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Chapter 1

Introduction

Historically, statistical mechanics and Gibbs measure were derived from thermo-
dynamics and classical mechanics independently. Precisely, one can get statistical
mechanics from physical fundemental equation, Newtonian mechanics, or quantum
mechanics, under Boltzman’s ergodic hypothesis. After the ergodic hypothesis was
introduced by Boltzman, in order the justify it, von Neumann and Birkhoff devel-
oped ergodic theorems.

However, we have to emphasis that, although ergodic hypothesis can justify
Gibbs’ measure, it is not enough to explain all of the phenomena.

It would be a very interesting and important question to derive the results (facts)
of statistical mechanics from classical mechanics or quantum mechanics directly.
However, this is almost not done.

The simpliest example would be Brownian motion. This problem was discussed
by, e.g., Holley [7], Diirr-Goldstein-Lebowitz [3], [4], [5], Calderoni-Diirr-Kusuoka [2],
etc.. Brownion motion was first observed, without knowing the reason, by Brown in
1827, as the irregular motion of a rather big particle which is put into water. This
was later explained by Einstein in the following way: since a big number of water
atoms collide with the big particle randomly, the motion of the big particle could be
considered as a sum of many i.i.d. random variables, so after taking limit, this will
give us a Brownian motion. This is also the explaination given by many physical
textbooks.

However, we have to notice that, in real problems, there exists the possibility of
recollision, moreover, when considering the problem of interaction caused by poten-
tials, the state of each small particle is not independent to the history. Therefore,
the actual motion is not a sum of i.7.d. random variables, and we have to construct
some new model, which includes the mentioned re-interaction. This is the aim of
this research.

Let us describe our problem and results in detail now. Let m > 0, N > 1,
d>1,and My,---, My > 0. Here N stands for the number of big particles (atoms),
My, ---, My for the masses of each atom, m for the mass of the small particles,
and d is the dimension of the space. Let U; € C°(RY), i = 1,---,N. Also, let
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2 CHAPTER 1. INTRODUCTION

Xi0,Vio € R4, i=1,--- N, which stands for the initial positions and initial speeds
of the big particles. For any w € Conf(R? x R?), we consider the infinite system
given by the following ODE (so we are considering the case when there is no direct
interaction between big particles or between small particles):

d
X (tw) =Vt w),

MV (w) = = [ U (1w) 2 (17,0, 0)lde, o),
dt RIxRd
(X™(0,w), V'™ (0,0)) = (Xi0, Vo),  i=1,---,N,

%x(m)(t,m,v,w) = v(m)(t T,0,w),
d
mﬁv(m)(t T,0,w) ZVU t,z,v,w) — Xi(m)(t,w)),

(™0, ,v,w), o™ ><o,x,v,w>> (z,0).

(1.0.1)
Here Conf(R? x RY) means the set of all non-empty closed subsets of R? x R4
which have no cluster point. (See Chapter 2 for more discussion about the structure
of closed sets). We will omit the superscript (m) when there is no risk of confusion.
Let p : R — [0,00) be a continuous function such that p(s) — 0 rapidly as

s — 00. Let )\, be the non-atomic Radon measure on R?¢ x R? given by

N
A (de, dv) = m%p(%w + 3" Uiz — X)) dadv,
=1

and let P,,(dw) be the Poisson point process determined by A,,. So B, is a prob-
ability measure on Conf(R% x R%). (See Chapters 2 and 3 for the definition and
properties of Poisson point process).

We are mostly interested in the following two problems:
1. Existence of the solution.
2. The limit behavior of the distribution of

(X (t,w), VI (t, w))
= (X{"(tw), -, X§ (W), VIt w), -, VM (tw)))

under P, (dw) as m — 0.
For the first problem, we have the following result (see Section 4.3 for details).

Assume that d > 2 and / (1+ |s])%p(s)ds < oo, then there exists a unique solution
to (1.0.1) for Py, -a.s. w.



In order to answer the second question, we need to modify our assumptions a
little bit. Assume that U; € C°(R?) satisty U;(—z) = Uy(z), xr € R4, i=1,--- N,
1/2
and U;(z) = 0 if |z|] > R;. Define constants Cy = (2 >N Ri||VUi||oo) / , ey =
1(2Co+1)?+ 3%, ||Ui]l, and assume that p : R — [0, 00) is a measurable function
satisfying the following.

L. p(s) =0if s < ey,
2. for any ¢ > 0, there exists a p. : R — [0, 00) such that

sup p(s + a) < p(s), for any s € R,

|a|<e

and

1
3 — 2
/d(l + |v| )pc(f2|v| )dv < oo.

Also, assume that the initial position (Xj, -, Xy, ) satifties |X; o—X;o| > R+ R,
for any ¢ # j.

It is easy to check that under this setting, the existence and the uniqueness of
the solution of the considered ODE still holds, i.e., there exists a unique solution
to (1.0.1) for Py, -a.s. w. (See Theorem 5.0.2 for details). Moreover, we have the
convergence result.

To describe the limit process, let us first define some notations. For any X e
R let us consider the following ODE:

£f(t,x,v;)2) = 0(t, z,v; X)

dt (t,2,v; X) = ZVU (t,2,v; X) — X,) (1.0.2)
(#(0, z,v; X),5(0, z, v; X)) = (z,v).

