‖2 + (sλ)2‖eλψz1‖2 − 2sλ<(∂3z1, e
λψz1)

= ‖∂3z1‖2 + (sλ)2‖eλψz1‖2 + sλ2(eλψz1, z1) +
1
2
sλ

(
∂3g

g
eλψz1, z1

)
≥ 1

2
sλ2(eλψz1, z1) + ‖∂3z1‖2

provided λ is sufficiently large. From the second equation we get

‖G2‖2 = ‖∂3z2 − sλeλψz2 + Tz2 + iSz2‖2
= ‖∂3z2 + iSz2‖2 + ‖Tz2 − sλeλψz2‖2 + 2<(∂3z2 + iSz2,−sλeλψz2 + Tz2)

(2.13)

Here we consider the last term and observe that

(2.14) −2<sλ(∂3z2, e
λψz2) ≥ 1

2
sλ2(eλψz2, z2)

for λ sufficiently large by (2.12) and
(2.15)
2sλ<(iSz2,−eλψz2) = isλ

[
(eλψz2, Sz2)− (Sz2, e

λψz2)
]

= isλ
(
(S∗ − S)z2, e

λψz2

) ≥ −C1sλ(eλψz2, z2)

since S is a differential operator and S∗ − S is an operator of order 0. Next we compute

(2.16) 2<(∂3z2 + iSz2, T z2) = (∂3z2, T z2) + (Tz2, ∂3z2) + i(Sz2, T z2)− i(Tz2, Sz2)

= (T ∗∂3z2, z2)− (∂3Tz2, z2) + i((T ∗S − S∗T )z2, z2)

= −((∂3T )z2, z2) + ((T ∗ − T )∂3z2, z2) + i((T ∗S − S∗T )z2, z2)

≥ −C2

[∫ h

−h

|Λz2(y3)||z2(y3)|dy3 +
∫ h

−h

|∂3z2(y3)||z2(y3)|dy3

]

Here Λ is the (tangential) elliptic operator with the symbol (1 + |ξ′|2)1/2. In order to justify these
estimates for operators with classical symbols with C1 coefficients we rely once more on Propositions
4.2A and 4.2B [T91]. Combining (2.14)-(2.16) with (2.13) gives

(2.17) ‖G2‖2 ≥ ‖∂3z2 + iSz2‖2 + ‖Tz2 − sλeλψz2‖2 +
1
2
sλ2(eλψz2, z2)

− C1sλ(eλψz2, z2)− C2

[∫ h

−h

|Λz2(y3)||z2(y3)|dy3 +
∫ h

−h

|∂3z2(y3)||z2(y3)|dy3

]
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Since |∂3z2(y3)| ≤ |∂3z2(y3) + iSz2(y3)|+ |Sz2(y3)| we have

(2.18)

C2

∫ h

−h

|∂3z2(y3)||z2(y3)|dy3 ≤ C2

∫ h

−h

|∂3z2(y3) + iSz2(y3)||z2(y3)|dy3 + C2

∫ h

−h

|Sz2(y3)||z2(y3)|dy3

≤ C2‖∂3z2 + iSz2‖‖z2‖+ C2

∫ h

−h

|Λz2(y3)||z2(y3)|dy3

≤ ‖∂3z2 + iSz2‖2 +
1
4
C2

2‖z2‖2 + C2

∫ h

−h

|Λz2(y3)||z2(y3)|dy3

which modifies (2.17) into

(2.19) ‖G2‖2 ≥ ‖Tz2 − sλeλψz2‖2 +
1
2
sλ2(eλψz2, z2)

− C1sλ(eλψz2, z2)− 1
4
C2

2‖z2‖2 − 2C2

∫ h

−h

|Λz2(y3)||z2(y3)|dy3

Since T is uniformly elliptic in y3 we have

(2.20) 2C2|Λz2(y3)| ≤ C3[|Tz2(y3)|+ |z2(y3)|] ≤ C3[|Tz2(y3)− sλeλψz2(y3)|+ sλ|eλψz2(y3)|+ |z2(y3)|]
with the constant C3 independent of y3, which after integration yields

2C2

∫ h

−h

|Λz2||z2|dy3 ≤ C3

[∫ h

−h

|Tz2 − sλeλψz2||z2|dy3 + sλ

∫ h

−h

eλψ|z2|2dy3 +
∫ h

−h

|z2|2dy3

]

≤ C3

[‖Tz2 − sλz2‖‖z2‖+ sλ(eλψz2, z2) + ‖z2‖2
]

