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Chapter 1

Introduction

Historically, statistical mechanics and Gibbs measure were derived from thermo-
dynamics and classical mechanics independently. Precisely, one can get statistical
mechanics from physical fundemental equation, Newtonian mechanics, or quantum
mechanics, under Boltzman’s ergodic hypothesis. After the ergodic hypothesis was
introduced by Boltzman, in order the justify it, von Neumann and Birkhoff devel-
oped ergodic theorems.

However, we have to emphasis that, although ergodic hypothesis can justify
Gibbs’ measure, it is not enough to explain all of the phenomena.

It would be a very interesting and important question to derive the results (facts)
of statistical mechanics from classical mechanics or quantum mechanics directly.
However, this is almost not done.

The simpliest example would be Brownian motion. This problem was discussed
by, e.g., Holley [7], Dürr-Goldstein-Lebowitz [3], [4], [5], Calderoni-Dürr-Kusuoka [2],
etc.. Brownion motion was first observed, without knowing the reason, by Brown in
1827, as the irregular motion of a rather big particle which is put into water. This
was later explained by Einstein in the following way: since a big number of water
atoms collide with the big particle randomly, the motion of the big particle could be
considered as a sum of many i.i.d. random variables, so after taking limit, this will
give us a Brownian motion. This is also the explaination given by many physical
textbooks.

However, we have to notice that, in real problems, there exists the possibility of
recollision, moreover, when considering the problem of interaction caused by poten-
tials, the state of each small particle is not independent to the history. Therefore,
the actual motion is not a sum of i.i.d. random variables, and we have to construct
some new model, which includes the mentioned re-interaction. This is the aim of
this research.

Let us describe our problem and results in detail now. Let m > 0, N ≥ 1,
d ≥ 1, and M1, · · · ,MN > 0. Here N stands for the number of big particles (atoms),
M1, · · · ,MN for the masses of each atom, m for the mass of the small particles,
and d is the dimension of the space. Let Ui ∈ C∞0 (Rd), i = 1, · · · , N . Also, let
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2 CHAPTER 1. INTRODUCTION

Xi,0, Vi,0 ∈ Rd, i = 1, · · · , N , which stands for the initial positions and initial speeds
of the big particles. For any ω ∈ Conf(Rd ×Rd), we consider the infinite system
given by the following ODE (so we are considering the case when there is no direct
interaction between big particles or between small particles):





d

dt
X

(m)
i (t, ω) = V

(m)
i (t, ω),

Mi
d

dt
V

(m)
i (t, ω) = −

∫

Rd×Rd
∇Ui(X

(m)
i (t, ω)− x(m)(t, x, v, ω))µω(dx, dv),

(X
(m)
i (0, ω), V

(m)
i (0, ω)) = (Xi,0, Vi,0), i = 1, · · · , N,

d

dt
x(m)(t, x, v, ω) = v(m)(t, x, v, ω),

m
d

dt
v(m)(t, x, v, ω) = −

N∑

i=1

∇Ui(x
(m)(t, x, v, ω)−X

(m)
i (t, ω)),

(x(m)(0, x, v, ω), v(m)(0, x, v, ω)) = (x, v).
(1.0.1)

Here Conf(Rd × Rd) means the set of all non-empty closed subsets of Rd × Rd

which have no cluster point. (See Chapter 2 for more discussion about the structure
of closed sets). We will omit the superscript (m) when there is no risk of confusion.

Let ρ : R → [0,∞) be a continuous function such that ρ(s) → 0 rapidly as
s→∞. Let λm be the non-atomic Radon measure on Rd ×Rd given by

λm(dx, dv) = m
d−1
2 ρ

(m
2
|v|2 +

N∑

i=1

Ui(x−Xi,0)
)
dxdv,

and let Pm(dω) be the Poisson point process determined by λm. So Pm is a prob-
ability measure on Conf(Rd × Rd). (See Chapters 2 and 3 for the definition and
properties of Poisson point process).

We are mostly interested in the following two problems:

1. Existence of the solution.

2. The limit behavior of the distribution of

( ~X(m)(t, ω), ~V (m)(t, ω))

= ((X
(m)
1 (t, ω), · · · , X(m)

N (t, ω)), (V
(m)
1 (t, ω), · · · , V (m)

N (t, ω)))

under Pm(dω) as m→ 0.

For the first problem, we have the following result (see Section 4.3 for details).

Assume that d ≥ 2 and
∫ ∞

−∞
(1 + |s|)dρ(s)ds <∞, then there exists a unique solution

to (1.0.1) for Pλm-a.s. ω.
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In order to answer the second question, we need to modify our assumptions a
little bit. Assume that Ui ∈ C∞0 (Rd) satisfy Ui(−x) = Ui(x), x ∈ Rd, i = 1, · · · , N ,

and Ui(x) = 0 if |x| ≥ Ri. Define constants C0 =
(
2

∑N
i=1Ri‖∇Ui‖∞

)1/2
, e0 =

1
2
(2C0 +1)2 +

∑N
i=1 ‖Ui‖∞, and assume that ρ : R → [0,∞) is a measurable function

satisfying the following.

1. ρ(s) = 0 if s ≤ e0,

2. for any c > 0, there exists a ρ̃c : R → [0,∞) such that

sup
|a|≤c

ρ(s+ a) ≤ ρ̃c(s), for any s ∈ R,

and ∫

Rd
(1 + |v|3)ρ̃c(

1

2
|v|2)dv <∞.

Also, assume that the initial position (X1,0, · · · , XN,0) satifties |Xi,0−Xj,0| > Ri+Rj

for any i 6= j.
It is easy to check that under this setting, the existence and the uniqueness of

the solution of the considered ODE still holds, i.e., there exists a unique solution
to (1.0.1) for Pλm-a.s. ω. (See Theorem 5.0.2 for details). Moreover, we have the
convergence result.

To describe the limit process, let us first define some notations. For any ~X ∈
RdN , let us consider the following ODE:





d

dt
x̃(t, x, v; ~X) = ṽ(t, x, v; ~X)

m
d

dt
ṽ(t, x, v; ~X) = −

N∑

i=1

∇Ui(x̃(t, x, v; ~X)−Xi)

(x̃(0, x, v; ~X), ṽ(0, x, v; ~X)) = (x, v).

(1.0.2)

Let

E = {(x, v) ∈ Rd × (Rd \ {0}); x · v = 0},
Ev = {x ∈ Rd;x · v = 0}, v ∈ Rd \ {0},

and let ν̃(dx; v) be the Lebesgue measure on Ev, let ν(dx, dv) = |v|ν̃(dx; v)dv.
Define

Ψ : R× E → Rd × (Rd \ {0}), (s, (x, v)) 7→ (x− sv, v),

and let

ψ0(t, x, v; ~X) = lim
s→∞ x̃(t+ s,Ψ(s, x, v); ~X),

ψ1(t, x, v; ~X) = lim
s→∞ ṽ(t+ s,Ψ(s, x, v); ~X),
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which is well-defined for any t ∈ R and any (x, v) ∈ E. where (x̃, ṽ) stands for the
solution of (1.0.2).

Let

aik;jl( ~X) =
1

MiMj

∫

E

( ∫ ∞

−∞
∇kUi(ψ

0(t, x, v; ~X)−Xi)dt
)

( ∫ ∞

−∞
∇lUj(ψ

0(t, x, v; ~X)−Xj)dt
)
ρ(

1

2
|v|2)ν(dx, dv),

and let bik;jl : RNd → R be the C∞-functions given in the following way: Let

z(t, x, v, ~X, ~V , a) denote the solution of





d2

dt2
z(t) = −

N∑

i=1

∇2Ui(ψ
0(t, x, v, ~X)−Xi)(z(t)− (t+ a)Vi),

z(−∞) =
d

dt
z(−∞) = 0.

Then

z1(x, v, ~X, ~V , a) := lim
t→∞

d

dt
z(t, x, v, ~X, ~V , a)

is a linear function on ~V . bik;jl are determined by

Bi( ~X, ~V ) := −1

2

1

Mi

∫

E

( ∫ ∞

−∞
dt∇2Ui(ψ

0(t, x, v, ~X)−Xi)z(t, x, v, ~X, ~V ,−t)
)

ρ(
1

2
|v|2)ν(dx, dv)

=
1

Mi

d∑

k=1

N∑

j=1

bi·;jk( ~X)V k
j .

Let L be the 2nd order differential operator on R2Nd given by

L =
N∑

i,j=1

d∑

k,l=1

aik,jl( ~X)
∂2

∂V k
i ∂V

l
j

+
N∑

i,j=1

d∑

k,l=1

bik,jl( ~X)V k
j

∂

∂V k
i

+
N∑

i=1

d∑

k=1

V k
i

∂

∂Xk
i

.

Our convergence results are the following.

RESULT 1 Assume N = 1. Then {(X1(t), V1(t)), t ≥ 0} converges to the diffusion
in C([0,∞);R2d) with generator L as m→ 0.

RESULT 2 Assume N ≥ 2. Let

σ0(ω) = inf {t > 0; min
i 6=j
{|Xi(t)−Xj(t)| − (Ri +Rj)} ≤ 0}.

Then {( ~X(t ∧ σ0), ~V (t ∧ σ0)), t ≥ 0} converges to the diffusion with generator L
stopped at σ0 in C([0,∞);R2dN) as m→ 0.
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RESULT 3 Let N = 2 and d ≥ 3. Assume that there exist functions h1, h2 such
that

Ui(x) = hi(|x|), i = 1, 2,

and there exists a constant ε0 > 0 such that

(−1)i−1hi(s) > 0, (−1)i−1h′′i (s) > 0, s ∈ (Ri − ε0, Ri), i = 1, 2.

Then {( ~X(t), ~V (t)), t ≥ 0} converges to a Markov process as m→ 0.

This article is prepared as a lecture note. We included also some elementary
well-known results, to make it as self-complacency as possible.

In Chapter 2, we review some basic facts about closed sets and Poisson point
processes. In Chapter 3, we prepare some basic facts about classical mechanics,
especially about Hamilton’s equation, Newton’s equation, ray representations, and
classical scattering. (See Reed-Simon [11] for more details about classical scattering
theory). In Chapter 4, we use random fields to prove the Pm-a.s. existence of the
solution for every m > 0. (See also Evstigneev [6] for random fields). Chapter
5 contains some preparation for the proof of convergence, especially, it gives the
decomposition of Vi(t) (Lemma 5.3.1) and some properties followed, which are used
in Chapter 7 to prove convergence results 1 and 2. See Chapter 6 for the proof
of these lemmas. Finally, in Chapter 8, we prove Result 3, i.e., we discusss the
example of two big particles with ball symmetric potentials for dimension d ≥ 3, and
show that under certain conditions, as m→ 0, the phase process {( ~X(t), ~V (t)), t ≥
0} converges to the Markov process given as the ”reflecting diffusion process with
generator L”.

We emphasis again that as mentioned at the beginning of this chapter, in our
present problem, the forces at any fixed time are not independent to the history.
Therefore, since both the big particles and the small ”environment” particles are
changing, the system is very complicated and difficult to be handled. Our basic
idea for the proof of convergence is that, although all of the particles are moving
all the time, since the mass of big particles are very big compared with the small
particles, when considering the scattering of the small particles, we can use the
approximation that the big particles are fixed, with the caused error small enough.
With the help of this approximation, the ODE for the motion of small particles
could be approximated by the one in which the big particles are ”fixed”. This will
certainly make our life easier. (See Chapters 5 ∼ 7 for more details).

Also, we want to remark that, for any fixed m > 0, although Vi(t) is continuous
with respect to t (since it is described by the ODE (1.0.1), our martingale part Mi(t)
in the decomposition of Vi(t) (see Lemma 5.3.1) does not need to be continuous. The
only thing we can say is that the jumps of it are dominated by some constant times
m1/2, (see Lemma 5.3.1). This is also one of our ideas: use the martingale theorem
only to the part for which it is usable, for the remaining term, instead of trying to
deal with it in detail, we show that the whole term is negligible as m→ 0 from the
beginning.





Chapter 2

Closed Sets in Polish Spaces

2.1 Structure of measurable

Let M be a Polish space, i.e., a separable complete metric space. Also, let O(M)
denote the family of all non-empty closed subsets of M .

DEFINITION 2.1.1 (1) Let E0 denote the σ-algebra on O(M) generated by
{{C ∈ O(M);C ∩G = ∅};G is open in M}.

(2) Let E1 denote the σ-algebra on O(M) generated by {{C ∈ O(M);C ⊂ G};G is open in M}.

PROPOSITION 2.1.2 E0 ⊂ E1.

Before giving the proof of Proposition 2.1.2, let us prepare some notations. For
any subset A ⊂M and r > 0, we define

(A)r = {x ∈M ; dist(x,A) < r}.

Also, we write
B(x, r) = ({x})r = {y ∈M ; dist(x, y) < r},

which is an open set.
Proof of Proposition 2.1.2. Let G be any open set. Then for any C ∈ O(M),

C ∩G = ∅ ⇐⇒ C ⊂ GC

⇐⇒ C ⊂ (GC)1/n for any n ≥ 1,

so

{C ∈ O(M);C ∩G = ∅}
=

∞⋂

n=1

{C ∈ O(M);C ⊂ (GC)1/n}
∈ E1,

6
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which implies our assertion.
We define several more notations. Let

Comp(M) = {C ∈ O(M);C is compact},
Conf(M) = {C ∈ O(M);C has no cluster point},
F in(M) = {C ∈ O(M); ](C) <∞}.

PROPOSITION 2.1.3 For any closed set K ⊂M , we have that

{C ∈ O(M);C ⊂ K} ∈ E0.

Proof. This is easy since C ⊂ K ⇐⇒ C ∩KC = ∅.

PROPOSITION 2.1.4 Comp(M) ∈ E0.

Proof. First note that

C ∈ O(M) is compact ⇐⇒ C is closed and totally bounded.

Now choose and fix a sequence {xn}∞n=1 such that it is dense in M . (This is
possible since M is separable). Then we have

C ∈ Comp(M)

⇐⇒ C ∈ O(M) and ”∀n ≥ 1,∃m ≥ 1, s .t .C ⊂ ∪m
k=1B(xk, 1/n)”.

Therefore, by Proposition 2.1.3,

Comp(M) =
∞⋂

n=1

(
∞⋃

m=1

{
C ∈ O(M);C ⊂ ∪m

k=1B(xk, 1/n)
}
)

∈ E0.

PROPOSITION 2.1.5 We have {C ∈ O(M); ](C) ≤ n} ∈ E0 for any n ∈ N.

Proof. Choose and fix a sequence {xn}∞n=1 such that it is dense in M . (As
before, this is possible since M is separable).
Claim.

{C ∈ O(M); ](C) ≤ n}
=

∞⋂

`=1

⋃

1≤k1<···<kn

{
C ∈ O(M);C ⊂

n⋃

i=1

B(xki
, 1/`)

}
.
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Proof of Claim. The ”⊂” side is easy. We show the ” ⊃ ” side in the following.
Suppose ](C) ≥ n + 1. Then there exist y1, · · · , yn+1 ∈ C with dist(yi, yj) > 0 for
any i 6= j. Choose ` ∈ N such that

2

`
< min

i6=j
dist(yi, yj).

Then there do NOT exist xk1 , · · · , xkn such that C ⊂ ⋃n
i=1B(xki

, 1/`). This com-
pletes the proof of the claim.

Now, Proposition 2.1.5 is easy by Claim and Proposition 2.1.4.

COROLLARY 2.1.6 Fin(M) ∈ E0.

PROPOSITION 2.1.7 Suppose that M is locally compact in addition. Then
Conf(M) ∈ E0.

Proof. Since M is locally compact, for any x ∈ M , there exists a rx > 0 such
that B(x, rx) is compact. We take rx > 0 as the largest possible number less than 1,
i.e., rx = sup{r ≤ 1 : B(x, rx) is compact}. Also, since M is separable, there exists
a sequence {xn}n∈N such that it is dense in M .

We have that M = ∪n∈NB(xn, rxn). Actually, if not, then there exists a y ∈ M
such that y /∈ B(xn, rxn) for any n ∈ N. Since {xn}n∈N is dense in M , there exists
a subsequence nk such that xnk

→ y as k → ∞. Therefore, there exists a K ∈ N
such that xnk

∈ B(y, ry/2) for any k ≥ K. So by the definition of rxnk
, we get that

rxnk
≥ ry/2. Therefore, y /∈ B(xnk

, rxnk
) implies y /∈ B(xnk

, ry/2), in other words,
xnk

/∈ B(y, ry/2) for any k ≥ K. This contradicts with the fact that xnk
→ y.

It is easy to see that

O(M) \ Conf(M)

=
∞⋃

n=1

{
C ∈ O(M);B(xn, rxn) ∩ C has infinitely many elements

}
.

Actually, the ”⊃” part is trivial. For the ”⊂” part, choose any C ∈ O(M) \
Conf(M), we only need to show that there exists a k ∈ N such that B(xk, rxk

)∩C
has infinitely many elements. Since C ∈ O(M) \ Conf(M), there exists (at least
one) a ∈M such that a is a cluster point of C. So B(a, ra) ∩C has infinitely many
elements. On the other hand, the fact that ∪nB(xn, rxn) = M ⊃ B(a, ra) combined
with the compactness of B(a, ra) implies that there exists a m ∈ N and n1, · · · , nm ∈
N such that ∪m

l=1B(xnl
, rxnl

) ⊃ B(a, ra), hence ∪m
l=1

(
B(xnl

, rxnl
)∩C

)
⊃ B(a, ra)∩C.

Therefore, there exists at least one l ∈ {1, · · · ,m} such that B(xnl
, rxnl

) ∩ C has
infinitely many elements.

Therefore, by the Claim in the proof of Proposition 2.1.5,

O(M) \ Conf(M)
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=
∞⋃

n=1

∞⋂

m=1

{
C ∈ O(M); ](B(xn, rxn) ∩ C) > m

}

=
∞⋃

n=1

∞⋂

m=1

∞⋃

`=1

⋂

k1<···<km

{
C ∈ O(M);C ∩B(xn, rxn) ∩ (

m⋃

i=1

B(xki
, 1/`))C 6= ∅

}

∈ E0.

2.2 Castaing’s axiom of choice

Let (Ω,F) be a measurable space through out this section.

DEFINITION 2.2.1 A map Γ : Ω → O(M) is said to be measurable if it is F/E0-
measurable.

Also, we use the following notation: for any A ⊂M , let

Γ−w(A) = {ω ∈ Ω; Γ(ω) ∩ A 6= ∅}.

PROPOSITION 2.2.2 Γ : Ω → O(M) is measurable if and only if Γ−w(G) ∈ F
for all open G.

Proof. This is easy since

Γ−w(G)

= Γ−1({C ∈ O(M);C ∩G 6= ∅})
= Γ−1({C ∈ O(M);C ∩G = ∅})C .

PROPOSITION 2.2.3 Suppose that Γ : Ω → O(M) is measurable. Then there
exists a measurable γ : Ω →M such that

γ(ω) ∈ Γ(ω), for all ω ∈ Ω.

Proof. In general, if d̃ is a complete metric in M , then

d(x, y) := d̃(x, y) ∧ 1, x, y ∈M,

is also a complete metric in M . Therefore, without loss of generality, we may and
do assume that

sup
x,y∈M

d(x, y) ≤ 1.
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Also, since M is separable, there exists a sequence {xn}∞n=0 such that it is dense in
M .

In the following, we construct a sequence of measurable maps γn : Ω → M ,
n ≥ 0, that satisfies the following:

{
d(γk−1(ω), γk(ω)) ≤ 2−(k−2),
B(γk(ω), 2−k) ∩ Γ(ω) 6= ∅, k ≥ 0, ω ∈ Ω.

(2.2.1)

We construct it inductively. First let γ0(ω) = x0. Next, when γ0, · · · , γn are given
with (2.2.1) hold for k = 1, · · · , n, we define γn+1 in the following way such that it
also satisfies (2.2.1). For any m ≥ 0, let

Em = {ω ∈ Ω;B(xm, 2
−(n+1)) ∩ Γ(ω) 6= ∅},

Fm = {ω ∈ Ω; γn(ω) ∈ B(xm, 2
−(n−1))},

and let Gm = Em ∩Fm. Then Em = Γ−w(B(xm, 2
−(n+1))) ∈ F by Proposition 2.2.2,

Fn = γ−1
n (B(xm, 2

−(n−1))) ∈ F since γn is measurable. Therefore, Gm ∈ F . For any
ω ∈ Ω, we have by inductive condition that there exists a y ∈ Γ(ω) such that

dist(γn(ω), y) < 2−n. (2.2.2)

Also, since {xn}∞n=0 is dense in M , there exists a x` such that

dist(y, x`) < 2−(n+1), (2.2.3)

hence
B(x`, 2

−(n+1)) ∩ Γ(ω) 6= ∅.
Moreover, by (2.2.2) and (2.2.3), we have that

γn(ω) ∈ B(x`, 2
−(n−1)).

These give us that ω ∈ G`. Therefore,
⋃∞

m=0Gm = Ω. Let

G′0 = G0,

G′m+1 = Gm+1 \ (∪m
k=0Gk).

Then {G′m}m≥0 are disjoint to each other, and

∞⋃

m=0

G′m = Ω.

Define
γn+1(ω) = xm, if ω ∈ G′m, m = 0, 1, 2, · · · ,

Then it is easy to check by the definition of Gm that γn+1 also satisfies (2.2.1) with
k = n+ 1. This completes our definition of γn : Ω →M , n ≥ 0, inductively.

For any ω, {γn(ω)}n≥0 is a Cauchy sequence by definition, so there exists a limit
γ(ω) := limn→∞ γn(ω), and

d(γ(ω),Γ(ω)) = lim
n→∞ d(γn(ω),Γ(ω)) = 0.

Since Γ(ω) is closed, this implies that γ(ω) ∈ Γ(ω), ω ∈ Ω.
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THEOREM 2.2.4 (Castaing) Suppose that Γ : Ω → O(M) is measurable. Then
there exists a sequence of measureable maps γn : Ω →M , n ∈ N, such that

(1) γn(ω) ∈ Γ(ω), ω ∈ Ω,

(2) {γn(ω);n ∈ N} = Γ(ω), ω ∈ Ω.

Proof. Let {xn}n∈N be a dense set in M (This is possible since M is separable).
Also, for any n,m ∈ N, let

Γn,m(ω) =

{
Γ(ω) ∩B(xn, 2

−m), if ω ∈ Γ−w(B(xn, 2
−m)),

Γ(ω), otherwise.

Then for any open G ⊂M , we have that

(Γn,m)−w(G)

= {ω ∈ Ω; Γn,m(ω) ∩G 6= ∅}
= {ω ∈ Ω; Γn,m(ω) ∩G 6= ∅}
= Γ−w(B(xn, 2

−m) ∩G) ∪
(
Γ−w(G) \ Γ−w(B(xn, 2

−m))
)

∈ F .

So by Proposition 2.2.2, Γn,m : Ω → O(M) is measurable. Therefore, by Proposition
2.2.3, there exists a measurable map γn,m : Ω →M such that

γn,m(ω) ∈ Γn,m(ω) ⊂ Γ(ω), ω ∈ Ω.

Next, we show that the second condition of the theorem is also satisfied. Actually,
for any ω ∈ Ω, x ∈ Γ(ω) and m ≥ 1, since {xn}n∈N is dense in M , there exists a xn

such that

d(xn, x) < 2−m−1. (2.2.4)

This gives us that Γ(ω)∩B(xn, 2
−m−1) 6= ∅, so by definition, ω ∈ Γ−w(B(xn, 2

−m−1)).
Hence by the definition of Γn,m+1, Γn,m+1(ω) = Γ(ω) ∩ B(xn, 2

−m−1). Therefore,
γn,m+1(ω) ∈ Γn,m+1(ω) implies that γn,m+1(ω) ∈ B(xn, 2

−m−1), i.e.,

d(xn, γn,m+1(ω)) < 2−m−1.

This combined with (2.2.4) gives us that

d(x, γn,m+1(ω)) < 2−m.

Therefore,

{γn,m(ω);n,m ∈ N} = Γ(ω).

This completes the proof by re-ordering {γn,m(ω)}n,m∈N.
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2.3 Measures determined by elements of Conf (M)

THEOREM 2.3.1 Let M be a locally compact space. For any ω ∈ Conf(M), let
µω be the measure on M given by

µω(A) = ](ω ∩ A), A ∈ B(M).

Then for any measurable f : M → [0,∞), we have that the map

Conf(M) → [0,∞), ω 7→
∫

M
fdµω

is measurable.

Proof. Let
Ω = Conf(M), F = E0

∣∣∣
Conf(M)

.

Then (Ω,F) is a measurable space, and the map

Ω → O(M), ω 7→ ω

is measurable. Also, let ∆ be a point that does not belong to M .
By Castaing’s Theorem 2.2.4, there exists a sequence of measurable maps {γn :

Ω →M}n∈N such that
{γn(ω);n ∈ N} = ω

for any ω ∈ Ω. Since ω ∈ Ω = Conf(M), we have by definition that ω has no cluster
point. Therefore, the equation above implies that

{γn(ω);n ∈ N} = ω, ω ∈ Ω.

Define γ̃n : Ω →M ∪ {∆} by

γ̃n(ω) =

{
γn(ω), if γn(ω) 6= γk(ω) for k = 1, · · · , n− 1,
∆, otherwise.

Then γ̃n is also measurable.
For any measurable f : M → [0,∞), define

f̃ : M ∪ {∆} → [0,∞), x 7→ f̃(x) =

{
f(x), x ∈M,
0, x = ∆.

Then f̃ is also measurable. Therefore,

∫

M
fdµω =

∞∑

n=1

f̃(γ̃n(ω)) =
∑
x∈ω

f(x)

is also measurable.
This completes the proof.
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2.4 Poisson point process

THEOREM 2.4.1 Let M be a locally compact space, and let ν be a σ-finite non-
atomic Radon measure on M . Then there exists a unique probability measure Pν on
(Conf(M), E0

∣∣∣
Conf(M)

) such that

(1) The distribution of µω(A) under Pν(dω) is the Poisson distribution with mean
ν(A) for any A ∈ B(M),

(2) for any compact sets K1, · · · , Kn ⊂M that are disjoint to each other, we have
that {µω(Ki); i = 1, · · · , n} are independent under Pν(dω).

Proof. We consider the case with ν(M) = ∞. The case of ν(M) < ∞ can be
done in the similar way and is easier.

Let ν0 be the Lebesgue measure on ((0,∞),B((0,∞))). Then there exist sets
A0 ∈ B((0,∞)), A1 ∈ B(M) and a one-to-one onto bi-measurable ϕ : A0 → A1 such
that

ν0((0,∞) \ A0) = 0, ν(M \ A1) = 0,

ν0 ◦ ϕ−1(B ∩ A1) = ν(B ∩ A1), for any B ∈ B(M).

Such a map exists. Actually, as well-known, a complete seperable metric space with
a complete regular Borel probability measure on it is a Lebesgue space, i.e., is a mea-
surable space that is measurablely isomephic to the real line (or a bounded interval)
with the usual Lebesgue measure plus countablely many atoms. (See, e.g., Ikeda-
Watanabe [8, p. 13] and Parthasarathy [10, section 1.2] for details). Since ν has no
atom by assumption, we get that there exists a bijection f : M → {0, 1}N ∼= (0,∞)
such that f is B(M)/B((0,∞))-measurable and f−1 is B((0,∞))/B(M)-measurable.
After converted the problem into the one on positive real numbers, the remaining is
easy.

Let (Ω̃, F̃ , P̃ ) be a new probability space, and let Xi, i ∈ N, be i.i.d. random
variables on it with distribution e−xdx, x > 0. Also, let Sn = X1 + · · ·+Xn. Then
Sn(ω̃) → ∞, P̃ -a.s.. Let C(ω̃) = {Sn(ω̃);n ∈ N}. Then C(ω̃) ∈ Conf((0,∞)),
P̃ -a.s.. Also, we have that

1. µC(ω̃)(A) is the Poisson distribution with mean ν0(A) for any A ∈ B((0,∞)),

2. if A1, · · · , An ∈ B((0,∞)) are disjoint to each other, then µC(ω̃)(Ai), i =
1, · · · , n, are independent.

In particular, C(ω̃) ⊂ A0, P̃ -a.s., and ϕ(C(ω̃)) ∈ Conf(M), P̃ -a.s.. Let

Pν(B) = P̃
(
{ω̃ ∈ Conf((0,∞));ϕ(C(ω̃)) ∈ B}

)
.
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We show that this Pν satisfies the desired conditions. For any A ∈ B(M) and k ∈ N,
let B = {ω ∈ Conf(M), ](ω ∩ A) = k}. Then since ϕ is one-to-one, we have

Pν({ω : µω(A) = k}) = Pν(B)

= P̃
(
{ω̃ : ϕ(C(ω̃)) ∈ B}

)

= P̃
(
{ω̃ : ](ϕ(C(ω̃)) ∩ A) = k}

)

= P̃
(
{ω̃ : ](C(ω̃) ∩ ϕ−1(A)) = k}

)

= P̃
(
{ω̃ : µC(ω̃)(ϕ

−1(A)) = k}
)
.

Therefore, the distribution of µω(A) under Pν is the same as the distribution of
µC(ω̃)(ϕ

−1(A)) under P̃ , which by definition, is equal to the Poisson distribution

with mean ν0(ϕ
−1(A)) = ν(A). This gives us that the defined Pν satisfies the first

desired condition. The fact that it also satisfies the second condition can by shown
in exactly the same way, and we omit it here. This completes the proof of the
existence. The uniqueness property is easy by definition.



Chapter 3

Classical Mechanics

3.1 Hamilton’s equation

LetH : Rd×Rd → R, (q, p) 7→ H(q, p) be a smooth function satisfying the following:

H1. The functions ∂
∂qiH, ∂

∂piH, i = 1, · · · , N , are globally Lipschitz continuous.

Consider the following equation:





d
dt
qi(t) = ∂H

∂pi (q(t), p(t)),

d
dt
pi(t) = −∂H

∂qi (q(t), p(t)), i = 1, · · · , N,
(q(0), p(0)) = (q0, p0) ∈ Rd ×Rd,

and write the solution of it as (q(t), p(t)) = Φ(t, q0, p0). Then Φ : R ×Rd ×Rd →
Rd×Rd is a smooth operator, Φt(·) := Φ(t, ·) is a diffeomorphism on Rd×Rd, and
by definition,

d

dt
H(Φ(t, q0, p0))

=
N∑

i=1

{
∂H

∂qi
(Φ(t, q0, p0))

d

dt
qi(t) +

∂H

∂pi
(Φ(t, q0, p0))

d

dt
pi(t)

}

= 0,

i.e., H(Φ(t, q0, p0)) = H(q0, p0) for any t ≥ 0.
Also, by the uniqueness of the solution, it is easy to see that the flow {Φt}t

satisfies

Φt ◦ Φs = Φt+s, for any t, s > 0. (3.1.1)

Let ω =
∑N

i=1 dq
i ∧ dpi. Then

d

dt
Φ∗

tω

15
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=
N∑

i=1

d
( d
dt
qi(t, q, p)

)
∧ dpi(t, q, p) +

N∑

i=1

dqi(t, q, p) ∧ d
( d
dt
pi(t, q, p)

)

=
N∑

i=1

{
d
(∂H
∂pi

(Φt(q, p))
)
∧ dpi(t, q, p)− dqi(t, q, p) ∧ d

(∂H
∂qi

(Φt(q, p))
)}
.

So

d

dt
Φ∗

tω
∣∣∣
t=0

=
N∑

i=1

( N∑

j=1

∂2H

∂qj∂pi
dqj +

N∑

j=1

∂2H

∂pj∂pi
dpj

)
∧ dpi

−
N∑

i=1

dqi ∧
( N∑

j=1

∂2H

∂qj∂qi
dqj +

N∑

j=1

∂2H

∂pj∂qi
dpj

)

= 0.

Therefore, by (3.1.1),
d

dt
Φ∗

tω = Φ∗
t

( d
ds

Φ∗
sω

∣∣∣
s=0

)
= 0,

hence Φ∗
tω = ω. In the same way, we have that

Φ∗
tω

d = ωd.

Therefore,

Φ∗
t (f(q, p)dq1 ∧ · · · ∧ dqd ∧ dp1 ∧ · · · ∧ dpd)

= f(Φt(q, p))dq
1 ∧ · · · ∧ dqd ∧ dp1 ∧ · · · ∧ dpd.

This gives us the following important formula:
∫

Rd×Rd
f(Φt(q, p))dqdp =

∫

Rd×Rd
f(q, p)dqdp.

3.2 Newton’s equation

Let N ≥ 1, d ≥ 1, U ∈ C∞b (RdN) and Mi > 0, i = 1, · · · , N .
Let us consider the following Newton’s equation:





d
dt
xi(t) = vi(t),

Mi
d
dt
vi(t) = −∇iU(~x(t)), i = 1, · · · , N,

(~x(0), ~v(0)) = ( ~x0, ~v0) ∈ R2dN ,

(3.2.1)

and write the solution as

Φ(t, ~x0, ~v0) = (~x(t), ~v(t)).
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We first see the relation with Hamilton’s equation. Let H : RdN ×RdN → R be
the function given by

H(~q, ~p) =
N∑

i=1

1

2Mi

|pi|2 + U(~q).

Hamilton’s equation in Section 3.1 now becomes





d
dt
qi(t) = 1

Mi
pi(t),

d
dt
pi(t) = −∇iU(~q(t)), i = 1, · · · , N. (3.2.2)

Let

vi(t) =
1

Mi

pi(t), xi(t) = qi(t). (3.2.3)

Then the fact (~q, ~p) satisfies Hamilton’s equation (3.2.2) implies that (~x,~v) given by
(3.2.3) satisfies Newton’s equation (3.2.1) (with initial condition (~q0, (

1
M1
p01, · · · , 1

MN
p0N)).

Let Φ̃(t, ~q, ~p) = (~q(t), ~p(t)), the solution of Hamilton equation (3.2.2). Also, let
Θ : R2dN → R2dN be the map given by

Θ : R2dN → R2dN , (~y, ~z) = (~y, (z1, · · · , zN)) 7→ (~y, (M1z1, · · · ,MNzN)).

Then we have the following relation

Φ(t, ~x,~v) = Θ−1(Φ̃(t,Θ(~x,~v))).

This combined with the results of Section 3.1 gives us the following.

THEOREM 3.2.1 (1) Let E(~x,~v) = 1
2

∑N
i=1Mi|vi|2 + U(~x). Then

E(Φ(t, ~x,~v)) = E(~x,~v), for any t > 0.

(2) For any measurable f : R2dN → [0,∞), we have that

∫

R2dN
f(Φ(t, ~x,~v))d~xd~v =

∫

R2dN
f(~x,~v)d~xd~v.

As a result, we get the following.

THEOREM 3.2.2 For any measurable f : R2dN → [0,∞) and ρ : R → [0,∞),
we have that

∫

R2dN
f(Φ(t, ~x,~v))ρ(E(~x,~v))d~xd~v =

∫

R2dN
f(~x,~v)ρ(E(~x,~v))d~xd~v.



18 CHAPTER 3. CLASSICAL MECHANICS

3.3 Ray representation

Let d ≥ 1. For any v ∈ Rd \ {0}, let Ev ∈ Rd be the hyperplane given by

Ev = {x ∈ Rd;x · v = 0},

and let ν̃(dx; v) be the Riemannian volume on Ev. Also, let

E = {(x, v) ∈ Rd × (Rd \ {0});x · v = 0},

and let
Ψ : R× E → Rd × (Rd \ {0}), (t, (x, v)) 7→ (x− tv, v).

Then Ψ is one-to-one and onto.
Note that for any measurable f : Rd → [0,∞), we have that

∫

Rd
f(x)dx

=
∫

R×Ev

f(x− s|v|−1v)dsν̃(dx; v)

=
∫

R×Ev

f(x− tv)|v|dtν̃(dx; v),

where in the last line, we used the variable change s = t|v|. Let

ν(dx, dv) = |v|ν̃(dx; v)dv.

Then the above gives us the following.

THEOREM 3.3.1 For any measurable f : R2d → [0,∞), we have that

∫

R2d
f(x, v)dxdv =

∫

R×E
f(Ψ(t, x, v))dtν(dx, dv).

3.4 Classical scattering

For i = 1, · · · , N , choose Ui ∈ C∞0 (Rd). Then there exist Ri > 0 such that Ui(x) = 0
if |x| > Ri, i = 1, · · · , N .

Choose any ~X = (X1, · · · , XN) ∈ (Rd)N and fix it for a while. Let

U(x) = U(x; ~X) =
N∑

i=1

Ui(x−Xi).

Let Mi = 1, i = 1, · · · , N , for a while. Then the function E in Theorem 3.2.1 is
now given by

Ẽ(x, v) = Ẽ(x, v; ~X) = U(x; ~X) +
1

2
|v|2.
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Newton’s equation now becomes





d
dt
x(t) = v(t),

d
dt
v(t) = −∇U(x; ~X),

(x(0), v(0)) = (x0, v0) ∈ R2d.

Write the solution as

ϕ̃(t;x0, v0) = ϕ̃(t;x0, v0; ~X) = (x(t), v(t)) = (ϕ̃0(t;x0, v0), ϕ̃
1(t; x0, v0)).