Let

E = {(z,v) € R x (R'\ {0}); = v =0},
E, = {zreR%z-v=0} v e R\ {0},

and let 7(dx;v) be the Lebesgue measure on E,, let v(dx,dv) = |v|v(dx;v)dv.
Define

iR E = REx (R {0}), (5, (2,0) — (2 — 50,0),
and let
Pt x,0; X) = lim f(t—l—s,\lf(s,x,v);)z),

§—00

Pt x,v; X) = lim o(t + s,\IJ(s,x,v);X'),

§—00
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which is well-defined for any t € R and any (x,v) € E. where (Z,0) stands for the
solution of (1.0.2).
Let

aik;jl(i = MM / / ka t x,V; X) Z)dt)

([ w0 %) - Xj)dt)p(;|v]2)u(dx,dv),

and let by : RV — R be the C*-functions given in the following way: Let
z(t,x,v, X,V a) denote the solution of

;iz —z;VQUi(wo(t,x,v,)z) — X)) (z(t) = (t + a)Vy),
(~00) = 52(~00) =0

Then g
Zl(x,v,)z,\?, a) := lim — (t,x,v,)?,‘?,a)

t—oo dt

is a linear function on V. b;,; are determined by

. 11 o B} .
B(X,V) = =5 E(/_wdtV2Ui(¢0(t,x,v,X)—Xi)z(t,x,v,X,V, 1))

1
p(*|v|2)lf(drc,dv)
VA Zzbl Jk
Zk 1j5=1

Let L be the 2nd order differential operator on R?"4 given by

N d 82 N N d

Our convergence results are the following.

RESULT 1 Assume N = 1. Then {(X1(t),Vi(t)),t > 0} converges to the diffusion
in C([0, 00); R*) with generator L as m — 0.

RESULT 2 Assume N > 2. Let

7o(w) = inf {¢ > 0 min{|X,(t) — X,(0)| = (Ri+ Ry)} < 0).

Then {(X(t A 00), V(t A 00)),t > 0} converges to the diffusion with generator L
stopped at oq in C([0,00); R*™N) as m — 0.



RESULT 3 Let N = 2 and d > 3. Assume that there exist functions hy, hy such
that
Ui(x) = hi(|x]), i=1,2,
and there exists a constant €9 > 0 such that
(—1)i71hi(5) > O, (—1)i71h;,(8> > O, S € (Rl — €0, Rl),l = 1, 2.
Then {(X(t),V(t)),t > 0} converges to a Markov process as m — 0.

This article is prepared as a lecture note. We included also some elementary
well-known results, to make it as self-complacency as possible.

In Chapter 2, we review some basic facts about closed sets and Poisson point
processes. In Chapter 3, we prepare some basic facts about classical mechanics,
especially about Hamilton’s equation, Newton’s equation, ray representations, and
classical scattering. (See Reed-Simon [11] for more details about classical scattering
theory). In Chapter 4, we use random fields to prove the P,,-a.s. existence of the
solution for every m > 0. (See also Evstigneev [6] for random fields). Chapter
5 contains some preparation for the proof of convergence, especially, it gives the
decomposition of V;(t) (Lemma 5.3.1) and some properties followed, which are used
in Chapter 7 to prove convergence results 1 and 2. See Chapter 6 for the proof
of these lemmas. Finally, in Chapter 8, we prove Result 3, i.e., we discusss the
example of two big particles with ball symmetric potentials for dimension d > 3, and
show that under certain conditions, as m — 0, the phase process {(X(t),V(t)),t >
0} converges to the Markov process given as the "reflecting diffusion process with
generator L”.

We emphasis again that as mentioned at the beginning of this chapter, in our
present problem, the forces at any fixed time are not independent to the history.
Therefore, since both the big particles and the small ”environment” particles are
changing, the system is very complicated and difficult to be handled. Our basic
idea for the proof of convergence is that, although all of the particles are moving
all the time, since the mass of big particles are very big compared with the small
particles, when considering the scattering of the small particles, we can use the
approximation that the big particles are fixed, with the caused error small enough.
With the help of this approximation, the ODE for the motion of small particles
could be approximated by the one in which the big particles are ”fixed”. This will
certainly make our life easier. (See Chapters 5 ~ 7 for more details).

Also, we want to remark that, for any fixed m > 0, although V;(t) is continuous
with respect to ¢ (since it is described by the ODE (1.0.1), our martingale part M;(t)
in the decomposition of V;(t) (see Lemma 5.3.1) does not need to be continuous. The
only thing we can say is that the jumps of it are dominated by some constant times
m*2, (see Lemma 5.3.1). This is also one of our ideas: use the martingale theorem
only to the part for which it is usable, for the remaining term, instead of trying to
deal with it in detail, we show that the whole term is negligible as m — 0 from the
beginning.






Chapter 2

Closed Sets in Polish Spaces

2.1 Structure of measurable

Let M be a Polish space, i.e., a separable complete metric space. Also, let O(M)
denote the family of all non-empty closed subsets of M.

DEFINITION 2.1.1 (1) Let & denote the o-algebra on O(M) generated by
{{CeOM);CNG=0};G is open in M}.

(2) Let & denote the o-algebra on O(M) generated by {{C € O(M);C C G}; G is open in M}.
PROPOSITION 2.1.2 &) C &;.

Before giving the proof of Proposition 2.1.2, let us prepare some notations. For
any subset A C M and r > 0, we define

(A), ={zx € M;dist(x,A) <r}.

Also, we write
B(z,r) = ({«}), = {y € M;dist(z,y) <r},

which is an open set.
Proof of Proposition 2.1.2. Let G be any open set. Then for any C' € O(M),

CNG=0 < Ccag®
& C C(GY)y, for any n > 1,

{CeOM);CNG =0}
= ﬁ {C € OM);C C (G}

n=1

€ 517



2.1. STRUCTURE OF MEASURABLE 7

which implies our assertion. 1
We define several more notations. Let

Comp(M) = {C e O(M);C is compact},
Conf(M) = {C € O(M);C has no cluster point},
Fin(M) = {CeO(M);i(C) < oo}

PROPOSITION 2.1.3 For any closed set K C M, we have that
{CeOM);C C K} €é&.
Proof. This is easy since O C K +—= CN K¢ = (). 1
PROPOSITION 2.1.4 Comp(M) € &.

Proof. First note that
C € O(M) is compact <= C'is closed and totally bounded.

Now choose and fix a sequence {z,}°; such that it is dense in M. (This is
possible since M is separable). Then we have

C € Comp(M)
<~ (Ce€O(M)and"Vn >1,9m >1,s.t.C C U B(xg, 1/n)".