≤ C2
3

2
‖z2‖2 +

1
2
‖Tz2 − sλeλψz2‖2 + C3[sλ(eλψz2, z2) + ‖z2‖2]

≤ 1
2
‖Tz2 − sλeλψz2‖2 + C3sλ(eλψz2, z2) + (C2

3/2 + C3)‖z2‖2

Using this last formula in (2.19), we obtain

(2.21) ‖G2‖2 ≥ 1
2
sλ2(eλψz2, z2)− C1sλ(eλψz2, z2)− C4‖z2‖2 +

1
2
‖Tz2 − sλeλψz2‖2

where C4 = C2
2/4 + C2

3/2 + C3. The uniform ellipticity of T , i.e. formula (2.20) leads after squaring and
integrating in y3 to

(2.22)
1
λs

∫ h

−h

1
eλψ

|Λz2|2dy3 ≤ C5

[
1
2
‖Tz2 − sλeλψz2‖2 + sλ(eλψz2, z2) +

1
sλ
‖z2‖2

]

where we choose s = s(λ) large enough to guarantee sλeλψ ≥ 1. Equation (2.11) provides the estimate

1
sλeλψ

|∂3z2(y3)|2 ≤ C6

[
sλeλψ|z2(y3)|2 +

1
sλeλψ

|Λz2(y3)|2 +
1

sλeλψ
|G2(y3)|2

]

where we again choose s sufficiently large. This estimate is then integrated with respect to y3

(2.23)
1
sλ

(e−λψ∂3z2, ∂3z2) ≤ C6

[
sλ(eλψz2, z2) +

1
sλ

(e−λψΛz2, Λz2) + ‖G2‖2
]

Finally we combine (2.21), (2.22) and (2.23) into

(2.24) sλ2(eλψz2, z2) +
1
sλ

[(e−λψΛz2, Λz2) + (e−λψ∂3z2, ∂3z2)] ≤ C7‖G2‖2

The estimate for z3 is done in the same manner as the estimate for z2. The only difference is that T has
to be replaced by −T . Hence we obtain

(2.25) sλ2(eλψz3, z3) +
1
sλ

[(e−λψΛz3, Λz3) + (e−λψ∂3z3, ∂3z3)] ≤ C7‖G3‖2
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Combining now the inequalities (2.12),(2.24) and (2.25) we obtain

sλ2(eλψz, z) +
1
sλ

(e−λψ∂3z, ∂3z) +
1
sλ

(e−λψΛz2,Λz2) +
1
sλ

(e−λψΛz3, Λz3) ≤ C8‖G‖2

for some positive constant C8 and sufficiently large λ and s = s(λ). Note that this estimate does not
contain the tangential derivatives of z1.

2.4. Return to the original variable. Now we will return to the original variable u. Using z = vesφ

we get

sλ2(eλψesφv, esφv) +
1
sλ

(e−λψesφ∂3v, esφ∂3v)

+
1
sλ

(e−λψesφΛv2, e
sφΛv2) +

1
sλ

(e−λψesφΛv3, e
sφΛv3) ≤ C8‖G‖2

By (2.9) we have
|u(y3)|2 ≤ C9

[|v(y3)|2 + |u(y3)|2−1

]

uniformly in y3. Assuming that the support of u is small (this can be accomplished by choosing W
sufficiently small) we obtain

|u(y3)|−1 ≤ 1√
2C9

|u(y3)|
by Poincaré’s inequality. The last two inequalities give

|u(y3)|2 ≤ C9

2
|v(y3)|2

The same inequality holds for ∂3u and ∂3v, respectively. Hence

(2.26) sλ2(eλψesφu, esφu) +
1
sλ

(e−λψesφ∂3u, esφ∂3u) +
1
sλ

(e−λψesφΛv2, e
sφΛv2)

+
1
sλ

(e−λψesφΛv3, e
sφΛv3) ≤ C10‖Fesφ‖2

for λ and s sufficiently large where we also used G = iesφ(R0F + R0u).
Next we will perform a rather detailed analysis of the terms involving v2 and v3. Since v = Q−1u we