Let

R( ~X) = max{Ri + |Xi|; i = 1, · · · , N},
and let s0 = R( ~X)

|v| . Then for any (x, v) ∈ E, we have (notice that x · v = 0 by

definition of E)

inf
0≤r≤u

|x− (s0 + u)v + rv| = inf
0≤r≤u

|x− s0v − (u− r)v|
≥ s0|v| = R( ~X), u ≥ 0,

hence by assumption,

ϕ̃(u,Ψ(s0 + u, x, v)) = (x− s0v, v) = Ψ(s0, x, v), u ≥ 0,

which implies that

ϕ̃(t+ s0 + u,Ψ(s0 + u, x, v))

= ϕ̃(t+ s0, ϕ̃(u,Ψ(s0 + u, x, v)))

= ϕ̃(t+ s0,Ψ(s0, x, v)), t ∈ R, u ≥ 0.

That is,

ϕ̃(t+ s,Ψ(s, x, v)) = ϕ̃(t+ s0,Ψ(s0, x, v)), for any s ≥ s0,

or equivalently, to say that ϕ̃(t+ s,Ψ(s, x, v)) is independent to s as long as s ≥ s0.
Let

ψ̃(t, x, v) = lim
s→∞ ϕ̃(t+ s; Ψ(s, x, v))( = ϕ̃(t+ s0; Ψ(s0, x, v))). (3.4.1)

Also, let

C0 =
{
2

N∑

i=1

Ri‖∇Ui‖∞
}1/2

.

PROPOSITION 3.4.1 Suppose |v| > 2C0. Then

ϕ̃1(t, x, v) · (|v|−1v) > C0, for any t ∈ R, x ∈ Ev.
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Proof. Notice that ϕ̃1(0, x, v) = v. Write η = |v|−1v. Then by assumption,
v · η = |v| > 2C0. Let

τ1 = inf{t ≥ 0; ϕ̃1(t, x, v) · η ≤ C0}.
We show that τ1 = +∞.

Suppose τ1 < +∞. Then ϕ̃1(τ1, x, v) · η = C0. By definition, we have

(ϕ̃0(t, x, v)− ϕ̃0(s, x, v)) · η =
∫ t

s
ϕ̃1(u, x, v) · ηdu

> C0|t− s|, for any 0 ≤ s < t ≤ τ1,

which implies that

d

dt

(
ϕ̃0(t, x, v) · η

)
≥ C0, 0 ≤ t ≤ τ1. (3.4.2)

In particular, d
dt

(ϕ̃0(t, x, v) · η) > 0 for 0 ≤ t ≤ τ1. Also, since

ϕ̃1(τ1, x, v)− v = −
∫ τ1

0

N∑

i=1

∇Ui(ϕ̃
0(t, x, v)−Xi)dt,

we have by definition that

−
∫ τ1

0

N∑

i=1

∇Ui(ϕ̃
0(t, x, v)−Xi) · ηdt = ϕ̃1(τ1, x, v) · η − v · η < C0 − 2C0 = −C0.

Therefore, with the help of (3.4.2), we have

C0 <
∫ τ1

0

N∑

i=1

∇Ui(ϕ̃
0(t, x, v)−Xi) · ηdt

≤ 1

C0

N∑

i=1

∫ τ1

0

∣∣∣∇Ui(ϕ̃
0(t, x, v)−Xi) · η

∣∣∣ · d
dt

(
ϕ̃0(t, x, v) · η

)
dt

=
1

C0

N∑

i=1

∫

t∈[0,τ1],|ϕ̃0(t,x,v)·η−Xi·η|<Ri

∣∣∣∇Ui(ϕ̃
0(t, x, v)−Xi) · η

∣∣∣ · d
dt

(
ϕ̃0(t, x, v) · η

)
dt

≤ 1

C0

N∑

i=1

‖∇Ui‖∞
∫

t∈[0,τ1],|ϕ̃0(t,x,v)·η−Xi·η|<Ri

d

dt

(
ϕ̃0(t, x, v) · η −Xi · η

)
dt

≤ 1

C0

N∑

i=1

‖∇Ui‖∞2Ri

= C0,

which makes a contradiction. Therefore, τ1 = +∞, i.e., ϕ̃1(t, x, v) · (|v|−1v) > C0 for
any t ≥ 0.

The assertion for t < 0 can be shown in the same way by considering

τ2 = sup{t < 0; ϕ̃1(t, x, v) · η ≤ C0}.
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COROLLARY 3.4.2 Let (x, v) ∈ E with |v| > 2C0. Then

∣∣∣ψ̃0(t, x, v)−Xi

∣∣∣ > Ri, i = 1, · · · , N,

if t ≥ 2C−1
0 R( ~X) or t ≤ −C−1

0 R( ~X).

Proof. Choose and fix any (x, v) ∈ E with |v| > 2C0, and let η = |v|−1v. Then
since x · v = 0, we have that

Ψ0(s, x, v) · η = (x− sv) · η = −sv · η = −s|v|, for any s > 0.

Let s0 = R( ~X)
|v| as before. Then s0 < C−1

0 R( ~X), and

ϕ̃0(0,Ψ(s0, x, v)) · η = Ψ0(s0, x, v) · η = −s0|v| = −R( ~X). (3.4.3)

Moreover, by definition (3.4.1) of ψ̃,

ψ̃(t, x, v) = ϕ̃(t+ s0,Ψ(s0, x, v)). (3.4.4)

Also, |Ψ1(s0, x, v)| = |v| > 2C0 by assumption. Combining (3.4.4), Proposition 3.4.1
and (3.4.3), we get

ψ̃0(t, x, v) · η = ϕ̃0(t+ s0,Ψ(s0, x, v)) · η
=

∫ t+s0

0
ϕ̃1(u,Ψ(s0, x, v)) · ηdu+ ϕ̃0(0,Ψ(s0, x, v)) · η

> (t+ s0)C0 −R( ~X), for any t > −s0.

In particular, if t > 2C−1
0 R( ~X), then

ψ̃0(t, x, v) · η > (t+ s0)C0 −R( ~X) ≥ R( ~X).

In the same way, if t < −C−1
0 R( ~X), then t+ s0 < 0, so

ψ̃0(t, x, v) · η = ϕ̃0(t+ s0,Ψ(s0, x, v)) · η
= −

∫ 0

(t+s0)
ϕ̃1(u,Ψ(s0, x, v)) · ηdu+ ϕ̃0(0,Ψ(s0, x, v)) · η

< −C0 · (−(t+ s0))−R( ~X)

< −R( ~X).

This completes the proof of our assertion.
Let

e0 =
1

2
(2C0 + 1)2 +

N∑

i=1

‖Ui‖∞.
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COROLLARY 3.4.3 Suppose Ẽ(x, v) > e0. Then |v| > 2C0. In particular,

ϕ̃1(t,Ψ(s, x, v)) · (|v|−1v) > C0, for any s, t ∈ R, x ∈ Ev,

and
|ϕ̃0(t, x, v)| → ∞, as t→∞.

Proof. Since Ẽ(x, v) > e0, we have by definition

1

2
|v|2 +

N∑

i=1

Ui(x−Xi) > e0.

Therefore, by definition of e0,
|v|2 > 4C2

0 ,

which implies that
|v| > 2C0.

The second assertion follows then by Proposition 3.4.1. The last assertion is now
easy since by the second assertion,

d

dt

(
ϕ̃0(t, x, v) · η

)
= ϕ̃1(t, x, v) · η ≥ C0 > 0,

where we used the notation η = |v|−1v.

PROPOSITION 3.4.4 Let ρ : R → [0,∞) be a measurable function satisfying

ρ(s) = 0, for any s < e0.

Then for any measurable f : R2d → [0,∞), we have
∫

R2d
f(x, v)ρ(Ẽ(x, v))dxdv

=
∫

E

(∫ ∞

−∞
f(ψ̃(t, x, v))dt

)
ρ(

1

2
|v|2)ν(dx, dv). (3.4.5)

Proof. By using convergence theorem if necessary, we may and do assume,
without loss of generality, that there exists a constant R̃ > 0 such that

supp(f) ⊂ {(x, v); |x|+ |v| ≤ R̃}.
Let

T = 2C−1
0 (R̃ +R( ~X)).

By Theorem 3.2.2 and Theorem 3.3.1, we have
∫

R2d
f(x, v)ρ(Ẽ(x, v))dxdv

=
∫

R2d
f(ϕ̃(T, x, v))ρ(Ẽ(x, v))dxdv

=
∫

R×E
f(ϕ̃(T,Ψ(t, x, v)))ρ(Ẽ(Ψ(t, x, v)))dtν(dx, dv). (3.4.6)
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Therefore, it suffices for us to show that the right hand side of (3.4.6) is equal to

∫

R×E
f(ψ̃(T − t, x, v))ρ(

1

2
|v|2)dtν(dx, dv).

We only need to show that the integrands are equal, i.e., it suffices to show that

f(ϕ̃(T,Ψ(t, x, v)))ρ(Ẽ(Ψ(t, x, v))) = f(ψ̃(T − t, x, v))ρ(
1

2
|v|2). (3.4.7)

We show it from now on. We first show that if the left hand side above is not 0,
then it is equal to the right hand side. Assume that f(ϕ̃(T,Ψ(t, x, v)))ρ(Ẽ(Ψ(t, x, v))) 6=
0. Then ρ(Ẽ(Ψ(t, x, v))) > 0 implies by our assumption that Ẽ(Ψ(t, x, v)) > e0, so
by Corollary 3.4.3, |v| > 2C0 and

ϕ̃1(s,Ψ(t, x, v)) · η > C0

for any s ∈ R, where η = |v|−1v. Therefore, since (ϕ̃0, ϕ̃1) is the solution of the
Newton’s equation, we have by definition that

(
ϕ̃0(T,Ψ(t, x, v))−Ψ0(t, x, v)

)
· η

=
∫ T

0

d

ds
ϕ̃0(s,Ψ(t, x, v))ds · η

=
∫ T

0
ϕ̃1(s,Ψ(t, x, v)) · ηds

> T · C0 = 2(R̃ +R( ~X)), (3.4.8)

by the definition of T .
We also have f(ϕ̃(T,Ψ(t, x, v))) > 0 in addtion, which gives us

|ϕ̃0(T,Ψ(t, x, v)) · η| ≤ |ϕ̃0(T,Ψ(t, x, v))|+ |ϕ̃1(T,Ψ(t, x, v))| ≤ R̃. (3.4.9)

Combine (3.4.8) with (3.4.9), and notice that x · v = 0 since (x, v) ∈ E, and we get
by the definition of η that

R̃ + 2R( ~X) < −Ψ0(t, x, v) · η = (x− tv) · η = t|v|, (3.4.10)

hence t ≥ R̃+2R( ~X)
|v| ≥ s0. So by the definition (3.4.1) of ψ̃, we get

ψ̃(T − t, x, v) = ϕ̃(T − t+ t,Ψ(t, x, v)) = ϕ̃(T,Ψ(t, x, v)).

Also, (3.4.10) gives us that |Ψ(t, x, v)| = |x− tv| ≥ R( ~X), so by the definition of Ẽ,
we also get

Ẽ(Ψ(t, x, v)) =
1

2
|v|2.

This completes the proof of the fact that if the left hand side of (3.4.7) is not 0,
then it is equal to the right hand side.
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We next show the opposite, i.e., we assume that the right hand side of (3.4.7),
f(ψ̃(T − t, x, v))ρ(1

2
|v|2), is not 0, and show that it is equal to the left hand side,

f(ϕ̃(T,Ψ(t, x, v)))ρ(Ẽ(Ψ(t, x, v))). It is sufficient to show that t ≥ s0(=
R( ~X)
|v| ).

(Actually, if t ≥ s0, then by using x · v = 0, we get |x − tv| ≥ t|v| ≥ R( ~X), hence
Ẽ(Ψ(t, x, v)) = 1

2
|v|2 by definition. Also, since t ≥ s0, we have by (3.4.1) that

ψ̃(T − t, x, v) = ϕ̃(T − t + t,Ψ(t, x, v)) = ϕ̃(T,Ψ(t, x, v)), which will complete our
proof). Since ρ(1

2
|v|2) > 0, we have 1

2
|v|2 > 2C2

0 , hence |v| > 2C0, which implies by
Corollary 3.4.3 that

ϕ̃1(u,Ψ(s, x, v)) · η > C0 (3.4.11)

for any u, s ∈ R and x ∈ Ev. If t ≥ T , then by definition of T , since |v| > 2C0, we
have

t ≥ T =
2

C0

(R̃ +R( ~X)) >
4

|v|(R̃ +R( ~X)) >
R( ~X)

|v| = s0.

If t < T , then we have by (3.4.11) and the definition of T that for any r > 0

(
ϕ̃0(T − t+ r,Ψ(r, x, v))−Ψ0(r, x, v)

)
· η

=
∫ T−t+r

0
ϕ̃1(u,Ψ(r, x, v)) · ηdu

> (T − t+ r) · C0 = 2R̃ + 2R( ~X) + (r − t)C0.

Also, since f(ψ̃(T − t, x, v)) > 0, we have

|ψ̃0(T − t, x, v)|+ |ψ̃1(T − t, x, v)| ≤ R̃.

Therefore, we have for any r ≥ s0

|ϕ̃0(T − t+ r,Ψ(r, x, v))| = |ψ̃0(T − t, x, v)| ≤ R̃.

Combining these two inequalities, we get

(r|v| =)−Ψ0(r, x, v) · η > R̃ + 2R( ~X) + (r − t)C0, for any r ≥ s0.

Applying the above to r = s0(=
R( ~X)
|v| ), we get

R( ~X) > R̃ + 2R( ~X) + (s0 − t)C0.

Therefore, t > s0. This completes our proof.



Chapter 4

Random Field

4.1 Filtering

Let M be a Polish space and let (Ω,B, P ) be a complete probability space. Define

ℵ = {A ∈ B;P (A) = 0 or 1}.

DEFINITION 4.1.1 F = {FG;G is a open set in M} is called an increasing σ-
algebre, if

(1) FG is a sub-σ-algebra of B for any open set G ⊂M ,

(2) ℵ ⊂ FG for any open set G ⊂M ,

(3) FG1 ⊂ FG2 for any open sets G1 ⊂ G2.

From now on, we choose and fix an increasing σ-algebra F = {FG}.

DEFINITION 4.1.2 A subset A ⊂M is called F-regular if it satisfies the follow-
ing condition: for any sequence of open sets Gn, n ∈ N, satisfying G1 ⊃ G2 ⊃ G3 ⊃
· · ·, if Gn ⊃ Ao for any n ∈ N, and A ⊃ ⋂∞

n=1Gn, then FAo =
⋂∞

n=1FGn.

PROPOSITION 4.1.3 If A is F-regular, then for any A′ satisfying Ao ⊂ A′ ⊂ A,
we have that A′ is also F-regular.

DEFINITION 4.1.4 A map T : Ω → O(M) is called a F-stopping time, if

(1) T is B/E0-measurable,

(2) {ω ∈ Ω;T (ω) ⊂ G} ∈ FG for any F-regular open set G.

DEFINITION 4.1.5 For any F-stopping time T : Ω → O(M), we define

FT = {A ∈ B;A ∩ {T ⊂ G} ∈ FG for any open and F-regular subset G} .

25
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PROPOSITION 4.1.6 Let S and T be two FG-stopping times satisfying

S(ω) ⊂ T (ω), for all ω ∈ Ω.

Then

FS ⊂ FT .

Proof. This is easy since by condition,

A ∩ {T ⊂ G} = A ∩ {S ⊂ G} ∩ {T ⊂ G}.

DEFINITION 4.1.7 C is said to be a F-regular covering if

(1) C ⊂ O(M), and
⋃ C = M ,

(2) ](C) <∞,

(3)
⋃n

k=1Ck and (
⋃n

k=1Ck)
C are F-regular for any n ≥ 1 and C1, · · · , Cn ∈ C.

For any F -regular covering C and any K ∈ O(M), we define

[K]C =
⋃{C ∈ C;K ∩ C 6= ∅}.

PROPOSITION 4.1.8 Let C be a F-regular covering. Then

(1) [K]C ⊃ K for any closed K,

(2) [K]C ⊂ G⇐⇒ K ⊂ [GC ]C
C

for any open G and closed K.

Proof. The first assertion is trivial. We show the second one. Notice that

[K]C ⊂ G

⇐⇒ for any C ∈ C, K ∩ C 6= ∅ implies C ⊂ G

⇐⇒ for any C ∈ C, C ∩GC 6= ∅ implies K ∩ C = ∅
⇐⇒ [GC ]C ⊂ KC .

This completes the proof.

PROPOSITION 4.1.9 Let C be a F-regular covering and T be a F-stopping time.
Then [T ]C is also a F-stopping time.
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Proof. By definition, we only need to show that

{[T ]C ⊂ G} ∈ FG

for any open set G.
For any such G, we have that [GC ]CC is open, and by Proposition 4.1.8, since T

is a F-stopping time,

{[T ]C ⊂ G} = {T ⊂ [GC ]CC } ∈ F[GC ]CC
.

Also, since GC ⊂ [GC ]C by Proposition 4.1.8, we have G ⊃ [GC ]CC . Therefore, by the
definition of increasing σ-algebra, we get F[GC ]CC

⊂ FG. These give us our assertion.

DEFINITION 4.1.10 We call {Cn}∞n=1 a good sequence if

(1) Cn is a regular covering for any n ≥ 1,

(2) for any C ∈ Cn+1, there exists a C ′ ∈ Cn such that C ⊂ C ′,

(3)
⋂∞

n=1[K]Cn = K for any K ∈ O(M).

PROPOSITION 4.1.11 Let Cn be a good sequence and T be a F-stopping time.
Then

(1) F[T ]Cn
is monotone non-increasing with respect to n,

(2) FT =
⋂∞

n=1F[T ]Cn
.

Proof. First notice that for any n ∈ N, we have by definition

[K]Cn+1 ⊂ [K]Cn , for any closed K.

This combined with Proposition 4.1.6 gives us our first assertion.
Also, since T (ω) ⊂ [T (ω)]Cn for any ω ∈ Ω, we have by Proposition 4.1.6

FT ⊂ F[T ]Cn
, n ≥ 1.

So to show the second assertion, it suffices to show that
⋂∞

n=1F[T ]Cn
⊂ FT . Choose

any A ∈ ⋂∞
n=1F[T ]Cn

and any regular open set G. Define

Kn = [G]Cn ,

Gn,m = [(Kn)1/m]oCm
,

where we used the notation Bε = {x ∈ M ; dist(x,B) < ε}, B ⊂ M . Then Gn,m is
also open regular by definition and Proposition 4.1.3, since C is a regular covering.
Also, by the definition of good sequence, we have for any n, ` ≥ 1,

∞⋂

m=1

Gn,m ⊂ ⋂

m≥l

[(Kn)1/`]Cm = (Kn)1/`.
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Since Kn is closed, this implies that
⋂∞

m=1Gn,m ⊂ Kn. On the other hand, for any

m ∈ N, since [(Kn)1/m]Cm ⊃ (Kn)1/m, we have Gn,m = [(Kn)1/m]oCm
⊃ (Kn)1/m

o ⊃
Kn. Combining the above, we get

∞⋂

m=1

Gn,m = Kn, n ∈ N,

hence
∞⋂

n,m=1

Gn,m =
∞⋂

n=1

Kn = G. (4.1.1)

Notice that since Kn is monotone non-increasing with respect to n, we have that
Gn,m ⊃ Gm,m for any n,m ∈ N with m ≥ n. Also, for any m ≤ n, we have
by definition Gn,m = [(Kn)1/m]oCm

⊃ [(Kn)1/n]oCm
⊃ [(Kn)1/n]oCn

= Gn,n. Therefore,
(4.1.1) becomes

∞⋂

n=1

Gn,n = G. (4.1.2)

Also notice that Gn,n is monotone non-increasing with respect to n, and Gn,n ⊃ G.
Therefore, since G is regular, (4.1.2) implies

∞⋂

n=1

FGn,n = FG. (4.1.3)

Now, for any n ∈ N, since

T ⊂ G =⇒ [T ]Cn ⊂ [G]Cn = Kn ⊂ Gn,n,

we have

A ∩ {T ⊂ G} = A ∩ {T ⊂ G} ∩ {[T ]Cn ⊂ Gn,n}.

But A ∩ {[T ]Cn ⊂ Gn,n} ⊂ FGn,n since A ∈ F[T ]Cn
, and {T ⊂ G} ∈ FG ⊂ FGn,n .

Therefore,

A ∩ {T ⊂ G} ∈ FGn,n , for any n ≥ 1.

So by (4.1.3),

A ∩ {T ⊂ G} ∈
∞⋂

n=1

FGn,n = FG, for any open regular G,

hence A ∈ FT . This is true for any A ∈ ⋂∞
n=1F[T ]Cn

. So
⋂∞

n=1F[T ]Cn
⊂ FT .

This completes the proof of the second assertion.
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4.2 Poisson point process

Let M be a locally compact Polish space, let ν be a σ-finite Radon measure on
(M,B(M)) with no atom, and let Pν denote the Poisson point process on Conf(M)
with intensity measure ν. (See Section 2.4 for the definition of the notations). We

also define Ω = Conf(M), F = E0

∣∣∣
Conf(M)

, and P = Pν . Then (Ω,F , P ) is a

complete probability space.
For any A ∈ B(M), define

XA(ω) = µω(A), ω ∈ Ω,

and
FA = σ{XK ;K is compact and K ⊂ A} ∨ ℵ.

It is trivial that {FA|A is open} is an increasing σ-algebra.

PROPOSITION 4.2.1 (1) Let A1, A2 ∈ B(M) with A1 ⊂ A2. Then XA1 is
FA2-measurable, and the distribution of XA1 is the Poisson distribution with
mean ν(A1).

(2) If A1, · · · , An ∈ B(M) are disjoint with each other, then XA1 , · · · , XAn are
independent.

(3) If A1, A2 ∈ B(M), then FA1∪A2 = FA1 ∨ FA2.

(4) If A1, A2 ∈ B(M) and A1 ∩ A2 = ∅, then FA1 and FA2 are independent.

Proof. Just notice that

XA(ω) = µω(A) = sup{XK(ω);K is compact and K ⊂ A},
which is easy to be checked by considering first the case ν(A) <∞ then the general
case. Our assertion is now easy from Theorem 2.4.1.

PROPOSITION 4.2.2 If A ⊂M satisfies ν(∂A) = 0, then A is regular.

Proof. First, since ν(∂A) = 0 by assumption, we have that XK has mean 0 for
any K ⊂ ∂A. So F∂A ⊂ ℵ. Therefore, by Proposition 4.2.1,

FA = FAo ∨ F∂A = FAo ,

hence
B = FA ∨ F(A)C = FAo ∨ F(A)C .

Let {Gn}n∈N be any sequence of monotone decreasing open sets satisfying

Gn ⊃ A,
∞⋂

n=1

Gn ⊂ A.
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We show that FAo ⊃ ⋂∞
n=1FGn

.
First,

B = FGn
∨ F(Gn)C

for any n ≥ 1. So
( ∞⋂

m=1

FGm

)
∨

( ∞∨

n=1

F(Gn)C

)

=
∞∨

n=1

{( ∞⋂

m=1

FGm

)
∨ F(Gn)C

}

⊂
∞∨

n=1

{
FGn

∨ F(Gn)C

}
=

∞∨

n=1

B = B

= FAo ∨ F(A)C . (4.2.1)

But since
⋃∞

n=1(Gn)C ⊃ (A)C , we have

∞∨

n=1

F(Gn)C ⊃ F(A)C . (4.2.2)

Also, it is easy to see that FGn
⊃ FAo for any n ∈ N, hence

∞⋂

n=1

FGn
⊃ FAo . (4.2.3)

On the other hand, it is easy to see that

∞⋂

m=1

FGm
and

∞∨

n=1

F(Gn)C are independent.

This combined with (4.2.1), (4.2.2) and (4.2.3) gives us that

FAo ⊃
∞⋂

n=1

FGn
,

which completes the proof.

PROPOSITION 4.2.3 There exists a good sequence.

Proof. Since M is separable, there exists a sequence {xn}n∈N that is dense in
M . Let

Rn = sup{r > 0; ν(B(xn, r)) <∞} ∧ 1.

Then Rn > 0, n ≥ 1. For any n ≥ 1, there are at most countablely many r ∈ (0, Rn)
such that ν(∂B(xn, r)) > 0, so there exists a sequence {rn,m}∞m=1 such that it is
dense in (0, Rn) and ν(∂B(xn, rn,m)) = 0. Let

Bn,m,0 = B(xn, rn,m),

Bn,m,1 = M \B(xn, rn,m),
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and let

CN =





N⋂

n,m=1

Bn,m,in,m ; in,m = 0 or 1



 .

Then {CN}∞N=1 is a good sequence. In order to say so, we only need to check that
it satisfies all of the three conditions of Definition 4.1.10. We do it in the following.
The fact that Cn is a regular covering is trivial by definition and Proposition 4.2.2.
The second condition is also satisfied trivially. We show in the following that the
third one is also satisfied, i.e., for any K ∈ O(M), we show that

⋂∞
n=1[K]Cn ⊃ K.

Suppose not. Then there exists a x /∈ K and x ∈ [K]Cn =
⋃{C ∈ CN : K ∩ C 6= ∅}

for any N ∈ N. Since K is closed, the fact x /∈ K gives us that there exists an
ε > 0 such that B(x, ε) ∩ K = ∅. Also, the latter condition gives us that for any
N ∈ N, there exists a family {iNn,m ∈ {0, 1}}N

n,m=1 such that x ∈ ∩N
n,m=1Bn,m,iNn,m

and

∩N
n,m=1Bn,m,iNn,m

∩ K 6= ∅. Since {xn}n is dense in M , there exists a sub-sequence
nk such that xnk

→ x as k → ∞, hence there exists a K ∈ N such that for any
k ≥ K, we have B(xnk

, ε
2
) ∩ K = ∅. Also, since xnk

converges, it is easy to see
that infk rnk

> 0. Without loss of generality, we assume that this positive number
is greater than ε

4
. So since {Rn,m}∞m=1 is dense in (0, Rn), there exists a sequence

rnk,mk
such that rnk,mk

→ ε
4

as k → ∞. Then for k ∈ N large enough, we have

B(xnk
, rnk,mk

) ∩K = ∅. Therefore, the condition Bnk,mk,iNnk,mk
∩K 6= ∅ implies that

iNnk,mk
= 1 for k large enough. So the condition x ∈ Bnk,mk,iNnk,mk

now becomes

x ∈ Bnk,mk,1, hence x /∈ B(xnk
, rnk,mk

) ⊃ B(xnk
, ε

8
) for any k large enough, which

contridicts with the fact that xnk
→ x. This gives us that

⋂∞
n=1[K]Cn ⊃ K, and

completes our proof.

In the second half of this section, let us discuss about strong Markov property.
Same as before, let M be a locally compact Polish space, let ν be a σ-finite Radon

measure with no atom, and let Pν denote the Poisson point process on Conf(M)
with intensity measure ν. Define

FG = σ{ν(A);A ∈ B(M), A ⊂ G} ∨ ℵ.
THEOREM 4.2.4 Let T be a {FG}-stopping time. Then

(1) µω(A ∩ T (ω)) and ν(A ∩ T (ω)) are FT -measurable for any A ∈ B(M),

(2) For any Ai ∈ B(M), i = 1, · · · ,m, disjoint with each other, we have that

EPν

[
exp(

√−1
m∑

i=1

ξiµ(Ai \ T ))
∣∣∣FT

]

= exp(
m∑

i=1

(e
√−1ξi − 1)ν(Ai \ T )), Pν − a.s..

Proof. Let Cn be a good sequence, which exists by Proposition 4.2.3. Also, for
any n ∈ N, let Tn = [T ]Cn . Then Tn, n ∈ N, are also stopping times by Proposition
4.1.9, and satisfy Tn ↓ T as n→∞.
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Fix any n ∈ N for a while. We have ](Cn) < ∞ by definition. Also, we have in
general that there exists an ε > 0 such that

K,K ′ ∈ Cn, K ⊂/ K ′ =⇒ K ⊂/ (K ′)ε. (4.2.4)

Therefore, for any K ∈ Cn and G open with K ⊂ G, we have

{Tn ⊂ K} = {Tn ⊂ (K)ε ∩G} ∈ F(K)ε∩G ⊂ FG.

The part ”∈” in the equation above is easy since Tn is a stopping time and (K)ε∩G
is open. We show the ”=” part. It is easy that {Tn ⊂ K} ⊂ {Tn ⊂ (K)ε ∩ G}.
We show that the opposite one also holds. Actually, by the definition of Tn, Tn =⋃{C ∈ Cn;T ∩ C 6= ∅}, so with the help of (4.2.4),

Tn ⊂ (K)ε ∩G
=⇒ Tn ⊂ (K)ε

=⇒ for any C ∈ Cn satisfying T ∩ C 6= ∅, we have C ⊂ (K)ε

=⇒ for any C ∈ Cn satisfying T ∩ C 6= ∅, we have C ⊂ K

=⇒ Tn ⊂ K,

i.e., {Tn ⊂ (K)ε ∩G} ⊂ {Tn ⊂ K}. This gives us our assertion.
By using this fact, for any B ∈ FTn , we have that

B ∩ {Tn ⊂ K} = B ∩ {Tn ⊂ (K)ε ∩G} ∈ FG,

therefore,

B ∩ {Tn = K} =
(
B ∩ {Tn ⊂ K}

)
\ ⋃

K′∈Cn,K′⊂K,K′ 6=K

(B ∩ {Tn ⊂ K ′}) ∈ FG.

Claim.

EPν

[
exp(

√−1
m∑

j=1

ξjµω(Aj \ Tn))
∣∣∣FTn

]

= exp(
m∑

j=1

(e
√−1ξj − 1)ν(Aj \ Tn)), Pν − a.s..

Proof of Claim. For any B ∈ FTn , we have by Proposition 4.2.1

EPν

[
1B exp(

√−1
m∑

j=1

ξjµω(Aj \ Tn))
]

=
∑

K∈Cn

EPν

[
exp(

√−1
m∑

i=j

ξjµω(Aj \ Tn)), B ∩ {Tn = K}
]

=
∑

K∈Cn

EPν

[
exp(

√−1
m∑

j=1

ξjµω(Aj \K)), B ∩ {Tn = K}
]
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= lim
ε→0

∑

K∈Cn

EPν

[
exp(

√−1
m∑

j=1

ξjµω(Aj \ (K)ε)), B ∩ {Tn = K}
]

= lim
ε→0

∑

K∈Cn

exp
( m∑

j=1

(e
√−1ξj − 1)ν(Aj \ (K)ε)

)
Pν(B ∩ {Tn = K})

=
∑

K∈Cn

EPν

[
1B exp(

m∑

j=1

(e
√−1ξj − 1)ν(Aj \K), Tn = K

]

= EPν

[
1B exp(

m∑

j=1

(e
√−1ξj − 1)ν(Aj \ Tn)

]
.

Also, in general, for any A ∈ B(M), we have

ν(A ∩ Tn) =
∑

K∈Cn

ν(A ∩K)1{Tn=K},

so
1{Tn⊂G}ν(A ∩ Tn) =

∑

K∈Cn,K⊂G

ν(A ∩K)1{Tn=K},

which is FG-measurable. In the same way, 1{Tn⊂G}µω(A ∩ Tn) is FG-measurable.
Therefore,

µω(A ∩ Tn) and ν(A ∩ Tn) are FTn-measurable. (4.2.5)

As a result,
ν(Aj \ Tn) = ν(Aj)− ν(Aj ∩ Tn)

is also FTn-measurable. This completes the proof of our Claim.
Let n → ∞ in (4.2.5), and we get the first assertion of our Theorem by Propo-

sition 4.1.11.
Also, for any B ∈ FT , we have by our Claim that

EPν

[
1B exp(

√−1
m∑

j=1

ξjµω(Aj \ T ))
]

= lim
n→∞E

Pν

[
1B exp(

√−1
m∑

j=1

ξjµω(Aj \ Tn))
]

= EPν

[
1B exp(

m∑

j=1

(e
√−1ξj − 1)ν(Aj \ T )

]
.

This completes the proof of our Theorem.

COROLLARY 4.2.5 (1) Let f : M → [0,∞) be measurable and let S be a
stopping time. Then

E
[ ∫

S(ω)
fdµω

]
= E

[ ∫

S(ω)
fdν

]
.
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(2) Let f : M → [0,∞) be measurable and S, T be two stopping times satisfying

(i) T (ω) ⊂ S(ω) for any ω ∈ Ω,

(ii) E
[ ∫

S(ω) |f |dν
]
<∞.

Then
E

[ ∫

S(ω)
f(dµω − dν)

∣∣∣FT

]
= E

[ ∫

T (ω)
f(dµω − dν)

]
.

Proof. First, for A ∈ B(M) with ν(A) <∞, we have by Theorem 4.2.4 that

E[µω(A \ S)
∣∣∣FS] = ν(A \ S)

So for any f that can be expressed as f =
∑n

k=1 ak1Ak
with ak > 0 and ν(Ak) <∞,

we have
E

[ ∫

M\S
fdµω

∣∣∣FS

]
=

∫

M\S
fdν,

hence
E

[ ∫

M
fdµω

∣∣∣FS

]
=

∫

M\S
fdν +

∫

S
fdµω. (4.2.6)

Also, it is easy by definition that

E
[ ∫

M
fdµω

]
=

∫

M
fdν.

So
E

[ ∫

S(ω)
fdµω

]
= E

[ ∫

S(ω)
fdν

]
.

This gives us our first assertion by monotone convergence theorem.
Also, for any measureable f : M → [0,∞) satisfying

∫
M fdν <∞, by monotone

convergence theorem, we also get from (4.2.6) that

E
[ ∫

M
f(dµω − dν)

∣∣∣FS

]
=

∫

S(ω)
f(dµω − dν).

Therefore,

E
[ ∫

S(ω)
f(dµω − dν)

∣∣∣FT

]

= E
[
E

[ ∫

M
f(dµω − dν)

∣∣∣FS

]∣∣∣FT

]

= E
[ ∫

M
f(dµω − dν)

∣∣∣FT

]

= E
∫

T (ω)
f(dµω − dν).

This completes the proof of our corollary.
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4.3 Existence of solution for ODE of infinite par-

ticle system

In this section, we prove the a.s. existence of the solution of the considered ODE.
(See Sinai [12], [13] for some related results).

As claimed in Chapter 1, let N ≥ 1, d ≥ 2, m > 0 and Mi > 0, i = 1, · · · , N .
Also, let Ui ∈ C∞0 (Rd), and let Ri be constants such that Ui(x) ≥ 0 if |x| ≥ Ri,
i = 1, · · · , N . For any Xi,0, Vi,0 ∈ Rd, i = 1, · · · , N , and ω ∈ Conf(R2d), we consider
the following equation given in Chapter 1:





d

dt
Xi(t;ω) = Vi(t;ω)

Mi
d

dt
Vi(t;ω) = −

∫
∇Ui(Xi(t;ω)− x(t, x, v;ω))µω(dx, dv)

(Xi(0;ω), Vi(0;ω)) = (Xi,0, Vi,0)

d

dt
x(t, x, v;ω) = v(t, x, v;ω)

m
d

dt
v(t, x, v;ω) = −

N∑

i=1

∇Ui(x(t, x, v;ω)−Xi(t;ω))

(x(0, x, v;ω), v(0, x, v;ω)) = (x, v)

(4.3.1)

It is easy to see that if ω ∈ Fin(R2d), then (4.3.1) has a unique solution

( ~X(t;ω), ~V (t;ω)), (x(t, x, v;ω), v(t, x, v;ω)).

Let ρ : R → [0,∞) be a measurable function satisfying the following:

Assumption.
∫ ∞

−∞
(1 + |s|)dρ(s)ds <∞.

Notice that for any c ∈ R and α ≥ 0, since d ≥ 2, we have α+ d
2
− 1 ≥ 0, so

∫

Rd
|v|2αρ(

m

2
|v|2 + c)dv

= Cd

∫ ∞

0
r2αρ(

m

2
r2 + c)rd−1dr

= Cd,m

∫ ∞

0
sα+ d

2
−1ρ(s+ c)ds

≤ Cd,m

∫ ∞

−∞
|s− c|α+ d

2
−1ρ(s)ds

≤ Cd,m

∫ ∞

−∞
(|c|+ |s|)α+ d

2
−1ρ(s)ds (4.3.2)

for some constants Cd, Cd,m > 0 independent to c, where when passing to the third
line, we used the change of variable s = m

2
r2. So

∫

Rd
|v|2αρ(

m

2
|v|2 + c)dv <∞, if 0 ≤ α ≤ d

2
+ 1. (4.3.3)
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Let

λm(dx, dv) = m
d−1
2 ρ

(m
2
|v|2 +

N∑

i=1

Ui(x−Xi,0)
)
dxdv,

and let Pλm be the Poisson point process on Conf(R2d) with intensity λm.

THEOREM 4.3.1 There exists a unique solution to (4.3.1) for Pλm-a.s. ω.

Proof. Fix any T > 0. We only need to show the existence and the uniqueness
for t ∈ [0, T ]. For any open subset G of R2d, we define

θG : Conf(R2d) → Conf(R2d); ω 7→ θG(ω) = ω ∩G.
Then θG is E0/E0-measurable. Let

R0 = max
i=1,···,N

(|Xi,0|+Ri + 1),

and let
Gn = {(x, v) ∈ R2d; |x| < R0 + nT + |v|T}.