Therefore, by Proposition 2.1.3,

Comp(M) = (U {C € 0(M);C ¢ Uy Bl T/m) )

n=1 m=1

e &.

PROPOSITION 2.1.5 We have {C € O(M);4(C) <n} € & for anyn € N.

Proof. Choose and fix a sequence {x,}2, such that it is dense in M. (As
before, this is possible since M is separable).
Claim.

{C € O(M);4(C) < n}

ﬂ U {C’GO(M);C’C OB(xki,l/f)}.

11<k1 < <kn i=1
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Proof of Claim. The ”C” side is easy. We show the 7 D 7 side in the following.
Suppose §(C) > n + 1. Then there exist yi,-- -, yp41 € C with dist(y;,y;) > 0 for
any i # j. Choose ¢ € N such that

(]

— < mindist(y;,y;)-

Then there do NOT exist xy,, -, zg, such that C C UL, B(x,, 1/¢). This com-
pletes the proof of the claim.
Now, Proposition 2.1.5 is easy by Claim and Proposition 2.1.4. 1

COROLLARY 2.1.6 Fin(M) € &,

PROPOSITION 2.1.7 Suppose that M s locally compact in addition. Then
Conf(M) € &.

Proof. Since M is locally compact, for any x € M, there exists a r, > 0 such
that B(x,r,) is compact. We take r, > 0 as the largest possible number less than 1,
i.e., r, = sup{r < 1: B(z,r,) is compact}. Also, since M is separable, there exists
a sequence {x, },en such that it is dense in M.

We have that M = U,enB(x,,7r2,). Actually, if not, then there exists a y € M
such that y ¢ B(x,,r,,) for any n € N. Since {z, },en is dense in M, there exists
a subsequence n;, such that x,, — y as k — oo. Therefore, there exists a K € N
such that =, € B(y,r,/2) for any k > K. So by the definition of r,, , we get that
Ty, > Ty/2. Therefore, y ¢ B(xy,,7,,, ) implies y ¢ B(wx,,,7,/2), in other words,
Tp, ¢ B(y,r,/2) for any k > K. This contradicts with the fact that z,, — y.

It is easy to see that

O(M)\ Conf(M)

Il
3

{C € O(M); B(xy,rz,) N C has infinitely many elements}.
1

S
Il

Actually, the ”"D” part is trivial. For the "C” part, choose any C € O(M) \
Conf(M), we only need to show that there exists a £ € N such that B(zg,7,,)NC
has infinitely many elements. Since C' € O(M) \ Conf(M), there exists (at least
one) a € M such that a is a cluster point of C. So B(a,r,) N C has infinitely many
elements. On the other hand, the fact that U, B(x,,r,,) = M D B(a,r,) combined
with the compactness of B(a,r,) implies that there exists am € N and nq,---,n,, €
N such that U, B(wy,, 72, ) D Bl(a,14), hence U2, (B(xm, rmnl)ﬂC') D Bla,r,)NC.
Therefore, there exists at least one [ € {1,---,m} such that B(xy,,7s, ) N C has
infinitely many elements.
Therefore, by the Claim in the proof of Proposition 2.1.5,

O(M)\ Conf(M)
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Il
s

——
Q
m

O(M); 4(B(w4,74,) N C) > m}

i
181 De
C
D)

Il
fat

H
~
I

L
3
A
A
o
3

{C € O(M);CNB(xy,ry,)N (@ B(xy,, 1/0))¢ # (Z)}

e &.

2.2 Castaing’s axiom of choice
Let (€2, F) be a measurable space through out this section.

DEFINITION 2.2.1 A map ' : Q — O(M) is said to be measurable if it is F|Ey-
measurable.

Also, we use the following notation: for any A C M, let
(A ={we TN(w)NA#0D}.

PROPOSITION 2.2.2 T': Q — O(M) is measurable if and only if I~ (G) € F
for all open G.

Proof. This is easy since

()
= T7'({C e OM);CNG £0Y)
I1({C € O(M);CNG = 0})°.

PROPOSITION 2.2.3 Suppose that T : Q@ — O(M) is measurable. Then there
exists a measurable v :  — M such that

Y(w) € I'(w), for all w € Q.

Proof. In general, if dis a complete metric in M, then

d(z,y) :=d(z,y) N1, x,y € M,

is also a complete metric in M. Therefore, without loss of generality, we may and
do assume that

sup d(z,y) < 1.
z,yeM
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Also, since M is separable, there exists a sequence {z,}>°, such that it is dense in
M.

In the following, we construct a sequence of measurable maps ~, : 2 — M,
n > 0, that satisfies the following:

d(Yh-1 (W), W (w)) < 2-*=2)
{ Bg’m(w), 21“) NT(w) #0, k>0,we. (2.2.1)

We construct it inductively. First let vo(w) = zo. Next, when g, --,~, are given
with (2.2.1) hold for & = 1,---,n, we define 7,4, in the following way such that it
also satisfies (2.2.1). For any m > 0, let

E, = {we€Q;B(x,2 ") NT(w) # 0},
Frn = {weQmw) € Blam, 27" V),
and let G,, = E,, N F,,,. Then E,, = I™*(B(z,,, 2~ ™)) € F by Proposition 2.2.2,

F, = v, (B(2p, 2= ™V)) € F since v, is measurable. Therefore, G,, € F. For any
w € 0, we have by inductive condition that there exists a y € I'(w) such that

dist(yn(w),y) < 27" (2.2.2)
Also, since {x,}22, is dense in M, there exists a x, such that
dist(y,zg) < 27D, (2.2.3)

hence
B(xzg, 2~ ") N T(w) # 0.

Moreover, by (2.2.2) and (2.2.3), we have that
Yn(w) € B(xg, 2771,
These give us that w € Gy. Therefore, Uy,_y G, = (2. Let
Gi) - GO7
G;n—l—l = Gnr1 \ (UiLoGi)-
Then {G], }m>0 are disjoint to each other, and
UG, =
m=0

Define
Va1 (W) = T, fwedG, m=01,2---,

Then it is easy to check by the definition of Gy, that 7,41 also satisfies (2.2.1) with
k =n + 1. This completes our definition of 7, : Q — M, n > 0, inductively.