need to work with the components of the matrix operator Q−1. Remember that

q(y, ξ′) =




− ã2jgjξj

|b1|
ξ1g

1

|b2|
ξ1g

1

|b2|
ã1jgjξj

|b1|
ξ2g

2

|b2|
ξ2g

2

|b2|
0

g3α2

|b2|
g3α3

|b2|




A lengthy but straightforward calculation yields

q−1(y, ξ′) =




−|b1|ξ2g
2

ajkξjξk

|b1|ξ1g
1

ajkξjξk
0

− |b2|α3ã
1jgjξj

2i=α2(ajkξjξk)
− |b2|α3ã

2jgjξj

2i=α2(ajkξjξk)
|b2|

2g3i=α2

|b2|α2ã
1jgjξj

2i=α2(ajkξjξk)
|b2|α2ã

2jgjξj

2i=α2(ajkξjξk)
− |b2|

2g3i=α2




All the entries in these two matrices are operators of order 0. Setting

l1(y, ξ′) =
( |b2|ã1jgjξj

2ajkξjξk
,
|b2|ã2jgjξj

2ajkξjξk
, 0

)

l2(y, ξ′) =
( |b2|<α2ã

1jgjξ2

2=α2(ajkξjξk)
,
|b2|<α2ã

2jgjξj

2=α2(ajkξjξk)
,− |b2|

2g3=α2

)

we see that

v2(y3) = L1(y,D′) · u(y3) + iL2(y, D′) · u(y3) and v3(y3) = L1(y, D′) · u(y3)− iL2(y,D′) · u(y3)
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where L1 and L2 are the operators with the symbols l1 ∈ C1S0
cl and l2 ∈ C1S0

cl, respectively. Properties
of the scalar product give

(2.27) |Λv2(y3)|2 + |Λv3(y3)|2 = 2|ΛL1 · u(y3)|2 + 2|ΛL2 · u(y3)|2

Note that the operator L1(y, D′) acts only on u1 and u2. Combining ΛL2(y, D′) with the third curl
equation (the one which was left off the analysis until now) we obtain a first order system with principal
symbol 

 (1 + |ξ′|2)1/2 |b2|ã1jgjξj

2ajkξjξk
(1 + |ξ′|2)1/2 |b2|ã2jgjξj

2ajkξjξk

−g2ξ2 g1ξ1




Its determinant is (1 + |ξ′|2)|b2|2 > 0 which proves that this system is uniformly elliptic in y3. Elliptic
regularity [WRL95, Chapter 9] yields

|Λu1(y3)|2 + |Λu2(y3)|2 ≤ C11

[|F (y3)|2 + |ΛL1(y,D′) · u(y3)|2 + |u(y3)|2
]

and the operator L2 provides the estimate

|Λu3(y3)|2 ≤ C12

[|ΛL1(y,D′) · u(y3)|2 + |Λu1(y3)|2 + |Λu2(y3)|2
]

The last two equations add up to

|Λu(y3)|2 ≤ C12

[|F (y3)|2 + |ΛL1(y, D′) · u(y3)|2 + |ΛL2(y, D′) · u(y3)|2 + |u(y3)|2
]

and in connection with (2.27) we obtain

(2.28) |Λu(y3)|2 ≤ C13

[|F (y3)|2 + |Λv2)|2 + |Λv3|2 + |u(y3)|2
]

Using this formula in (2.26) after multiplication by esφ and integration in y3 yields

1
sλ

3∑

j=1

(e−λψesφ∂ju, esφ∂ju) + sλ2(eλψesφu, esφu) ≤ C14‖Fesφ‖2

and returning to the original coordinates finishes the proof.

3. Conditional Stability in the Cauchy Problem

In this section we assume Ω to be a connected domain with a C2 boundary. Let E and H satisfy (1.1)
and

(3.1) E = f, H = g on Γ,

where Γ is an arbitrary relatively open subset of ∂Ω. We are interested in estimating E and H in a
neighborhood of Γ by means of boundary data f and g.

We set
Ωδ = {x ∈ Ω : φ(x) > δ}, Γδ = {x ∈ Ω : φ(x) = δ}

for δ > 0. Let ∇φ(x) 6= 0 for all x ∈ Ω. Then, by Theorem 1.1, we can argue similarly to e.g., Theorem
3.2.2 in [I98] to obtain

Theorem 3.1. Assume that Ω0 ⊂ Ω ∩ Γ. Then, for a solution (E, H) to (1.1) and (3.1), we have

(3.2) ‖E‖H1(Ωδ) + ‖H‖H1(Ωδ) ≤ C
(
‖f‖

H
1
2 (Γ)

+ ‖g‖
H

1
2 (Γ)

)κ (
1 + ‖E‖L2(Ω) + ‖H‖L2(Ω)

)1−κ
.