Let C1 =
∑N

i=1 ‖Ui‖∞. Then since

|{x; (x, v) ∈ Gn}| = 2d(R0 + nT + T |v|)d ≤ 4d(R0 + nT )d + 4dT d|v|d,
we have by (4.3.2) and our Assumption

m− d−1
2 λm(Gn)

=
∫

Gn

ρ
(m

2
|v|2 +

N∑

i=1

Ui(x−Xi,0)
)
dxdv

≤
∫

|x|≤R0

ρ
(m

2
|v|2 +

N∑

i=1

Ui(x−Xi,0)
)
dxdv +

∫

Gn∩{|x|>R0}
ρ
(m

2
|v|2

)
dxdv

≤ (2R0)
dCd,m

∫ ∞

−∞
(C1 + |s|) d

2
−1ρ(s)ds

+4d(R0 + nT )d
∫

Rd
ρ
(m

2
|v|2

)
dv + 4dT d

∫

Rd
|v|dρ

(m
2
|v|2

)
dv

≤ (2R0)
dCd,m

∫ ∞

−∞
(C1 + |s|) d

2
−1ρ(s)ds

+4d(R0 + nT )dCd,m

∫ ∞

−∞
|s| d2−1ρ(s)ds+ 4dT dCd,m

∫ ∞

−∞
|s|d−1ρ(s)ds

< ∞.

Let θn = θGn . Since ](θGnω) = µω(Gn) by definition, we have

EPλm [](θGnω)] = λm(Gn) <∞,

hence
θGnω ∈ Fin(R2d), a.s.− ω. (4.3.4)
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Therefore, ( ~X(t, θnω), ~V (t, θnω)) is well-defined for a.s.-ω.
Next, for any ω ∈ Fin(R2d) and t ∈ [0, T ], we define

St(ω) =
{
(x, v) ∈ R2d; ∃i = 1, · · · , N, s.t., min

0≤s≤t
|Xi(s, ω)− (x+ sv)| ≤ Ri +

1

2

}
.

Claim. For any open set G and ω ∈ Fin(R2d), we have

{St(ω) ⊂ G} = {St(θGω) ⊂ G}.

Proof of the Claim. Choose and fix any ω ∈ Fin(R2d). We first show {St(ω) ⊂
G} ⊂ {St(θGω) ⊂ G}. Notice that by definition,

(x, v) /∈ St(ω)

=⇒ |Xi(s, ω)− (x+ sv)| ≥ Ri +
1

2
, ∀s ∈ [0, t], i = 1, · · · , N

=⇒ x(s, v, x;ω) = x+ sv, v(s, v, x;ω) = v, ∀s ∈ [0, t].

So

(x, v) /∈ St(ω)

=⇒ |Xi(s;ω)− x(s, x, v;ω)| ≥ Ri +
1

2
, ∀s ∈ [0, t], i = 1, · · · , N

=⇒ ∇Ui(Xi(s;ω)− x(s, x, v;ω)) = 0, ∀s ∈ [0, t]. (4.3.5)

Moreover, it is trivial that

(x, v) ∈ G =⇒ µω(dx, dv) = µθGω(dx, dv). (4.3.6)

(4.3.5) and (4.3.6) combined with the definition (4.3.1) imply

St(ω) ⊂ G =⇒ ( ~X(s, ω), ~V (s, ω)) = ( ~X(s, θGω), ~V (s, θGω)), ∀s ∈ [0, t], (4.3.7)

(as long as ω ∈ Fin(R2d)). Therefore,

St(ω) ⊂ G =⇒ St(θGω) ⊂ G.

The opposite one can be seen in exactly the same way. This completes the proof of
our Claim.

We next deal with general ω ∈ Conf(Rd). Define

FG = σ{θGω} ∨ ℵ.

Then by (4.3.4) and the last Claim,

{St(θnω) ⊂ G} = {St(θGn∩Gω) ⊂ G}, a.s.,
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so by the definition of F·, {St(θnω) ⊂ G} ∈ FGn∩G ⊂ FG, i.e.,

St(θnω) is a {FG}-stopping time.

Let
τn(ω) = inf{t ≥ 0; max

i=1,···,N
|Vi(t, θnω)| > n} ∧ T.

We first show that the desired solution is well-defined if τn(ω) = T for some
n ∈ N. Notice that

τn(ω) = T =⇒ ST (θnω) ⊂ Gn.

Actually, if τn(ω) = T , then |Vi(t, θnω)| ≤ n for any 0 ≤ t ≤ T and i = 1, · · · , N ,
so by the first equation of (4.3.1), |Xi(s, θnG)| ≤ nT + |Xi,0| for any 0 ≤ s ≤ T and
i = 1, · · · , N . Also, if (x, v) /∈ Gn, then |x| > R0 + nT + |v|T , so |x+ sv| > R0 + nT
for any 0 ≤ s ≤ T . Therefore, |Xi(s, θnG) − (x + sv)| > Ri, i.e., (x, v) /∈ ST (θnG).
This gives us that ST (θnω) ⊂ Gn under the assumption τn(ω) = T .

Also, we have in the same way as in the proof of the Claim that

{St(θkω) ⊂ Gn} = {St(θnω) ⊂ Gn}, for any k > n.

Therefore, if τn(ω) = T , then we have by (4.3.7)

( ~X(t, θkω), ~V (t, θkω)) = ( ~X(t, θnω), ~V (t, θnω)), ∀t ∈ [0, T ],

so we can define

( ~X(t, ω), ~V (t, ω)) = ( ~X(t, θnω), ~V (t, θnω)),

(x(t, x, v, ω), v(t, x, v, ω)) = (x(t, x, v, θnω), v(t, x, v, θnω)),

which exists for a.s.-ω by (4.3.4). Then ( ~X(t, ω), ~V (t, ω), x(t, x, v, ω), v(t, x, v, ω))
satisfies (4.3.1).

Notice that τn(ω) = T =⇒ τn+1(ω) = T . Therefore, to complete the proof of our
theorem, it suffices to show that

P
( ∞⋃

n=1

{τn = T}
)

= 1.

We show it from now on.
For any θnω ∈ Fin(R2d), we have by the invariance of energy

N∑

i=1

1

2
Mi|Vi(t, θnω)|2 +

m

2

∫

R2d
|v(t, x, v, θnω)|2µθnω(dx, dv)

+
N∑

i=1

∫

R2d
Ui(Xi(t, θnω)− x(t, x, v, θnω))µθnω(dx, dv)

=
N∑

i=1

1

2
Mi|Vi,0|2 +

m

2

∫

R2d
|v|2µθnω(dx, dv)

+
N∑

i=1

∫

R2d
Ui(Xi,0 − x)µθnω(dx, dv).
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If (x, v) /∈ St(θnω), then |Xi(s, θnω) − (x + sv)| > Ri + 1
2

for any s ∈ [0, t] and
i = 1, · · · , N , so by (4.3.1), v(t, x, v, θnω) = v and Ui(Xi(t, θnω)−x(t, x, v, θnω)) = 0.
Therefore, the equation above implies

N∑

i=1

1

2
Mi|Vi(t, θnω)|2 +

m

2

∫

St(θnω)
|v(t, x, v, θnω)|2µθnω(dx, dv)

+
N∑

i=1

∫

St(θnω)
Ui(Xi(t, θnω)− x(t, x, v, θnω))µθnω(dx, dv)

=
N∑

i=1

1

2
Mi|Vi,0|2 +

m

2

∫

St(θnω)
|v|2µθnω(dx, dv)

+
N∑

i=1

∫

St(θnω)
Ui(Xi,0 − x)µθnω(dx, dv).

So there exist constants C1, C2 > 0 such that

N∑

i=1

1

2
Mi|Vi(t, θnω)|2

≤ 1

2

N∑

i=1

Mi|Vi,0|2 + 2
N∑

i=1

‖Ui‖∞µθnω(St(θnω))

+
m

2

∫

St(θnω)
|v|2µθnω(dx, dv)

≤ C0 + C1

∫

St(θnω)
(1 + |v|2)µθnω(dx, dv)

= C0 + C1

∫

St(θnω)
1Gn(x, v)(1 + |v|2)µω(dx, dv). (4.3.8)

Let F (n)
t =

⋂
ε>0FSt+ε(θnω), 0 ≤ t < T . Then {F (n)

t }t∈[0,T ) is a filtration, and τn is a

{F (n)
t }t∈[0,T )-stopping time. Let

M
(n)
t =

∫

St(θnω)
1Gn(x, v)(1 + |v|2)(µω(dx, dv)− λm(dx, dv)).

Then {M (n)
t }t∈[0,T ) is a {F (n)

t }t∈[0,T )-martingale with mean 0. Actually, we have
that St(θnω) is monotone non-decreasing with respect to t, also, since |{x; (x, v) ∈
Gn}| = 2d(R0 + nT + T |v|)d and there exists a constant C > 0 (depending on R0,
n,T , d) such that 2d(R0 + nT + T |v|)d(1 + |v|2) ≤ C(1 + |v|d+2), we get by (4.3.2)
and our Assumption

m
1−d
2

∫

R2d
1Gn(x, v)(1 + |v|2)λm(dx, dv)

≤
∫

|x|≤R0

(1 + |v|2)ρ
(m

2
|v|2 +

N∑

i=1

Ui(x−Xi,0)
)
dxdv
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+
∫

Gn∩{|x|>R0}
(1 + |v|2)ρ

(m
2
|v|2

)
dxdv

≤
∫

|x|≤R0

dx
∫

Rd
(1 + |v|2)ρ

(m
2
|v|2 +

N∑

i=1

Ui(x−Xi,0)
)
dv

+
∫

Rd
C(1 + |v|d+2)ρ

(m
2
|v|2

)
dv

≤ (2R0)
dCd,m

∫ ∞

−∞

[
(C1 + |s|) d

2
−1 + (C1 + |s|) d

2

]
ρ(s)ds

+CCd,m

∫ ∞

−∞

[
|s| d2−1 + |s|d

]
ρ(s)ds

< ∞,

i.e., ∫

R2d
1Gn(x, v)(1 + |v|2)λm(dx, dv) <∞.

So Corollary 4.2.5 gives us that {M (n)
t }t∈[0,T ) is a {F (n)

t }t∈[0,T )-martingale with mean
0.

Hence E[M (n)
τn

] = 0. So by (4.3.8),

N∑

i=1

1

2
MiE[|Vi(τn, θnω)|2]

≤ C0 + C1E
[ ∫

Sτn (θnω)
1Gn(x, v)(1 + |v|2)λm(dx, dv)

]
.

Therefore, with C2 := (min Mi

2
)−1, we have

P [τn < T ] = P [ max
i=1,···,N

|Vi(τn, θnω)| ≥ n] (4.3.9)

≤ C2

n2
E

[ N∑

i=1

1

2
Mi|Vi(τn, θnω)|2

]

≤ 1

n2
C2C0 +

1

n2
C2C1E

[ ∫

Sτn (θnω)
1Gn(x, v)(1 + |v|2)λm(dx, dv)

]
. (4.3.10)

Notice that by definition, λm(dx, dv) = ρ(m
2
|v|2)dxdv if |x| > R0. Also, there

exist constants C ′0, C
′
1 > 0 such that

|{x ∈ Rd; (x, v) ∈ St(θnω)}|
= |{x ∈ Rd;∃i = 1, · · · , N, s.t., min

0≤s≤t
|x+ sv −Xi(s, θnω)| ≤ Ri +

1

2
}|

= |{x ∈ Rd;∃i = 1, · · · , N, s.t., min
0≤s≤t

|x+
∫ s

0
(v − Vi(r, θnω))dr| ≤ Ri +

1

2
}|

≤ C ′0 + C ′1(|v|+N max
0≤s≤t

|Vi(s, θnω)|).
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Moreover, |Vi(t, θnω)| ≤ n if t ∈ [0, τn]. Therefore, by Assumption and (4.3.3), there
exist constants C ′′0 , C

′′
1 > 0 such that

∫

Sτn (θnω)
1Gn(x, v)(1 + |v|2)λm(dx, dv)

≤
∫

|x|≤R0

(1 + |v|2)λm(dx, dv)

+m
d−1
2

∫

Rd
ρ(
m

2
|v|2)dv(1 + |v|2)|{x ∈ Rd; (x, v) ∈ Sτn(θnω)}|

≤ m
d−1
2

∫

|x|≤R0

dx
∫

Rd
(1 + |v|2)ρ

(m
2
|v|2 +

N∑

i=1

Ui(x−Xi,0)
)
dv

+m
d−1
2

∫

Rd
(C ′0 + C ′1(|v|+Nn))(1 + |v|2)ρ(m

2
|v|2)dv

≤ (2R0)
dm

d−1
2 Cd,m

∫ ∞

−∞

[
(C1 + |s|) d

2
−1 + (C1 + |s|) d

2

]
ρ(s)ds

+m
d−1
2 (C ′0 + C ′1nN)Cd,m

∫ ∞

−∞

[
|s| d2−1 + |s| d2

]
ρ(s)ds

+m
d−1
2 C ′1Cd,m

∫ ∞

−∞

[
|s| d−1

2 + |s| d+1
2

]
ρ(s)ds

≤ C ′′0 + C ′′1n.

This combined with (4.3.10) implies

P (τn < T ) → 0, as n→∞,

which completes the proof.





Chapter 5

Preparations for Limit Theorems

As announced in Chapter 1, from now on, we consider the problem of convergence
under the following setting.

Let d ≥ 1, N ≥ 1, Mi > 0 and Xi,0, Vi,0 ∈ Rd for i = 1, · · · , N . Let Ui ∈ C∞0 (Rd)
satisfying Ui(−x) = Ui(x), and there exist constants Ri > 0 such that Ui(x) = 0 for
|x| ≥ Ri.

We define constants

C0 =

(
2

N∑

i=1

Ri‖∇Ui‖∞
)1/2

,

e0 =
1

2
(2C0 + 1)2 +

N∑

i=1

‖Ui‖∞,

and let ρ : R → [0,∞) be a measurable function satisfying the following.

1. ρ(s) = 0 if s ≤ e0,

2. for any c > 0, there exists a ρ̃c : R → [0,∞) such that

sup
|a|≤c

ρ(s+ a) ≤ ρ̃c(s), for any s ∈ R,

and ∫

Rd
(1 + |v|3)ρ̃c(

1

2
|v|2)dv <∞.

Again, we consider the ODE (4.3.1), with Pm(dω) the Poisson point process on

Conf(R2d) with intensity m
d−1
2 ρ(m

2
|v|2 +

∑N
i=1 Ui(x−Xi,0))dxdv.

We assume the following:
A1. |Xi,0 −Xj,0| > Ri +Rj for any i 6= j.

Under these assumptions, by using the same method as in Theorem 4.3.1, we
first get the following existence.

THEOREM 5.0.2 Under our assumptions, (4.3.1) has a unique solution for Pm-
a.s. ω.

42



43

Proof. The proof is just a combination of ray representation and the method
in the proof of Theorem 4.3.1, so we give only a sketch. We use the same notations
as in the proof of Theorem 4.3.1.

First use the ray representation as in Section 3.3 (see Section 5.2 below for
details). (With a little abuse of notations, we write the corresponding ω̃ as ω).

Write the intensity measure corresponding to m
d−1
2 ρ(m

2
|v|2 +

∑N
i=1 Ui(x−Xi,0))dxdv

as λm, i.e., λm(ds, dx, dv) = m−1ρ
(

1
2
|v|2 +

∑N
i=1 Ui(x−m−1/2sv−Xi,0)

)
dsν(dx, dv).

Let
Gn = {(t, x, v) ∈ R× E; |x| < R0, |t| < T + C−1

0 R0},
(the Gn defined here actually does not depend on n, never the less, we use the
subscript n to keep the notation same as in the proof of Theorem 4.3.1), and let
c =

∑N
i=1 ‖Ui‖∞. Then by the calculation in Section 5.2,

λm(Gn)

=
∫

R×E
1{|x|<R0,|t|<T+C−1

0 R0}m
−1ρ

(1

2
|v|2 +

N∑

i=1

(x−m−1/2tv −Xi,0)
)
dtν(dx, dv)

≤ (2R0)
d−12(T + C−1

0 R0)m
−1

∫

Rd
|v|ρ̃c(

1

2
|v|2)dv,

which is finite by our assumption. Let θn = θGn , then as in the proof of Theorem
4.3.1, since E[](θGnω)] = λm(Gn), the above implies that θnω ∈ Fin(R × E) a.s..
Let

St(ω) =
{
(u, x, v) ∈ R×E;∃i = 1, · · · , N, s.t., min

0≤s≤t
|Xi(s, ω)−(x−uv+sv)| ≤ Ri+

1

2

}
.

Then we have the following.
Claim. For any open set G and ω ∈ Fin(R × E), we have that {St(ω) ⊂ G} =
{St(θGω) ⊂ G}.

Proof of the Claim. First, we have by definition

(u, x, v) /∈ St(ω)

=⇒ |Xi(s, ω)− (x− uv + sv)| ≥ Ri +
1

2
, ∀s ∈ [0, t], i = 1, · · · , N

=⇒ x(s, v, x− uv;ω) = x− uv + sv, v(s, v, x− uv;ω) = v, ∀s ∈ [0, t].

So

(u, x, v) /∈ St(ω)

=⇒ |Xi(s;ω)− x(s, x− uv, v;ω)| ≥ Ri +
1

2
, ∀s ∈ [0, t], i = 1, · · · , N

=⇒ ∇Ui(Xi(s;ω)− x(s, x− uv, v;ω)) = 0, ∀s ∈ [0, t]. (5.0.1)

Moreover, it is trivial that

(u, x, v) ∈ G =⇒ µω(du, dx, dv) = µθGω(du, dx, dv). (5.0.2)
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(5.0.1) and (5.0.2) combined with the definition imply

St(ω) ⊂ G =⇒ ( ~X(s, ω), ~V (s, ω)) = ( ~X(s, θGω), ~V (s, θGω)), ∀s ∈ [0, t], (5.0.3)

(as long as ω ∈ Fin(R× E)). Therefore,

St(ω) ⊂ G =⇒ St(θGω) ⊂ G.

The opposite one can be seen in exactly the same way. This completes the proof of
our Claim.

Let τn(ω) = inf{t ≥ 0; maxi=1,···,N |Vi(t, θnω)| > n} ∧ T . Notice that since
ρ(m

2
|v|2 +

∑N
i=1 Ui(x−uv−Xi,0)) 6= 0 only if |v| ≥ 2C0 +1, without loss of generality,

we may and do assume that |v| ≥ 2C0 + 1. In order to ensure that the proof of
Theorem 4.3.1 is also valid here, we only need to check that the following hold.

1. ST (θnω) ⊂ Gn if τn(ω) = T ,

2.
∫

R×E
1Gn(t, x, v)(1 + |v|2)λm(dt, dx, dv) <∞,

3. there exist constants C0, C1 > 0 such that
∫

Sτn (θnω)
1Gn(t, x, v)(1 + |v|2)λm(dt, dx, dv) < C0 + C1n.

Actually, 1. ensures that the solution of the considered equation is well-defined
a.s.’ly until σn for any n ∈ N, 2. is used to show that the defined {M (n)

t }t∈[0,T ]

is a martingale, and 3. is combined with the invariant of energy and Chebyshev’s
inequality to show that Pm[τn < T ] → 0 as n→∞.

We show 1 ∼ 3 now. For the first one, first notice that if τn(ω) = T , then
|Vi(t, θnω)| ≤ n for any t ∈ [0, T ] and i = 1, · · · , N , hence |Xi(t, θnω)| ≤ nT + |Xi,0|
for any t ∈ [0, T ] and i = 1, · · · , N . Assume (u, x, v) /∈ Gn. Then either |x| ≥ R0 or
|u| ≥ C−1

0 R0+T . If |x| ≥ R0, then |x+rv| ≥ |x| ≥ R0 for any r ∈ R, so |Xi(s, θnω)−
(x− uv+ sv)| ≥ Ri + 1

2
for any s ∈ [0, T ], which implies that (u, x, v) /∈ ST (θnω). If

|u| ≥ C−1
0 R0 + T , then for any s ∈ [0, T ], we have |x − uv + sv| ≥ C−1

0 R0|v| ≥ R0,
so in this case, we also have |Xi(s, θnω)− (x− uv+ sv)| ≥ Ri + 1

2
for any s ∈ [0, T ],

which implies that (u, x, v) /∈ ST (θnω). In conclusion, we have in either case that
(u, x, v) /∈ ST (θnω). This completes the proof of our first assertion.

The second one and the third one are easy since
∫

R×E
1Gn(t, x, v)(1 + |v|2)λm(dt, dx, dv)

≤ (2R0)
d−12(T + C−1

0 R0)m
−1

∫

Rd
|v|(1 + |v|2)ρ̃c(

1

2
|v|2)dv,

which is finite by our assumption, and does not depend on n ∈ N. By applying
the same method as in the proof of Theorem 4.3.1, these complete the proof of our
Theorem.
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By Theorem 5.0.2, the solution of (4.3.1) is well-defined for Pm-a.s. ω. Write it

as
(
~X(t, ω), ~V (t, ω)

)
=

(
(X1(t, ω), · · · , XN(t, ω)), (V1(t, ω), · · · , VN(t, ω))

)
.

From now on, we prove the convergence results announced in Chaper 1.

5.1 Basic facts

First, in this section, we recall some basic facts without proof about the space
D = Dd given below and the tightness of the probability measures on it, which will
be used later. (See Billingsley [1] for more details).

5.1.1 Space D

Let

D = Dd = Dd[0, 1]

=
{
w : [0, 1] → Rd; w(t) = w(t+) := lim

s↓t
w(s), t ∈ [0, 1),

and w(t−) := lim
s↑t

w(s) exists, t ∈ (0, 1]
}
,

and let

Λ =
{
λ : [0, 1] → [0, 1]; continuous, non-decreasing, λ(0) = 0, λ(1) = 1

}
.

For any λ ∈ Λ, we define

‖λ‖0 = sup
0≤s<t≤1

∣∣∣ log
λ(t)− λ(s)

t− s

∣∣∣.

Also, for any w, w̃ ∈ Dd, we define

d0(w, w̃) = inf
λ∈Λ

{
‖λ‖0 ∨ ‖w − w̃ ◦ λ‖∞

}
,

where ‖w‖∞ = sup0≤t≤1 |w(t)|.

THEOREM 5.1.1 (Dd, d0) is a complete metric space.

We call the topology derived by this metric as Skorohod topology.
Let

C = {w : [0, 1] → Rd; continuous}.

PROPOSITION 5.1.2 (1) C is closed in Dd.

(2) If wn → w∞ in Dd, w̃n → w̃∞ in Dd, and wn ∈ C for any n = 1, 2, · · ·, then
wn + w̃n → w∞ + w̃∞.
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Remark 1 Notice that (Dd, d0) is NOT a topological vector space.

For any w ∈ Dd, let

∆(w; δ) = sup {|w(t)− w(t1)| ∧ |w(t2)− w(t)|;
0 ≤ t1 < t < t2 ≤ 1, t2 − t1 ≤ δ}.

Then we have the following.

THEOREM 5.1.3 Let A ⊂ Dd. Then the following are equivalent to each other.

(1) A is relative compact,

(2) The following 3 conditions are satisfied:

(i) supw∈A ‖w‖∞ <∞,

(ii) limδ→0 supw∈A ∆(w; δ) = 0,

(iii) limδ→0 supw∈A

{
|w(0)− w(δ)|+ |w(1− δ)− w(1−)|

}
= 0.

5.1.2 Tightness

Let M be a Polish space, and let P(M) denote the set of probability measures on
(M,B(M)).

DEFINITION 5.1.4 For µn, µ∞ ∈ P(M), n = 1, 2, · · ·, we say that µn → µ∞
weakly in P(M) if ∫

M
fdµn →

∫

M
fdµ∞

for any f : M → R that is bounded and continuous.

This gives the Prohorov metric on P(M).

DEFINITION 5.1.5 For any A ⊂ P(M), we say that A is tight if for any ε > 0,
there exists a compact set K in M such that

µ(K) > 1− ε, for any µ ∈ A.
THEOREM 5.1.6 Let A ⊂ P(M). Then

A is relative compact ⇐⇒ A is tight.

Now, let (Ωn,Fn, Pn), n = 1, 2, · · ·, be probability spaces, and let Xn : Ωn → Dd,
n ∈ N, be measurable. Let µXn = Pn ◦X−1

n . Then we have the following.

THEOREM 5.1.7 Suppose that there exist constants ε, β, γ, C > 0 such that

(1) EPn [‖Xn( · )‖ε
∞] ≤ C,

(2) EPn

[
|Xn(r)−Xn(s)|β|Xn(s)−Xn(t)|β

]
≤ C|t−r|1+ε for any 0 ≤ r ≤ s ≤ t ≤ 1,

(3) EPn

[
|Xn(s)−Xn(t)|ε

]
≤ C|t− s|γ for any 0 ≤ s ≤ t ≤ 1,

for any n ∈ N. Then {µXn}∞n=1 is tight in P(Dd).
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5.2 Ray representation

As before, let d ≥ 1, N ≥ 1, Mi > 0 and Xi,0, Vi,0 ∈ Rd for i = 1, · · · , N . Let
Ui ∈ C∞0 (Rd) satisfying Ui(−x) = Ui(x), and let Ri > 0 be constants such that
Ui(x) = 0 for |x| ≥ Ri, i = 1, · · · , N .

We consider the following ODE. Notice that we use ω̃ instead of ω here, because
we will use ray representation to convert the problem into the one about R× E in
the second half of this section, and will consider the problem on the new space after
that. 




d

dt
Xi(t; ω̃) = Vi(t; ω̃)

Mi
d

dt
Vi(t; ω̃) = −

∫
∇Ui(Xi(t; ω̃)− x(t, x, v; ω̃))µω̃(dx, dv)

(Xi(0; ω̃), Vi(0; ω̃)) = (Xi,0, Vi,0)

d

dt
x(t, x, v; ω̃) = v(t, x, v; ω̃)

m
d

dt
v(t, x, v; ω̃) = −

N∑

i=1

∇Ui(x(t, x, v; ω̃)−Xi(t; ω̃))

(x(0, x, v; ω̃), v(0, x, v; ω̃)) = (x, v)

As before, let Ω̃ = Conf(R2d), let

λ̃(dx, dv) = λ̃m(dx, dv) = m
d−1
2 ρ

(m
2
|v|2 +

N∑

i=1

Ui(x−Xi,0)
)
dxdv,

and let P
λ̃m

be the Poisson point process with intensity λ̃m.
We consider the following ”change of co-ordinates”:

Ψm : R× E → Rd × (Rd \ {0}), (s, x, v) 7→ Ψm(s, x, v) = Ψ(s, x,m− 1
2v).

Let

fm(x, v) = f(x,m− 1
2v),

ρ0(x, v) = ρ
(1

2
|v|2 +

N∑

i=1

Ui(x−Xi,0)
)
.

Then we have
∫

R2d
f(x, v)λ̃(dx, dv)

= m
d−1
2

∫

R2d
f(x, v)ρ

(m
2
|v|2 +

N∑

i=1

Ui(x−Xi,0)
)
dxdv

= m− 1
2

∫

R2d
f(x,m− 1

2v)ρ
(1

2
|v|2 +

N∑

i=1

Ui(x−Xi,0)
)
dxdv
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= m− 1
2

∫

R×E
fm(Ψ(s, x, v))ρ0(Ψ(s, x, v))dsν(dx, dv)

= m−1
∫

R×E
fm(Ψ(m− 1

2 s, x, v))ρ0(Ψ(m− 1
2 s, x, v))dsν(dx, dv),

where we used Theorem 3.3.1 when passing to the forth line. But

fm(Ψ(m− 1
2 s, x, v)) = f(x−m− 1

2 sv,m− 1
2v) = f(Ψm(s, x, v)).

Therefore,

∫

R2d
f(x, v)λ̃(dx, dv) =

∫

R×E
f(Ψm(s, x, v))λ(ds, dx, dv),

where

λ(ds, dx, dv) = λm(ds, dx, dv)

= m−1ρ0(Ψ(m− 1
2 s, x, v))dsν(dx, dv)

= m−1ρ
(1

2
|v|2 +

N∑

i=1

Ui(x−m−1/2sv −Xi,0)
)
dxν(dx, dv).

Let Ω = Conf(R×E). Then λ is a measure on Ω. Notice that when restrict Ψm

on Ω, Ψm : Ω = Conf(R×E) → Conf(Rd×(Rd\{0})). Let Pm(dω) = Pλm(dω) be
the Poisson point process on Conf(R × E) with intensity function λm(ds, dx, dv).
Then since λm(B) = λ̃m(Ψm(B)) for any B ∈ B(R× E), we have that

Pλm(A) = P
λ̃m

(Ψm(A)), for all A ∈ E0.

Therefore, we can convert our problem with respect to Ω̃ to the problem on Ω.

Our new equation is the following.





d

dt
Xi(t;ω) = Vi(t;ω)

Mi
d

dt
Vi(t;ω) = −

∫

R×E
∇Ui(Xi(t;ω)− x(t,Ψ(s, x,m− 1

2v)))µω(ds, dx, dv)

(Xi(0;ω), Vi(0;ω)) = (Xi,0, Vi,0)

d

dt
x(t, x, v;ω) = v(t, x, v;ω)

m
d

dt
v(t, x, v;ω) = −

N∑

i=1

∇Ui(x(t, x, v;ω)−Xi(t;ω))

(x(0, x, v;ω), v(0, x, v;ω)) = (x, v)
(5.2.1)
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5.3 Basic lemmas

Choose any T > 0 and n ≥ 1 and fix for a while. Let

σ(ω) = σn(ω) = inf
{
t ≥ 0; max

i=1,···,N
|Vi(t, ω)| ≥ n

}
,

R0 = R0(n, T ) = max
i=1,···,N

(Ri + |Xi,0|+ nT ) + 1,

C0 =
{
2

N∑

i=1

Ri‖∇Ui‖∞
}1/2

,

τ = τ(n, T ) = C−1
0 R0,

Ft = F (T,n)
t = F(−∞,t+2m1/2τ)×E ∨ ℵ,

= σ{ω ∩ (−∞, t+ 2m1/2τ)× E} ∨ ℵ.

Notice that the definition of R0 is different from before. We do so for the sake
of simplicity, since we will use maxi=1,···,N (Ri + |Xi,0| + nT ) + 1 as a whole thing
only from now on. Then we will show that (Xi(t ∧ σ), Vi(t ∧ σ)), i = 1, · · · , N , are
Ft-measurable.

Also, we define a new potential in the following way. Let

ρ̃(t) = −
∫ ∞

t
ρ(s)ds, t ∈ R,

f(s) =
∫

Rd
ρ̃
(1

2
|v|2 + s

)
dv,

and let

Ũ( ~X) =
∫

Rd

(
f

( N∑

i=1

Ui(Xi − x)
)
− f(0)

)
dx.

Then we can show that the value of Ũ for any ~X satisfying |Xi − Xj| > Ri + Rj

(i 6= j) is a constant (See (5.4.9) below). Write this constant as Ũ0.
We are going to proof the limit theorems by showing the following lemmas.

Lemma 5.3.1 For any i = 1, · · · , N , there exist a Rd-valued (Ft)t-adapted process
P ∗0i (t), a Rd-valued (Ft)t-adapted C

1-class (in t) process P ∗1i (t), a Rd-valued (Ft)t-
martingale Mi(t) and a Rd-valued (Ft)t-adapted process ηi(t) such that

(1)

Mi(Vi(t ∧ σ)− Vi(0)) = P ∗0i (t) + P ∗1i (t)−m−1/2
∫ t∧σ

0
∇iŨ(X(s))ds,

and P ∗0i (t) = Mi(t) + ηi(t),

(2)

sup
m∈(0,1]

sup
t∈[0,T ]

EPm

[
| d
dt
P ∗1i (t)|2

]
<∞,
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(3) there exists a constant C indenpendent of m such that

∣∣∣d〈Mk
i ,M

`
j 〉t

∣∣∣ ≤ Cdt, Pm-a.s.

for any k, ` = 1, · · · , d and m ∈ (0, 1], with |∆Mi(t)| ≤ Cm1/2,

(4)

EPm [ sup
t∈[0,T ]

|ηi(t)|] → 0, as m→ 0

for any i = 1, · · · , N .

In particular, P ∗0i (t) and P ∗1i (t) are tight in D([0, T ];Rd), and the limits are
continuous processes.

Lemma 5.3.2 Let D be any open subset of RdN , and assume that for any i =
1, · · · , N , there exists a C1

b -class function gi : D → Rd satisfying

gi( ~X) · ∇iŨ( ~X) = |∇iŨ( ~X)|, for any ~X ∈ D, i = 1, · · · , N.

Let

σ̃D = inf{t ≥ 0; ~X(t) ∈ DC}.
Then

(1)

sup
m∈(0,1]

EPm

[ ∫ T∧σ∧σ̃D

0
m−1/2|∇iŨ( ~X(t))|dt

]
<∞

for any i = 1, · · · , N ,

(2) m−1/2
(
Ũ( ~X(t ∧ σ ∧ σ̃D))− Ũ0

)
+

N∑

i=1

Mi

2
|Vi(t ∧ σ ∧ σ̃D)|2 is tight in C([0, T ];R).

Lemma 5.3.3 If bi : RdN → Rd, i = 1, · · · , N , are C2
b -class, and

N∑

i=1

bi( ~X) · ∇iŨ( ~X) = 0

for any ~X ∈ RdN , then
∑N

i=1 bi( ~X(t ∧ σ)) · Vi(t ∧ σ) is tight in D,

Lemma 5.3.4 Let D0 = (suppŨ)C ⊂ RdN , and assume that f ∈ C∞0 (D0 ×RdN).

Then f( ~X(t∧σ), ~V (t∧σ)) is tight in C([0, T ];R). Also, the limit process ( ~X∞(t), ~V∞(t))
is the solution of the L-martingale problem stopped at σ.
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5.4 Preparations

We prepare some estimates, which will be used later. Fix any n ≥ 1. Since by
definition

σ(ω) = σn(ω) = inf
{
t ≥ 0; max

i=1,···,N
|Vi(t, ω)| ≥ n

}
,

it is trivial by definition that

|Xi(t, ω)| ≤ |Xi,0|+ nT, for any t ∈ [0, σ(ω) ∧ T ]. (5.4.1)

PROPOSITION 5.4.1 Suppose that |v| > (2C0 + 1)m−1/2 and n ≤ m−1/2. Then

(|v|−1v) · v(t, x, v;ω) ≥ m−1/2(C0 + 1), for any t ∈ [0, σ(ω)].

Proof. Let η = |v|−1v and let

ξ = inf {t > 0; v(t, x, v;ω) · η < m−1/2(C0 + 1)}.
We only need to show that ξ ≥ σ(ω). Suppose not. Notice that by definition,

(v(ξ, x, v;ω)− v) · η = −m−1
N∑

i=1

∫ ξ

0
(∇Ui(x(t, x, v;ω)−Xi(t;ω)) · η)dt.

Also, for any t ∈ [0, ξ ∧ σ(ω)], we have by assumption

d

dt
(x(t, x, v;ω)−Xi(t;ω)) · η

= v(t, x, v;ω) · η − Vi(t;ω) · η
≥ m−1/2(C0 + 1)− n ≥ m−1/2(C0 + 1)−m−1/2 = m−1/2C0,

in particular, (x(t, x, v;ω) − Xi(t;ω)) · η is monotone increasing with respect to t.
So since v · η = |v| > (2C0 + 1)m−1/2 by assumption,

m−1/2C0 < −(v(ξ, x, v;ω)− v) · η

= m−1
N∑

i=1

∫ ξ

0

(
∇Ui(x(t, x, v;ω)−Xi(t;ω)) · η

)
dt

≤ m−1
N∑

i=1

∫ ξ

0
|∇Ui(x(t, x, v;ω)−Xi(t;ω)) · η|

×(m−1/2C0)
−1d[(x(t, x, v;ω)−Xi(t;ω)) · η]

≤ m−1
N∑

i=1

(m−1/2C0)
−1‖∇Ui‖∞

∫

|(x(t,x,v;ω)−Xi(t;ω))·η|≤Ri

d[(x(t, x, v;ω)−Xi(t;ω)) · η]

≤ m−1
N∑

i=1

(m−1/2C0)
−1‖∇Ui‖∞2Ri

= m−1/2C0,
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which makes a contradiction. Therefore, ξ ≥ σ(ω).
We assume n < m−1/2 from now on.
Remember that in Section 3.4, we wrote the solution of





d

dt
x(t) = v(t),

d

dt
v(t) = −

N∑

i=1

∇Ui(x(t)−Xi),

(x(0), v(0)) = (x0, v0)

as

ϕ̃(t, x0, v0; ~X) = (x(t), v(t)),

and defined

ψ(t, x, v; ~X) = lim
s→∞ ϕ̃(t+ s,Ψ(s, x, v); ~X)

for any t ∈ R, (x, v) ∈ E.
Now, in our present setting, since





d

dt
x(t,Ψ(s, x,m−1/2v)) = v(t,Ψ(s, x,m−1/2v)),

m
d

dt
v(t,Ψ(s, x,m−1/2v)) = −

N∑

i=1

∇Ui(x(t,Ψ(s, x,m−1/2v))−Xi(t, ω)),

we have

d2

dt2
x(m1/2t+ s,Ψ(s, x,m−1/2v))

= −
N∑

i=1

∇Ui(x(m
1/2t+ s,Ψ(s, x,m−1/2v))−Xi(m

1/2t+ s, ω)).

Also, for any s > 0 and t ∈ [0, T ∧ σ(ω)], we have by definition and (5.4.1) that

(
x(t,Ψ(s, x,m−1/2v)), v(t,Ψ(s, x,m−1/2v))

)
= Ψ(s− t, x,m−1/2v)

if t < s− (m−1/2C0)
−1R0 and |v| ≥ 2C0 + 1.

Therefore,

(
x(m1/2t+ s,Ψ(s, x,m−1/2v)),

d

dt
x(m1/2t+ s,Ψ(s, x,m−1/2v))

)

= (Ψ0(−m1/2t, x,m−1/2v),m1/2Ψ1(−m1/2t, x,m−1/2v)) = (x+ tv, v)

= Ψ(−t, x, v) (5.4.2)

if t < −C−1
0 R0, |v| ≥ 2C0 + 1, and 0 ≤ m1/2t+ s ≤ T ∧ σ(ω).