For any w, {7,(w)}n>0 is a Cauchy sequence by definition, so there exists a limit
Y(w) = lim, o Yn(w), and

A(y(w), T(w)) = lim d(y,(w), D(w)) = 0.

Since I'(w) is closed, this implies that y(w) € I'(w), w € Q. 1
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THEOREM 2.2.4 (Castaing) Suppose that I : Q@ — O(M) is measurable. Then
there exists a sequence of measureable maps v, : 0 — M, n € N, such that

(1) y(w) eT(w), weQ,

(2) {m(w);n e N} =T(w), we.

Proof. Let {z,},en be a dense set in M (This is possible since M is separable).
Also, for any n,m € N, let

I'w)NB(z,,27™), ifwel(B(x,,2™™)),
INw), otherwise.

Lym(w) = {
Then for any open G C M, we have that

(M) ™(G)
= {we T, n(lw) NG #0}
= {we QT nw) NG # 0}
= I""(B(z,,27™)NG) U (I7(G)\T " (B(xn,27™)))

e F.

So by Proposition 2.2.2, I, ,,, : @ — O(M) is measurable. Therefore, by Proposition
2.2.3, there exists a measurable map 7, ,,, : {2 — M such that

%‘L,m(w) € Fn,m(w) C F(w), w € Q.

Next, we show that the second condition of the theorem is also satisfied. Actually,

for any w € Q, z € I'(w) and m > 1, since {x, }nen is dense in M, there exists a z,
such that

d(x,,r) < 27" (2.2.4)

This gives us that T'(w)NB(x,,2 ™) # 0, so by definition, w € I'"%(B(x,, 2 ™1)).
Hence by the definition of T i1, Dpms1(w) = T'(w) N B(z,,27™1). Therefore,
Yomi1(@) € Tpmer(w) implies that vy, my1(w) € B(z,,27™71), ie.,
A(Zp, Ynme1(w)) < g—m-1
This combined with (2.2.4) gives us that
d(z, Yo me1(w)) <27™.

Therefore,

{Ynm(w);n,m € N} =I'(w).
This completes the proof by re-ordering {7V, m(w) }nmen- 1
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2.3 Measures determined by elements of Conf(M)

THEOREM 2.3.1 Let M be a locally compact space. For any w € Conf(M), let
1o be the measure on M given by

po(A) =twnA),  AeB(M).

Then for any measurable f : M — [0,00), we have that the map
Conf(M) = [0,00), wi— [ fdu.
M

18 measurable.

Proof. Let
Q=Conf(M), F=&

Conf(M)

Then (2, F) is a measurable space, and the map
Q- O0M),w+—w

is measurable. Also, let A be a point that does not belong to M.
By Castaing’s Theorem 2.2.4, there exists a sequence of measurable maps {~, :
Q) — M},en such that

{mm(w);ne N} =w

for any w € Q. Since w € Q2 = Conf(M), we have by definition that w has no cluster
point. Therefore, the equation above implies that

{M(w);n € N} = w, we .
Define 7, : Q — M U {A} by

A otherwise.

)

T(w) = { Tn(w), if yu(w) # w(w) for k=1,---,n—1,

Then 7, is also measurable.
For any measurable f : M — [0, 00), define

FMUa} =) o fo) - {
Then f is also measurable. Therefore,

[ fane = 3 TG = ¥ 1

TEW

is also measurable.
This completes the proof. 1
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2.4 Poisson point process

THEOREM 2.4.1 Let M be a locally compact space, and let v be a o-finite non-

atomic Radon measure on M. Then there exists a unique probability measure P, on

(Conf(M), gO‘Conf(M)> such that

(1) The distribution of p,(A) under P,(dw) is the Poisson distribution with mean
v(A) for any A € B(M),

(2) for any compact sets Ky, ---, K, C M that are disjoint to each other, we have
that {u,(K;);i=1,---,n} are independent under P,(dw).

Proof. We consider the case with v(M) = oco. The case of ¥(M) < oo can be
done in the similar way and is easier.

Let vy be the Lebesgue measure on ((0,00),B((0,00))). Then there exist sets
Ay € B((0,00)), Ay € B(M) and a one-to-one onto bi-measurable ¢ : Ay — A; such
that

1o((0,00) \ Ag) =0, v(M\ A;) =0,
oy Y(BNA)=v(BNA), for any B € B(M).

Such a map exists. Actually, as well-known, a complete seperable metric space with
a complete regular Borel probability measure on it is a Lebesgue space, i.e., is a mea-
surable space that is measurablely isomephic to the real line (or a bounded interval)
with the usual Lebesgue measure plus countablely many atoms. (See, e.g., Ikeda-
Watanabe [8, p. 13] and Parthasarathy [10, section 1.2] for details). Since v has no
atom by assumption, we get that there exists a bijection f: M — {0, 1}N 2 (0, 00)
such that f is B(M)/B((0, 00))-measurable and f~! is B((0, 00))/B(M )-measurable.
After converted the problem into the one on positive real numbers, the remaining is
easy.

Let (Q,JE, f’) be a new probability space, and let X;,i € N, be i.i.d. random
variables on it with distribution e *dx, x > 0. Also, let S,, = X7 +---+ X,,. Then
S,(@) — o0, P-a.s.. Let C(@) = {S,(@);n € N}. Then C(@) € Conf((0,0)),
P-a.s.. Also, we have that

1. pic(z)(A) is the Poisson distribution with mean vy(A) for any A € B((0, 00)),

2.if Ay,---, Ay € B((0,00)) are disjoint to each other, then jq g (4i), @ =
1,---,n, are independent.