Here C > 0 and κ ∈ (0, 1) are constants which are dependent on ε, µ, φ, Γ, δ and independent of choices
of f and g.

This is an estimate of E and H in the interior of Ω by means of boundary data on Γ, and does not imply
any estimates outside Γ. Next we show such a boundary estimate in the Cauchy problem. Henceforth
we fix λ > 0 sufficiently large.
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Theorem 3.2. We assume that ε, µ ∈ {C3(Ω)}9, and
(i) The hypersurface Γδ has a unique apex zδ for each δ ≥ 0.
(ii) Γ0 \ {z0} ⊂ Ω, z0 ∈ ∂Ω, Γ0 is tangential to Γ at z0.
(iii) There exist γ > 0, C1 > 0 and ν ∈ R3 such that |ν| = 1 and zt − z0 = C1t

γν for t > 0.
We set

(3.3) M = ‖E‖H3(Ω) + ‖H‖H3(Ω).

Then, for any κ ∈ (0, γ), there exists a constant C2 = C2(κ) > 0 such that

(3.4) |E(z0)|+ |H(z0)| ≤ C2M

∣∣∣∣∣∣
log

1
∑2

j=0

(
‖∂j

νE‖
H

5
2−j(Γ)

+ ‖∂j
νH‖

H
5
2−j(Γ)

)
∣∣∣∣∣∣

−κ

.

Here ∂ν denotes the outward normal derivative and we note that limκ↑γ C2(κ) = ∞. The stability at
the boundary point z0 is of logarithmic rate and is much worse than (3.2). The exponent κ > 0 relies on
the radius of curvature of ∂Ω at z0.
Example Let z0 = (0, 0, 0) and for some r > 0, let Ω ∩ {|x| < r} ⊂ {(x1, x2, x3); x3 > (x2

1 + x2
2)

γ}, and

Ω ⊂ {x3 > 0}. For γ > 0, we set φ(x) = x
1
γ

3 − (x2
1 + x2

2). Then ∇φ(x) = (−2x1,−2x2,
1
γ x

1
γ−1

3 ) 6= 0 in Ω
by Ω ⊂ {x3 > 0}. Since zt = (0, 0, tγ), the assumptions in the theorem are satisfied. When the radius of
the curvature is larger, also γ is larger, so that estimate (3.4) is improved.

Proof. We set

D =
2∑

j=0

(
‖∂j

νE‖
H

5
2−j(Γ)

+ ‖∂j
νH‖

H
5
2−j(Γ)

)
.

Without loss of generality, we can assume that M > 1 and 0 < D < 1.
By the Sobolev extension theorem, we have E∗,H∗ ∈ H3(Ω) such that

(3.5) ∂j
νE = ∂j

νE∗, ∂j
νH = ∂j

νH∗ on Γ

and

(3.6) ‖E∗‖H3(Ω) + ‖H∗‖H3(Ω) ≤ D.

We can take χ = χδ ∈ C∞(R3) such that 0 ≤ χ ≤ 1 and

(3.7) χ(x) =

{
1, x ∈ Ω2δ,

0, x ∈ Ω0 \ Ωδ,

and

(3.8) ‖χ‖C3(R3) ≤
C3

δ3
.

In fact, we choose a function χ̃ ∈ C∞(R) such that 0 ≤ χ̃ ≤ 1 and

χ̃(t) =

{
1, t ≥ 1,

0, t ≤ 0.

Setting

χδ(x) = χ̃

(
φ(x)− δ

δ

)
,

we see that this χδ satisfies (3.7) and (3.8).
Furthermore we set u = χ(E − E∗) and v = χ(H −H∗). Then u, v ∈ H3

0 (Ω0) and

∇× v − iωε(x)u(x) = (∇χ)×H −∇× (χH∗) + iωεχE∗

∇× u + iωµ(x)v(x) = (∇χ)× E −∇× (χE∗)− iωµχH∗

∇ · (εu) = ∇χ · εE −∇ · (εχE∗)

∇ · (µv) = ∇χ · µH −∇ · (µχH∗)

(3.9)
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Applying Theorem 1.1 to (3.9), we have

1
s

∫

Ω0

(|∇u|2 + |∇v|2)e2sφdx + s

∫

Ω0

(|u|2 + |v|2)e2sφdx

≤ C4

∫

Ω0

|∇χ|2(|E|2 + |H|2)e2sφdx + C4

∫

Ω0

(|E∗|2 + |H∗|2 + |∇E∗|2 + |∇H∗|2)e2sφdx

for large s > 0. By (3.7) and (3.8), we obtain

e6sδs−1

∫

Ω3δ

(|E|2 + |H|2 + |∇E|2 + |∇H|2)dx

≤ 1
s

∫

Ω3δ

(|u|2 + |v|2 + |∇u|2 + |∇v|2)e2sφdx + C5e
C′5sD2

≤ C5e
4sδM2

δ6
+ C5e

C′5sD2.