We recall the following famous Gronwall’s Lemma, for later use.
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Lemma 5.4.2 (Gronwall’s Lemma) Suppose that the continuous function g(t)
satisfies

0 ≤ g(t) ≤ α(t) + β
∫ t

0
g(s)ds, 0 ≤ t ≤ T,

with β ≥ 0 and α : [0, T ] → R integrable. Then

g(t) ≤ α(t) + β
∫ t

0
α(s)eβ(t−s)ds, 0 ≤ t ≤ T.

In particular, if α(t) = α is a constant, then

g(t) ≤ αeβt, 0 ≤ t ≤ T.

PROPOSITION 5.4.3 Fix any a ∈ R. Suppose that 0 ≤ s − am1/2 ≤ T ∧ σ(ω)
and 0 ≤ s−m1/2τ ≤ T ∧ σ(ω). Let

y(t) = x(m1/2t+ s,Ψ(s, x,m−1/2v))− ψ0(t, x, v, ~X(s− am1/2, ω)).

Also, suppose that |v| > 2C0 + 1. Then

(1) y(t) = 0 if 0 ≤ m1/2t+ s ≤ T ∧ σ(ω) and t ≤ −τ ,
(2)

d2

dt2
y(t)

= −
N∑

i=1

{
∇Ui

(
y(t) + ψ0(t, x, v; ~X(s− am1/2, ω))−Xi(m

1/2t+ s, ω)
)

−∇Ui

(
ψ0(t, x, v; ~X(s− am1/2, ω))−Xi(s− am1/2, ω)

)}
.

(3) there exists a constant C̃, depending only on n, τ and
∑N

i=1 ‖∇2Ui‖∞, such
that

|y(t)|+ | d
dt
y(t)| ≤ m1/2C̃(2τ + |a|), (5.4.3)

if 0 ≤ m1/2t+ s ≤ T ∧ σ(ω) and |t| ≤ 2τ .

Proof. We first show the first assertion. We have by (5.4.2) that x(m1/2t +
s,Ψ(s, x,m−1/2v)) = x+ tv under our setting. Also, notice that |Xi(s−am1/2, ω)| ≤
|Xi,0|+ nT under our assumption, and since t ≤ −τ and |v| ≥ 2C0 + 1, we have for
any s̃ big enought

inf
u∈[0,t+s̃]

|x− s̃v + uv| ≥ |t||v| ≥ C−1
0 R0(2C0 + 1) ≥ R0,

therefore, ψ0(t, x, v, ~X(s−am1/2, ω)) = lims̃→∞ ϕ
0(t+ s̃, x− s̃v, v, ~X(s−am1/2, ω)) =

x+ tv. This gives us our first assertion.
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The second assertion is trivial by definition.
We show the last one. Notice that for any |t| ≤ 2τ satisfying 0 ≤ m1/2t + s ≤

T ∧ σ(ω), we have

∣∣∣Xi(m
1/2t+ s, ω)−Xi(s− am1/2, ω)

∣∣∣
≤ n|(m1/2t+ s)− (s− am1/2)| ≤ nm1/2(2τ + |a|),

so by (2),

∣∣∣ d
2

dt2
y(t)

∣∣∣

≤
N∑

i=1

‖∇2Ui‖∞
∣∣∣y(t)−

[
Xi(m

1/2t+ s, ω)−Xi(s− am1/2, ω)
] ∣∣∣

≤
N∑

i=1

‖∇2Ui‖∞m1/2n(2τ + |a|) +
( N∑

i=1

‖∇2Ui‖∞
)
|y(t)|.

Therefore,

∣∣∣ d
dt

∣∣∣
(
y(t),

d

dt
y(t)

)∣∣∣
∣∣∣ ≤

∣∣∣ d
dt
y(t)

∣∣∣ +
∣∣∣ d

2

dt2
y(t)

∣∣∣

≤ m1/2
( N∑

i=1

‖∇2Ui‖∞n
)
(2τ + |a|) +

(
1 +

N∑

i=1

‖∇2Ui‖∞
) ∣∣∣(y(t), d

dt
y(t))

∣∣∣

if |t| ≤ 2τ and 0 ≤ m1/2t + s ≤ T ∧ σ(ω). Also, by (1), y(−τ) = d
dt
y(−τ) = 0. Let

g(t) = |(y(t− τ), d
dt
y(t− τ))|, then we have g(0) = 0 and

∣∣∣∣∣
d

dt
g(t)

∣∣∣∣∣ ≤
∣∣∣ d
dt

∣∣∣
(
y(t− τ),

d

dt
y(t− τ)

)∣∣∣
∣∣∣

≤ m1/2
( N∑

i=1

‖∇2Ui‖∞n
)
(2τ + |a|) +

(
1 +

N∑

i=1

‖∇2Ui‖∞
)
g(t),

if −τ ≤ t ≤ 3τ and 0 ≤ m1/2(t − τ) + s ≤ T ∧ σ(ω). (Notice that t = 0 satisfies
these conditions since 0 ≤ s−m1/2τ ≤ T ∧ σ(ω) under our assumption). Therefore,
if 0 ≤ t ≤ 3τ and 0 ≤ m1/2(t− τ) + s ≤ T ∧ σ(ω), then

g(t) ≤ m1/2
( N∑

i=1

‖∇2Ui‖∞n
)
(2τ + |a|)3τ +

(
1 +

N∑

i=1

‖∇2Ui‖∞
) ∫ t

0
g(s)ds,

so by Gronwall’s inequality, we get

g(t) ≤ m1/2
( N∑

i=1

‖∇2Ui‖∞n
)
(2τ + |a|)3τe(1+

∑N

i=1
‖∇2Ui‖∞)t.
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The assertion for t ∈ [−τ, 0] satisfying 0 ≤ m1/2(t− τ) + s ≤ T ∧ σ(ω) is proved in
the same way. This completes the proof.

Now, choose any x, v ∈ Rd with |v| > 2C0 + 1, and ~X, ~V ∈ (Rd)N with |Xi| ≤
|Xi,0|+ nT , i = 1, · · · , N . For any a ∈ R, let Z(t) = Z(t; x, v, ~X, ~V , a) ∈ Rd be the
solution of the equation





d2

dt2
Z(t) = −

N∑

i=1

∇2Ui

(
ψ0(t, x, v, ~X)−Xi

)
(Z(t)− (t+ a)Vi),

Z(−τ) =
d

dt
Z(−τ) = 0.

It is easy to see that Z(t;x, v, ~X, ~V , a) is linear with respect to ~V .

PROPOSITION 5.4.4 Let a ∈ R. Suppose that t ≥ −a, 0 ≤ s − m1/2τ ≤
T ∧ σ(ω), −τ ≤ t ≤ 2τ and 0 ≤ s − am1/2 ≤ s + m1/2t ≤ T ∧ σ(ω). Also, let
|v| > 2C0 + 1. Then

∣∣∣x(m1/2t+ s,Ψ(s, x,m−1/2v))

−
(
ψ0(t, x, v, ~X(s− am1/2)) +m1/2Z(t;x, v, ~X(s− am1/2), ~V (s− am1/2), a)

)∣∣∣

≤ Cm1/2
{
(1 + |a|)2m1/2 +m−1/2

∫ s+m1/2t

s−am1/2
|~V (r)− ~V (s− am1/2)|dr

}
.

Here C is a constant depending only on τ , n,
∑N

i=1 ‖∇3Ui‖∞ and
∑N

i=1 ‖∇2Ui‖∞.

Proof. Let

y(t) = x(m1/2t+ s,Ψ(s, x,m−1/2v))− ψ0(t, x, v, ~X(s− am1/2, ω))

as before, and let

ξ(t) = y(t)−m1/2Z(t; x, v, ~X(s− am1/2), ~V (s− am1/2), a).

We need to estimate |ξ(t)|. By a simply calculation,

d2

dt2
y(t)

= −
N∑

i=1

{
∇Ui(y(t) + ψ0(t, x, v; ~X(s− am1/2))−Xi(m

1/2t+ s))

−∇Ui(ψ
0(t, x, v; ~X(s− am1/2)−Xi(s− am1/2))

}

= −
N∑

i=1

∫ 1

0
∇2Ui

(
η
[
y(t)−

{
Xi(m

1/2t+ s)−Xi(s−m1/2a)
} ]

+ψ0(t, x, v, ~X(s− am1/2))−Xi(s− am1/2)
)

[
y(t)−

{
Xi(m

1/2t+ s)−Xi(s−m1/2a)
} ]
dη,
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and so

d2

dt2
ξ(t)

= −
N∑

i=1

∫ 1

0
dη

{
∇2Ui

(
η
[
y(t)−

{
Xi(m

1/2t+ s)−Xi(s−m1/2a)
} ]

+ψ0(t, x, v; ~X(s− am1/2))−Xi(s− am1/2)
)

−∇2Ui

(
ψ0(t, x, v; ~X(s− am1/2))−Xi(s− am1/2)

)}

·
(
y(t)−

{
Xi(m

1/2t+ s)−Xi(s−m1/2a)
})

−
N∑

i=1

∇2Ui

(
ψ0(t, x, v, ~X(s− am1/2))−Xi(s− am1/2)

)

(
ξ(t)−

{
Xi(m

1/2t+ s)−Xi(s−m1/2a)−m1/2(t+ a)Vi(s−m1/2a)
})
.

Therefore, since |Xi(m
1/2t + s) − Xi(s − m1/2a)| ≤ n(t + |a|)m1/2 in our domain,

and Xi(m
1/2t+ s)−Xi(s−m1/2a) =

∫ s+m1/2t
s−am1/2 Vi(r)dr, we get

∣∣∣ d
2

dt2
ξ(t)

∣∣∣ (5.4.4)

≤
N∑

i=1

‖∇3Ui‖∞(|y(t)|+ n(t+ |a|)m1/2)2 + (
N∑

i=1

‖∇2Ui‖∞)|ξ(t)|

+
N∑

i=1

‖∇2Ui‖∞
∫ s+m1/2t

s−am1/2
|Vi(r)− Vi(s−m1/2a)|dr. (5.4.5)

Let C̃ be the constant in Proposition 5.4.3, and let

C1 =
N∑

i=1

‖∇3Ui‖∞(C̃ + n)2(2τ + 1)2,

C2 =
N∑

i=1

‖∇2Ui‖∞.

Then (5.4.5) combined with Proposition 5.4.3 gives us

∣∣∣ d
2

dt2
ξ(t)

∣∣∣ ≤ C1m(1 + |a|)2 + C2

∫ s+m1/2t

s−am1/2
|Vi(r)− Vi(s−m1/2a)|dr + C2|ξ(t)|,

if 0 ≤ m1/2t+ s ≤ T ∧ σ(ω), |t| ≤ 2τ and t ≥ −a. Let

g(t) =
∣∣∣(ξ(t− τ),

d

dt
ξ(t− τ))

∣∣∣.
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Then the estimate above gives us
∣∣∣∣∣
d

dt
g(t)

∣∣∣∣∣ ≤
∣∣∣ d
dt
ξ(t− τ)

∣∣∣ +
∣∣∣ d

2

dt2
ξ(t− τ)

∣∣∣

≤ C1m(1 + |a|)2 + C2

∫ s+m1/2(t−τ)

s−am1/2
|Vi(r)− Vi(s−m1/2a)|dr + (C2 + 1)g(t),

if t − τ ≥ −a, |t − τ | ≤ 2τ and 0 ≤ m1/2(t − τ) + s ≤ T ∧ σ(ω). Since ξ(−τ) =
d
dt
ξ(−τ) = 0, we have g(0) = 0. Also,

∫ s+m1/2(t−τ)

s−am1/2 |Vi(r) − Vi(s − m1/2a)|dr is
monotone non-decreasing with respect to t. So if t− τ ≥ −a and 0 ≤ t ≤ 3τ , then

g(t) ≤ 3τ
(
C1m(1 + |a|)2 + C2

∫ s+m1/2(t−τ)

s−am1/2
|Vi(r)− Vi(s−m1/2a)|dr

)

+(C2 + 1)
∫ t

0
g(u)du.

Therefore, by Gronwall’s inequality and the monotonicity of
∫ s+m1/2t
s−am1/2 |Vi(r)− Vi(s−

m1/2a)|dr again, the above implies

g(t) ≤ 3τe(C2+1)3τ
(
C1m(1 + |a|)2 + C2

∫ s+m1/2(t−τ)

s−am1/2
|Vi(r)− Vi(s−m1/2a)|dr

)
,

if t− τ ≥ −a, −τ ≤ t− τ ≤ 2τ and 0 ≤ m1/2(t− τ) + s ≤ T ∧ σ(ω). This completes
our proof.

PROPOSITION 5.4.5 Let |v| > 2C0 + 1. Suppose that 0 ≤ m1/2t+ s ≤ T ∧ σ(ω)
and that either t < −τ or t > 2τ . Then

∇Ui

(
x(m1/2t+ s,Ψ(s, x,m−1/2v))−Xi(m

1/2t+ s, ω)
)

= 0.

Proof. Let η = |v|−1v. First notice that |Xi(m
1/2t+ s, ω)| ≤ |X0,i|+ nT if 0 ≤

m1/2t+s ≤ T ∧σ(ω). So we only need to show that |x(m1/2t+s,Ψ(s, x,m−1/2v))| ≥
R0 for t satisfying our condition.

We show it from now on. First notice that by (5.4.2), if t < −τ = −C−1
0 R0,

then |x(m1/2t+ s,Ψ(s, x,m−1/2v))| = |x+ tv| ≥ |t||v| ≥ C−1
0 R0(2C0 + 1) > R0. For

t > 2τ , notice that since

d

dt
x(m1/2t+ s,Ψ(s, x,m−1/2v)) = m1/2v(m1/2t+ s,Ψ(s, x,m−1/2v)),

and 0 ≤ m1/2t+ s ≤ σ(ω) by assumption, we have by Proposition 5.4.1 that

d

dt

(
η · x(m1/2t+ s,Ψ(s, x,m−1/2v))

)
> C0. (5.4.6)

In particular, η · x(m1/2t + s,Ψ(s, x,m−1/2v)) is monotone increasing with respect
to t if 0 ≤ m1/2t + s ≤ σ(ω). So if η · x(s,Ψ(s, x,m−1/2v)) > R0, then for any
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t ≥ 2τ > 0, we have η ·x(m1/2t+s,Ψ(s, x,m−1/2v)) ≥ η ·x(s,Ψ(s, x,m−1/2v)) > R0.
Also, if η · x(s,Ψ(s, x,m−1/2v)) ≤ R0, then by (5.4.6), we get that for any t > 2τ ,

∣∣∣η · x(m1/2t+ s,Ψ(s, x,m−1/2v))
∣∣∣

=
∣∣∣
∫ t

0

d

du

(
η · x(m1/2u+ s,Ψ(s, x,m−1/2v))

)
du+ η · x(s,Ψ(s, x,m−1/2v))

∣∣∣
≥ C0t−R0 ≥ C0 · 2τ −R0 ≥ 2R0 −R0 = R0,

hence |x(m1/2t+s,Ψ(s, x,m−1/2v))| ≥ R0. This completes the proof of our assertion,
hence the lemma.

Before closing this section, let us discuss a little bit more about the new potential
Ũ . As in Section 5.3, let

ρ̃(t) = −
∫ ∞

t
ρ(s)ds, t ∈ R.

Then d
dt
ρ̃(t) = ρ(t). Also, let

Ũ( ~X) = Ũ(X1, · · · , XN) =
∫

R2d

(
ρ̃

(
1

2
|v|2 +

N∑

i=1

Ui(x−Xi)

)
− ρ̃(

1

2
|v|2)

)
dxdv.

Then it is easy that

∇iŨ( ~X) =
∫

R2d
∇Ui(Xi − x)ρ

(
1

2
|v|2 +

N∑

i=1

Ui(x−Xi)

)
dxdv. (5.4.7)

Let

f(s) =
∫

Rd
ρ̃(

1

2
|v|2 + s)dv.

Then by a simple calculation, there exists a global constant Cd such that

f(s) = Cd

∫ ∞

0
ρ̃(r + s)r

d
2
−1dr.

Also,

Ũ( ~X) =
∫

Rd

(
f

(
N∑

i=1

Ui(x−Xi)

)
− f(0)

)
dx. (5.4.8)

It is easy that if |Xi −Xj| > Ri +Rj for any i 6= j, then

Ũ( ~X) =
N∑

i=1

∫

Rd

(
f(Ui(x))− f(0)

)
dx,

therefore,
∇iŨ( ~X) = 0, if |Xi −Xj| > Ri +Rj, i 6= j. (5.4.9)
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Moreover, we have

f ′(s) = Cd

∫ ∞

0
ρ(r + s)r

d
2
−1dr

= Cd

∫ ∞

s
ρ(t)(t− s)

d
2
−1dt.

So if s < e0, then

f ′(s) = Cd

∫ ∞

0
ρ(t)(t− s)

d
2
−1dt, (5.4.10)

f ′′(s) = Cd(1− d

2
)
∫ ∞

0
ρ(t)(t− s)

d
2
−2dt, (5.4.11)

f ′′′(s) = Cd(1− d

2
)(2− d

2
)
∫ ∞

0
ρ(t)(t− s)

d
2
−3dt.

Also notice that under the condition s < e0, if 0 ≤ t < s, then t < e0, hence ρ(t) = 0.
Therefore, we get that

f ′′(s)





< 0, if d ≥ 3,
= 0, if d = 2,
> 0, if d = 1.

(5.4.12)

We remark that in reality, we have ρ(t) = e−t, so ρ̃(t) = −e−t and f(s) = −Ce−s

with some constant C > 0, so f ′′(s) < 0.





Chapter 6

Proof of Lemmas 5.3.1 ∼ 5.3.3

We give the proofs of Lemmas 5.3.1 ∼ 5.3.3 in this section. Sections 6.1 ∼ 6.4
give the proof of Lemma 5.3.1, sections 6.6 and 6.5 prove Lemmas 5.3.2 and 5.3.3,
respectively. The proof of Lemma 5.3.4 will be given in the next chapter.

6.1 First decomposition

First, we have by (5.2.1)

Mi(Vi(t)− Vi(0))

= −
∫ t

0
ds

∫

R×E
∇Ui(Xi(s, ω)− x(s,Ψ(r, x,m−1/2v)))µω(dr, dx, dv).

Let σ(ω) = σn(ω) = inf{t ≥ 0; maxi=1,···,N |Vi(t, ω)| ≥ n}, and τ = C−1
0 R0 as

before.
Notice that under our condition, we have |v| ≥ 2C0 + 1, Pm-a.s.. So for any s ∈

[0, T∧σ(ω)), we have by Proposition 5.4.5 that∇Ui(Xi(s, ω)−x(s,Ψ(r, x,m−1/2v))) =
0 if |s− r| > 2m1/2τ .

For any t ≤ T , we can decompose

−Mi(Vi(t ∧ σn)− Vi(0)) = V 0
i (t) + V 1

i (t),

with

V 0
i (t) =

∫ t∧σn

0
1[4m1/2τ,∞)(s)ds

∫

R×E
∇Ui(Xi(s, ω)− x(s,Ψ(r, x,m−1/2v)))µω(dr, dx, dv),

V 1
i (t) =

∫ t∧σn

0
1[0,4m1/2τ)(s)ds

∫

R×E
∇Ui(Xi(s, ω)− x(s,Ψ(r, x,m−1/2v)))µω(dr, dx, dv).

60



6.2. THE TERM V 1
I (T ) 61

6.2 The term V 1
i (t)

Let us deal with V 1
i (t) in this section. We will show that it is negligible. Decompose

it into

V 1
i (t) = V 10

i (t) + V 11
i (t),

with

V 10
i (t) =

∫ t∧σn

0
1[0,4m1/2τ)(s)ds

∫

R×E

{
∇Ui(Xi(s, ω)− x(s,Ψ(r, x,m−1/2v)))

−∇Ui(Xi(0)− ϕ̃0(m−1/2s,Ψ(m−1/2r, x, v); ~X(0)))
}
µω(dr, dx, dv),

V 11
i (t) =

∫ t∧σn

0
1[0,4m1/2τ)(s)ds

∫

R×E
∇Ui(Xi(0)− ϕ̃0(m−1/2s,Ψ(m−1/2r, x, v); ~X(0)))µω(dr, dx, dv).

Before discussing the behavior of V 10
i (t), let us prepare the following result. Fix

any t0 > 0. Then we have the following:

Lemma 6.2.1 For any s ∈ [0, t0] satisfying 0 ≤ m1/2s ≤ T ∧ σn(ω), we have that

∣∣∣x(m1/2s,Ψ(r, x,m−1/2v))− ϕ̃0(s,Ψ(m−1/2r, x, v); ~X(0)))
∣∣∣

≤ nm1/2s
N∑

i=1

‖∇2Ui‖∞t0e(
∑N

i=1
‖∇2Ui‖∞+1)t0 .

Proof. First notice that under our condition, |Xi(m
1/2s) − Xi(0)| ≤ nm1/2s.

Let

ξ(s) = x(m1/2s,Ψ(r, x,m−1/2v))− ϕ̃0(s,Ψ(m−1/2r, x, v); ~X(0))).

Then we have

d2

ds2
ξ(s) =

N∑

i=1

{
−∇Ui(x(m

1/2s,Ψ(r, x,m−1/2v))−Xi(m
1/2s))

+∇Ui(ϕ̃
0(s,Ψ(m−1/2r, x, v); ~X(0)))−Xi(0))

}
.

Therefore, since ∇2Ui, i = 1, · · · , N , are bounded, we have that

∣∣∣∣∣
d2

ds2
ξ(s)

∣∣∣∣∣ ≤
N∑

i=1

‖∇2Ui‖∞(|ξ(s)|+ |Xi(m
1/2s)−Xi(0)|)

≤
N∑

i=1

‖∇2Ui‖∞(|ξ(s)|+ nm1/2s).
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Let g(s) = |(ξ(s), d
ds
ξ(s))|. Then the above implies that

∣∣∣ d
ds
g(s)

∣∣∣ ≤
∣∣∣ d
ds
ξ(s)

∣∣∣ +
∣∣∣ d

2

ds2
ξ(s)

∣∣∣ ≤ nm1/2s
N∑

i=1

‖∇2Ui‖∞ +
( N∑

i=1

‖∇2Ui‖∞ + 1
)
g(s).

Also, g(0) = 0. So for any 0 ≤ s ≤ t0, we get that

g(s) ≤ nm1/2s
N∑

i=1

‖∇2Ui‖∞t0 +
( N∑

i=1

‖∇2Ui‖∞ + 1
) ∫ s

0
g(u)du.

Therefore, by Gronwall’s Lemma, we have

g(s) ≤ nm1/2s
N∑

i=1

‖∇2Ui‖∞t0e(
∑N

i=1
‖∇2Ui‖∞+1)s.

This gives us our assertion.
In particular, applying Lemma 6.2.1 to t0 = 4τ , we get that

∣∣∣x(s,Ψ(r, x,m−1/2v))− ϕ̃0(m−1/2s,Ψ(m−1/2r, x, v); ~X(0)))
∣∣∣

≤ ns
N∑

i=1

‖∇2Ui‖∞4τe(
∑N

i=1
‖∇2Ui‖∞+1)4τ ,

|Xi(s)−Xi(0)| ≤ ns, ∀s ∈ [0, 4m1/2τ ∧ T ∧ σ(ω)). (6.2.1)

We use this to proof the next lemma.

Lemma 6.2.2 EPm [ sup
0≤t≤T

|V 10
i (t)|] → 0 as m→ 0.

Proof. First notice that in the definition of V 10
i , we are taking integral for s ∈

[0, 4m1/2τ ∧T ∧ σ(ω)), so if r > 6m1/2τ or r < −2m1/2τ , then we have |u| > 2m1/2τ
for any u ∈ [r − s, r], so since x · v = 0, we get by definition

∣∣∣ϕ̃0(m−1/2s,Ψ(m−1/2r, x, v); ~X(0)))
∣∣∣

= |x−m−1/2(r − s)v| ≥ m−1/2|r − s||v| ≥ 2τ |v|
≥ R0.

Therefore, for any s ∈ [0, 4m1/2τ ∧ T ∧ σ(ω)), we have

∇Ui(Xi(0)− ϕ̃0(m−1/2s,Ψ(m−1/2r, x, v); ~X(0))) = 0 (6.2.2)

if r > 6m1/2τ or r < −2m1/2τ . Also, (6.2.2) holds if |x| ≥ R0 + 1. Similarly, the
same holds with X(0) substituted by X(s) (since 0 ≤ s ≤ σ). Let

C1 = ‖∇2Ui‖∞
( N∑

j=1

‖∇2Uj‖∞4τe(
∑N

j=1
‖∇2Uj‖∞+1)4τ + 1

)
.
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Then by combining the above with (6.2.1), we get that for any s ∈ [0, 4m1/2τ ∧ T ∧
σ(ω)),

∣∣∣∇Ui(Xi(s, ω)− x(s,Ψ(r, x,m−1/2v)))

−∇Ui(Xi(0)− ϕ̃0(m−1/2s,Ψ(m−1/2r, x, v); ~X(0)))
∣∣∣

≤ 1[0,R0+1)(|x|)1[−2m1/2τ,6m1/2τ ](r)nsC1.

Therefore, by the definition of V 10
i (t), we get that

|V 10
i (t)|

≤
∫ t∧σn

0
1[0,4m1/2τ)(s)ds

∫

R×E
C1ns1[0,R0+1)(|x|)1[−2m1/2τ,6m1/2τ ](r)µω(dr, dx, dv)

≤ C1

2
n(4m1/2τ)2

∫

R×E
1[0,R0+1)(|x|)1[−2m1/2τ,6m1/2τ ](r)µω(dr, dx, dv).

(6.2.3)

We need to discuss the expection of the integral on the right hand side above. Let
c =

∑N
j=1 ‖Uj‖∞, and let

C2 = 8τ(2(R0 + 1))d−1
∫

Rd
ρ̃c(

1

2
|v|2)|v|dv,

which is finite by our assumption. Then we have by definition that
∫

R×E
1[0,R0+1)(|x|)1[−2m1/2τ,6m1/2τ ](r)λ(dr, dx, dv)

=
∫

R×E
1[0,R0+1)(|x|)1[−2m1/2τ,6m1/2τ ](r)m

−1ρ0(x−m−1/2rv, v)drν(dx, dv)

≤
∫

R×E
1[0,R0+1)(|x|)1[−2m1/2τ,6m1/2τ ](r)m

−1ρ̃c(
1

2
|v|2)drν(dx, dv)

≤ 8m1/2τm−1(2(R0 + 1))d−1
∫

Rd
ρ̃c(

1

2
|v|2)|v|dv

= C2m
−1/2.

Therefore, by the definition of Poisson point process, we have

EPm

[( ∫

R×E
1[0,R0+1)(|x|)1[−2m1/2τ,6m1/2τ ](r)µω(dr, dx, dv)

)2]

≤
∫

R×E
1[0,R0+1)(|x|)1[−2m1/2τ,6m1/2τ ](r)λ(dr, dx, dv)

+
( ∫

R×E
1[0,R0+1)(|x|)1[−2m1/2τ,6m1/2τ ](r)λ(dr, dx, dv)

)2

≤ C2m
−1/2 + C2

2m
−1. (6.2.4)

This combined with (6.2.3) gives us that

EPm [ sup
0≤t≤T

|V 10
i (t)|] ≤ 1

2
C1n(4m1/2τ)2(C2m

−1/2 + C2
2m

−1)1/2.
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The right hand side above converges to 0 as m → 0. This completes the proof of
our assertion.

For the term V 11
i (t), we have the following:

Lemma 6.2.3 EPm [ sup
0≤t≤T

|V 11
i (t)|] → 0 as m→ 0.

Proof. We first notice that
∫

R×E
∇Ui(Xi(0)− ϕ̃0(m−1/2s,Ψ(m−1/2r, x, v); ~X(0)))λ(dr, dx, dv) = 0 (6.2.5)

for any s ∈ [0, 4m1/2τ∧T∧σ) and |v| ≥ C0. Actually, since |Xi(0)−Xj(0)| > Ri+Rj

for any i 6= j, we have by (5.4.7) and (5.4.9) that

∫

R2d
∇Ui(Xi(0)− x)ρ

(1

2
|v|2 +

N∑

j=1

Uj(x−Xj(0))
)
dxdv = 0.

So by Theorem 3.2.2 (with t = m−1/2s, N = 1, and f(x, v) = ∇Ui(Xi(0)− x)),

∫

R2d
∇Ui

(
Xi(0)− ϕ̃0(m−1/2s, x, v; ~X(0))

)
ρ
(1

2
|v|2 +

N∑

j=1

Uj(x−Xj(0)
)
dxdv = 0,

which, by Theorem 3.3.1, means that

∫

R×E
∇Ui

(
Xi(0)− ϕ̃0(m−1/2s,Ψ(r, x, v); ~X(0))

)

×ρ
(1

2
|v|2 +

N∑

j=1

Uj(Ψ
0(r, x, v)−Xj(0))

)
drν(dx, dv) = 0.

Changing variable r′ = m−1/2r, we get (6.2.5).

By (6.2.5), we get that

V 11
i (t) =

∫ t∧σn

0
1[0,4m1/2τ)(s)ds

∫

R×E
∇Ui(Xi(0)− ϕ̃0(m−1/2s,Ψ(m−1/2r, x, v); ~X(0)))

(µω(dr, dx, dv)− λ(dr, dx, dv)). (6.2.6)

As in the proof of Lemma 6.2.2, (6.2.2) holds if r > 6m1/2τ or r < −2m1/2τ , or
if |x| ≥ R0 + 1. Let

C3 = 8τ(2(R0 + 1))d−1‖∇Ui‖2
∞

∫

Rd
ρ̃c(

1

2
|v|2)|v|dv,
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which is finite by our assumption. Then we have that

EPm

[∣∣∣
∫

R×E
∇Ui(Xi(0)− ϕ̃0(m−1/2s,Ψ(m−1/2r, x, v); ~X(0)))

(µω(dr, dx, dv)− λ(dr, dx, dv))
∣∣∣
2]

=
∫

R×E

∣∣∣∇Ui(Xi(0)− ϕ̃0(m−1/2s,Ψ(m−1/2r, x, v); ~X(0)))
∣∣∣
2
λ(dr, dx, dv)

≤
∫

R×E
1[0,R0+1)(|x|)1[−2m1/2τ,6m1/2τ ](r)‖∇Ui‖2

∞λ(dr, dx, dv)

= ‖∇Ui‖2
∞

∫

R×E
1[0,R0+1)(|x|)1[−2m1/2τ,6m1/2τ ](r)

×m−1ρ
(1

2
|v|2 +

N∑

j=1

Uj(Xj,0 − (x−m−1/2rv))
)
drν(dx, dv)

≤ m−18m1/2τ(2(R0 + 1))d−1‖∇Ui‖2
∞

∫

Rd
ρ̃c(

1

2
|v|2)|v|dv

= C3m
−1/2. (6.2.7)

Therefore,

EPm [ sup
0≤t≤T

|V 11
i (t)|]

≤
∫ T

0
1[0,4m1/2τ)(s)ds

×EPm

[∣∣∣
∫

R×E
∇Ui(Xi(0)− ϕ̃0(m−1/2s,Ψ(m−1/2r, x, v); ~X(0)))

(µω(dr, dx, dv)− λ(dr, dx, dv))
∣∣∣
2]1/2

≤
∫ 4m1/2τ

0

(
C3m

−1/2
)1/2

ds = 4C
1/2
3 τm1/4,

which converges to 0 as m→ 0. This completes the proof of our assertion.

By Lemmas 6.2.2 and 6.2.3, we get the following main result of this section.

Lemma 6.2.4 EPm

[
sup

0≤t≤T
|V 1

i (t)|
]
→ 0 as m→ 0.

6.3 The term V 0
i (t)

Let us discuss the term V 0
i (t) in this section. For any r ∈ R, let r̃ = r̃(ω) =

((r − 2m1/2τ) ∨ 0) ∧ T ∧ σ(ω).

We first decompose

V 0
i (t) = V 02

i (t) + Ṽ 01
i (t) + Ṽ 05

i (t) + Ṽ 03
i (t)− V 04

i (t),
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with

V 02
i (t) =

∫ t∧σn

0
1[4m1/2τ,∞)(s)ds

∫

R×E

{
∇Ui

(
Xi(s)− x(s,Ψ(r, x,m−1/2v))

)

−∇Ui

(
Xi(r̃)− ψ0(m−1/2(s− r), x, v; ~X(r̃))

)}

µω(dr, dx, dv),

Ṽ 01
i (t) =

∫ t∧σn

0
1[4m1/2τ,∞)(s)ds

∫

R×E
∇Ui(Xi(s)− ψ0(m−1/2(s− r), x, v; ~X(s)))λ(dr, dx, dv),

Ṽ 05
i (t) =

∫ t∧σn

0
1[4m1/2τ,∞)(s)ds

∫

R×E
F̃ 05

i (s, r, x, v)λ(dr, dx, dv),

Ṽ 03
i (t) =

∫ t∧σn

0
ds

∫

(2m1/2τ,∞)×E
∇Ui(Xi(r̃)− ψ0(m−1/2(s− r), x, v; ~X(r̃)))

(µω(dr, dx, dv)− λ(dr, dx, dv)),

V 04
i (t) =

∫ t∧σn

0
1[0,4m1/2τ)(s)ds

∫

[2m1/2τ,∞)×E

∇Ui(Xi(r̃)− ψ0(m−1/2(s− r), x, v; ~X(r̃)))

(µω(dr, dx, dv)− λ(dr, dx, dv)),

where

F̃ 05
i (s, r, x, v) = −

{
∇Ui(Xi(s)− ψ0(m−1/2(s− r), x, v; ~X(s)))

−∇Ui(Xi(r̃)− ψ0(m−1/2(s− r), x, v; ~X(r̃)))
}
.

Actually, to show that this decomposition is correct, we only need to notice that

∇Ui(Xi(r̃)− ψ0(m−1/2(s− r), x, v; ~X(r̃))) 6= 0

⇒ |m−1/2(s− r)| ≤ 2τ.

Therefore, for s ∈ [4m1/2τ,∞),

r < 2m1/2τ ⇒ ∇Ui(Xi(r̃)− ψ0(m−1/2(s− r), x, v; ~X(r̃))) = 0.

So

Ṽ 03
i (t)− V 04

i (t)

=
∫ t∧σn

0
1[4m1/2τ,∞)(s)ds

∫

(2m1/2τ,∞)×E

∇Ui(Xi(r̃)− ψ0(m−1/2(s− r), x, v; ~X(r̃)))(µω(dr, dx, dv)− λ(dr, dx, dv))

=
∫ t∧σn

0
1[4m1/2τ,∞)(s)ds

∫

R×E

∇Ui(Xi(r̃)− ψ0(m−1/2(s− r), x, v; ~X(r̃)))(µω(dr, dx, dv)− λ(dr, dx, dv)).
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We discuss each term in the above decomposition in the following. First, for the
term V 02

i (t), we have by definition

d

dt
V 02

i (t) = 1(4m1/2τ,σ)(t)
∫

R×E
f̃i(t, r, x, v;ω)µω(dr, dx, dv),

where

f̃i(t, r, x, v) = ∇Ui

(
Xi(t)− x(t,Ψ(r, x,m−1/2v))

)

−∇Ui

(
Xi(r̃)− ψ0(m−1/2(t− r), x, v; ~X(r̃))

)
.

By definition and assumption, we have that λm(dr, dx, dv) = 0 if |v| ≤ 2C0 + 1.
Also, by Proposition 5.4.5 and Corollary 3.4.2, f̃i(t, r, x, v) = 0 if |r − t| ≥ 2m1/2τ .
So we only need to consider the case when t ∈ [4m1/2τ, T ∧ σ), r ∈ [2m1/2τ, T ∧
σ(ω) + 2m1/2τ ] and |v| ≥ 2C0 + 1. We first show the following:

Lemma 6.3.1 Assume that t ∈ [4m1/τ, T ∧ σ], |r − 2m1/2τ | ≤ T ∧ σ(ω) and |v| ≥
2C0 + 1. Then

|f̃i(t, r, x, v)| ≤ 1[0,R0+1)(|x|)1[−m1/2τ,2m1/2τ)(t− r) · Cm1/2.

Proof. First, since t ∈ [0, T ∧ σn), we have by Proposition 5.4.5 that

∇Ui

(
Xi(t) − x(t,Ψ(r, x,m−1/2v))

)
= 0 if t − r > 2m1/2τ or t − r < −m1/2τ . Also,

since r̃ ∈ [0, T∧σn) by definition, we have |Xi(r̃)| ≤ |Xi,0|+nT , so by Corollary 3.4.2,

∇Ui

(
Xi(r̃)− ψ0(m−1/2(t− r), x, v; ~X(r̃))

)
= 0 if t− r ≥ 2m1/2τ or t− r ≤ −m1/2τ .

Combining the above, we get that f̃i(t, r, x, v) = 0 if r /∈ [t− 2m1/2τ, t+m1/2τ ].
Next, for r ∈ [t− 2m1/2τ, t+m1/2τ ], if |x| ≥ R0 +1, since x · v = 0, we get easily

that |x(t,Ψ(r, x,m−1/2v))| = |x − (r − t)m1/2v| ≥ |x| ≥ R0 + 1, hence both of the
terms of f̃i(t, r, x, v) equal to 0.