In particular, C(@) C Ag, P-a.s., and p(C(@)) € Conf(M), P-a.s.. Let

P,(B) = P({& € Conf((0,00)): #(C(@)) € B}).
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We show that this P, satisfies the desired conditions. For any A € B(M) and k € N,
let B={w e Conf(M),t(wnA)=k}. Then since ¢ is one-to-one, we have

P,({w: ps(A) = k}) = P,(B)
({@: p(C@)) € BY)
({&: #(p(C@)) N A) = k})
= P({@:4(C@)ne ' (A) = k})
({& : o) (@' (A) = k}).

Therefore, the distribution of pu,(A) under P, is the same as the distribution of
tie@) (e~ (A)) under P, which by definition, is equal to the Poisson distribution
with mean vy(p~'(A)) = v(A). This gives us that the defined P, satisfies the first
desired condition. The fact that it also satisfies the second condition can by shown
in exactly the same way, and we omit it here. This completes the proof of the

existence. The uniqueness property is easy by definition. 1



Chapter 3

Classical Mechanics

3.1 Hamilton’s equation

Let H : R¥xR% — R, (¢, p) — H(q,p) be a smooth function satisfying the following:

a -H, 3‘2 H,i=1,--- N, are globally Lipschitz continuous.

Consider the following equation:

#d'(t)
D' (t) = ( ();p(t)% i=1--,N,
(CI(O)»Z?(O)) (40, p0) € R? x R,
and write the solution of it as (q(t),p(t)) = ®(t,qo,po). Then & : R x R x R? —
= ®(t,-)

R? x R is a smooth operator, ®;(-) := ®(¢, ) is a diffeomorphism on R x R¢, and
by definition,

d
—H(®(t
dt ( (7QOap0))

N
OH d . OH d .
= —(P(¢ —q'(t Pt ‘(t
> { Gor () 1 0) + 5000t a0 0) 0
= ()7
i.e., H(®(t, g0, po)) = H(qo, po) for any ¢ > 0.
Also, by the uniqueness of the solution, it is easy to see that the flow {®;},

satisfies
b, 0D, = Py, for any ¢, s > 0. (3.1.1)

Let w =YY dq¢’ A dp'. Then

d
7(b*
ar

15
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= Zd( tqp)/\dp"(t,q,pHZdQ(tqp)Ad(jt (t,q,p))

i=1

N
Il
—

) Adp'(t,q,p) — dg'(t, ¢, p) A d(gg(@(q,p)))}-

So

d .
%étwt 0
N N 82 ) N 02

= X (X

i=1  j=1

i
J
559 -dg +§:ap3(9 Ldp?) A dp

2H . N 9*H

— dq' N\ dg’ + —
Zq (Zaaaqq ;apzaqz

= 0.

dpj)

Therefore, by (3.1.1),
d ., L d
70w = &) (-

hence ®;w = w. In the same way, we have that

*
drw

s:O) - 0’

drwt = .

Therefore,

O (f(q,p)dg" A -+ Adg* Adp' A - A dp?)
= [(®uq,p))dg" A--- A dg® Adpt A - A dp?.

This gives us the following important formula:

[ F@ap)dadp= [ f(q.p)dadp.
RexR RexR

3.2 Newton’s equation

Let N>1,d>1,U € C(R¥) and M; >0,i=1,---,N.
Let us consider the following Newton’s equation:
Mut v(t) = -V,U(@(t), i=1--,N, (3.2.1)
(£(0), 7(0)) = (29, v9) € R?*,

and write the solution as
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We first see the relation with Hamilton’s equation. Let H : R®Y x R — R be
the function given by

H(@.5) = Y. gy ol + U (@.

= 2M;

Hamilton’s equation in Section 3.1 now becomes

d i — 1
{dﬂvw—mm@7 | 22
pi(t) = -V,U(q(t), i=1,---,N.
Let
vi(t) = ]\2]%(15)’ z;(t) = qi(t). (3.2.3)

Then the fact (g, p) satisfies Hamilton’s equation (3.2.2) implies that (7, ¢)) given by
(3.2.3) satisfies Newton’s equation (3.2.1) (with initial condition (gp, (Milpm, e ﬁpON))'

Let ®(t,q,7) = (q(t),p(t)), the solution of Hamilton equation (3.2.2). Also, let
O : R¥N — RN be the map given by

O :R* - R*™ (47.2) = (4, (21, -+, 2n)) — (7, (My21, -+, My2y)).
Then we have the following relation
O(t, 7,7) = O Y(D(t, O(F,7))).
This combined with the results of Section 3.1 gives us the following.
THEOREM 3.2.1 (1) Let E(Z,7) = § >, My|v;|* + U(Z). Then

E(®(t,7,v)) = E(Z,7), for any t > 0.
(2) For any measurable f: R?**N — [0, 00), we have that

[ F@ 7 0)azdT = [ f(@0)dids
R2dN

R2d4N

As a result, we get the following.

THEOREM 3.2.2 For any measurable f : R**N — [0,00) and p : R — [0, 00),
we have that

[ T T (B, )dTdT = [ (7, D)p(E(F. 7))dzds.

R2dN
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3.3 Ray representation
Let d > 1. For any v € R?\ {0}, let E, € R? be the hyperplane given by
E,={zxcR%2 v=0},
and let 7(dz;v) be the Riemannian volume on E,. Also, let
B = {(z,0) € RY x R\ {0});2 v = 0},

and let
U:R x E— R*x (R\ {0}), (t,(z,v)) — (z — tv,v).

Then U is one-to-one and onto.
Note that for any measurable f : R¢ — [0, 00), we have that

/Rd f(z)dx
= /RXEU f(x — s|v| 'v)dsi(dz; v)

— /RE Flo — to)o|dto(da; v),
where in the last line, we used the variable change s = t|v|. Let
v(dz,dv) = |v|v(dz;v)dv.
Then the above gives us the following.

THEOREM 3.3.1 For any measurable f : R** — [0, 00), we have that

/R?d f(z,v)drdy = / f(U(t, z,v))dtv(dx, dv).