Therefore

(3.10)
∫

Ω3δ

(|E|2 + |H|2 + |∇E|2 + |∇H|2)dx ≤ C6e
−2sδM2s

δ6
+ C6e

C7sD2 ≤ C6e
−sδM2

δ7
+ C6e

C7sD2

for any s ≥ s1: a constant, where we noted that se−sδ ≤ δ−1 for s ≥ 0.
Here and henceforth the constants Cj are independent of s and δ ∈ (0, 1), γ. Replacing C6 by C6e

C7s0 ,
we have (3.10) for any s > 0. Setting e−sδM2 = eC7sD2, that is, s = 2

C7+δ log M
D , we have

‖E‖H1(Ω3δ) + ‖H‖H1(Ω3δ) ≤
C8

δ7/2
M

C7
C7+δ D

δ
C7+δ .

Taking ∂i, ∂i∂j , 1 ≤ i, j ≤ 3 in (3.9) and applying the above argument successively, we obtain

(3.11) ‖E‖H3(Ω3δ) + ‖H‖H3(Ω3δ) ≤
C8

δ7/2
M

C7
C7+δ D

δ
C7+δ .

Here we note that the constants C7 and C8 are independent of δ ∈ (0, 1).
By the Sobolev embedding, we have

‖E‖C1(Ω3δ) + ‖H‖C1(Ω3δ) ≤
C8

δ7/2
M

C7
C7+δ D

δ
C7+δ .

Replacing 3δ by 3δt with t ∈ [0, 1], we have

(3.12) ‖E‖C1(Ω3δt)
+ ‖H‖C1(Ω3δt)

≤ C8

δ7/2t7/2
M

C7
C7+δt D

δt
C7+δt .

Henceforth we fix δ > 0 sufficiently small and Cj denotes constants which are further independent of
θ, t ∈ (0, 1) and dependent on δ, γ. We set h1(t) = E(z0 + C1(3δt)γν) and h2(t) = H(z0 + C1(3δt)γν).
By assumption (ii), we see that h1(1) = E(z3δ) and h2(1) = H(z3δ). Therefore

(3.13) E(z0) =
∫ 0

1

dh1(t)
dt

dt + E(z3δ).

On the other hand,
dh1(t)

dt
= ∇E(z0 + C1(3δt)γν) · C1γ3γδγtγ−1ν,

and, for θ ∈ (0, 1), inequality (3.13) and the Sobolev embedding yield
∣∣∣∣
dh1(t)

dt

∣∣∣∣ ≤ ‖∇E‖C(Ω3δt)
C1γ3γδγtγ−1

≤ C9‖E‖1−θ

C1(Ω3δt)
‖E‖θ

C1(Ω3δt)
tγ−1 ≤ C10M

1−θt(γ−
7
2 θ)−1M

C7θ
C7+δt D

δθt
C7+δt .

We choose θ such that γ − 7
2θ > 0. Since 0 < D < 1, 0 < δ ≤ 1 and M > 1, we have

M1−θM
C7θ

C7+δt ≤ M
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and we can choose C11 = C11(δ) > 0 such that

D
δθt

C7+δt ≤ DC11θt, 0 ≤ t ≤ 1.

Thus ∣∣∣∣
dh1(t)

dt

∣∣∣∣ ≤ C12Mt(γ−
7
2 θ)−1DC11θt,

so that

|E(z0)| ≤ C13M

∫ 1

0

t(γ−
7
2 θ)−1DC13θtdt + C13‖E‖C(Ω3δ)

≤ C13M

∫ ∞

0

t(γ−
7
2 θ)−1 exp

(
−C13

(
log

1
D

)
θt

)
dt + C13MD

δ
C7+δ

≤ C14MΓ(γ − 7
2
θ)(C13θ)

7
2 θ−γ

(
log

1
D

)−(γ− 7
2 θ)

+ C14MD
δ

C7+δ .

Since

C15

(
log

1
D

)−(γ− 7
2 θ)

≥ D
δ

C7+δ ,

and we can estimate |H(z0)| in the same way, the proof of Theorem 3.2 is complete. ¤
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