Finally, we show, for |x| < R0 + 1 and r ∈ [t − 2m1/2τ, t + m1/2τ ], that
|f̃i(t, r, x, v)| ≤ Cm1/2. For this kind of x and r, since t ∈ [4m1/τ, T ∧σ(ω)], we have
by definition 2m1/2τ ≤ r ≤ T ∧ σ +m1/2τ , so r̃ = r − 2m1/2τ . We have

|f̃i(t, r, x, v)|
≤ ‖∇2Ui‖∞

(
|Xi(t)−Xi(r̃)|+ |x(t,Ψ(r, x,m−1/2v))− ψ0(m−1/2(t− r), x, v; ~X(r̃))|

)
.

The term of X is easy. Actually, since t, r̃ ∈ [0, T ∧ σ(ω)], we have by definition
|Xi(t)−Xi(r̃)| ≤ n|t− r̃| = n|t− (r − 2m1/2τ)| ≤ n(|t− r|+ 2m1/2τ) ≤ n4m1/2τ .

We next deal with the second term. Notice that by assumption, 0 ≤ r−2m1/2τ ≤
T ∧σ(ω), 0 ≤ r−m1/2τ ≤ T ∧σ(ω) and 0 ≤ t ≤ T ∧σ(ω). Therefore, by Proposition
5.4.3 (3) (with (t, s, a) given by (m−1/2(t− r), r, 2τ)), there exists a constant C̃ such
that

|x(t,Ψ(r, x,m−1/2v))− ψ0(m−1/2(t− r), x, v; ~X(r − 2m1/2τ))|
≤ m1/2C̃(2τ + 2τ).

This completes the proof of our assertion.
Now we are ready to show that the term V 02

i (t) is tight.
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Lemma 6.3.2
{
{V 02

i (t)}t∈[0,T ]

}
m>0

is tight in D. Here D is the space defined in

Chapter 5.1.

Proof. By Lemma 6.3.1, we have

∣∣∣ d
dt
V 02

i (t)
∣∣∣ ≤ Cm1/2

∫

R×E
1[0,R0+1)(|x|)1[−m1/2τ,2m1/2τ)(t− r)µω(dr, dx, dv).

Notice that in general, it is easy by the definition of Poisson point process and a
simply calculation that EPm [(

∫
gdµω)2] ≤ ∫

g2dλm + (
∫
gdλm)2. Therefore,

EPm

[∣∣∣ d
dt
V 02

i (t)
∣∣∣
2
]

≤ C2m
∫

R×E
1[0,R0+1)(|x|)1[−m1/2τ,2m1/2τ)(t− r)λm(dr, dx, dv)

+
(
Cm1/2

∫

R×E
1[0,R0+1)(|x|)1[−m1/2τ,2m1/2τ)(t− r)λm(dr, dx, dv)

)2
.

Here, let c :=
∑N

i=1 ‖Ui‖∞, then
∫

R×E
1[0,R0+1)(|x|)1[−m1/2τ,2m1/2τ)(t− r)λm(dr, dx, dv)

=
∫

R×E
1[0,R0+1)(|x|)1[−m1/2τ,2m1/2τ)(t− r)

×m−1ρ
(1

2
|v|2 +

N∑

i=1

Ui(x−m1/2rv −Xi,0)
)
dr|v|ν̃(dx; v)dv

≤ m−13m1/2τ
∫

E
1[0,R0+1)(|x|)ρ̃c(1 +

1

2
|v|2)|v|ν̃(dx; v)dv

≤ 3m−1/2τ [2(R0 + 1)]d−1
∫

Rd
ρ̃c(1 +

1

2
|v|2)|v|dv,

which, by assumption, is dominated by Cm−1/2 with some constant C.
Therefore,

C̃ := sup
m∈(0,1]

sup
0≤t≤T

EPm

[∣∣∣ d
dt
V 02

i (t)
∣∣∣
2
]
<∞.

So
E[|V 02

i (t)− V 02
i (t′)|2] ≤ C̃|t− t′|2,

hence by Theorem 5.1.7 (with β = ε = γ = 1),
{
{V 02

i (t)}t∈[0,T ]

}
m>0

is tight in D.

The next result is about the term Ṽ 01
i (t).

Lemma 6.3.3 There exists an m0 > 0 (depending on ~X0, n, T and Ui, i = 1, · · · , N)
such that for any m ≤ m0,

Ṽ 01
i (t) = m−1/2

∫ t∧σ

0
∇iŨ( ~X(s))ds,

where Ũ is as defined in Sections 5.3 and 5.4.
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Proof. Suppose that ∇Ui(Xi(s) − ψ0(m−1/2(s − r), x, v; ~X(s)) 6= 0. Then s −
r < 2m1/2τ by Proposition 5.4.5, this combined with s ≥ 4m1/2τ implies that
r > 2m1/2τ = 2m1/2C−1

0 R. Since |v| ≥ 2C0 + 1 and x · v = 0, λ(dr, dx, dv)-a.e., this
implies |x−m−1/2rv| ≥ m−1/2r|v| ≥ R0, hence Ui(Xi,0 − (x−m−1/2rv)) = 0.

Therefore, by definition, Proposition 3.4.4 and (5.4.7),

Ṽ 01
i (t) =

∫ t∧σn

0
1[4m1/2τ,∞)(s)ds

∫

R×E
∇Ui(Xi(s)− ψ0(m−1/2(s− r), x, v; ~X(s)))

m−1ρ
(1

2
|v|2 +

N∑

i=1

Ui(x−m−1/2rv −Xi,0)
)
drν(dx, dv)

=
∫ t∧σn

0
1[4m1/2τ,∞)(s)ds

∫

R×E
∇Ui(Xi(s)− ψ0(m−1/2(s− r), x, v; ~X(s)))

m−1ρ
(1

2
|v|2

)
drν(dx, dv)

=
∫ t∧σn

0
1[4m1/2τ,∞)(s)ds

m−1/2
∫

R2d
∇Ui(Xi(s)− x)ρ

(1

2
|v|2 +

N∑

k=1

Uk(x−Xk,0)
)
dxdv

=
∫ t∧σn

0
1[4m1/2τ,∞)(s)m

−1/2∇iŨ( ~X(s))ds,

where we used Proposition 3.4.4 in passing to the third equality, and used (5.4.7) in
passing to the last equality.

So in order to complete the proof of our assertion, it is sufficient to show that
∇iŨ( ~X(s)) = 0 for any s ∈ [0, 4m1/2τ ∧ σ], if m is small enough. We show it from
now on. Notice that since |Xi,0 − Xj,0| > Ri + Rj (i 6= j) for any i, j = 1, · · · , N
by assumption, there exists a m0 > 0 (small enough) such that for any m ≤ m0,
|Xi,0 − Xj,0| > Ri + Rj + 8m1/2τn for any i 6= j. Also, by definition, we have
|Xi(s) − Xi,0| ≤ sn ≤ 4m1/2τn for any s ∈ [0, 4m1/2τ ∧ σ] and i = 1, · · · , N .
Therefore,

|Xi(s)−Xj(s)| ≥ |Xi,0 −Xj,0| − |Xi(s)−Xi,0| − |Xj(s)−Xj,0|
> Ri +Rj + 8m1/2τn− 4m1/2τn− 4m1/2τn

= Ri +Rj,

so by (5.4.9), ∇iŨ( ~X(s)) = 0 for any s ∈ [0, 4m1/2τ ∧ σ]. This completes our proof.

Before discussing the term Ṽ 05
i (t), let us first prepare the following continuity of

ψ0(t, x, v; ~X) with respect to ~X:

Lemma 6.3.4 For any Y > 0, there exists a constant C̃ (depending on maxN
i=1Ri+

Y , τ , C0 and
∑N

i=1 ‖∇2Ui‖∞) such that
∣∣∣ψ0(t, x, v; ~X1)− ψ0(t, x, v; ~X2)

∣∣∣ ≤ C̃‖ ~X1 − ~X2‖Rd ,
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for any x ∈ Rd, |v| ≥ 2C0 + 1, |t| ≤ 2τ and | ~X1|, | ~X2| ≤ Y .

Proof. Choose and fix any v ∈ Rd with |v| ≥ 2C0 +1, and let s0 =
maxN

i=1 Ri+Y

|v| ∨
2τ . Let g(t) = ψ0(t, x, v; ~X1)− ψ0(t, x, v; ~X2). Then by definition,

g(t) = ϕ0(t+ s0, x− s0v, v; ~X1)− ϕ0(t+ s0, x− s0v, v; ~X2),

so

d2

dt2
g(t) = −

N∑

i=1

∇Ui

(
ϕ0

i (t+ s0, x− s0v, v; ~X1)−X1
i

)

+
N∑

i=1

∇Ui

(
ϕ0

i (t+ s0, x− s0v, v; ~X2)−X2
i

)
.

Let C =
∑N

i=1 ‖∇2Ui‖∞, then
∣∣∣∣∣
d2

dt2
g(t)

∣∣∣∣∣ ≤
N∑

i=1

‖∇2Ui‖∞(|g(t)|+ |X1
i −X2

i |) ≤ C(|g(t)|+ ‖ ~X1 − ~X2‖Rd),

therefore,
∣∣∣∣∣
d

dt

∣∣∣(g(t), d
dt
g(t))

∣∣∣
∣∣∣∣∣ ≤

∣∣∣ d
dt
g(t)

∣∣∣ +
∣∣∣ d

2

dt2
g(t)

∣∣∣ ≤ C‖ ~X1− ~X2‖Rd +(1+C)

∣∣∣∣∣(g(t),
d

dt
g(t))

∣∣∣∣∣ .

Also, g(−s0) = d
dt
g(−s0) = 0. Let h(t) =

∣∣∣(g(t− s0),
d
dt
g(t− s0))

∣∣∣. Then h(0) = 0,

and for any t ∈ [0, s0 + 2τ ],

h(t) ≤ C‖ ~X1 − ~X2‖Rd(s0 + 2τ) + (1 + C)
∫ t

0
h(s)ds,

so by Gronwall’s Lemma,

h(t) ≤ C‖ ~X1 − ~X2‖Rd(s0 + 2τ)e(1+C)(s0+2τ), t ∈ [0, s0 + 2τ ].

Notice that since |v| ≥ 2C0 + 1, we have 2τ ≤ s0 ≤ maxN
i=1 Ri+Y

2C0+1
∨ 2τ . Therefore,

g(t) ≤ h(t+ s0)

≤ C

(
maxN

i=1Ri + Y

2C0 + 1
∨ 2τ + 2τ

)
e
(1+C)(maxN

i=1
Ri+Y

2C0+1
∨2τ+2τ)‖ ~X1 − ~X2‖Rd ,

for any t ∈ [−2τ, 2τ ]. This complets the proof of our assertion.
We use Lemma 6.3.4 to prove the following:

Lemma 6.3.5 There exists a constant C (which may different from before) such
that ∣∣∣F̃ 05

i (s, r, x, v)
∣∣∣ ≤ Cm1/21[0,2m1/2τ ](|s− r|)1[0,R0+1)(|x|)

in the corresponding integral domain.
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Proof. First, since s, r̃ ∈ [0, T ∧ σ(ω)] in our integral domain, it is easy to see

that
∣∣∣F̃ 05

i (s, r, x, v)
∣∣∣ = 0 if |x| ≥ R0 +1. Also, by Corollary 3.4.2,

∣∣∣F̃ 05
i (s, r, x, v)

∣∣∣ = 0

if |m−1/2(s− r)| ≥ 2τ . Finally, for |x| ≤ R0 + 1 and |s− r| ≤ 2m1/2τ , by definition
and Lemma 6.3.4, we only need to show the following

|Xi(s)−Xi(r̃)| ≤ Cm1/2, s ≥ 4m1/2τ. (6.3.1)

To show (6.3.1), again, notice that in the present setting, 0 ≤ r−2m1/2τ ≤ T ∧σ, so
r̃ = r−2m1/2τ . So (LHS) of (6.3.1) = |Xi(s)−Xi(r−2m1/2τ)| ≤ n|s−(r−2m1/2τ)| ≤
n(|s− r|+ 2m1/2τ) ≤ n4m1/2τ .

This completes the proof of our assertion.

By Lemma 6.3.5, we get the following in exactly the same way as when deriving
Lemma 6.3.2 from Lemma 6.3.1.

Lemma 6.3.6 1. sup
m∈(0,1]

sup
0≤t≤T

EPm

[∣∣∣ d
dt
Ṽ 05

i (t)
∣∣∣
2]
<∞,

2.
{
{Ṽ 05

i (t)}t∈[0,T ]

}
m>0

is tight in D.

Let us discuss the term V 04
i before Ṽ 03

i . We have the following:

Lemma 6.3.7 EPm [ sup
0≤t≤T

|V 04
i (t)|] → 0 as m→ 0.

Proof. The proof is similar to the ones up to now. We have for any s ∈
[0, 4m1/2τ ] that

∣∣∣∇Ui(Xi(r̃)− ψ0(m−1/2(s− r), x, v; ~X(r̃)))
∣∣∣

≤ ‖∇Ui‖∞1[0,R0+1)(|x|)1[0,2m1/2τ)(|s− r|)
≤ ‖∇Ui‖∞1[0,R0+1)(|x|)1[−2m1/2τ,6m1/2τ ](r).

Let C4 = 8‖∇Ui‖2
∞τ(2(R0 + 1))d−1

∫
Rd ρ̃c(

1
2
|v|2)|v|dv, which is finite. Then we have

by the definition of λ and assumption

EPm

[∣∣∣
∫

[2m1/2τ,∞)×E
∇Ui(Xi(r̃)− ψ0(m−1/2(s− r), x, v; ~X(r̃)))

(µω(dr, dx, dv)− λ(dr, dx, dv))
∣∣∣
2]

=
∫

[2m1/2τ,∞)×E
∇Ui

(
Xi(r̃)− ψ0(m−1/2(s− r), x, v; ~X(r̃))

)2
λ(dr, dx, dv)

≤
∫

[2m1/2τ,∞)×E
‖∇Ui‖2

∞1[0,R0+1)(|x|)1[−2m1/2τ,6m1/2τ ](r)

m−1ρ
(1

2
|v|2 +

N∑

j=1

Uj(x−m−1/2rv −Xj,0)
)
drν(dx, dv)

≤ ‖∇Ui‖2
∞8m1/2τ(2(R0 + 1))d−1m−1

∫

Rd
ρ̃c(

1

2
|v|2)|v|dv

= C4m
−1/2. (6.3.2)
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Therefore,

EPm [ sup
0≤t≤T

|V 04
i (t)|]

≤
∫ 4m1/2τ

0
EPm

[∣∣∣
∫

[2m1/2τ,∞)×E
∇Ui(Xi(r̃)− ψ0(m−1/2(s− r), x, v; ~X(r̃)))

(µω(dr, dx, dv)− λ(dr, dx, dv))
∣∣∣
2]1/2

ds

≤ C
1/2
4 m−1/44m1/2τ,

which converges to 0 as m→ 0. This completes our proof.

Now, the only term left to be discussed is Ṽ 03
i . We deal with it in the next

section.

6.4 The term Ṽ 03
i

We deal with the term Ṽ 03
i in this section. More precisely, we show that it is

equal to a martingale plus a negligible term. We first prepare some notations. Let
Ft = F (m,n)

t = F(−∞,2m1/2τ+t)×E ∨ ℵ. Then Ft is increasing and right continuous.
Let

N((0, t]× A) := µω((2m1/2τ, 2m1/2τ + t]× A)

for any A ∈ B(E). Notice that if ρ(1
2
|v|2 +

∑N
j=1 Uj(Xj,0 − (x − m−1/2rv))) > 0

and r ≥ m1/2τ , then |v| ≥ 2C0 + 1, hence |x −m−1/2rv| ≥ τ |v| > R0, so ρ(1
2
|v|2 +∑N

j=1 Uj(Xj,0 − (x−m−1/2rv))) = ρ(1
2
|v|2). Therefore, if we let

ν(dx, dv) = ρ
(1

2
|v|2

)
ν(dx, dv),

thenN is the Ft-adapted Poisson point process with intensity measure λ(dt, dx, dv) =
m−1dtν(dx, dv) = m−1dtρ(1

2
|v|2)ν(dx, dv). Notice that N((s, t]× A) is independent

to Fs for any s < t and A ∈ B(E). Let

N(dt, dx, dv) = N(dt, dx, dv)−m−1dtν(dx, dv).

Notice that Xi(t ∧ σ) and Vi(t ∧ σ) are Ft-measurable. Also, since ∇Ui

(
Xi(r̃) −

ψ0(m−1/2(s − r), x, v; ~X(r̃)) 6= 0 only if |m−1/2(s − r)| ≤ 2τ , which combined with
r ≥ 2m1/2τ and s ≤ T ∧ σ implies r̃ = r − 2m1/2τ , we get by definition

Ṽ 03
i (t) =

∫ t∧σ

0
ds

∫

[2m1/2τ,2m1/2τ+(T∧σ))×E

∇Ui

(
Xi(r − 2m1/2τ)− ψ0(m−1/2(s− r), x, v; ~X(r − 2m1/2τ))

)

(µω(dr, dx, dv)− λ(dr, dx, dv))

=
∫ t∧σ

0
ds

∫

[0,T∧σ)×E

∇Ui(Xi(r)− ψ0(m−1/2(s− r)− 2τ, x, v; ~X(r)))N(dr, dx, dv).
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In the last expression, if r > t∧σ, then since s ≤ t∧σ, we get m−1/2(s−r)−2τ < −τ ,
hence ∇Ui(Xi(r)− ψ0(m−1/2(s− r)− 2τ, x, v; ~X(r))) = 0. Therefore,

Ṽ 03
i (t) =

∫ t∧σ

0
ds

∫

[0,t∧σ)×E

∇Ui(Xi(r)− ψ0(m−1/2(s− r)− 2τ, x, v; ~X(r)))N(dr, dx, dv).

Let

˜̃
V 03

i (t) =
∫

(0,t]×E
N(dr, dx, dv)

∫ t

0
ds

∇Ui(Xi(r ∧ σ)− ψ0(m−1/2(s− r)− 2τ, x, v; ~X(r ∧ σ))).

Then

Ṽ 03
i (t) =

˜̃
V 03

i (t ∧ σ).

By Corollary 3.4.2, ∇Ui(Xi(r ∧ σ) − ψ0(u, x, v; ~X(r ∧ σ))) = 0 if |u| ≥ 2τ . So the

integral domain s ∈ [0, t] in the definition of
˜̃
V 03

i (t), i.e., s− r ∈ [−r, t− r], can be
substituted by s−r ∈ [0, (t−r)∧4m1/2τ ] = [0, 4m1/2τ ]\ [(t−r)∧ (4m1/2τ), 4m1/2τ ].

Therefore,
˜̃
V 03

i (t) can be decomposed into

˜̃
V 03

i (t) = M̃ i(t) + η̃i(t),

where

M̃ i(t) =
∫

(0,t]×E
N(dr, dx, dv)

∫ 4m1/2τ

0
ds

∇Ui(Xi(r ∧ σ)− ψ0(m−1/2s− 2τ, x, v; ~X(r ∧ σ))),

η̃i(t) = −
∫

(0,t]×E
N(dr, dx, dv)

∫ 4m1/2τ

(t−r)∧(4m1/2τ)
ds

∇Ui(Xi(r ∧ σ)− ψ0(m−1/2s− 2τ, x, v; ~X(r ∧ σ))).

By definition, (notice that the integral domain (0, t]× E in the definition of
˜̃
V 03

i (t)
can always be converted into (0, T ]× E whenever necessary, and the vice verse)

d

dt

˜̃
V 03

i (t) =
∫

(0,t]×E
N(dr, dx, dv)

∇Ui(Xi(r ∧ σ)− ψ0(m−1/2(t− r)− 2τ, x, v; ~X(r ∧ σ))),

so there exists a constant C > 0 such that

EPm

[∣∣∣ d
dt

˜̃
V 03

i (t)
∣∣∣
2]
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=
∫

(0,t]×E

∣∣∣∇Ui(Xi(r ∧ σ)− ψ0(m−1/2(t− r)− 2τ, x, v; ~X(r ∧ σ)))
∣∣∣
2

m−1drρ
(1

2
|v|2

)
ν(dx, dv)

≤
∫

(0,t]×E
‖∇Ui‖2

∞1[0,R0+1)(|x|)1[0,2τ ]

(
|m−1/2(t− r)− 2τ |

)
m−1drρ

(1

2
|v|2

)
ν(dx, dv)

≤ 4m1/2τ‖∇Ui‖2
∞(2(R0 + 1))d−1m−1

∫

Rd
ρ
(1

2
|v|2

)
|v|dv

= Cm−1/2. (6.4.1)

This fact will be used later.

Let us investigate the term M̃ i(t) now. First, it is easy to see by definition that

M̃ i(t) is a Ft-martingale, with its jumps satisfying |∆M̃ i| ≤ 4m1/2τ‖∇Ui‖∞, and
there exists a constant C > 0 independent of n such that for any 0 ≤ s ≤ t ≤ T ,

EPm

[
|M̃ i(t)− M̃ i(s)|2

∣∣∣Fs

]

= EPm

[ ∫

(s,t)×E

∣∣∣
∫ 4m1/2τ

0
∇Ui(Xi(r)− ψ0(m−1/2u− τ, x, v; ~X(r)))du

∣∣∣
2

1[0,R0+1)(|x|)m−1drν(dx, dv)
∣∣∣Fs

]

≤ C|t− s|, (6.4.2)

hence for any 0 ≤ r ≤ s ≤ t ≤ T ,

EPm

[
|M̃ i(t)− M̃ i(s)|2|M̃ i(s)− M̃ i(r)|2

]
≤ C2|t− s||s− r|. (6.4.3)

Also, by Doob’s inequality and (6.4.2), we get

EPm

[
sup

t∈[0,T ]
|M̃ i(t)|

]
≤ EPm

[(
sup

t∈[0,T ]
|M̃ i(t)|

)2]1/2

≤ 2 sup
t∈[0,T ]

EPm

[
|M̃ i(t)|2

]1/2

≤ 2 sup
t∈[0,T ]

√
Ct = 2

√
CT <∞. (6.4.4)

By Theorem 5.1.7 (with ε = 1, β = 2 and γ = 1/2), (6.4.2), (6.4.3) and (6.4.4)
imply the following.

Lemma 6.4.1 {the distribution of {M̃ i(t)}t∈[0,T ] under Pm}m∈(0,1) is tight.

We next show that any of its cluster points must be continuous processes. We
first make the following preparation.
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Lemma 6.4.2 For any ε ∈ (0, 1], let

A = ∩δ≥0{ω ∈ Dd([0, T ]) : sup
|t−s|≤δ

|ω(t)− ω(s)| > ε},

B = ∩δ≥0{ω ∈ Dd([0, T ]) : sup
|t−s|≤eδ

|ω(t)− ω(s)| > ε

2
}.

Then
A ⊂ A ⊂ Bo ⊂ B.

Here A and Bo means the closure of A and the interior of B in (Dd, d0), respectively.

Proof. For any ω0 ∈ A and ω ∈ Dd([0, T ]) with d0(ω, ω0) <
ε
5
, we have that

ω ∈ B. Actually, by definition, we have that there exists a continuous non-decreasing
function λ : [0, T ] → [0, T ] such that λ(0) = 0, λ(T ) = T , and

sup
0≤s<t≤T

|λ(t)− λ(s)| ≤ eε/4|t− s| ≤ e|t− s|,
sup

0≤t≤T
|ω0(t)− ω(λ(t))| ≤ ε/4.

Therefore,

sup
|t−s|≤eδ

|ω(t)− ω(s)|

= sup
|λ(t)−λ(s)|≤eδ

|ω(λ(t))− ω(λ(s))| ≥ sup
|t−s|≤δ

|ω(λ(t))− ω(λ(s))|

≥ sup
|t−s|≤δ

|ω0(t)− ω0(s)| − sup
0≤t≤T

|ω0(t)− ω(λ(t))| − sup
0≤s≤T

|ω0(s)− ω(λ(s))|

> ε− ε

4
− ε

4
= ε/2,

which means that ω ∈ B. This completes our proof.
Now, we are ready to prove the continuity of process under cluster points of

{M̃ i(t)}t∈[0,T ] under Pm}m∈(0,1).

Lemma 6.4.3 Any cluster point of {{M̃ i(t)}t∈[0,T ] under Pm}m∈(0,1) in D must have
continuous canonical processes.

Proof. Suppose there exists a sequence mn → 0 (as n → 0) such that

Pmn ◦ (M̃ i)−1 (which we write as Qn for the sake of simplicity) converge to Q∞ as
n → ∞. we show that the canonical processes are continuous under Q∞. Suppose
not. Then there exists a constant ε > 0 such that

Q∞
(
∩δ≥0 {ω ∈ Dd([0, T ]) : sup

|t−s|≤δ
|ω(t)− ω(s)| > ε}

)
= a > 0.

Without loss of generality, we assume that ε ≤ 1. Let A and B be the sets defined
in Lemma 6.4.2. Then Q∞(A) = a > 0, so by Lemma 6.4.2, Q∞(Bo) ≥ a > 0. Also,
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B0 is an open set, and Qn → Q∞ weakly in P(Dd), so we have lim infn→∞Qn(Bo) ≥
Q∞(Bo). Therefore, there exists an N ∈ N such that for any n ≥ N , Qn(Bo) ≥ a

2
,

hence Qn(B) ≥ a
2
, which means that Pmn(M̃ i has a jump greater than ε/2) ≥ a

2
.

Since mn → 0 as n → ∞, this makes a contradiction with the fact that all of the
jumps of M̃ i under Pmn are small than 4m1/2

n τ‖∇Ui‖∞.
This completes the proof of our assertion.
We next use Lemma 6.4.3 to show the following, which will be used later.

Lemma 6.4.4 For any ε > 0, we have that

lim sup
δ→0

lim sup
m→0

Pm

(
sup

0≤s≤t≤T,|s−t|≤δ
|M̃ i(t)− M̃ i(s)| > ε

)
= 0. (6.4.5)

Proof. Let a(m, δ) = Pm

(
sup0≤s≤t≤T,|s−t|≤δ |M̃ i(t)− M̃ i(s)| > ε

)
. If

lim sup
δ→0

lim sup
m→0

a(m, δ) > 0,

then there exists a constant a > 0 and sequences δn → 0, mn → 0 (as n→∞) such
that

Pmn

(
sup

0≤s≤t≤T,|s−t|≤δn

|M̃ i(t)− M̃ i(s)| > ε
)
≥ a (6.4.6)

for any n ∈ N. As before, let Qn = Pmn ◦ (M̃ i)−1, n ∈ N. Also, let

An =
{
ω ∈ Dd([0, T ]) : sup

0≤s≤t≤T,|t−s|≤δn

|ω(t)− ω(s)| > ε
}
,

Bn =
{
ω ∈ Dd([0, T ]) : sup

0≤s≤t≤T,|t−s|≤eδn

|ω(t)− ω(s)| > ε

2

}
.

Then Qn(An) > a by assumption, and by the same argument as in the proof of
Lemma 6.4.2, we get that An ⊂ An ⊂ Bo

n ⊂ Bn for any n ∈ N. Also, An is monotone
decreasing with respect to n, hence for any k ≥ n, we have that Qk(An) ≥ Qk(Ak) >
a. Therefore, since An is a closed set, we get that

Q∞(Bn) ≥ Q∞(An) ≥ lim sup
k→∞

Qk(An) ≥ a.

This is true for any n ∈ N, so since Bn is monotone decreasing with respect to n,
we get that

Q∞(∩∞n=1Bn) ≥ a,

which means that Q∞({canonical process has jump ≥ ε/2}) ≥ a, and contradicts
Lemma 6.4.3. This completes the proof of our assertion.

We next deal with η̃i(t). We first show that exists a constant independent of n
such that

EPm [|η̃i(t)|6] ≤ Cm3/2, t ∈ [0, T ],m ∈ (0, 1]. (6.4.7)
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In fact, notice that η̃i(t) can be expressed as

η̃i(t) = −
∫

[(t−4m1/2τ)∨0,t]×E
N(dr, dx, dv)

∫ 4m1/2τ

(t−r)∧(4m1/2τ)
ds

∇Ui(Xi(r ∧ σ)− ψ0(m−1/2s− 2τ, x, v; ~X(r ∧ σ))).

Also, in general, if Z is a Poisson random variable with mean a, then we have
E[Z−a] = 0, E[(Z−a)2] = E[(Z−a)3] = a, E[(Z−a)4] = 3a2+a, and E[(Z−a)6] =
15a3 + 25a2 + a. Therefore, by definition of Poisson point process and a simple
calculation, there exists a global constant C such that

E
[∣∣∣

∫
fdN

∣∣∣
6] ≤ C

[( ∫
f 2dλ

)3
+

( ∫
f 3dλ

)2
+

( ∫
f 2dλ

)( ∫
f 4dλ

)
+

∫
f 6dλ

]

for any measurable function f . Actually, for any simple function f =
∑
ai1Ai

with
Ai mutually disjoint and the summation finite, we have

E
[∣∣∣

∫
fdN

∣∣∣
6]

= E
[∣∣∣

∫ ∑
ai1Ai

dN
∣∣∣
6]

= E
[{ ∑

ai(N(Ai)− λ(Ai))
}6]

=
∑

i1,···,i6
ai1 · · · ai6E

[
{N(Ai1)− λ(Ai1)} · · · {N(Ai6)− λ(Ai6)}

]
.

Notice that E
[
N(Ai1)−λ(Ai1)

]
= 0, and N(Ai) and N(Aj) are independent if i 6= j.

So the terms above are not 0 only if {i1, · · · , i6} has the forms {j1, j1, j2, j2, j3, j3},
{j1, j1, j2, j2, j2, j2}, {j1, j1, j1, j2, j2, j2} or {j1, j1, j1, j1, j1, j1} with j1 6= j2 6= j3.
Therefore,

E
[∣∣∣

∫
fdN

∣∣∣
6]

=
∑

i1 6=i2 6=i3

a2
i1
a2

i2
a2

i3
λ(Ai1)λ(Ai2)λ(Ai3) +

∑

i1 6=i2

a2
i1
a4

i2
λ(Ai1)(3λ(Ai2)

2 + λ(Ai2))

+
∑

i1 6=i2

a3
i1
a3

i2
λ(Ai1)λ(Ai2) +

∑

i1

a6
i1

(
15λ(Ai1)

3 + 25λ(Ai1)
2 + λ(Ai1)

)
.

By choosing the constant C > 0 properly, this gives us our assertion for simple
functions. The assertion for general function f is now a easy result by approximation.

Let A =
∣∣∣
∫ 4m1/2τ
(t−r)∧(4m1/2τ)∇Ui(Xi(r∧σ)−ψ0(m−1/2s−2τ, x, v; ~X(r∧σ)))ds

∣∣∣. Then

since t− r ≥ 0, we get that A ≤ 4m1/2τ‖∇Ui‖∞. Therefore,

EPm [|η̃i(t)|6]
≤ C

[( ∫

[(t−4m1/2τ)∨0,t]×E
A2m−1ρ(

1

2
|v|2)drν(dx, dv)

)3

+
( ∫

[(t−4m1/2τ)∨0,t]×E
A3m−1ρ(

1

2
|v|2)drν(dx, dv)

)2
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+
( ∫

[(t−4m1/2τ)∨0,t]×E
A2m−1ρ(

1

2
|v|2)drν(dx, dv)

)

×
( ∫

[(t−4m1/2τ)∨0,t]×E
A4m−1ρ(

1

2
|v|2)drν(dx, dv)

)

+
( ∫

[(t−4m1/2τ)∨0,t]×E
A6m−1ρ(

1

2
|v|2)drν(dx, dv)

)]

≤ C
[(

4m1/2τ(4m1/2τ‖∇Ui‖∞)2m−1(2(R0 + 1))d
∫

Rd
ρ(

1

2
|v|2)|v|dv

)3

+
(
4m1/2τ(4m1/2τ‖∇Ui‖∞)3m−1(2(R0 + 1))d

∫

Rd
ρ(

1

2
|v|2)|v|dv

)2

+
(
4m1/2τ(4m1/2τ‖∇Ui‖∞)2m−1(2(R0 + 1))d

∫

Rd
ρ(

1

2
|v|2)|v|dv

)

×
(
4m1/2τ(4m1/2τ‖∇Ui‖∞)4m−1(2(R0 + 1))d

∫

Rd
ρ(

1

2
|v|2)|v|dv

)

+
(
4m1/2τ(4m1/2τ‖∇Ui‖∞)6m−1(2(R0 + 1))d

∫

Rd
ρ(

1

2
|v|2)|v|dv

)]
,

which gives us our assertion.
By (6.4.7),

EPm




[m− 4
3 T ]∑

k=0

|η̃i(km
4/3)|6


 ≤ Cm3/2m−4/3T → 0, as m→ 0.

In particular,

EPm


 max

0≤k≤[m− 4
3 T ]

|η̃i(km
4/3)|6


 → 0, as m→ 0. (6.4.8)

Since η̃i(t) is a cadlag process (with jumps |∆η̃i(t)| ≤ 4m1/2τ‖∇Ui‖∞), there
exists a measurable ξ = ξm : Ω → [0, T ] such that

|η̃i(ξ)| ∨ |η̃i(ξ−)| = sup
0≤t≤T

|η̃i(t)|. (6.4.9)

Let ξ̃ = m4/3[m−4/3ξ]. Then 0 ≤ ξ − ξ̃ ≤ m4/3. Therefore, by (6.4.1),

EPm

[∣∣∣ ˜̃
V 03

i (ξ)− ˜̃
V 03

i (ξ̃)
∣∣∣
]

≤ EPm

[ ∫ T

0
1

[ξ,ξ̃]
(t)

∣∣∣∣∣
d

dt

˜̃
V 03

i (t)

∣∣∣∣∣ dt
]

≤ EPm

[ ∫ T

0
1

[ξ,ξ̃]
(t)dt

]1/2 ·




∫ T

0
EPm




∣∣∣∣∣
d

dt

˜̃
V 03

i (t)

∣∣∣∣∣
2

 dt





1/2

≤ m2/3(TCm−1/2)1/2 → 0, as m→ 0. (6.4.10)
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So we have for any ε > 0

lim
m→0

Pm(
∣∣∣ ˜̃
V 03

i (ξm)− ˜̃
V 03

i (ξ̃m)
∣∣∣ > ε) = 0.

This combined with

lim
m→0

Pm(
∣∣∣M̃ i(ξm)− M̃ i(ξ̃m)

∣∣∣ > ε) = 0,

which came from Lemma 6.4.4 and the fact that 0 ≤ ξ − ξ̃ ≤ m4/3, implies that

lim
m→0

Pm(
∣∣∣η̃i(ξm)− η̃i(ξ̃m)

∣∣∣ > ε) = 0.

On the other hand, limm→0 Pm(|η̃i(ξ̃m)|) = 0 by (6.4.8) and the definition of ξ̃m.
Also, since the jumps of η̃i satisfy |∆η̃i| ≤ 4m1/2τ‖∇Ui‖∞, we have |η̃i(ξm−)| ≤
|η̃i(ξm)|+ 4m1/2τ‖∇Ui‖∞. These combined with (6.4.9) give us the following.

Lemma 6.4.5 lim
m→0

Pm( sup
0≤t≤T

∣∣∣η̃i(t)
∣∣∣ > ε) = 0.

We can show the following further more.

Lemma 6.4.6 lim
m→0

EPm

[
sup

0≤t≤T

∣∣∣η̃i(t)
∣∣∣ > ε

]
= 0.

Proof. The calculations used essentially are the same as in Lemma 6.4.5.
Since the jumps of η̃i satisfy |∆η̃i| ≤ 4m1/2τ‖∇Ui‖∞, we have |η̃i(ξm−)| ≤

|η̃i(ξm)|+ 4m1/2τ‖∇Ui‖∞. So by (6.4.9) and the definition of ξ̃m, we get that

EPm [ sup
0≤t≤T

|η̃i(t)|] = EPm [|η̃i(ξm)| ∨ |η̃i(ξm−)|]

≤ 4m1/2τ‖∇Ui‖∞ + EPm [|η̃i(ξm)|]

≤ 4m1/2τ‖∇Ui‖∞ + EPm


 max

0≤k≤[m− 4
3 T ]

|η̃i(km
4/3)|


 + EPm [|η̃i(ξm)− η̃i(ξ̃m)|].

The first term above converges to 0 as m → 0 evidently. By (6.4.8), the sec-
ond term above is also converging to 0 as m → 0. So in order to show that
EPm [ sup0≤t≤T |η̃i(t)|] → 0, it is sufficient to show that the third term EPm [|η̃i(ξm)−
η̃i(ξ̃m)|] converges to 0.

We have

EPm [|η̃i(ξm)− η̃i(ξ̃m)|] ≤ EPm

[∣∣∣ ˜̃
V 03

i (ξ)− ˜̃
V 03

i (ξ̃)
∣∣∣
]
+ EPm

[∣∣∣M̃ i(ξm)− M̃ i(ξ̃m)
∣∣∣
]
.