RxFE

3.4 Classical scattering

Fori=1,---,N, choose U; € C°(R%). Then there exist R; > 0 such that U;(x) = 0
if || > Ry, i=1,---,N.
Choose any X = (X1, -+, Xy) € (RY)Y and fix it for a while. Let

Let M; =1,7i=1,---,N, for a while. Then the function E in Theorem 3.2.1 is
now given by

~ ~ —

|
E(z,v) = E(z,v; X) =U(z; X) + 5]1}]2.
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Newton’s equation now becomes

La(t) = v(t),
%v( )= —=VU(z; X)
2(0),v(0)) = (z0,v9) € R*.

Write the solution as

—

G(t; 20, v0) = B(t; w0, v0; X) = (x(t),v(t)) = (&°(t; 20, v0), ' (t; w0, vy)).

Let
R(X)=max{R; + |X;;i=1,---, N},

R(X)
[v]

and let sy = . Then for any (z,v) € E, we have (notice that z-v = 0 by

definition of E)

ogrli |z — (so +u)v+rv] = ogrliu |z — spv — (u — 1)V
> solvo] = R(X), u>0,
hence by assumption,
P(u, ¥(sp + u,z,v)) = (x — sov,v) = V(sg,x,v), u >0,
which implies that

ot + so+ u, ¥(sp + u,x,v))
= @(t+ s0,o(u, ¥(so + u,z,v)))
= P(t + s0,¥(s0,7,v)), teR,u>0.

That is,
Bt + 5, U(s,2,0)) = Gt + 0, U(s0,7,0)),  for any 5 > so,

or equivalently, to say that @(t + s, ¥ (s, x,v)) is independent to s as long as s > sg.
Let N
Ut 2, v) = lIm ot + s ¥(s, 2,0))( = @t + so; U (so, 7,v))). (3.4.1)

Also, let

_ {QiRiHVUiHOO}I/Q

i=1
PROPOSITION 3.4.1 Suppose |v| > 2Cy. Then

o' (t, 2, v) - (Jv] ') > Cy, foranyt € R,x € E,,.
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Proof. Notice that @'(0,2,v) = v. Write n = |v|'v. Then by assumption,
v-n=|v] >2C,. Let
=inf{t >0; @' (t,z,v) -n<Cy}.

We show that 7 = +o0.
Suppose 71 < +o00. Then ¢! (7, x,v) - n = Cy. By definition, we have

t
(@(ta.v) = (s v) - = [ Fu0) ndu
> Colt — s, forany 0 < s <t <,

which implies that
d
pr (&t z,0)-n) > Co,  0<t<m, (3.4.2)

In particular, 4 (&°(¢,z,v) - 1) > 0 for 0 < ¢ < 71. Also, since

' (m, z,v) —v——/ ZVU Ot z,v) — X;)dt,
we have by definition that
—/ ZVU Ot, z,v) — X;) -ndt = @ (11, 2,0) - —v-n < Cy— 20y = —Cj.
Therefore, with the help of (3.4.2), we have

Co < / ZVU Ot z,v) — X;) - ndt

< Z/ ‘VU (t,z,v) — Xi)-n‘~jt(g50(t,x,v)~n)dt
_ Z/e[oﬁ] o n VULt 2,v) - X;) .n’.i<¢0(t,x,v)-n) dt
< S Ivui S (# a0 Xoon) dt

0 =1

te[0,m], |0 (taw)n—X sl <R; dl
1 N
< & 2 IIVUl<2R;
Co S
= 007
which makes a contradiction. Therefore, 71 = +o0, i.e., ' (¢, z,v) - (Jv| *v) > C; for

any t > 0.
The assertion for ¢ < 0 can be shown in the same way by considering

T2 = SUP{t < 0 ﬁl(t,l’ﬂ» < CO}
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COROLLARY 3.4.2 Let (z,v) € E with |v| > 2Cy. Then

‘Jo(t,aj,v) - X;

>R, i=1-N

ift > 20, 'R(X) ort < —Cy'R(X).

Proof. Choose and fix any (z,v) € E with |v| > 2Cy, and let n = |v|~'v. Then
since x - v = 0, we have that

Vs, z,v) - n=(x—sv) -n=—sv-n=—s|v] for any s > 0.

-

Let so = & ag before. Then sy < C5 'R(X), and

o]

3200, W(so, z,v)) -1 = WOsp, x,v) - ) = —so|v| = —R(X). (3.4.3)

Moreover, by definition (3.4.1) of 0,

W(t,z,v) = @t + so, V(so, x,0v)). (3.4.4)

Also, [¥!(sg, x,v)| = |v] > 2Cy by assumption. Combining (3.4.4), Proposition 3.4.1
and (3.4.3), we get

'Jo(tha U) N = ﬁo(t + 50, \I/(So, I‘,U)) "N
t+so
= /O @l(u,\ll(so,x,v)) 'ndu+¢0<07‘1/<807'r7v)) N

> (t+50)Co — R(X), for any t > —sq.
In particular, if ¢ > 20511%()?), then
VOt 2, v) - > (t+ 50)Co — R(X) > R(X).
In the same way, if ¢ < —C; 'R(X), then t + sy < 0, s0

&O(t’xu U) "= @0@ + So, \IJ(SOa I7U)) /i
0
= - @1(u7\11(80,$,v)) 'ndU‘f—@O(O,\IJ(SQ,x,U)) N

(t+s0)
< =Co - (=(t + s0)) — R(X)
< —R(X).
This completes the proof of our assertion. 1

Let
1 ,
0 = 5(2Co + 1) + 3 [Uille-

i=1
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COROLLARY 3.4.3 Suppose E(m,v) > eg. Then |v| > 2Cy. In particular,
St U (s, z,v)) - (Jv] 1) > Co, for any s,t € R,x € E,,

and
|2°(t, 2, v)| — oo, ast — o0.