We already showed that EPm

[∣∣∣ ˜̃
V 03

i (ξ) − ˜̃
V 03

i (ξ̃)
∣∣∣
]
→ 0 in (6.4.10). For the term

EPm

[∣∣∣M̃ i(ξm)− M̃ i(ξ̃m)
∣∣∣
]
, we first notice that since 0 ≤ ξ − ξ̃ ≤ m4/3 by definition,

(6.4.5) gives us that

lim
m→0

Pm(
∣∣∣M̃ i(ξm)− M̃ i(ξ̃m)

∣∣∣ > ε) = 0. (6.4.11)
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This is true for any ε > 0. We have by (6.4.4) that for any ε > 0,

EPm

[∣∣∣M̃ i(ξm)− M̃ i(ξ̃m)
∣∣∣
]

≤ EPm

[∣∣∣M̃ i(ξm)− M̃ i(ξ̃m)
∣∣∣,

∣∣∣M̃ i(ξm)− M̃ i(ξ̃m)
∣∣∣ > ε

]
+ ε

≤ EPm

[∣∣∣M̃ i(ξm)− M̃ i(ξ̃m)
∣∣∣
2]1/2

P (
∣∣∣M̃ i(ξm)− M̃ i(ξ̃m)

∣∣∣ > ε)1/2 + ε

≤ 2EPm

[(
sup

t∈[0,T ]
|M̃ i(t)|

)2]1/2
P (

∣∣∣M̃ i(ξm)− M̃ i(ξ̃m)
∣∣∣ > ε)1/2 + ε

≤ 4
√
CTP (

∣∣∣M̃ i(ξm)− M̃ i(ξ̃m)
∣∣∣ > ε)1/2 + ε.

This combined with (6.4.11) gives us that

lim
m→0

EPm

[∣∣∣M̃ i(ξm)− M̃ i(ξ̃m)
∣∣∣
]

= 0,

and completes the proof of the fact that

lim
m→0

EPm [|η̃i(ξm)− η̃i(ξ̃m)|] = 0,

hence completes the proof of our assertion.

Combining all of the results in Sections 6.1 ∼ 6.6, we get Lemma 5.3.1, with

M i(t) = −M̃ i(t ∧ σ),

P ∗1i (t) = −V 02
i (t)− Ṽ 05

i (t),

ηi(t) = −V 1
i (t) + V 04

i (t)− η̃i(t ∧ σ).

6.5 Proof of Lemma 5.3.3

Let bi be as in Lemma 5.3.3. First notice that

N∑

i=1

Mibi( ~X(t ∧ σ))Vi(t ∧ σ)−
N∑

i=1

Mibi( ~X(0))Vi(0)

=
N∑

i=1

Mi

∫ t∧σ

0
(∇bi( ~X(s))~V (s)) · Vi(s)ds+

N∑

i=1

Mi

∫ t∧σ

0
bi( ~X(s))

d

ds
Vi(s)ds.

It is trivial that
∣∣∣(∇bi( ~X(t ∧ σ))~V (t ∧ σ)) · Vi(t ∧ σ)

∣∣∣ ≤ ‖∇bi‖∞n2,

so the first term above is tight in Dd by Theorem 5.1.7. For the second integral, we
have by Lemma 5.3.1 and our assumption that

N∑

i=1

Mi

∫ t∧σ

0
bi( ~X(s))

d

ds
Vi(s)ds

=
N∑

i=1

∫ t∧σ

0
bi( ~X(s))

d

ds
P ∗1(s)ds+

∫ t∧σ

0
bi( ~X(s))dMi(s) +

∫ t∧σ

0
bi( ~X(s))dηi(s).
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We discuss these three terms in the following.
Since bi is bounded, we have by Lemma 5.3.1 (2) that

sup
m∈(0,1]

sup
0≤t≤T

EPm

[
|bi( ~X(t))

d

dt
P ∗1i (t)|

]
<∞.

Therefore, the first term
∫ t∧σ
0 bi( ~X(s)) d

ds
P ∗1(s)ds is tight.

Let Ni(t) be the second term,

Ni(t) =
∫ t∧σ

0
bi( ~X(s))dMi(s).

Then since {Mi(t)}t≥0 is a martingale and bi is bounded, we have that {Ni(t)}t≥0

is also a Ft-martingale. Also, since |∆Mi(t)| ≤ Cm1/2 and |d〈Mk
i ,M

`
j 〉t| ≤ Cdt Pm-

a.s. by Lemma 5.3.1 (3), we have that |∆Ni(t)| ≤ Cm1/2‖bi‖∞ and |d〈Nk
i , N

l
j〉t| ≤

‖bi‖∞‖bj‖∞Cdt. Therefore, same as in the proof of the proof of Lemmas 6.4.1 and
6.4.3, we get that the second term {Ni(t)} is also tight, with the limit processes
continuous.

For the third term, we have that
∫ t∧σ

0
bi( ~X(s))dηi(s)

= bi( ~X(t ∧ σ)) · ηi(t ∧ σ)−
∫ t∧σ

0
(∇bi( ~X(s))~V (s)) · ηi(s)ds.

Therefore,

sup
0≤t≤T

∣∣∣
∫ t∧σ

0
bi( ~X(s))dηi(s)

∣∣∣ ≤ (‖bi‖∞ + n‖∇bi‖∞T ) sup
0≤t≤T

|ηi(t)|.

So by Lemma 5.3.1 (4),

EPm

[
sup

0≤t≤T

∣∣∣
∫ t∧σ

0
bi( ~X(s))dηi(s)

∣∣∣
]
→ 0, as m→ 0.

This completes the proof of Lemma 5.3.3.

6.6 Proof of Lemma 5.3.2

To prove the first assertion, notice that for any t ≥ 0, we have by assumption and
integration by parts formula that

∫ t∧σ̃D

0
m−1/2|∇iŨ( ~X(s))|ds

=
∫ t∧σ̃D

0
g( ~X(s)) ·

(
m−1/2∇iŨ( ~X(s))

)
ds

= g( ~X(t ∧ σ̃D))
∫ t∧σ̃D

0
m−1/2∇iŨ( ~X(s))ds

−
∫ t∧σ̃D

0
ds(∇g( ~X(s))~V (s))

∫ s

0
m1/2∇iŨ( ~X(r))dr.
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Therefore, by Lemma 5.3.1 (1), we get

∫ T∧σ∧σ̃D

0
m−1/2|∇iŨ( ~X(s))|ds

= g( ~X(T ∧ σ̃D))
(
−Mi(Vi(T ∧ σ ∧ σ̃D)− Vi(0)) + P ∗0i (T ∧ σ̃D) + P ∗1i (T ∧ σ̃D)

)

−
∫ T∧σ∧σ̃D

0
(∇g( ~X(t))~V (t))

×
{
−Mi(Vi(t ∧ σ ∧ σ̃D)− Vi(0)) + P ∗0i (t ∧ σ̃D) + P ∗1i (t ∧ σ̃D)

}
dt

≤ (‖g‖∞ + ‖∇g‖∞ · dnT )
{
2Min+ sup

0≤t≤T
|P ∗0i (t)|+ sup

0≤t≤T
|P ∗1i (t)|

}
.

Therefore, we get our first assertion by Lemma 5.3.1 (2), (4) and (6.4.4).
Before giving the proof of the second assertion, let us first prepare the following.

Lemma 6.6.1 1. limm→0E
Pm

[
supt∈[0,T ] |ηi(t)|2

]
= 0,

2. limm→0E
Pm

[
supt∈[0,T ] |

∫ t
0 ηi(s)dMi(s)|2

]
= 0

Proof. We use the same notations as in Sections 6.1 ∼ 6.4. Then ηi(t) =
−V 1

i (t) + V 04
i (t) − η̃i(t). So to show the first assertion, we only need to show that

the sup of each of these three terms converges to 0 in L2(Pm).
As before, V 1

i (t) = V 10
i (t) + V 11

i (t). For V 10
i (t), we have by (6.2.3) and (6.2.4)

that

EPm

[
sup

t∈[0,T ]
|V 10

i (t)|2
]
≤

(1

2
C1n(4m1/2τ)2

)2
(C2m

−1/2 + C2
2m

−1),

which converges to 0 as m→ 0. For V 11
i (t), by (6.2.6) and (6.2.7), we have

EPm

[
sup

t∈[0,T ]
|V 11

i (t)|2
]

≤ EPm

[{ ∫ T∧σ

0
1[0,4m1/2τ)(s)

∣∣∣
∫

R×E
∇Ui(Xi(0)− ϕ̃0(m−1/2s,Ψ(m−1/2r, x, v); ~X(0)))

(µω(dr, dx, dv)− λ(dr, dx, dv))
∣∣∣ds

}2]

≤ EPm

[
4m1/2τ

∫ T∧σ

0
1[0,4m1/2τ)(s)

∣∣∣
∫

R×E
∇Ui(Xi(0)− ϕ̃0(m−1/2s,Ψ(m−1/2r, x, v); ~X(0)))

(µω(dr, dx, dv)− λ(dr, dx, dv))
∣∣∣
2
ds

]

≤ (4m1/2τ)2
∫ 4m1/2τ

0
dsEPm

[∣∣∣
∫

R×E
∇Ui(Xi(0)− ϕ̃0(m−1/2s,Ψ(m−1/2r, x, v); ~X(0)))

(µω(dr, dx, dv)− λ(dr, dx, dv))
∣∣∣
2]

≤ (4m1/2τ)2C3m
−1/2,

which converges to 0 as m→ 0. This completes the discussion about the term V 1
i (t).
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The discussion about the term V 04
i (t) is similar. By definition and (6.3.2), we

get

EPm [ sup
0≤t≤T

|V 04
i (t)|2]

≤ EPm

[
4m1/2τ

∫ 4m1/2τ

0

∣∣∣
∫

[2m1/2τ,∞)×E
∇Ui(Xi(r̃)− ψ0(m−1/2(s− r), x, v; ~X(r̃)))

(µω(dr, dx, dv)− λ(dr, dx, dv))
∣∣∣
2
ds

]

≤ (4m1/2τ)2C4m
−1/2,

which converges to 0 as m→ 0.
Finally, we deal with the term η̃i(t). With the same notations as before, we have

EPm

[
sup

t∈[0,T ]
|η̃i(t)|2

]

= EPm

[
|η̃i(ξm)|2 ∨ |η̃i(ξm−)|2

]

≤ 2
(
4m1/2τ‖∇ui‖∞

)2
+ 2EPm

[
|η̃i(ξm)|2

]

≤ 2
(
4m1/2τ‖∇ui‖∞

)2
+ 4EPm


 max

0≤k≤[m− 4
3 T ]

|η̃i(km
4/3)|2


 + 4EPm [|η̃i(ξm)− η̃i(ξ̃m)|2].

By (6.4.8), the second term above converges to 0 as m → 0. So it suffices to show

that the third term EPm [|η̃i(ξm)− η̃i(ξ̃m)|2] also converge to 0. We have

EPm [|η̃i(ξm)− η̃i(ξ̃m)|2] ≤ 2EPm

[∣∣∣ ˜̃
V 03

i (ξ)− ˜̃
V 03

i (ξ̃)
∣∣∣
2]

+ 2EPm

[∣∣∣M i(ξm)−M i(ξ̃m)
∣∣∣
2]
.

By (6.4.1),

EPm

[∣∣∣ ˜̃
V 03

i (ξ)− ˜̃
V 03

i (ξ̃)
∣∣∣
2]

≤ EPm

[( ∫ T

0
1

[ξ,ξ̃]
(t)

∣∣∣∣∣
d

dt

˜̃
V 03

i (t)

∣∣∣∣∣ dt
)2]

≤ EPm

[( ∫ T

0
1

[ξ,ξ̃]
(t)dt

)
·
( ∫ T

0

∣∣∣ d
dt

˜̃
V 03

i (t)
∣∣∣
2
dt

)]

≤ m4/3
∫ T

0
EPm

[∣∣∣ d
dt

˜̃
V 03

i (t)
∣∣∣
2]
dt

≤ m4/3TCm−1/2 → 0, as m→ 0.

Finally, for the term EPm

[∣∣∣M i(ξm)−M i(ξ̃m)
∣∣∣
2]

, we first prepare the following result:

There exists a constant C > 0 (not depending on m) such that

EPm

[
sup

t∈[0,T ]
|M i(t)|4

]
≤ C.
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Actually, by the general fact that E
[∣∣∣

∫
fdN

∣∣∣
4] ≤ 3

( ∫
f 2dλ

)2
+

∫
f 4dλ, we get with

the help of Doob’s inequality that

EPm

[
sup

t∈[0,T ]
|M i(t)|4

]
≤ (4/3)4EPm

[
|M i(T )|4

]

= (4/3)4
[
3
{ ∫

(0,T ]×E
λ(dr, dx, dv)

( ∫ 4m1/2τ

0
ds

∇Ui

(
Xi(r ∧ σ)− ψ(m−1/2s− 2τ, x, v; ~X(r ∧ σ))

))2}2

+
∫

(0,T ]×E
λ(dr, dx, dv)

( ∫ 4m1/2τ

0
ds

∇Ui

(
Xi(r ∧ σ)− ψ(m−1/2s− 2τ, x, v; ~X(r ∧ σ))

))4]

≤ (4/3)4
[
3
{ ∫

(0,T ]×E
m−1ρ

(1

2
|v|2

)
drν(dx, dv)

(
4m1/2τ‖∇Ui‖∞1[0,R0+1)(|x|)

)2}2

+
∫

(0,T ]×E
m−1ρ

(1

2
|v|2

)
drν(dx, dv)

(
4m1/2τ‖∇Ui‖∞1[0,R0+1)(|x|)

)4]

≤ (4/3)4
[
3(4τ‖∇Ui‖∞)4

(
T (2(R0 + 1))d−1

∫

Rd
ρ
(
|1
2
|v|2

)
|v|dv

)2

+(4τ‖∇Ui‖∞)4mT (2(R0 + 1))d−1
∫

Rd
ρ
(
|1
2
|v|2

)
|v|dv

]
,

with the right hand side above bounded by a finite global constant C > 0.
Therefore,

EPm

[∣∣∣M i(ξm)−M i(ξ̃m)
∣∣∣
2]

≤ EPm

[∣∣∣M i(ξm)−M i(ξ̃m)
∣∣∣
2
,
∣∣∣M i(ξm)−M i(ξ̃m)

∣∣∣ > ε
]
+ ε2

≤ EPm

[∣∣∣M i(ξm)−M i(ξ̃m)
∣∣∣
4]1/2

P (
∣∣∣M i(ξm)−M i(ξ̃m)

∣∣∣ > ε)1/2 + ε2

≤ 4EPm

[
sup

t∈[0,T ]
|M i(t)|4

]1/2
P (

∣∣∣M i(ξm)−M i(ξ̃m)
∣∣∣ > ε)1/2 + ε2

≤ 4C1/2P (
∣∣∣M i(ξm)−M i(ξ̃m)

∣∣∣ > ε)1/2 + ε.

With the help of Lemma 6.4.4, by taking first ε > 0 small enough then m > 0

small enough, this implies EPm

[∣∣∣M i(ξm) −M i(ξ̃m)
∣∣∣
2] → 0 as m → 0, so completes

the proof of the fact that EPm

[
supt∈[0,T ] |η̃i(t)|2

]
converge to 0 as m → 0, hence

completes the proof of the first assertion of this lemma.
We next show the second assertion. Since Mi is a martingale, the first assertion

implies that
∫ t
0 ηi(s)dMi(s) is also a martingale. By the definition of Mi(t), (see

Lemma 7.3.1 for the details and the proof), if we let

Ai(r) = Ai(r, x, v) =
∫ 2τ

−2τ
∇Ui(Xi(r)− ψ0(u, x, v; ~X(r)))du,
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then we have that
[
Mi,Mi

]
s
= m

∫

[0,s∧σ]×E
Ai(r, x, v)

2N(dr, dx, dv).

Therefore, with the help of Doob’s inequality, we get that

EPm

[
sup

t∈[0,T ]

∣∣∣
∫ t

0
ηi(s)dMi(s)

∣∣∣
2] ≤ 4EPm

[∣∣∣
∫ T

0
ηi(s)dMi(s)

∣∣∣
2]

= 4EPm

[ ∫ T

0
ηi(s)

2d[Mi,Mi]s
]

= 4mEPm

[ ∫ T∧σ

0
ηi(s)

2
∫

E
Ai(r, x, v)

2N(ds, dx, dv)
]

≤ 4(4τ‖∇Ui‖∞)2
∫

[0,T ]×E
EPm

[
ηi(s)

2
]
1[0,R0+1)(|x|)ρ

(1

2
|v|2

)
ν(dx, dv)dr

= 4(4τ‖∇Ui‖∞)2T (2(R0 + 1))d−1
∫

Rd
ρ
(
|1
2
|v|2

)
|v|dvEPm

[
ηi(s)

2
]
.

This combined with the first assertion of this lemma completes the proof of our
second assertion.

We next show the second assertion of Lemma 5.3.2. First, by Lemma 5.3.1, we
have

m−1/2
(
Ũ( ~X(t ∧ σ))− Ũ( ~X(0))

)
+

N∑

i=1

{Mi

2
|Vi(t ∧ σ)|2 +

1

Mi

∫ t∧σ

0
ηi(s)dMi(s)

}

=
N∑

i=1

Mi

2
|Vi(0)|2 +

N∑

i=1

{ ∫ t∧σ

0
m−1/2∇iŨ( ~X(s)) · Vi(s)ds

+
∫ t∧σ

0
Mi

( d
ds
Vi(s)

)
· Vi(s)ds+

1

Mi

∫ t∧σ

0
ηi(s)dMi(s)

}

=
N∑

i=1

Mi

2
|Vi(0)|2 +

N∑

i=1

{ ∫ t∧σ

0
Vi(s)

d

ds
P ∗1i (s)ds

+
∫ t∧σ

0
Vi(s)

d

ds
P ∗0i (s)ds+

1

Mi

∫ t∧σ

0
ηi(s)dMi(s)

}

=
N∑

i=1

Mi

2
|Vi(0)|2 +

N∑

i=1

{ ∫ t∧σ

0
Vi(s)

d

ds
P ∗1i (s)ds+

∫ t∧σ

0
Vi(s)dMi(s)

+
∫ t∧σ

0
Vi(s)dηi(s) +

1

Mi

∫ t∧σ

0
ηi(s)dMi(s)

}
.

Since |Vi(t ∧ σ)| ≤ n by the definition of σ, we have by Lemma 5.3.1 (2) that

sup
m∈(0,1]

sup
0≤t≤T

EPm

[
|~Vi(t ∧ σ)

d

dt
P ∗1i (t)|2

]
<∞.

Therefore, by Theorem 5.1.7, we get that
∫ t∧σ
0

~Vi(s)
d
ds
P ∗1i (s)ds is tight for m ∈ (0, 1].
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For the term
∫ t
0 1[0,σ](s)Vi(s)dMi(s), recall that σ = inf{t > 0; |~Vi(t)| = n}, so σ

is a Ft-stopping time. Therefore, since {Mi(s)}s is a martingale, we get that

Ni(t) ≡
∫ t

0
1[0,σ](s)Vi(s)dMi(s)

is also a Ft-martingale. Notice that

〈Ni〉t =
d∑

k,l=1

∫ t∧σ

0
V k

i (s ∧ σ)V l
i (s ∧ σ)d〈Mk

i ,M
l
i 〉(s).

So by Lemma 5.3.1 (3), we get that

d〈Ni〉t ≤ n2d2Cdt, |∆Nt| ≤ n2d2Cm1/2.

Therefore, same as in the proof of Lemmas 6.4.1 and 6.4.3, we get that {Ni(t)}t is
tight for m ∈ (0, 1], with canonical limit processes continuous.

We next show that
∫ t∧σ
0 Vi(s)dηi(s) +

∫ t∧σ
0 ηi(s)dMi(s) is negligible. Notice that

by Lemma 5.3.1 (3),
∫ t∧σ

0
Vi(s)dηi(s) +

1

Mi

∫ t∧σ

0
ηi(s)dMi(s)

= Vi(t ∧ σ)ηi(t)−
∫ t∧σ

0
ηi(s)dVi(s) +

1

Mi

∫ t∧σ

0
ηi(s)dMi(s)

= Vi(t ∧ σ)ηi(t)− 1

Mi

∫ t∧σ

0
ηi(s)

( d
ds
P ∗1i (s)

)
ds− 1

Mi

∫ t∧σ

0
ηi(s)dηi(s)

+
1

Mi

∫ t∧σ

0
ηi(s)m

−1/2∇iŨ( ~X(s))ds

= Vi(t ∧ σ)ηi(t)− 1

Mi

ηi(t)
2 +

1

Mi

[ηi, ηi]t +
1

Mi

∫ t∧σ

0
ηi(s)

(
m−1/2∇iŨ( ~X(s))− d

ds
P ∗1i (s)

)
ds.

Since |Vi(t ∧ σ)| ≤ n, Lemma 6.6.1 (1) gives us that

lim
m→0

EPm

[
sup

t∈[0,T∧σ]

∣∣∣Vi(t ∧ σ)ηi(t)− 1

Mi

ηi(t)
2 +

1

Mi

[ηi, ηi]t
∣∣∣
]

= 0.

Also, for any ε > 0, we have for any A > 0,

Pm

(
sup

t∈[0,T∧σ]

∣∣∣
∫ t∧σ

0
ηi(s)

(
m−1/2∇iŨ( ~X(s))− d

ds
P ∗1i (s)

)
ds

∣∣∣ > ε
)

≤ Pm

(
sup

s∈[0,T∧σ]
|ηi(s)| > A

)

+Pm

(
sup

s∈[0,T∧σ]

∫ t∧σ

0

(∣∣∣m−1/2∇iŨ( ~X(s))
∣∣∣ +

∣∣∣ d
ds
P ∗1i (s)

∣∣∣
)
ds >

ε

A

)

≤ 1

A
EPm

[
sup

s∈[0,T∧σ]
|ηi(s)|

]

+
A

ε
EPm

[ ∫ T∧σ

0

(∣∣∣m−1/2∇iŨ( ~X(s))
∣∣∣ +

∣∣∣ d
ds
P ∗1i (s)

∣∣∣
)
ds

]
.
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Combining this with Lemma 5.3.1 (2) (4) and Lemma 5.3.2 (1), by taking first A > 0
small enough then m > 0 small enough, we get that

lim
m→0

Pm

(
sup

t∈[0,T∧σ]

∣∣∣
∫ t∧σ

0
ηi(s)

(
m−1/2∇iŨ( ~X(s))− d

ds
P ∗1i (s)

)
ds

∣∣∣ > ε
)

= 0

for any ε > 0. This completes the proof of the fact that m−1/2
(
Ũ( ~X(t ∧ σ)) −

Ũ( ~X(0))
)
+

∑N
i=1

Mi

2
|Vi(t∧σ)|2+ 1

Mi

∫ t∧σ
0 ηi(s)dMi(s) under Pm is tight, with canonical

limit processes continuous. This combined with Lemma 6.6.1 (2) gives us our second
assertion of Lemma 5.3.2.





Chapter 7

Convergence Until ”Near”

In Chapter 6, we showed that MiVi(t ∧ σn) + m−1/2
∫ t∧σn
0 ∇iŨ( ~Xs)ds under Pm is

tight in P(C([0, T ];Rd)).

Let σ0(ω) = inf {t > 0; mini6=j{|Xi(t) − Xj(t)| − (Ri + Rj)} ≤ 0}. Then by

(5.4.9), ∇iŨ( ~Xs) = 0 for any s ≤ σ0. Therefore, Vi(t ∧ σn ∧ σ0) under Pm have (at
least one) subsequence that converges in P(C([0, T ];Rd)).

In this section, we give the proof of the fact that, any cluster point of it is
the stopped diffusion process as given in Chapter 1. For sake of simplicity, in this
chapter, we let σ = σn ∧ σ0. We use the notation D0 = (suppŨ)C ⊂ RdN .

7.1 Decomposition

First, since we do not have enough information about the term ηi(t), we use the
following to convert the problem to the one without ηi(t). Let

Yi(t) = Vi(0) +M−1
i

(
Mi(t) + P ∗1i (t)−m−1/2

∫ t∧σn

0
∇iŨ( ~Xs)ds

)

= Vi(t)−M−1
i ηi(t), i = 1, · · · , N,

and let Y (t) = (Y1(t), · · · , YN(t)). Then we have the following.

Lemma 7.1.1 For any f ∈ C∞0 (D0 × RdN), we have that {f(Xt∧σn , Vt∧σn)}t and
{f(Xt∧σn , Yt∧σn)}t converge or not for m→ 0 at the same time, and when converge,
they have the same limit.

proof. Just notice that if we let fV denote the partial differential of f with
respect to the second variables, then ‖fV ‖∞ <∞ and

|f(Xt∧σn , Vt∧σn)− f(Xt∧σn , Yt∧σn)| ≤ ‖fV ‖∞ max
i=1,···,N

1

Mi

sup
s∈[0,T ]

|ηi(s)|,

88
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hence

EPm

[
sup

0≤t≤T
|f(Xt∧σn , Vt∧σn)− f(Xt∧σn , Yt∧σn)|

]

≤ ‖fV ‖∞ max
i=1,···,N

1

Mi

EPm

[
sup

s∈[0,T ]
|ηi(s)|

]
,

which, by Lemma 5.3.1, converges to 0 as m→ 0.
In the same way, we can also convert between fV (Xs, Ys) and fV (Xs, Vs) when

considering limit.
By Lemma 7.1.1, we only need to consider the problem with Vt substituted by

Yt. For any f ∈ C∞0 (D0 × RdN), (notice that all the terms involved except Mi(t)
are continuous with respect to t ), since

∫ t∧σ

0
fV (Xs, Ys) · ∇Ũ( ~Xs)ds = 0,

we have by Ito’s formula that

f(Xt∧σ, Yt∧σ)− f(X0, Y0)

=
∫ t∧σ

0
fX(Xs, Ys) · Vsds+

N∑

i=1

1

Mi

∫ t∧σ

0
fVi

(Xs, Ys) · dMi(s) + (II) + (III) + (IV ),

with

(II) =
N∑

i=1

1

Mi

∫ t∧σ

0
fV (Xs, Ys) · dP ∗1i (s),

(III) =
N∑

l1,l2=1

d∑

k1,k2=1

1

2Ml1Ml2

∫ t∧σ

0+
f

V
k1
l1

V
k2
l2

(Xs, Ys)d[M
k1
l1
,Mk2

l2
]s,

(IV ) =
∑

0<s≤t∧σ

{
f(Xs, Ys)− f(Xs, Ys−)−

N∑

l=1

fV (Xs, Ys−) ·∆Ml(s)
1

Ml

−
N∑

l1,l2=1

1

2
fVl1

Vl2
(Xs, Ys−)(∆Ml1(s))(∆Ml2(s))

1

Ml1Ml2

}
.

It is easy to see that after taking limit m → 0, the term
∫ t∧σ
0 fX(Xs, Ys) · Vsds

above gives us the term
∑N

i=1

∑d
k=1 V

k
i

∂
∂Xk

i
of the generator L. Also, the term

∑N
i=1

1
Mi

∫ t∧σ
0 fVi

(Xs, Ys) · dMi(s) is a martingale since {Mi(t)}t, i = 1, · · · , N , are
martingales and fV is bounded. In the following sections, we study what do the
terms (II), (III), (IV ) correspond to, respectively.

7.2 The term (IV)

Lemma 7.2.1 limm→0E
Pm

[
sup0≤t≤T |(IV )|

]
= 0.
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Proof. Since f ∈ C∞0 (D0 × RdN), we have that the third partial derivatives
fVl1

,Vl2
,Vl3

, l1, l2, l3 = 1, · · · , N , are bounded. Also, the jumps satisfy |∆Mi(s)| ≤
Cm1/2. Therefore, by Taylor’s expansion, there exists a constant C > 0 (depending
on f) such that

|(IV )| ≤
N∑

l1,l2,l3=1

d∑

k1,k2,k3=1

‖f
V

k1
l1

,V
k2
l2

,V
k3
l3

‖∞|∆Mk1
l1

(s)||∆Mk2
l2

(s)||∆Mk3
l3

(s)|

≤ Cm1/2
N∑

l=1

|∆Ml(s)|2.

Therefore, to complete the proof of this lemma, it is sufficient to show that
EPm [

∑
0<s≤T∧σ |∆Mi(s)|2] is bounded for m > 0. We do it from now on.

We have by the definition of {Mi(t)} that

Mi(t) = −
∫

(0,t∧σ]×E
N(dr, dx, dv)

∫ 4m1/2τ

0
du

∇Ui

(
Xi(r ∧ σ)− ψ0(m−1/2u− 2τ, x, v; ~X(r ∧ σ))

)
,

so

∑

0<s≤t∧σ

|∆Mi(s)|2 =
∫

(0,t∧σ]×E
N(dr, dx, dv)

( ∫ 4m1/2τ

0
du

∇Ui

(
Xi(r ∧ σ)− ψ0(m−1/2u− 2τ, x, v; ~X(r ∧ σ))

))2
.

Notice that by definition, N is the Poisson point process with intensitym−1ρ(1
2
|v|2)drν(dx, dv).

Therefore, since

|∇Ui

(
Xi(r ∧ σ)− ψ0(m−1/2u− 2τ, x, v; ~X(r ∧ σ))

)
| ≤ ‖∇Ui‖∞1[0,R0+1)(|x|),

we get that

EPm [
∑

0<s≤T∧σ

|∆Mi(s)|2]

= EPm

[ ∫

(0,T∧σ]×E
N(dr, dx, dv)

( ∫ 4m1/2τ

0
du

∇Ui

(
Xi(r ∧ σ)− ψ0(m−1/2u− 2τ, x, v; ~X(r ∧ σ))

))2]

≤
∫

[0,T ]×E
m−1ρ

(1

2
|v|2

)
1[0,R0+1)(|x|)(4m1/2τ)2‖∇Ui‖2

∞drν(dx, dv)

≤ 16τ 2‖∇Ui‖2
∞T (2(R0 + 1))d−1

∫

Rd
ρ
(1

2
|v|2

)
|v|dv,

which is finite by our assumption.
This completes the proof of our assertion.
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7.3 The term (III)

For the term (III), we will show that after taking m→ 0 it is corresponding to the

term
∑N

i,j=1

∑d
k,l=1 aik,jl( ~X) ∂2

∂V k
i ∂V l

j
.

We first calculate the quadratic variance of Mi. For l = 1, · · · , N and k =
1, · · · , d, let

Alk(r) = Alk(r, x, v) =
∫ 2τ

−2τ
∇kUl(Xl(r)− ψ0(u, x, v; ~X(r)))du.

Then we have the following.

Lemma 7.3.1 For any l1, l2 = 1, · · · , N and k1, k2 = 1, · · · , d, we have that

[
Mk1

l1
,Mk2

l2

]
s
= m

∫

[0,s∧σ]×E
Al1k1(r, x, v)Al2k2(r, x, v)N(dr, dx, dv).

Proof. Since the methods are totally the same, for the sake of simplicity, we
give the proof only for the case l1 = l2 = i and k1 = k2 = k. Write Aik(r, x, v) =
A(r, x, v).

By the definition of quadratic variance, we have that {[Mk
i ,M

k
i ]t}t is the only

process such that (Mk
i )2 − [Mk

i ,M
k
i ]t is a martingale with jumps ∆[Mk

i ,M
k
i ]t =

(∆Mk
i (t))2. Using variable change u′ = m−1/2u − 2τ , it is easy to see that A(r ∧

σ, x, v) = m−1/2
∫ 4m1/2τ
0 du∇kUi

(
Xi(r ∧ σ)− ψ0(m−1/2u− 2τ, x, v; ~X(r ∧ σ))

)
. So

Mk
i (t) = −m1/2

∫

(0,t∧σ]×E
N(dr, dx, dv)A(r, x, v),

with N(dr, dx, dv) = N(dr, dx, dv) − λ(dr, dx, dv), N(dr, dx, dv) the Poisson point
process with intensity λ(dr, dx, dv) = m−1ρ(1

2
|v|2)drν(dx, dv). Hence

EPm [Mk
i (t)2] = mEPm

[ ∫

(0,t∧σ]×E
λ(dr, dx, dv)A(r, x, v)2

]
,

which is a continuous process. Also,

∑

0<s≤t

(∆Mk
i (s))2 = m

∫

(0,t∧σ]×E
N(dr, dx, dv)A(r, x, v)2,

hence

EPm

[ ∑

0<s≤t

(∆Mk
i (s))2

]
= mEPm

[ ∫

(0,t∧σ]×E
λ(dr, dx, dv)A(r, x, v)2

]
.

Combining the above, we get that

[Mk
i ,M

k
i ]t = EPm [Mk

i (t)2] +
∑

0<s≤t

(∆Mk
i (s))2 − EPm

[ ∑

0<s≤t

(∆Mk
i (s))2

]

= m
∫

(0,t∧σ]×E
N(dr, dx, dv)A(r, x, v)2.
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This completes the proof of our assertion.
By Lemma 7.3.1, we get that

∫ t∧σ

0
f

V
k1
l1

V
k2
l2

(Xs, Ys)d
[
Mk1

l1
,Mk2

l2

]
s

= m
∫ t∧σ

0
f

V
k1
l1

V
k2
l2

(Xs, Ys)Al1k1(s, x, v)Al2k2(s, x, v)N(ds, dx, dv).

Let

(III ′) =
N∑

l1,l2=1

d∑

k1,k2=1

1

2Ml1Ml2

∫ t∧σ

0+
f

V
k1
l1

V
k2
l2

(Xs, Ys)

( ∫

E
Al1k1(s, x, v)Al2k2(s, x, v)ρ(

1

2
|v|2)ν(dx, dv)

)
ds.

Then we have the following.

Lemma 7.3.2 limm→0E
Pm

[
sup0≤t≤T

∣∣∣(III)− (III ′)
∣∣∣
]

= 0.

Proof. We have by definition that N(ds, dx, dv) is the Poisson point process
with intensity λ(ds, dx, dv) = m−1ρ(1

2
|v|2)dsν(dx, dv). Also, notice that there exists

a constant C > 0 such that |Alk(s∧σ, x, v)| ≤ C1[0,R0+1](|x|). So by Doob’s inequal-
ity, for any l1, l2 = 1, · · · , N and k1, k2 = 1, · · · , d, there exist constants C1, C2 > 0
such that

EPm

[
sup

0≤t≤T

∣∣∣
∫ t∧σ

0

∫

E
mf

V
k1
l1

V
k2
l2

(Xs, Ys)Al1k1(s)Al2k2(s)(N − λ)(ds, dx, dv)
∣∣∣
]

≤ EPm

[
sup

0≤t≤T

∣∣∣
∫ t∧σ

0

∫

E
mf

V
k1
l1

V
k2
l2

(Xs, Ys)Al1k1(s)Al2k2(s)(N − λ)(ds, dx, dv)
∣∣∣
2]1/2

≤ 2EPm

[( ∫ T∧σ

0

∫

E
mf

V
k1
l1

V
k2
l2

(Xs, Ys)Al1k1(s)Al2k2(s)(N − λ)(ds, dx, dv)
)2]1/2

= 2EPm

[ ∫ T∧σ

0

∫

E
(mf

V
k1
l1

V
k2
l2

(Xs, Ys)Al1k1(r)Al2k2(s))
2λ(ds, dx, dv)

∣∣∣
]1/2

≤ 2C1m
( ∫ T

0

∫

E
1[0,R0+1](|x|)m−1ρ

(1

2
|v|2

)
dsν(dx, dv)

)1/2

≤ C2m
1/2.

This completes the proof of our assertion.
Lemma 7.3.2 implies that after taking limit m → 0, (III) is corresponding to

the term
∑N

i,j=1

∑d
k,l=1 aik,jl( ~X) ∂2

∂V k
i ∂V l

j
.

7.4 The term (II)

In this section, we deal with the term (II). We use the same notations as in Chapter
6. Then P ∗1i is given by P ∗1i (t) = −V 02

i (t) − Ṽ 05
i (t). Recall that f̃i(s, r, x, v) =



7.4. THE TERM (II) 93

∇Ui

(
Xi(s)− x(s,Ψ(r, x,m−1/2v))

)
−∇Ui

(
Xi(r̃)− ψ0(m−1/2(s− r), x, v; ~X(r̃)). So

we have the decomposition

−
∫ t∧σ

0
fV (Xs, Ys) · dP ∗1i (s)

=
∫ t∧σ

0
fV (Xs, Ys)1[4m1/2τ,σ)(s)

( ∫

R×E
f̃i(s, r, x, v)µω(dr, dx, dv)

)
ds

+
∫ t∧σ

0
fV (Xs, Ys)1[4m1/2τ,σ)(s)

( ∫

R×E
F̃ 05

i (s, r, x, v)λ(dr, dx, dv)
)
ds

=
∫ t∧σ

0
fV (Xs, Ys)1[4m1/2τ,σ)(s)

( ∫

R×E

(
f̃i(s, r, x, v) + F̃ 05

i (s, r, x, v)
)
µω(dr, dx, dv)

)
ds

+
∫ t∧σ

0
fV (Xs, Ys)1[4m1/2τ,σ)(s)

( ∫

R×E
F̃ 05

i (s, r, x, v)(λ(dr, dx, dv)− µω(dr, dx, dv))
)
ds. (7.4.1)

We first show in the following lemma that the second term on the right hand
side above is negligible.

Lemma 7.4.1

lim
m→0

EPm

[
sup

0≤t≤T

∣∣∣
∫ t∧σ

0
fV (Xs, Ys)1[4m1/2τ,σ)(s)

( ∫

R×E
F̃ 05

i (s, r, x, v)(λ(dr, dx, dv)− µω(dr, dx, dv))
)
ds

∣∣∣
]

= 0.

Proof. Let

R(s, r, x, v)

= −F̃ 05
i (s, r, x, v)−∇2Ui(Xi(r̃)− ψ0(m−1/2(s− r), x, v; ~X(r̃)))

×
{
Xi(s)−Xi(r̃)− ψ0(m−1/2(s− r), x, v; ~X(s)) + ψ0(m−1/2(s− r), x, v; ~X(r̃))

}
.

Then we have the decomposition

∫ t∧σ

0
fV (Xs, Ys)1[4m1/2τ,σ)(s)

( ∫

R×E
F̃ 05

i (s, r, x, v)(λ(dr, dx, dv)− µω(dr, dx, dv))
)
ds

= (5I) + (5II) + (5III),

where

(5I) =
∫ t∧σ

0
fV (Xs, Ys)1[4m1/2τ,σ)(s)
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×
( ∫

R×E
R(s, r, x, v)(µω(dr, dx, dv)− λ(dr, dx, dv))

)
ds,

(5II) =
∫ t∧σ

0
fV (Xs, Ys)1[4m1/2τ,σ)(s)

( ∫

R×E
∇2Ui(Xi(r̃)− ψ0(m−1/2(s− r), x, v; ~X(r̃)))

{
(Xi(s)−Xi(r̃)− (s− r)Vi(r̃))−

(
ψ0(m−1/2(s− r), x, v; ~X(s))

−ψ0(m−1/2(s− r), x, v; ~X(r̃) + (s− r̃)~V (r̃))
)}

(µω(dr, dx, dv)− λ(dr, dx, dv))
)
ds,

(5III) =
∫ t∧σ

0
fV (Xs, Ys)1[4m1/2τ,σ)(s)

( ∫

R×E
g(r, s, x, v)(µω(dr, dx, dv)− λ(dr, dx, dv))

)
ds,

with

g(r, s, x, v) = ∇2Ui(Xi(r̃)− ψ0(m−1/2(s− r), x, v; ~X(r̃))){
(s− r)Vi(r̃)− ψ0(m−1/2(s− r), x, v; ~X(r̃) + (s− r̃)~V (r̃))

+ψ0(m−1/2(s− r), x, v; ~X(r̃))
}
.

So Lemma 7.4.1 follows from the following three lemmas.

Lemma 7.4.2 limm→0E
Pm [sup0≤t≤T |(5III)|] = 0.

Proof. First notice that 0 ≤ r̃ ≤ σ, hence |~V (r̃)| ≤ n. Therefore, we have by
Lemma 6.3.4 that there exists a constants C,C1 > 0 such that

|g(r, s, x, v)| ≤ ‖∇2Ui‖∞1[0,2m1/2τ)(|s− r|)C|s− r||~V (r̃)|1[0,R0+1)(|x|)
≤ C11[0,2m1/2τ)(|s− r|)2m1/2τ1[0,R0+1)(|x|).

Also, it is easy to see that g(r, s, x, v) is Fr-measurable. Therefore, there exists a
constant C > 0 such that

EPm [ sup
0≤t≤T

|(5III)|]

≤ ‖fV ‖∞EPm

[ ∫ T∧σ

0
ds

∣∣∣
∫

R×E
g(r, s, x, v)(µω(dr, dx, dv)− λ(dr, dx, dv))

∣∣∣
]

≤ ‖fV ‖∞
∫ T

0
dsEPm

[∣∣∣
∫

R×E
g(r, s, x, v)(µω(dr, dx, dv)− λ(dr, dx, dv))

∣∣∣
2]1/2

= ‖fV ‖∞
∫ T

0
ds

( ∫

R×E
EPm [|g(r, s, x, v)|2]λ(dr, dx, dv)

)1/2

≤ ‖fV ‖∞
∫ T

0
ds

{ ∫

R×E

(
C11[0,2m1/2τ)(|s− r|)2m1/2τ1[0,R0+1)(|x|)

)2
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m−1ρ
(1

2
|v|2 +

N∑

i=1

Ui(x−m−1/2rv −Xi,0)
)
drν(dx, dv)

}1/2

≤ Cm1/4,

which converges to 0 as m→ 0.

Lemma 7.4.3 limm→0E
Pm [sup0≤t≤T |(5I)|] = 0.

Proof. By the definition of R(s, r, x, v), Taylor expansion and Lemma 6.3.4,
we get that there exists a constant C > 0 such that

|R(s, r, x, v)|
≤ ‖∇3Ui‖∞

∣∣∣
(
Xi(s)−Xi(r̃)

)

−
(
ψ0(m−1/2(s− r), x, v; ~X(s))− ψ0(m−1/2(s− r), x, v; ~X(r̃))

)∣∣∣
2

≤ C|Xi(s)−Xi(r̃)|21[0,2m1/2τ)(|s− r|)1[0,R0+1)(|x|).

Notice that when |s− r| ≤ 2m1/2τ , since s, r̃ ∈ [0, σ], we get that |Xi(s)−Xi(r̃)| ≤
n|s− r̃| ≤ n4m1/2τ . So the above gives us that

|R(s, r, x, v)| ≤ (4nτ)2Cm1[0,2m1/2τ)(|s− r|)1[0,R0+1)(|x|).

Therefore, there exists a constant C > 0 such that

EPm [ sup
0≤t≤T

|(5I)|]

≤ 2‖fV ‖∞
∫ T

0
ds

∫

R×E
EPm

[
1[0,σ](s)|R(s, r, x, v)|

]
λ(dr, dx, dv)

≤ 2‖fV ‖∞
∫ T

0
ds

∫

R×E
(4nτ)2Cm1[0,2m1/2τ)(|s− r|)1[0,R0+1)(|x|)

m−1ρ
(1

2
|v|2 +

N∑

i=1

Ui(x−m−1/2rv −Xi,0)
)
drν(dx, dv)

≤ Cm1/2,

which converges to 0 as m→ 0.

Lemma 7.4.4 limm→0E
Pm [sup0≤t≤T |(5II)|] = 0.

Proof. First, by Lemma 6.3.4, there exists a constant C > 0 such that

∣∣∣ψ0(m−1/2(s− r), x, v; ~X(s))− ψ0(m−1/2(s− r), x, v; ~X(r̃) + (s− r̃)~V (r̃))
∣∣∣

≤ C| ~X(s)− ~X(r̃)− (s− r̃)~V (r̃))|.
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Notice that if s ≥ 4m1/2τ and |s − r| ≤ 2m1/2τ , then by the definition of r̃, we
always have that r̃ ≤ s. Therefore,

~X(s)− ~X(r̃)− (s− r̃)~V (r̃) =
∫ s

r̃
(Vi(u)− Vi(r̃))du.

For any l ≤ s ≤ σ, we have that |Xi(l)−Xj(l)| ≥ Ri +Rj, i 6= j, which implies that

∇iŨ( ~X(l)) = 0, i = 1, · · · , N . Therefore, We have by Lemma 5.3.1 that

Vi(u)− Vi(r̃)

=
1

Mi

( ∫ u

r̃

d

dl
P ∗1i (l)dl + ηi(u)− ηi(r̃) +Mi(u)−Mi(r̃)−m−1/2

∫ u

r̃
∇iŨ( ~X(l))dl

)

=
1

Mi

( ∫ u

r̃

d

dl
P ∗1i (l)dl + ηi(u)− ηi(r̃) +Mi(u)−Mi(r̃)

)
.

Let
am = 4m1/2τ + EPm [ sup

0≤u≤T
|ηi(u)|] + (4m1/2τ)1/2.

Then by Lemma 5.3.1, we have am → 0 as m → 0. Notice that for s ∈ [0, σ],
|s − r| ≤ 2m1/2τ implies |s − r̃| ≤ 4m1/2τ . Therefore, we get by Lemma 5.3.1 and
(6.4.2) that there exists a contant C > 0 such that

EPm

[
| ~X(s)− ~X(r̃)− (s− r̃)~V (r̃))|

]

≤
N∑

i=1

EPm

[∣∣∣
∫ s

r̃
du

∫ u

r̃

d

dl
P ∗1i (l)dl

∣∣∣

+
∣∣∣
∫ s

r̃
du(ηi(u)− ηi(r̃))

∣∣∣ +
∣∣∣
∫ s

r̃
du(Mi(u)−Mi(r̃))

∣∣∣
]

≤ N(4m1/2τ)2 sup
m≤1

sup
t∈[0,T ]

EPm

[∣∣∣ d
dl
P ∗1i (l)

∣∣∣
2]1/2

+N4m1/2τ2 sup
0≤u≤T

EPm [|ηi(u)|] +N
∫ s

r̃
duEPm

[∣∣∣Mi(u)−Mi(r̃)
∣∣∣
2]1/2

≤ C(4m1/2τ)am.

Before going further, we notice that EPm [
∫
fdµω] = EPm [

∫
fdλm] =

∫
E[f ]dλm

by Corollary 4.2.5. Actually, for any A ∈ E0 and B ∈ B(M), taking S(ω) = 1A(ω)
and f(x) = 1B(x), Corollary 4.2.5 implies that

∫ ∫
1B(x)1A(ω)µω(dx)P (dω) =

∫ ∫
1B(x)1A(ω)ν(dx)P (dω).

Therefore, by the linearity and limit convergence theorem, we get our assertion.
So there exist constants C1, C2, C3 > 0 such that

EPm [ sup
0≤t≤T

|(5II)|]
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≤ ‖fV ‖∞
∫ T

0
dsC1E

Pm

[
1[0,σ)(s)

∫

R×E
‖∇2Ui‖∞| ~X(s)− ~X(r̃)− (s− r̃)~V (r̃))|

1[0,2m1/2τ)(|s− r|)1[0,R0+1)(|x|)(µω(dr, dx, dv) + λm(dr, dx, dv))
]

= 2C1‖fV ‖∞‖∇2Ui‖∞
∫ T

0
ds

∫

R×E
EPm

[
1[0,σ)(s)| ~X(s)− ~X(r̃)− (s− r̃)~V (r̃))|

]

×1[0,2m1/2τ)(|s− r|)1[0,R0+1)(|x|)λm(dr, dx, dv))

≤ C2

∫ T

0
ds

∫

R×E
(6m1/2τ)am1[0,2m1/2τ)(|s− r|)1[0,R0+1)(|x|)

×m−1ρ
(1

2
|v|2 +

N∑

i=1

Ui(x−m−1/2rv −Xi,0)
)
drν(dx, dv)

≤ C3am,

which converges to 0 as m→ 0. This completes the proof of Lemma 7.4.4.
Lemmas 7.4.2, 7.4.3 and 7.4.4 complete the proof of Lemma 7.4.1.
We next deal first term on the right hand side of (7.4.1). We first make the

decomposition

f̃i(s, r, x, v) + F̃ 05
i (s, r, x, v)

= ∇Ui(Xi(s)− x(s,Ψ(r, x,m−1/2v)))−∇Ui(Xi(s)− ψ0(m−1/2(s− r), x, v; ~X(s)))

= f̃ 1
i (s, r, x, v) + f̃ 2

i (s, r, x, v) + f̃ 3
i (s, r, x, v),

with

f̃ 1
i (s, r, x, v)

= ∇Ui(Xi(s)− x(s,Ψ(r, x,m−1/2v)))−∇Ui(Xi(s)− ψ0(m−1/2(s− r), x, v; ~X(s)))

−1

2
∇2Ui(Xi(s)− ψ0(m−1/2(s− r), x, v; ~X(s)))

·
(
x(s,Ψ(r, x,m−1/2v))− ψ0(m−1/2(s− r), x, v; ~X(s))

)
,

f̃ 2
i (s, r, x, v)

=
1

2
∇2Ui(Xi(s)− ψ0(m−1/2(s− r), x, v; ~X(s)))

·
(
x(s,Ψ(r, x,m−1/2v))− ψ0(m−1/2(s− r), x, v; ~X(s))

−m1/2Z(m−1/2(s− r), x, v, ~X(s), ~V (s),−m−1/2(s− r))
)
,

f̃ 3
i (s, r, x, v)

=
1

2
∇2Ui(Xi(s)− ψ0(m−1/2(s− r), x, v; ~X(s)))

·m1/2Z(m−1/2(s− r), x, v, ~X(s), ~V (s),−m−1/2(s− r)).

We show in the following that f̃ 1
i (s, r, x, v) and f̃ 2

i (s, r, x, v) are negligible.



98 CHAPTER 7. CONVERGENCE UNTIL ”NEAR”

Lemma 7.4.5 We have that

lim
m→0

EPm

[
sup

0≤t≤T

∣∣∣
∫ t∧σ

0
fV (Xs, Ys)1[4m1/τ,σ](s)

( ∫

R×E
f̃k

i (s, r, x, v)µω(dr, dx, dv)
)
ds

∣∣∣
]

= 0, k = 1, 2.

Proof. We first show the assertion for k = 1. First notice that for s ∈
[0, T ∧ σ], f̃ 1

i (s, r, x, v) 6= 0 only if |x| ≤ R0 + 1 and s− r ∈ [−m1/2τ, 2m1/2τ ]. Since
s ∈ [4m1/2τ, T ∧ σ], this implies that r −m1/2τ ∈ [0, T ∧ σ]. So in this region, we
have by Proposition 5.4.3 that there exists a constant C̃ > 0 such that

∣∣∣x(s,Ψ(r, x,m−1/2v))− ψ0(m−1/2(s− r), x, v; ~X(s))
∣∣∣

≤ m1/2C̃(2τ + |m−1/2(r − s)|) ≤ 4C̃τm1/2.

So there exists a constant C > 0 such that

|f̃ 1
i (s, r, x, v)|

≤ ‖∇3Ui‖∞
∣∣∣x(s,Ψ(r, x,m−1/2v))− ψ0(m−1/2(s− r), x, v; ~X(s))

∣∣∣
2

≤ Cm1[0,2m1/2τ ](|s− r|)1[0,R0+1](|x|).
Therefore, by the definition of λ, there exists a constant C1 > 0 such that

EPm

[
sup

0≤t≤T

∣∣∣
∫ t∧σ

0
fV (Xs, Ys)1[4m1/τ,σ](s)

( ∫

R×E
f̃ 1

i (s, r, x, v)µω(dr, dx, dv)
)
ds

∣∣∣
]

≤
∫ T

0
ds‖fV ‖∞Cm

∫

R×E
1[0,2m1/2τ ](|s− r|)1[0,R0+1](|x|)

×m−1ρ
(1

2
|v|2 +

N∑

i=1

Ui(x−m−1/2rv −Xi,0)
)
drν(dx, dv)

≤ C1m
1/2,

which converges to 0 as m→ 0.

The assertion for k = 2 is similar. Again, for s ∈ [0, T ∧σ], f̃ 2
i (s, r, x, v) 6= 0 only

if |x| ≤ R0 +1 and s−r ∈ [−m1/2τ, 2m1/2τ ]. For any s, r satisfying |s−r| ≤ 2m1/2τ ,
we have by Proposition 5.4.4 that

∣∣∣x(s,Ψ(r, x,m−1/2v))− ψ0(m−1/2(s− r), x, v; ~X(s))

−m1/2Z(m−1/2(s− r), x, v, ~X(s), ~V (s),−m−1/2(s− r))
∣∣∣

≤ Cm1/2(1 + 2τ)2m1/2.

Therefore, there exist constants C1, C2 > 0 such that

EPm

[
sup

0≤t≤T

∣∣∣
∫ t∧σ

0
fV (Xs, Ys)1[4m1/τ,σ](s)

( ∫

R×E
f̃ 2

i (s, r, x, v)µω(dr, dx, dv)
)
ds

∣∣∣
]
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≤
∫ T

0
ds‖fV ‖∞‖∇2Ui‖∞C1m

∫

R×E
1[0,2m1/2τ ](|s− r|)1[0,R0+1](|x|)

×m−1ρ
(1

2
|v|2 +

N∑

i=1

Ui(x−m−1/2rv −Xi,0)
)
drν(dx, dv)

≤ C2m
1/2,

which converges to 0 as m→ 0.
This completes the proof of our lemma.
Before dealing with the main term f 3

i (s, r, x, v), let us prepare the following

continuity of Z(t, x, v, ~X, ~V , a) with respect to ~X and ~V .

Lemma 7.4.6 For any T1 > 0 and n,A,B > 0, there exists a constant C =
C(T1, n, A,B) such that

|Z(t, x, v, ~X1, ~V 1, a)− Z(t, x, v, ~X2, ~V 2, a)| ≤ C(‖ ~X1 − ~X2‖+ ‖ ~V 1 − ~V 2‖).

for any t ∈ [−τ, T1], |a| ≤ A, ‖ ~X1‖, ‖ ~X2‖ ≤ B, ‖ ~V 1‖, ‖ ~V 2‖ ≤ n.

Proof. First notice that for any a, x, v, ~X, ~V , by using the same method as in
the proofs of Lemmas 5.4.3, 6.3.4, etc., with the help of Gronwall’s Lemma, we get
easily that for any T0 > 0,

|Z(t)| ∨ |Z ′(t)| ≤ (T0 + |a|)‖~V ‖T0e
(1+

∑N

i=1
‖∇2Ui‖∞)T0 , |t| ≤ T0. (7.4.2)

For the sake of simplicity, we write Zk(t) = Z(t, x, v, ~Xk, ~V k, a), k = 1, 2, and
ξ(t) = Z1(t) − Z2(t). Then we have that in our domain, there exists a constant
C = C(T, n,A,B) > 0 such that |Z1(t)| ≤ C. So by definition and Lemma 6.3.4,
there exist constants C̃, C > 0 such that

∣∣∣ d
2

dt2
ξ(t)

∣∣∣

=
∣∣∣−

N∑

i=1

∇2Ui(ψ
0(t, x, v; ~X1)−X1

i )(Z1(t)− (t+ a) ~V 1)

+
N∑

i=1

∇2Ui(ψ
0(t, x, v; ~X2)−X2

i )(Z2(t)− (t+ a) ~V 2)
∣∣∣

=
∣∣∣−

N∑

i=1

{
∇2Ui(ψ

0(t, x, v; ~X1)−X1
i )−∇2Ui(ψ

0(t, x, v; ~X2)−X2
i )

}
(Z1(t)− (t+ a) ~V 1)

−
N∑

i=1

∇2Ui(ψ
0(t, x, v; ~X2)−X2

i )(Z1(t)− Z2(t)− (t+ a)( ~V 1 − ~V 2))
∣∣∣

≤
N∑

i=1

‖∇3Ui‖∞(C̃ + 1)‖ ~X1 − ~X2‖(‖Z1‖+ (T + |a|)‖ ~V 1‖)
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+
N∑

i=1

‖∇2Ui‖∞(‖Z1 − Z2‖+ (T + |a|)‖ ~V 1 − ~V 2‖)

≤ C(‖ ~X1 − ~X2‖+ ‖ ~V 1 − ~V 2‖) + C‖Z1 − Z2‖
= C(‖ ~X1 − ~X2‖+ ‖ ~V 1 − ~V 2‖) + C|ξ(t)|.

Let g(t) =
∣∣∣(ξ(t), d

dt
ξ(t))

∣∣∣. Then

∣∣∣ d
dt
g(t)

∣∣∣ ≤
∣∣∣ d
dt
ξ(t)

∣∣∣ +
∣∣∣ d

2

dt2
ξ(t)

∣∣∣

≤ C(‖ ~X1 − ~X2‖+ ‖ ~V 1 − ~V 2‖) + (C + 1)g(t).

Hence if we let g̃(t) = g(t− τ), then g̃(0) = d
dt
g̃(0) = 0 by definition, and the above

gives us that

d

dt
g̃(t) ≤ C(‖ ~X1 − ~X2‖+ ‖ ~V 1 − ~V 2‖) + (C + 1)g̃(t).

So we have for any t ∈ [0, T1 + τ ]

g̃(t) ≤ Ct(‖ ~X1 − ~X2‖+ ‖ ~V 1 − ~V 2‖) + (C + 1)
∫ t

0
g̃(s)ds.

This combined with Gronwall’s Lemma implies that

g̃(t) ≤ C(T1 + τ)(‖ ~X1 − ~X2‖+ ‖ ~V 1 − ~V 2‖)e(C+1)(T1+τ), t ∈ [0, T1 + τ ],

which completes the proof of our assertion.
Now, we come back to deal with the term corresponding to f 3

i (s, r, x, v). Again,
we make decomposition

∫ t∧σ

0
fV (Xs, Ys)1[4m1/τ,σ](s)

( ∫

R×E
f̃ 3

i (s, r, x, v)µω(dr, dx, dv)
)
ds = (V 1) + (V 2),

with

(V 1) =
∫ t∧σ

0
fV (Xs, Ys)1[4m1/τ,σ](s)

( ∫

R×E
f̃ 3

i (s, r, x, v)λ(dr, dx, dv)
)
ds,

(V 2) =
∫ t∧σ

0
fV (Xs, Ys)1[4m1/τ,σ](s)

( ∫

R×E
f̃ 3

i (s, r, x, v)(µω − λ)(dr, dx, dv)
)
ds.

Notice that up to σn, ~V (t) and ~X(t) are bounded. Also, m1/2|s − r| ≤ 2τ and

|x| ≤ R0 + 1 if ∇2Ui(Xi(s) − ψ0(m−1/2(s − r), x, v; ~X(s))) 6= 0. So by (7.4.2), in

this case, Z(m−1/2(s − r), x, v, ~X(s), ~V (s),−m−1/2(s − r)) is bounded. So by the

definition of f̃ 3
i and the boundedness of ∇2Ui, we get that there exists a constant

C > 0 such that

|f̃ 3
i (s, r, x, v)| ≤ Cm1/21[0,2m1/2τ ](|s− r|)1[0,R0+1](|x|).

As the following shows, the term (V2) is also negligible.
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Lemma 7.4.7 limm→0E
Pm

[
sup0≤t≤T |(V 2)|

]
= 0.

Proof. Let

R3(s, r, x, v) = f̃ 3
i (s, r, x, v)− 1

2
∇2Ui(Xi(r̃)− ψ0(m−1/2(s− r), x, v; ~X(r̃)))

·m1/2Z(m−1/2(s− r), x, v, ~X(r̃), ~V (r̃),−m−1/2(s− r)).

Then
(V 2) = (V 21) + (V 22),

with

(V 21) =
∫ t∧σ

0
fV (Xs, Ys)1[4m1/τ,σ](s)

( ∫

R×E
R3(s, r, x, v)(µω − λ)(dr, dx, dv)

)
ds,

(V 22) =
∫ t∧σ

0
fV (Xs, Ys)1[4m1/τ,σ](s)

( ∫

R×E

1

2
∇2Ui(Xi(r̃)− ψ0(m−1/2(s− r), x, v; ~X(r̃)))

·m1/2Z(m−1/2(s− r), x, v, ~X(r̃), ~V (r̃),−m−1/2(s− r))

(µω − λ)(dr, dx, dv)
)
ds.

We first deal with (V 21). For s ∈ [0, T ∧ σ] and |s − r| ≤ 2m1/2τ , we have by
definition |s − r̃| ≤ 4m1/2τ , so by (7.4.2), Lemmas 7.4.6 and 6.3.4, there exists a
constant C > 0 such that

|R3(s, r, x, v)|
=

∣∣∣1
2
∇2Ui(Xi(s)− ψ0(m−1/2(s− r), x, v; ~X(s)))

·m1/2
{
Z(m−1/2(s− r), x, v, ~X(s), ~V (s),−m−1/2(s− r))

−Z(m−1/2(s− r), x, v, ~X(r̃), ~V (r̃),−m−1/2(s− r))
}

+
1

2

{
∇2Ui(Xi(s)− ψ0(m−1/2(s− r), x, v; ~X(s)))

−∇2Ui(Xi(r̃)− ψ0(m−1/2(s− r), x, v; ~X(r̃)))
}

×m1/2Z(m−1/2(s− r), x, v, ~X(r̃), ~V (r̃),−m−1/2(s− r))
∣∣∣

≤ 1

2
‖∇2Ui‖∞m1/2

∣∣∣Z(m−1/2(s− r), x, v, ~X(s), ~V (s),−m−1/2(s− r))

−Z(m−1/2(s− r), x, v, ~X(r̃), ~V (r̃),−m−1/2(s− r))
∣∣∣

+
1

2
‖∇3Ui‖∞

(
|Xi(s)−Xi(r̃)|

+|ψ0(m−1/2(s− r), x, v; ~X(s))− ψ0(m−1/2(s− r), x, v; ~X(r̃))|
)

×m1/2|Z(m−1/2(s− r), x, v, ~X(r̃), ~V (r̃),−m−1/2(s− r))|
≤ Cm1/2(‖ ~X(s)− ~X(r̃)‖+ ‖~V (s)− ~V (r̃)‖).
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Since |~V | ≤ n until σn, we have | ~X(s) − ~X(r̃)| ≤ n|s − r̃| ≤ 4m1/2τn. To estimate

the term for ~V , let

am = 4m1/2τ + EPm

[
sup

0≤u≤T
|ηi(u)|

]
+ (4m1/2τ)1/2

as before. Then by Lemma 5.3.1 (4), bm → 0 as m→ 0. Also, there exists a constant
C > 0 such that

EPm

[
|~V (s)− ~V (r̃)|

]
≤ Cbm, |s− r| ≤ 2m1/2τ.

Actually, since s, r̃ ∈ [0, σ0 ∧ σn], we have by Lemma 5.3.1 (1)

Vi(s)− Vi(r̃) =
1

Mi

( ∫ s

r̃

d

dl
P ∗1i (l)dl + ηi(s)− ηi(r̃) +Mi(s)−Mi(r̃)

)
,

hence by Lemma 5.3.1 (2) and (6.4.2)

EPm

[
|~V (s)− ~V (r̃)|

]

≤ C1

(
|s− r̃|+ EPm

[
sup

0≤u≤T
|ηi(u)|

]
+ EPm [|M(s)−M(r̃)|]

)

≤ C2

(
|s− r̃|+ EPm

[
sup

0≤u≤T
|ηi(u)|

]
+ |s− r̃|1/2

)

≤ C2bm,

which gives us our assertion.
Combining the above and the definition of λ, we get that

EPm

[
sup

0≤t≤T
|(V 21)|

]

≤
∫ T

0
ds‖fV ‖∞EPm

[
1[0,T∧σ](s)

∫

R×E
(Cm+ Cm1/2|~V (s)− ~V (r̃)|)

×1[0,2m1/2τ ](|s− r|)1[0,R0+1](|x|)(µω + λ)(dr, dx, dv)
]

= 2
∫ T

0
ds‖fV ‖∞

∫

R×E
EPm

[
1[0,T∧σ](s)(Cm+ Cm1/2|~V (s)− ~V (r̃)|)

]

×1[0,2m1/2τ ](|s− r|)1[0,R0+1](|x|)λ(dr, dx, dv)

≤ C̃(m1/2 + bm) → 0, as m→ 0.

The term (V 22) is easier. We have
∣∣∣∇2Ui(Xi(r̃)−ψ0(m−1/2(s−r), x, v; ~X(r̃)))

∣∣∣ ≤
‖∇2Ui‖∞1[0,2m1/2τ ](|s− r|)1[0,R0+1](|x|). Also, for s ∈ [0, T ] and |s− r| ≤ 2m1/2τ , we

have that Z(m−1/2(s − r), x, v, ~X(r̃), ~V (r̃),−m−1/2(s − r)) is bounded. Therefore,

since ~X(r̃) is Fr-measurable, by the definition of Poisson point processes and the
definition of λ, we have

EPm

[
sup

0≤t≤T
|(V 21)|

]
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≤
∫ T

0
ds‖fV ‖∞EPm

[∣∣∣
∫

R×E

1

2
∇2Ui(Xi(r̃)− ψ0(m−1/2(s− r), x, v; ~X(r̃))

m1/2Z(m−1/2(s− r), x, v, ~X(r̃), ~V (r̃),−m−1/2(s− r))

(µω(dr, dx, dv)− λ(dr, dx, dv))
∣∣∣
2]1/2

=
∫ T

0
ds‖fV ‖∞

{ ∫

R×E
EPm

[(1

2
∇2Ui(Xi(r̃)− ψ0(m−1/2(s− r), x, v; ~X(r̃))

m1/2Z(m−1/2(s− r), x, v, ~X(r̃), ~V (r̃),−m−1/2(s− r))
)2]

λ(dr, dx, dv)
}1/2

≤
∫ T

0
ds‖fV ‖∞

∫

R×E

(
‖∇2Ui‖∞m1/2C

)2
1[0,R0+1)(|x|)1[0,2m1/2τ)(|s− r|)λ(dr, dx, dv)

≤ C̃m1/2 → 0, as m→ 0.

This completes the proof of Lemma 7.4.7.
Up to now, we have shown that all of the terms of −(II) except

∑N
i=1

1
Mi

(V 1)

are negligible. Notice that in the integral domain of (V 1), we have s ≥ 4m1/2τ .

So if ∇2Ui(Xi(s) − ψ0(m−1/2(s − r), x, v; ~X(s)) 6= 0, then r ≥ 2m1/2τ . If ρ(1
2
|v|2 +∑N

i=1 Ui(x−m−1/2rv−Xi,0)) 6= 0 in addition, then |v| ≥ 2C0 + 1. Therefore, in this
case, |m−1/2rv| ≥ 2τ(2C0 + 1) ≥ R0, hence since x · v = 0, we get |x −m−1/2rv| ≥
R0, which in turn gives us that ρ(1

2
|v|2 +

∑N
i=1 Ui(x −m−1/2rv − Xi,0)) = ρ(1

2
|v|2).

Therefore, by definition,

(V 1)

=
∫ t∧σ

0
fV (Xs, Ys)1[4m1/τ,σ](s)

( ∫

R×E

1

2
∇2Ui(Xi(s)− ψ0(m−1/2(s− r), x, v; ~X(s)))

·m1/2Z(m−1/2(s− r), x, v, ~X(s), ~V (s),−m−1/2(s− r))m−1ρ
(1

2
|v|2

)
drν(dx, dv)

=
∫ t∧σ

0
fV (Xs, Ys)1[4m1/τ,σ](s)

×
( ∫

E

( ∫ +∞

−∞
du

1

2
∇2Ui(Xi(s)− ψ0(u, x, v; ~X(s)))

Z(u, x, v, ~X(s), ~V (s),−u)
)
ρ
(1

2
|v|2

)
ν(dx, dv)

)
,

where in the last equality, we used the change of variable u = m−1/2(s− r) for every
s fixed.

We divide this last expression into two parts again

(V 1) = (V 11) + (V 12),

with

(V 11) =
1

2

∫ t∧σ

0
fV (Xs, Ys)
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( ∫

E

( ∫ +∞

−∞
du∇2Ui(Xi(s)− ψ0(u, x, v; ~X(s)))

Z(u, x, v, ~X(s), ~V (s),−u)
)
ρ
(1

2
|v|2

)
ν(dx, dv)

)
,

(V 12) = −1

2

∫ t∧σ

0
fV (Xs, Ys)1[0,4m1/2τ ](s)

( ∫

E

( ∫ +∞

−∞
du∇2Ui(Xi(s)− ψ0(u, x, v; ~X(s)))

Z(u, x, v, ~X(s), ~V (s),−u)
)
ρ
(1

2
|v|2

)
ν(dx, dv)

)
.

Notice that for s ∈ [0, T ∧ σ], ∇2Ui(Xi(s) − ψ0(u, x, v; ~X(s))) 6= 0 only if |u| ≤ 2τ ,

and Z(u, x, v, ~X(s), ~V (s),−u) is bounded in this domain. So

∫

E

( ∫ +∞

−∞
du∇2Ui(Xi(s)−ψ0(u, x, v; ~X(s)))Z(u, x, v, ~X(s), ~V (s),−u)

)
ρ
(1

2
|v|2

)
ν(dx, dv)

is bounded. Therefore, there exists a constant C > 0 such that

|(V 12)| ≤ Cm1/2.

This completes the proof that the term (II) is converging to −∑N
i=1

1
Mi

(V 11) as
m→ 0.

7.5 Result

Combining Sections 7.1, 7.2, 7.3 and 7.4, and take the limit n →∞ at last (notice
that σn →∞ a.s.), we get the desired Results 1 and 2 in Chapter 1.

Notice that this also gives us Lemma 5.3.4, by considering each time interval
[ηn−1, ξn], with ηn, ξn given by the following. η0 = 0,

ξn = inf{t ≥ ηn−1; ~X(t) ∈ B(suppŨ ,
εf

2
)},

ηn = inf{t ≥ ξn; ~X(t) /∈ B(suppŨ , εf )}, n ≥ 1.

Here εf > 0 is chosen such that suppf ⊂
(
B(suppŨ , 2εf )×RdN

)C
.

Remark 2 In this chapter, we stopped the process at σ0(ω) = inf {t > 0; mini6=j{|Xi(t)−
Xj(t)|−(Ri+Rj)} ≤ 0}, only because we wanted to keep the drift term m−1/2

∫ t∧σ
0 ∇iŨ( ~X(s))ds

equal to 0. However, as shown in the following, if d = 2, then ∇iŨ( ~X) is always 0,
no matter whether mini6=j{|Xi−Xj|− (Ri +Rj)} is positive or not. So for d = 2, we
do not need to stop the process at σ0(ω), and the same argument as in this chapter
gives us the convergence to the diffusion process until any T > 0.
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Actually, for d = 2, by using the same notation as at the end of Section 5.4,
since

∑N
i=1 ‖Ui‖∞ < e0, we have by (5.4.10) that for any x,Xi ∈ R2,

f ′
( N∑

i=1

Ui(Xi − x)
)

= C2

∫ ∞

0
ρ(t)dt,

which is a constant. We write it as C̃2. So by (5.4.8),

∇iŨ( ~X) =
∫

R2
f ′

( N∑

i=1

Ui(Xi − x)
)
∇Ui(Xi − x)dx

= C̃2

∫

R2
∇Ui(Xi − x)dx

= C̃2∇
( ∫

R2
Ui(Xi − x)dx

)
= 0.





Chapter 8

Case of Two Atoms

In this chapter, we consider a special case with two atoms and special potential
functions U1, U2, for d ≥ 3. Precisely, in addition to all of the assumptions in
Chapters 5 ∼ 7, we assume in further from now on that d ≥ 3, and there exist
functions h1, h2 : [0,∞) → R such that

Ui(x) = hi(|x|), i = 1, 2,

and there exists a constant ε0 > 0 such that

(−1)i−1hi(s) > 0, (−1)i−1h′′i (s) > 0, s ∈ (Ri − ε0, Ri), i = 1, 2.

We show that in this special case, as announced in Chapter 1, {( ~X(t), ~V (t))}t

converges to a Markov process as m→ 0.
We first show that in our present setting, the condition of Lemma 5.3.2 is satis-

fied, and that when m→ 0, the distribution of {( ~X(t∧σn), ~V (t∧σn))}t under Pm is

tight in ℘(W̃ d) with the metric function d̃is of W̃ d = C([0,∞);Rd)×D([0,∞);Rd)
given by

d̃is(ω1, ω2) =
∞∑

n=1

2−n
(
1 ∧

(
max
t∈[0,n]

|x1(t)− x2(t)|+ (
∫ n

0
|v1(t)− v2(t)|n)1/n

))

for ωi = (xi(·), vi(·)) ∈ W̃ d, i = 1, 2. We then discuss a little bit more about the
new potentials Ũ . Finally, we use these to show the desired convergence.

8.1 Preparation

Same as before, we only need to make the discussion under condition |Vi| ≤ n, i.e.,
for t ∧ σn, and finally take n→∞.

We first show that the condition of Lemma 5.3.2 is satisfied. Actually, by as-
sumption, we have Ui(x) = hi(|x|), so ∇Ui(x) = x

|x|h
′
i(|x|), hence

∇iŨ( ~X)

106
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=
∫

R2d
∇Ui(Xi − x)ρ

(1

2
|v|2 + U1(X1 − x) + U2(X2 − x)

)
dxdv

=
∫

R2d

Xi − x

|Xi − x|h
′
i(|Xi − x|)ρ

(1

2
|v|2 + U1(X1 − x) + U2(X2 − x)

)
dxdv.

From this, we see easily that for ~X with |X1−X2| < R1 +R2 big enough, ∇iŨ( ~X) is

parallel to X1−X2 in Rd. Moreover, ∇1Ũ( ~X) has the opposite direction as X1−X2,

and ∇2Ũ( ~X) has the same direction as X1−X2 (see Lemma 8.2.2 below for details).

Therefore, if we let g1( ~X) = X2−X1

|X2−X1| , g2( ~X) = X1−X2

|X1−X2| , and letD = {(X1, X2)
∣∣∣|Xi| ≤

|Xi,0|+ nT, |X1 −X2| ≥ R1 +R2 − ε0}. Then since R1 +R2 − ε0 > 0, we have that

g1, g2 ∈ C1
b (D) and gi( ~X) · ∇iŨ( ~X) = |∇iŨ( ~X)| for any x ∈ D. i.e., the condition

of Lemma 5.3.2 is satisfied.
We next give a brief proof of the tightness of {( ~X(t ∧ σn), ~V (t ∧ σn))}t under

Pm as m → 0. The only difficulty is for ~V . We deal with it now. Let Ak = {Yt :∫ T
0 |dYt| ≤ k}, k ∈ N. Then we have by Kusuoka [9, Corollary 8] that Ak is compact

in Lp([0, T ];Rd) with cluster points in D([0, T ];Rd) for any k ∈ N. Also, by Lemma
5.3.2, there exists a constant C > 0 such that

(
Pm ◦

(
m−1/2

∫ ·∧σn

0
∇iŨ( ~X(s))ds

)−1)
(Ak)

= 1− Pm

( ∫ T∧σ

0
m−1/2|∇iŨ( ~X(s))|ds > k

)

≥ 1− 1

k
EPm

[ ∫ T∧σ

0
m−1/2|∇iŨ( ~X(s))|ds

]

≥ 1− C

k
,

which converges to 1 as k → ∞. Therefore, for m → 0, m−1/2
∫ ·∧σn
0 ∇iŨ( ~X(s))ds

under Pm is tight in ℘(D([0,∞);Rd)) with metric of D([0,∞);Rd) derived by d̃is.
Therefore, since by Lemma 5.3.1,

Mi(Vi(t ∧ σ)− Vi(0)) = P ∗0i (t) + P ∗1i −m−1/2
∫ t∧σ

0
∇iŨ( ~X(s))ds,

and the distributions of P ∗0i (t) and P ∗1i under Pm are tight in ℘(D([0,∞);Rd)), we
get the conclusion that form→ 0, {Vi(t∧σn)}t under Pm is tight in ℘(D([0,∞);Rd)).