Proof. Since E(z,v) > e, we have by definition
1 N
§|U|2 + Z UZ(I‘ — Xz) > €g.
i=1

Therefore, by definition of e,
[v]* > 4C3,

which implies that
‘/U‘ > 200

The second assertion follows then by Proposition 3.4.1. The last assertion is now
easy since by the second assertion,

4
dt

where we used the notation n = |v]™!v. 1

(&t 2,v) - m) = @'(t,2,0) - > Cy >0,

PROPOSITION 3.4.4 Let p: R — [0,00) be a measurable function satisfying
p(s) =0, for any s < eq.

Then for any measurable f: R* — [0, 00), we have
[, @ v)p(B,v))dads
N /E (/OO f@(t%“))dt) P(;IUF)V(dx,dv). (3.4.5)

—00

Proof. By using convergence theorem if necessary, we may and do assume,
without loss of generality, that there exists a constant R > 0 such that

supp(f) C {(z,v); |z| + v < R}.

Let N .
T =2C; (R + R(X)).

By Theorem 3.2.2 and Theorem 3.3.1, we have
/R2d f($’ ’U)[J(E(QJ, ’U))dxdv
- /Rgd F@(T, z,0))p(E(z, v))dzdy

= /RxEf(sE(T>‘If(t,x,v)))p(E(‘P(t,x,v)))dtu(da;,dv). (3.4.6)
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Therefore, it suffices for us to show that the right hand side of (3.4.6) is equal to

[M; FOAT ~t,z, v))p(;|v|2)dty(dx, dv).

We only need to show that the integrands are equal, i.e., it suffices to show that

FB(T, Wt 2, 0))p(E(W(t,2,0))) = f(&(T ~ tww))ﬂ(;IUIQ)- (3.4.7)

We show it from now on. We first show that if the left hand side above is not 0,
then it is equal to the right hand side. Assume that f(5(7, ¥ (¢, O)P(E(U(t, 2,0))) #
0. Then p(E(¥(t,z,v))) > 0 implies by our assumption that E(¥(t,z,v)) > eg, so
by Corollary 3.4.3, |v| > 2C} and

()51<Sv \Il(taaj?U)) "N > CO

for any s € R, where n = |v|"'v. Therefore, since (@°, ¢') is the solution of the
Newton’s equation, we have by definition that

(T, (L, z,v)) — \Ilo(t,w,v))-n

(2
[
[

(s, W (t, x,v))ds -

as?
@' (s, U (t,x,v)) - nds
> T-Cy=2(R+ R(X)), (3.4.8)

by the definition of T
We also have f(o(T, V(t,z,v))) > 0 in addtion, which gives us

BT, Wt 2,0)) -] < [E(T, Wt 2, 0)| + @ (T, W(t2,0) S R (349)

Combine (3.4.8) with (3.4.9), and notice that z - v = 0 since (z,v) € E, and we get
by the definition of n that

R+2R(X) < —=U°(t,z,v) - = (x — tv) - n = tv], (3.4.10)

hence t > R+2|R‘( %) > sg. So by the definition (3.4.1) of ¥, we get
(T =t 0)=@(T —t+t,(t,z,v) = @(T,U(t,z,v)).

Also, (3.4.10) gives us that [¥(¢,z,v)| = |z — tv] > R(X), so by the definition of E,
we also get

B0(t, 2,0)) = ;W.

This completes the proof of the fact that if the left hand side of (3.4.7) is not 0,
then it is equal to the right hand side.
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‘We next show the opposite, i.e., we assume that the right hand side of (3.4.7),
f(T — t,x,v))p(%|v\2), is not 0, and show that it is equal to the left hand side,

F(@(T,U(t,z,0)p(E(U(t,x,v))). It is sufficient to show that t > so(= %)‘())

—

(Actually, if ¢ > sg, then by using = - v = 0, we get |z — tv| > t|v| > R(X), hence

E(V(t,z,v)) = 3|v|* by definition. Also, since t > sg, we have by (3.4.1) that
(T —t,z,0) = @(T —t+t,U(t,z,0)) = G(T, (¢, x,v)), which will complete our
proof). Since p(3|v|*) > 0, we have £|v|? > 2CZ, hence |v] > 2Cj, which implies by
Corollary 3.4.3 that

@' (u, U(s,2,v))-n > Cy (3.4.11)

for any u,s € R and z € E,. If t > T, then by definition of T', since |v| > 2Cy, we
have .
R(X)

t>T=
[l

= S0-

5{)(1% +R(X)) > |;4|<§ +R(X)) >

If t < T, then we have by (3.4.11) and the definition of T" that for any r > 0
(@O(T —t+7r,U(r,z,v)) - V(r 2, v)) -1
= /OT_HT &' (u, U (r,z,v)) - ndu
> (T—t+71) -Cy=2R+2R(X)+ (r —t)Co.
Also, since f(@(T —t,x,v)) > 0, we have
1T —t,z,0)| + [OHT — t,z,0)| < R.
Therefore, we have for any r > sq
GUT —t+7,U(r,z,v)| = |W°(T —t,z,v)| < R.

Combining these two inequalities, we get

(rlv] =) = ¥O(r,z,0) - > R+ 2R(X) + (r — t)Cy, for any r > sq.

Applying the above to r = so(=

]

~ —

R(X) > R+ 2R(X) + (so — t)Co.

Therefore, t > sg. This completes our proof. 1



Chapter 4

Random Field

4.1 Filtering

Let M be a Polish space and let (2, B, P) be a complete probability space. Define
N={AeB;P(A)=0or 1}.

DEFINITION 4.1.1 F = {F¢; G is a open set in M} is called an increasing o-
algebre, if

(1) Fo is a sub-o-algebra of B for any open set G C M,
(2) X C Fg for any open set G C M,
(3) Fg, C Fg, for any open sets G1 C G.
From now on, we choose and fix an increasing o-algebra F = {F¢}.

DEFINITION 4.1.2 A subset A C M is called F-regular if it satisfies the follow-
ing condition: for any sequence of open sets G, n € N, satisfying G1 D Gy D G3 D
< if Gy D A° for anyn € N, and A D N2, G, then Fao = N2, Fa, -

PROPOSITION 4.1.3 If A is F-regular, then for any A’ satisfying A° C A’ C A,
we have that A’ is also F-regular.