8.2 The new potential Ũ

As in Section 5.3, let

ρ̃(t) = −
∫ ∞

t
ρ(s)ds,

f(s) =
∫

Rd
ρ̃
(1

2
|v|2 + s

)
dv.
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Then for any d ∈ N, there exists a constant Cd > 0 such that f(s) = Cd

∫∞
0 ρ̃(r +

s)r
d
2
−1dr. Section 5.4 also showed that

Ũ(X1, X2) =
∫

Rd

(
f

(
U1(X1 − x) + U2(X2 − x)

)
− f(0)

)
dx.

Also, let Ũ0 be the constant

Ũ0 =
2∑

i=1

∫

Rd

(
f(Ui(Xi − x))− f(0)

)
dx,

which, as claimed in Section 5.4, is the value of the potential Ũ when X1 and X2

are far enough, precisely, when |X1 −X2| ≥ R1 +R2. Then

Ũ(X1, X2)− Ũ0

=
∫

Rd

{[
f

(
U1(X1 − x) + U2(X2 − x)

)
− f(0)

]

−
[(
f(U1(X1 − x))− f(0)

)
+

(
f(U2(X2 − x))− f(0)

)]}
dx

=
∫

Rd
dx

{ ∫ U1(X1−x)+U2(X2−x)

0
f ′(s)ds−

∫ U1(X1−x)

0
f ′(s)ds−

∫ U2(X2−x)

0
f ′(s)ds

}

=
∫

Rd
dx

{ ∫ U1(X1−x)+U2(X2−x)

U2(X2−x)
f ′(s)ds−

∫ U1(X1−x)

0
f ′(s)ds

}

=
∫

Rd
dx

∫ U1(X1−x)

0

(
f ′(s+ U2(X2 − x))− f ′(s)

)
ds

=
∫

Rd
dx

∫ U1(X1−x)

0
ds

∫ U2(X2−x)

0
f ′′(s+ u)du.

Therefore,

∇1Ũ(X1, X2) =
∫

Rd
dx

∫ U2(X2−x)

0
f ′′(U1(X1 − x) + u)du∇U1(X1 − x). (8.2.1)

Also, notice that the integrand in (8.2.1) is 0 out of

B2 = BX1,X2 = {x ∈ Rd; |x−X1| ≤ R1, |x−X2| ≤ R2},
therefore,

∇1Ũ(X1, X2) =
∫

B2

dx
∫ U2(X2−x)

0
f ′′(U1(X1 − x) + u)du∇U1(X1 − x). (8.2.2)

We will use this expression in the following calculations. First, we have the
following.

Lemma 8.2.1 Let ε ∈ (0, ε0]. Then there exists a Cε > 0 such that for any X1, X2 ∈
Rd satisfying |X1 −X2| ∈ [R1 +R2 − ε,R1 +R2 − ε

2
), we have that

(X1 −X2) · ∇1Ũ(X1, X2) ≤ −Cε, (X1 −X2) · ∇2Ũ(X1, X2) ≥ Cε.
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Proof. Since the proofs are the same, we only show the first assertion.
Notice that for any x ∈ B2, since |X1−X2| ≥ R1+R2−ε, we have that |X1−x| ≥

R1 − ε, |X2 − x| ≥ R2 − ε, hence by our assumption, U1(X1 − x) = h1(|X1 − x|),
U2(X2 − x) = h2(|X2 − x|).

Therefore, by (8.2.2),

∇1Ũ(X1, X2) =
∫

B2

dx
∫ h2(|X2−x|)

0
f ′′(h1(|X1 − x|) + u)duh′1(|X1 − x|) X1 − x

|X1 − x| .

Notice that in this integral domain, (X1 −X2) · X1−x
|X1−x| > 0, and by assumption,

h1(|X1 − x|) > 0, h2(|X2 − x|) < 0,

h′1(|X1 − x|) < 0, h′2(|X2 − x|) > 0.

Also, since d ≥ 3, we have by (5.4.12) that f ′′(s) < 0 for any |s| < e0. Therefore, if
we let

B̃2 = {x; |X1 − x| ≤ R1 − ε

6
, |X2 − x| ≤ R2 − ε

6
} ⊂ B2,

then

−(X1 −X2) · ∇1Ũ(X1, X2)

≥ −
∫

B̃2

dx
∫ h2(|X2−x|)

0
f ′′(h1(|X1 − x|) + u)duh′1(|X1 − x|)(X1 −X2) · X1 − x

|X1 − x| .

For any |s| ≤ ‖U1‖∞ + ‖U2‖∞, we have by (5.4.11) that

−f ′′(s) = Cd(
d

2
− 1)

∫ ∞

e0

ρ(t)(t− s)
d
2
−2dt > 0,

also, −f ′′(·) is continuous in this closed interval. Therefore, there exists a constant
C0 > 0 such that

inf
{
− f ′′(s); |s| ≤ ‖U1‖∞ + ‖U2‖∞

}
≥ C0.

Also, for any x ∈ B̃ε, we have that

|X1 − x| ≥ |X1 −X2| − |X2 − x| ≥ (R1 +R2 − ε)− (R2 − ε

6
) = R1 − 5

6
ε,

i.e., |X1− x| ∈ [R1− 5
6
ε,R1− ε

6
]. In the same way, |X2− x| ∈ [R2− 5

6
ε,R2− ε

6
]. So

by assumption, there exists a constant C1
ε > 0 (which does not depend on x) such

that

h1(|X1 − x|) ≥ C1
ε , h2(|X2 − x|) ≤ −C1

ε ,

h′1(|X1 − x|) ≤ −C1
ε , h′2(|X2 − x|) ≥ C1

ε .
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Also, we have that

(X1 −X2) · X1 − x

|X1 − x| ≥
(R1 +R2 − ε)(R1 − ε)

R1

.

Actually, if we decompose X1 − x into

X1 − x = X1 − x̃+ (x− x̃)

with X1− x̃ ‖ X1−X2 and x− x̃ ⊥ X1−X2, then X2−x = X2− x̃+(x− x̃) is also a
perpendicular decomposition. So R2

2 ≥ |X2− x|2 = |X2− x̃|2 + |x− x̃|2 implies that
|X2− x̃| ≤ R2. Also, |X1−X2| ≥ R1 +R2− ε, So |X1− x̃| ≥ |X1−X2|− |X2− x̃| ≥
(R1 +R2 − ε)−R2 = R1 − ε. Therefore,

(X1 −X2) · X1 − x

|X1 − x| ≥
|X1 −X2| |X1 − x̃|

R1

≥ (R1 +R2 − ε)(R1 − ε)

R1

.

Combining these, we get that

−(X1 −X2) · ∇1Ũ(X1, X2)

≥ −
∫

B̃2

dx
∫ h2(|X2−x|)

0
f ′′(h1(|X1 − x|) + u)duh′1(|X1 − x|)(X1 −X2) · X1 − x

|X1 − x|
≥ C1

εC0C
1
ε

(R1 +R2 − ε)(R1 − ε)

R1

∫

B̃ε

dx,

which gives us our first assertion.
As a corollary of Lemma 8.2.1, we have the following.

Lemma 8.2.2 Let ε ∈ (0, ε0], and let X1, X2 ∈ Rd satisfying |X1 − X2| ∈ [R1 +
R2 − ε,R1 +R2). Then we have that

(X1 −X2) · ∇1Ũ(X1, X2) < 0, (X1 −X2) · ∇2Ũ(X1, X2) > 0.

Also, by Lemma 8.2.1, we get the following as an easy corollary.

COROLLARY 8.2.3 Assume that t1, t2 ∈ [0, σn] satisfy |t1−t2| ≤ ε
4n

, and |X1(t1)−
X2(t1)| ∈ [R1 +R2 − ε,R1 +R2 − ε

2
). Then

−(X1(t2)−X2(t2)) · ∇1Ũ(X1(t1), X2(t1)) ≥ Cε

(
1− ε/2

R1 +R2 − ε

)
.

Proof. By using the general fact that (a,b)
|b|2 ≥ 1 − |a−b|

|b| for any a, b ∈ Rd and

the fact that ∇1Ũ(X1, X2) is parallel to X1 −X2, we get by Lemma 8.2.1 that for
(X̃1, X̃2) near to (X1, X2),

−(X̃1 − X̃2) · ∇1Ũ(X1, X2)

= −(X1 −X2) · ∇1Ũ(X1, X2)
(X̃1 − X̃2, X1 −X2)

|X1 −X2|2

≥ Cε

(
1− |(X̃1 − X̃2)− (X1 −X2)|

|X1 −X2|
)
.
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In particular, under our assumption, we have |X1(t1) − X1(t2)| ≤ n|t1 − t2| ≤ ε
4
,

similarly, |X2(t1)−X2(t2)| ≤ ε
4
. Therefore, by the argument above,

−(X1(t2)−X2(t2)) · ∇1Ũ(X1(t1), X2(t1))

≥ Cε

(
1− |(X1(t2)−X2(t2))− (X1(t1)−X2(t1))|

|X1(t1)−X2(t1)|
)

≥ Cε

(
1− ε/2

R1 +R2 − ε

)
.

8.3 Convergence to Markov process

Let us first recall the following existence and uniqueness theorem of Kusuoka [9,
Theorem 1]. Let Φ : Rd × ∂D → Rd be a smooth map satisfying the following.

(1) Φ(·, x) : Rd → Rd is linear for all x ∈ ∂D,

(2) Φ(v, x) = v for any x ∈ ∂D and v ∈ Tx(∂D), i.e., Φ(v, x) = v if x ∈ ∂D,
v ∈ Rd and v · n(x) = 0,

(3) Φ(Φ(v, x), x) = v for all v ∈ Rd and x ∈ ∂D,

(4) Φ(n(x), x) 6= n(x) for any x ∈ ∂D.

Then Kusuoka [9, Theorem 1] showed the following.

THEOREM 8.3.1 Let (x0, v0) ∈ (D)C×Rd. Then there exists a unique probability
measure µ over W̃ d satisfying the following.

(1) µ(ω(0) = (x0, v0)) = 1,

(2) µ(ω(t) ∈ DC ×Rd, t ∈ [0,∞)) = 1,

(3) For any f ∈ C∞0 ((D)C×Rd), {f(ω(t))−∫ t
0 L0f(w(s))ds; t ≥ 0} is a martingale

under µ(ω),

(4) µ
(
1∂D(x(t))(v(t)− Φ(v(t−), x(t))) = 0 for all t ∈ [0,∞)

)
= 1.

Here ω(·) = (x(·), v(·)) ∈ W̃ d.

By using this, we get the following, which is just a slight variation. Recall that
D0 = {(X1, X2) ∈ R2d; |X1 −X2| > R1 +R2} in our present setting.

THEOREM 8.3.2 There exists a unique probability measure P∞,0 over D([0,∞);R4d)
satisfying the following.
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(1) P∞,0(ω(0) = (x0, v0)) = 1,

(2) P∞,0( ~X(t) ∈ D0, t ∈ [0,∞)) = 1,

(3) For any f ∈ C∞0 (D0 ×R2d), {f( ~X(t), ~V (t))− ∫ t
0(Lf)( ~X(s), ~V (s))ds; t ≥ 0} is

a martingale under P∞,0,

(4) If f ∈ C∞0 (R4d) satisfies

M−1
1 (∇V1f)( ~X, ~V ) · (X1 −X2) +M−1

2 (∇V2f)( ~X, ~V ) · (X2 −X1) = 0

for any ( ~X, ~V ) ∈ ∂D0 ×R2d, then f( ~X(t), ~V (t)) is continuous in t, P∞,0-a.s.,

(5) M1|V1(t)|2 +M2|V2(t)|2 is continuous in t, P∞,0-a.s..

We have already shown in Section 8.1 that {( ~X(t ∧ σn), ~V (t ∧ σn))}t under Pm

is tight as m→ 0. We show from now on that, any cluster point of it satisfies all of
the conditions of Theorem 8.3.2.

That it satisfies (1) is trivial. The fact that it satisfies (3) is nothing but Lemma
5.3.4. So we only need to show that it satisfies (2), (4) and (5).

We show (2) first. Fix any ε > 0 for a while, and let

ξ = ξε = inf{t > 0; |X1(t)−X2(t)| ≤ R1 +R2 − 3

4
ε} ∧ σn ∧ T.

Then (2) is implied if we can show the following.

Lemma 8.3.3 Let ε ∈ (0, ε0] and let ξ be as defined above. Then

lim
m→0

Pm(ξ < T ∧ σn) = 0.

Proof. Notice that if ξ < T ∧ σn, then |X1(ξ)−X2(ξ)| = R1 +R2 − 3
4
ε, hence

|X1(t)−X2(t)| ∈ [R1 +R2 − ε,R1 +R2 − ε

2
], for any t ∈ [ξ − ε

8n
, ξ].

We have by Ito’s formula and Lemma 5.3.1 that

|X1(t)−X2(t)|2

= |X1(0)−X2(0)|2 + 2
∫ t

0
(X1(s)−X2(s))

·
[
M1(s)−M2(s) + η1(s)− η2(s) + P ∗11 (s)− P ∗12 (s)

−m−1/2
∫ s

0

(
∇1Ũ(X1(u), X2(u))−∇2Ũ(X1(u), X2(u))

)
du

]
ds,
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so

(R1 +R2 − 3

4
ε)2 − (R1 +R2 − ε)2

≥ |X1(ξ)−X2(ξ)|2 − |X1(ξ − ε

8n
)−X2(ξ − ε

8n
)|2

= 2
∫ ξ

ξ− ε
8n

(X1(s)−X2(s))

·
[
M1(s)−M2(s) + η1(s)− η2(s) + P ∗11 (s)− P ∗12 (s)

−m−1/2
∫ ξ− ε

8n

0
(∇1Ũ(X1(u), X2(u))−∇2Ũ(X1(u), X2(u)))du

−m−1/2
∫ s

ξ− ε
8n

(∇1Ũ(X1(u), X2(u))−∇2Ũ(X1(u), X2(u)))du
]
ds

≥ −2
∫ ξ

ξ− ε
8n

{
(R1 +R2 − ε

2
)
(
|M1(s)|+ |M2(s)|+ |η1(s)|+ |η2(s)|+ |P ∗11 (s)|+ |P ∗12 (s)|

+m−1/2
∫ T∧σn

0
(|∇1Ũ(X1(u), X2(u))|+ |∇2Ũ(X1(u), X2(u)))|)du

)}
ds

+2m−1/2
∫ ξ

ξ− ε
8n

ds
∫ s

ξ− ε
8n[

− (X1(s)−X2(s)) · (∇1Ũ(X1(u), X2(u))−∇2Ũ(X1(u), X2(u)))
]
du.

Let C1 = (R1 + R2 − ε)2 − (R1 + R2 − 3
4
ε)2 and C2 = ( ε

8n
)2Cε

(
1 − ε/2

R1+R2−ε

)
> 0,

where Cε is the constant given in Lemma 8.2.1 and Corollary 8.2.3. Notice that C1

and C2 depend only on R1 + R2, ε and n, and do not depend on m. Also, write
Ys = |M1(s)| + |M2(s)| + |η1(s)| + |η2(s)| + |P ∗11 (s)| + |P ∗12 (s)|. Then with the help
of Corollary 8.2.3, we get

ξ < T ∧ σn

=⇒
2(R1 +R2 − ε

2
)
∫ ξ

ξ− ε
8n

Ysds+
ε

4n
(R1 +R2 − ε

2
)

×
∫ T∧σn

0
m−1/2(|∇1Ũ(X1(u), X2(u))|+ |∇2Ũ(X1(u), X2(u)))|)du

≥ (R1 +R2 − ε)2 − (R1 +R2 − 3

4
ε)2

+2m−1/2
∫ ξ

ξ− ε
8n

ds
∫ s

ξ− ε
8n

[
− (X1(s)−X2(s))

·(∇1Ũ(X1(u), X2(u))−∇2Ũ(X1(u), X2(u)))
]
du

≥ C1 + 2m−1/2Cε

(
1− ε/2

R1 +R2 − ε

) ∫ ξ

ξ− ε
8n

ds
∫ s

ξ− ε
8n

du

= C1 + 2m−1/2Cε

(
1− ε/2

R1 +R2 − ε

)1

2
(
ε

8n
)2
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= C1 +m−1/2C2.

Let C3 = 2
∫ T
0 EPm [Ys]ds+ ε

4n

∑2
i=1E

Pm

[ ∫ T∧σn
0 m−1/2|∇iŨ(X1(u), X2(u))|du

]
, which

is finite by Lemma 5.3.1 and Lemma 5.3.2. Then the above implies that

Pm(ξ < T ∧ σn)

≤ Pm

(
2(R1 +R2 − ε

2
)
∫ ξ

ξ− ε
8n

Ysds+
ε

4n
(R1 +R2 − ε

2
)

×
∫ T∧σn

0
m−1/2(|∇1Ũ(X1(u), X2(u))|+ |∇2Ũ(X1(u), X2(u)))|)du

≥ C1 +m−1/2C2

)

≤ 1

C1 +m−1/2C2

EPm

[
2(R1 +R2 − ε

2
)
∫ ξ∧σn

ξ− ε
8n

Ysds+
ε

4n
(R1 +R2 − ε

2
)

×
∫ T∧σn

0
m−1/2(|∇1Ũ(X1(u), X2(u))|+ |∇2Ũ(X1(u), X2(u)))|)du

]

≤ 1

C1 +m−1/2C2

(R1 +R2 − ε

2
)C3,

which converges to 0 as m→ 0.
This completes the proof of our assertion.
We next show that the condition (5) of Theorem 8.3.2 is satisfied, i.e.,M1|V1(t)|2+

M2|V2(t)|2 is continuous in t, a.s.’ly, under the limit probability.
We first prepare the following.

Lemma 8.3.4 −∇1Ũ(Y1, Y2) · Y1−Y2

|Y1−Y2| is monotone non-increasing with respect to

|Y1 − Y2| for |Y1 − Y2| ∈ [R1 +R2 − ε0, R1 +R2].

Proof. As in the proof of Lemma 8.2.1, by (8.2.2), we have that in our present
setting,

−∇1Ũ(Y1, Y2) · Y1 − Y2

|Y1 − Y2|
= −

∫

BY1,Y2

dx
∫ h2(|Y2−x|)

0
f ′′(h1(|Y1 − x|) + u)duh′1(|Y1 − x|) Y1 − x

|Y1 − x| ·
Y1 − Y2

|Y1 − Y2| .

Let ̂BY1,Y2 = {(s, t)
∣∣∣∃x ∈ BY1,Y2 , s = |Y1 − x|, t = |Y2 − x|}, and for any (s, t) ∈

̂BY1,Y2 , let α, β, θ be the angles between Y1Y2 and Y1x, Y2Y1 and Y2x, xY1 and
xY2, respectively. Write A = |Y1 − Y2|. Finally, let l(s, t) denote the length of the
hyper-circle {x ∈ Rd; |Y1 − x| = s, |Y2 − x| = t} in Rd−2. Then by using variable
change,

−∇1Ũ(Y1, Y2) · Y1 − Y2

|Y1 − Y2|
=

∫

̂BY1,Y2

dsdt
∫ 0

h2(t)

(
− f ′′(h1(s) + u)

)
du

(
− h′1(s)

)
l(s, t) cosα sin θ.
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Notice that all of the terms above are positive. The integration domain ̂BY1,Y2 is
decreasing with respect to |Y1 − Y2|. Also, for any fixed s and t, the term l(s, t) is
also decreasing with respect to |Y1 − Y2|. Therefore, it is sufficient to show that for
any s, t fixed, cosα sin θ is decreasing with respect to A = |Y1 − Y2|. We shall show
it from now on.

By sine formula, cosα sin θ = A
t

sinα cosα. So it suffices to show thatA sinα cosα
is monotone decreasing with respect to A, or equivalent, is monotone increasing
with respec to α, for α > 0 small enough. It is easy to see that A = s cosα +√
t2 − s2 sin2 α. So

A sinα cosα

= s sinα cos2 α+
√
t2 − s2 sin2 α sinα cosα

= s sinα(1− sin2 α) +
√

(t2 − s2 sin2 α)(1− sin2 α) sin2 α.

Since α > 0 is small enough, we have sin2 α > 0 small enough and monotone
increasing with respect to α. Also, since s/t is near to R1

R2
> 0, there exists an

ε1 > 0 such that functions f1(x) = sx(1 − x2) and f2(x) = (t2 − s2x)(1 − x)x =
t2x(x − 1)(x − s2

t2
) are monotone increasing in x ∈ [0, ε1]. Combining these, we get

the desired increasity of A sinα cosα with respect to α for α > 0 small enough,
equivalent, the decreasity with respect to A.

This completes the proof of our assertion.
Let ξ0 = ξε0 = inf{t > 0; |X1(t)−X2(t)| ≤ R1 + R2 − 3

4
ε0} ∧ σn ∧ T . Then as a

easy result of Lemma 8.3.3, Pm(ξ0 < T ∧ σn) → 0 as m→∞. We next use Lemma
8.3.4 to show the following.

Lemma 8.3.5 limm→0 Pm

( ∫ T∧σn∧ξ0
0 m−1/2

(
Ũ( ~X(s))− Ũ0

)
ds > δ

)
= 0 for any δ >

0.

Proof. By Lemma 8.2.2, we have that −∇1Ũ(Y1, Y2) · Y1−Y2

|Y1−Y2| is positive for

|Y1 − Y2| ∈ [R1 + R2 − ε0, R1 + R2). Also, by Lemma 8.3.4, it is monotone non-
increasing with respec to |Y1−Y2|. Notice that Ũ(X1, X2) = Ũ(X1−X2, 0). So with
a little bit abuse of notation, we can write Ũ(X1, X2) = Ũ(X1−X2). Then we have
that Ũ(X1, X2)− Ũ0 = 0 if |X1−X2| ≥ R1 +R2. Also, for any |X1−X2| < R1 +R2,

we have Ũ
(

R1+R2

|X1−X2|(X1 −X2)
)

= Ũ0, and R1+R2

|X1−X2| + t
(
1− R1+R2

|X1−X2|
)
≥ 1 for t ∈ [0, 1],

hence

Ũ(X1, X2)− Ũ0 = Ũ(X1 −X2)− Ũ
( R1 +R2

|X1 −X2|(X1 −X2)
)

=
∫ 1

0
−∇1Ũ

( R1 +R2

|X1 −X2|(X1 −X2) + t
(
1− R1 +R2

|X1 −X2|
)
(X1 −X2)

)

·
(
− 1 +

R1 +R2

|X1 −X2|
)
(X1 −X2)dt

≤
∫ 1

0
−∇1Ũ(X1 −X2) · (X1 −X2)

(
− 1 +

R1 +R2

|X1 −X2|
)
dt
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= −∇1Ũ(X1 −X2) · (X1 −X2)
(
− 1 +

R1 +R2

|X1 −X2|
)

≤
∣∣∣∇1Ũ(X1 −X2)

∣∣∣|X1 −X2|R1 +R2 − |X1 −X2|
|X1 −X2|

=
∣∣∣∇1Ũ(X1 −X2)

∣∣∣(R1 +R2 − |X1 −X2|).

The first equation in the calculation above also gives us that Ũ(X1, X2) − Ũ0 is
non-negative. Therefore, by Lemma 5.3.2, there exists a constant C > 0 such that
for any ε ∈ (0, 3

4
ε0),

Pm

( ∫ T∧σn∧ξ0

0
m−1/2

(
Ũ( ~X(s))− Ũ0

)
ds > δ

)

≤ Pm

( ∫ T∧σn∧ξ0

0
m−1/2|∇1Ũ(X1(s)−X2(s))|

×(R1 +R2 − |X1(s)−X2(s)|)1{|X1(s)−X2(s)|<R1+R2}ds > δ
)

≤ Pm

(
inf

s∈[0,T∧σn]
|X1(s)−X2(s)| ≤ R1 +R2 − ε

)

+Pm

( ∫ T∧σn∧ξ0

0
m−1/2|∇1Ũ(X1(s)−X2(s))|ds > δ

ε

)

≤ Pm(ξ 4
3
ε < T ∧ σn) +

ε

δ
EPm

[ ∫ T∧σn∧ξ0

0
m−1/2|∇1Ũ(X1(s)−X2(s))|ds

]

≤ Pm(ξ 4
3
ε < T ∧ σn) +

ε

δ
C.

But by Lemma 8.3.3, Pm(ξ 4
3
ε < T ∧ σn) → 0 as m → 0 for any ε > 0. Therefore,

taking first ε > 0 small enough and then m > 0 small enough, we get our assertion.

We are now ready to show that the condition (5) of Theorem 8.3.2 is satisfied.

Lemma 8.3.6 M1|V1(t)|2 + M2|V2(t)|2 is continuous in t almost suely, under the
limit probability.

Proof. Write the limit probability measure as P∞. Let

Hm
s = m−1/2

(
Ũ( ~X(s))− Ũ0

)
+

1

2

2∑

i=1

Mi|Vi(s)|2.

Then we have by Lemma 5.3.2 that under our present setting, (Hm
t∧σn∧ξ0

)t under Pm

is tight in ℘(C([0, T ];Rd)). i.e., there exists a Hs ∈ C([0, T ];Rd) such that

(Hm
s )s under Pm → (Hs)s under P∞

in ℘(C([0, T ];Rd)) as m → 0. Also, as we have shown at the beginning of this
Chapter,

(V 2
i (s))s under Pm → (V 2

i (s))s under P∞.



8.3. CONVERGENCE TO MARKOV PROCESS 117

in ℘(D([0, T ];Rd), d̃ist) as m→ 0. So

(Hm
s − 1

2

2∑

i=1

MiVi(s)
2)s under Pm → (Hs − 1

2

2∑

i=1

MiVi(s)
2)s under P∞

in ℘(D([0, T ];Rd)) as m → 0. However, for any δ > 0, we have by Lemma 8.3.5
that

Pm

( ∫ T∧σn∧ξ0

0
|Hm

s − 1

2

2∑

i=1

MiVi(s)
2|ds > δ

)
→ 0, as m→ 0.

So

P∞
( ∫ T∧σn∧ξ0

0
|Hs − 1

2

2∑

i=1

MiVi(s)
2|ds > δ

)
= 0

for any δ > 0. Also, ξ0 →∞ as m→ 0, hence

∫ T∧σn

0
|Hs − 1

2

2∑

i=1

MiVi(s)
2|ds = 0, P∞ − a.e.

This combined with the continuity of Hs and the fact that σn → ∞ a.e. gives us
that M1|V1(t)|2 +M2|V2(t)|2 is continuous in t P∞-almost surely.

We finally show that the condition (4) of Theorem 8.3.2 is satisfied. The method
is similar to that of the proof of (5).

Let Yi(t) = Vi(t) −M−1
i ηi(t), i = 1, 2, where ηi(t) is as given in Lemma 5.3.1.

Let ~Y (t) = (Y1(t), Y2(t)), and let

Gt = m−1/2
∫ t

0

{
M−1

1 fV1( ~X(s), ~Y (s)) · ∇1Ũ( ~X(s))

+M−1
2 fV2( ~X(s), ~Y (s)) · ∇2Ũ( ~X(s))

}
ds+ f( ~X(t), ~V (t)).

We first show the following.

Lemma 8.3.7 (Gt∧σn)t under Pm is tight in ℘(C([0, T ];Rd)).

Proof. Let
G̃t = Gt − f( ~X(t), ~V (t)) + f( ~X(t), ~Y (t)).

Then
|Gt − G̃t| ≤ ‖fV1‖∞M−1

1 |η1(t)|+ ‖fV2‖∞M−1
2 |η2(t)|.

Therefore, by Lemma 5.3.1 (4), the tightnessness of (Gt∧σn)t under Pm in ℘(C([0, T ];Rd))
is equivalent to the tightnessness of (G̃t∧σn)t under Pm in ℘(C([0, T ];Rd)).

On the other hand, we have by Lemma 5.3.1 and Ito’s formula that

dG̃t = fX1( ~X(t), ~Y (t)) · V1(t)dt+ fX2( ~X(t), ~Y (t)) · V2(t)dt

+M−1
1 fV1( ~X(t), ~Y (t)) · (dM1(t) + dP ∗11 (t))

+M−1
2 fV2( ~X(t), ~Y (t)) · (dM2(t) + dP ∗12 (t)).

So by Lemma 5.3.1 (2), (6.4.2) and Theorem 5.1.7, (G̃t∧σn)t under Pm is tight in
℘(C([0, T ];Rd)). This completes the proof of our assertion.
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Lemma 8.3.8 Suppose that f ∈ C∞0 (R4d) satisfies the condition in (4) of Theorem
8.3.2. Then for any δ > 0, we have that

lim
m→0

Pm

( ∫ T∧σn∧ξ0

0

∣∣∣m−1/2
∫ t

0

{
M−1

1 fV1( ~X(s), ~Y (s)) · ∇1Ũ( ~X(s))

+M−1
2 fV2( ~X(s), ~Y (s)) · ∇2Ũ( ~X(s))

}
ds

∣∣∣dt > δ
)

= 0.

Proof. First notice that ∇iŨ(X1, X2) = 0 if |X1 − X2| > R1 + R2. For any
X1, X2 ∈ Rd with |X1 −X2| ≤ R1 + R2, let X̃i = R1+R2

|X1−X2|Xi, i = 1, 2. Then |X̃1 −
X̃2| = R1 +R2, i.e., X̃ = (X̃1, X̃2) ∈ ∂D0. Also, as shown before, −∇1Ũ(X1, X2) =
∇2Ũ(X1, X2) is parallel with same direction to X1 −X2, so

∇1Ũ(X1, X2) = −|∇1Ũ(X1, X2)|
|X1 −X2| (X1 −X2) = −|∇1Ũ(X1, X2)|

R1 +R2

(X̃1 − X̃2),

∇2Ũ(X1, X2) = +
|∇2Ũ(X1, X2)|
|X1 −X2| (X1 −X2) = +

|∇1Ũ(X1, X2)|
R1 +R2

(X̃1 − X̃2).

So by assumption, for any Y ∈ R2d,

M−1
1 fV1(X̃, Y ) · ∇1Ũ(X1, X2) +M−1

2 fV2(X̃, Y ) · ∇2Ũ(X1, X2)

=
|∇1Ũ(X1, X2)|

R1 +R2

(
−M−1

1 fV1(X̃, Y ) · (X̃1 − X̃2) +M−1
2 fV2(X̃, Y ) · (X̃1 − X̃2)

)

= 0,

hence if we let C1 = M−1
1 ‖fXV1‖∞ ∨M−1

2 ‖fXV2‖∞, then

∣∣∣M−1
1 fV1(X,Y ) · ∇1Ũ(X1, X2) +M−1

2 fV2(X, Y ) · ∇2Ũ(X1, X2)
∣∣∣

=
∣∣∣M−1

1

(
fV1(X, Y )− fV1(X̃, Y )

)
· ∇1Ũ(X1, X2)

+M−1
2

(
fV2(X, Y )− fV2(X̃, Y )

)
· ∇2Ũ(X1, X2)

∣∣∣

≤ M−1
1 ‖fXV1‖∞|X − X̃||∇1Ũ(X1, X2)|+M−1

2 ‖fXV2‖∞|X − X̃||∇2Ũ(X1, X2)|
≤ C1(|∇1Ũ(X1, X2)|+ |∇2Ũ(X1, X2)|)

( R1 +R2

|X1 −X2| − 1
)
|X|.

Let C2 = 2(| ~X0|+ 2nT )(R1 +R2)
−1, and let

C3 = C1C2E
Pm

[ ∫ T∧σn

0
m−1/2(|∇1Ũ( ~X(s))|+ |∇2Ũ( ~X(s))|)ds

]
,

which is finite by Lemma 5.3.2. Then by the calculation above, we have for any
ε ∈ [0, 3

4
ε0 ∧ 1

2
(R1 +R2)), (hence R1 +R2 − ε > 1

2
(R1 +R2)),

Pm

( ∫ T∧σn∧ξ0

0

∣∣∣m−1/2
∫ t

0

{
M−1

1 fV1( ~X(s), ~Y (s)) · ∇1Ũ( ~X(s))
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+M−1
2 fV2( ~X(s), ~Y (s)) · ∇2Ũ( ~X(s))

}
ds

∣∣∣dt > δ
)

≤ Pm

( ∫ T∧σn∧ξ0

0
m−1/2C1(|∇1Ũ( ~X(s))|+ |∇2Ũ( ~X(s))|)

(| ~X0|+ 2nT )
( R1 +R2

|X1(s)−X2(s)| − 1
)
1{|X1(s)−X2(s)|<R1+R2}ds > δ

)

≤ Pm

(
inf

s∈[0,T∧σn]
|X1(s)−X2(s)| ≤ R1 +R2 − ε

)

+Pm

( ∫ T∧σn∧ξ0

0
m−1/2C1(|∇1Ũ( ~X(s))|+ |∇2Ũ( ~X(s))|)ds

> δ
(
| ~X0|+ 2nT )

ε

(R1 +R2)/2

)−1)

≤ Pm(ξ 4
3
ε < T ∧ σn) + C1C2 · ε

δ
EPm

[ ∫ T∧σn∧ξ0

0
m−1/2C1

(∑2
i=1|∇iŨ( ~X(s))|

)
ds

]

≤ Pm(ξ 4
3
ε < T ∧ σn) +

ε

δ
C3.

Since Pm(ξ 4
3
ε < T ∧ σn) → 0 as m → 0 for any ε > 0 by Lemma 8.3.3, we get our

assertion by taking first ε > 0 small enough and then m > 0 small enough.
By using the same argument as in the proof of Lemma 8.3.6, from Lemma 8.3.7

and Lemma 8.3.8, we get the following, which means that the condition (4) of
Theorem 8.3.2 is also satisfied.

Lemma 8.3.9 Assume that f ∈ C∞0 (R4d) satisfies

M−1
1 (∇V1f)( ~X, ~V ) · (X1 −X2) +M−1

2 (∇V2f)( ~X, ~V ) · (X2 −X1) = 0

for any ( ~X, ~V ) ∈ ∂D0 × R2d, then f( ~X(t), ~V (t)) is continuous in t almost suely,
under the limit probability.

This completes the proof of the fact that under our present setting, any cluster
point of the distribution of (Xt, Vt)t under Pm as m→ 0 satisfies all of the conditions
of Theorem 8.3.2. Therefore, by the uniqueness, the distribution of (Xt, Vt)t under
Pm converges to P∞,0 as m→ 0.

Remark 3 The result of this chapter holds only for d ≥ 3. Actually, as remarked at
the end of Chapter 7, when d = 2, the drift term m−1/2

∫ t∧σ
0 ∇iŨ( ~X(s))ds is always

0, so the force of replusion between two atoms, given by the limit of m−1/2∇iŨ( ~X(s)),
is always 0.

The case for d = 1 is even more different. Notice that to keep the two atoms
replusive when |X1 − X2| ∈ (R1 + R2 − ε0, R1 + R2), the only way is to keep the
force −∇1Ũ(X1, X2) · (X1 − X2) positive in this domain. This was also the main
idea of this chapter. However, when d = 1, if we make the same assumption as for
d ≥ 3, then for |X1 − X2| ∈ (R1 + R2 − ε0, R1 + R2), as shown below, the ”limit
force between two atoms”, given by m−1/2∇iŨ(X1, X2), becomes ”attractive force”
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instead of ”repulsive force”. This will certainly cause problem. Actually, by (8.2.2)
(with the set BX1,X2 now given by BX1,X2 = (X1 − R1, X2 + R2) for any X1 > X2

and |X1 −X2| ∈ (R1 +R2 − ε0, R1 +R2)), we have that

−∇1Ũ(X1, X2) · (X1 −X2)

= −
∫

BX1,X2

dx
∫ h2(|X2−x|)

0
f ′′

(
h1(|X1 − x|) + u

)
duh′1(|X1 − x|) X1 − x

|X1 − x| · (X1 −X2).

Since in the present setting, h2(|X2−x|) < 0, h′1(|X1−x|) < 0, X1−x
|X1−x| ·(X1−X2) > 0

and f ′′ > 0 by (5.4.12), we get that −∇1Ũ(X1, X2) · (X1 −X2) is negative, i.e., X1

get the force −∇iŨ( ~X) towards X2.
However, for d = 1, e.g., if we assume that Ui(x) = hi(|x|), and there exists a

constant ε0 > 0 such that hi(s) > 0, h′′i (s) > 0, s ∈ (Ri − ε0, Ri), i = 1, 2, then by
the calculation above, the force will keep ”repulsive”.

Remark 4 Let us consider a little bit more intuitively. Notice that

−∇Ui(Xi − x) · (Xi − x) = −h′i(|Xi − x|) Xi − x

|Xi − x| · (Xi − x)

= −|Xi − x|h′i(|Xi − x|).

So intuitively, for Xi and x with distance in a certain domain, the assumption of
this chapter means the following: one of the two atoms has ”repulsive force” with
the small particles, and the other one has ”attractive force” with the small particles.
The ”attractive” one actually is more troublesome. When the space dimension d is
big enough, since the velocity of a certain small particle could be any direction, even
though it get attracted strongly by a atom when they are near, it can ”escape” within
a short time. In space dimension 2, although not as nice as in the case d ≥ 3, it still
can ”escape” safely. However, when d = 1, all of the particles stay in and move on
only a line, so if there exists a attractive force, it will get no hope to escape. In order
to avoid this situation, we have to have that both of the two forces are repulsive. This
is actually the case we introduced at the end of the last remark.

Certainly, this problem might also be caused by our cutoffs Ui and ρ.
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