DEFINITION 4.1.4 A map T : Q — O(M) is called a F-stopping time, if
(1) T is B/Ey-measurable,
(2) {w e Q;T(w) C G} € Fg for any F-regular open set G.
DEFINITION 4.1.5 For any F-stopping time T : Q — O(M), we define

Fr={A e B;An{T C G} € Fg for any open and F-reqular subset G} .

25
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PROPOSITION 4.1.6 Let S and T be two Fg-stopping times satisfying

S(w) C T(w), for all w € Q.

Then
Fq C Fr.

Proof. This is easy since by condition,

AN{T Cc G} = An{S CG}n{T C G}.

DEFINITION 4.1.7 C s said to be a F-reqular covering if
(1) CCcO(M), and UC = M,

(2) #(C) < o0,

(3) Up_, Cr and (Up—, Cy)¢ are F-regular for anyn > 1 and C4, - -

For any F-regular covering C and any K € O(M), we define

(Kle = {C e C;KNC #0}.

PROPOSITION 4.1.8 Let C be a F-regular covering. Then
(1) [K]e D K for any closed K,

(2) [Kle € G < K C [G°]c" for any open G and closed K.

-, C, eC.

Proof. The first assertion is trivial. We show the second one. Notice that

[K]CCG
<= forany C € C,KNC # () implies C C G

= for any C € C,CNGY # ) implies KN C =0

— [G c K©.

This completes the proof.

PROPOSITION 4.1.9 LetC be a F-reqular covering and T be a F-stopping time.

Then [T)c is also a F-stopping time.
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Proof. By definition, we only need to show that
{[Te C G} € Fa

for any open set G.
For any such G, we have that [G]S is open, and by Proposition 4.1.8, since T
is a F-stopping time,

{[T]e € G} ={T C [G°J¢} € Fgerg-

Also, since G¢ C [G%]¢ by Proposition 4.1.8, we have G D [G]S. Therefore, by the
definition of increasing o-algebra, we get ]:[Go]g C Fq. These give us our assertion.

1

DEFINITION 4.1.10 We call {C,}32, a good sequence if
(1) C, is a regular covering for any n > 1,
(2) for any C € Cyy1, there exists a C' € C,, such that C C (',
(3) Moy [Ke, = K for any K € O(M).

PROPOSITION 4.1.11 Let C, be a good sequence and T be a F-stopping time.
Then

(1) Firie, 18 monotone non-increasing with respect to n,
(2) Fr = ﬂﬁ”:l ',F[T]cn'
Proof. First notice that for any n € N, we have by definition

(Kle,., C [Kle,, for any closed K.

n+1
This combined with Proposition 4.1.6 gives us our first assertion.

Also, since T(w) C [T'(w)]e, for any w € €2, we have by Proposition 4.1.6
:FTCF[T]cn, n > 1.

So to show the second assertion, it suffices to show that (72, F7j. C Fr. Choose
any A € ;2 Fir)e, and any regular open set G. Define

[ ]Cn7
= [(Kn)1/mle,,.
where we used the notation B, = {x € M;dist(z,B) < e}, BC M. Then G,,,, is

also open regular by definition and Proposition 4.1.3, since C is a regular covering.
Also, by the definition of good sequence, we have for any n, ¢ > 1,

ﬂ n,m C ﬂ 1/Z (Kn)l/Z
m=1

m>1
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Since K, is closed, this implies that N;-_; G\, C K,. On the other hand, for any
m € N, since [(K,)1/mlen D (Kn)iym, we have G = [(Kp)1/mlé. D (Kp)i/m D
K,,. Combining the above, we get

hence
N Gum=[)EK.=G. (4.1.1)
n,m=1 n=1

Notice that since K, is monotone non-increasing with respect to n, we have that
Gom O Gpm for any n,m € N with m > n. Also, for any m < n, we have
by definition Gy = [(K4)1/mle, D [(Kn)i/mle, D [(Kn)1/m)é, = Gnn- Therefore,
(4.1.1) becomes

N Gunn =G. (4.1.2)
n=1

Also notice that G, is monotone non-increasing with respect to n, and G,,,, O G.
Therefore, since G is regular, (4.1.2) implies

N Fa... = Fe- (4.1.3)
n=1

Now, for any n € N, since
T CG=[Tle, C[Gle, = Ku C G,

we have

AnN{T c G} = An{T Cc G} n{[T)c, C Gnn}-

But AN {[Tle, C Gnn} C Fa,, since A € Fipy, , and {T' C G} € Fo C Fq,.,.-

Cn’?

Therefore,
AN{T Cc G} € Fa,.., for any n > 1.
So by (4.1.3),
An{T c G} € N Fa,.. = Fe for any open regular G,
n=1

hence A € Fr. This is true for any A € "2, Frye, - So NoZy Firye, € Fr-
This completes the proof of the second assertion. 1
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4.2 Poisson point process

Let M be a locally compact Polish space, let v be a o-finite Radon measure on
(M, B(M)) with no atom, and let P, denote the Poisson point process on Con f(M)
with intensity measure v. (See Section 2.4 for the definition of the notations). We
also define Q = Conf(M), F = 50‘ and P = P,. Then (2, F,P) is a
complete probability space.

For any A € B(M), define

Conf(M)’

Xaw) = po(4),  we,

and
Fa=0{Xg; K is compact and K C A} VX.

It is trivial that {F4|A is open} is an increasing o-algebra.

PROPOSITION 4.2.1 (1) Let Ay, Ay € B(M) with Ay C As. Then Xy, is
Fa,-measurable, and the distribution of X, is the Poisson distribution with
mean v(Ay).

(2) If Ay,---, A, € B(M) are disjoint with each other, then Xa,,---,Xa, are

independent.
(3) If Ay, Ay € B(M), then Fa,ua, = Fa, V Fa,.
(4) If A1, Ay € B(M) and Ay N Ay =0, then Fa, and Fa, are independent.
Proof. Just notice that
Xa(w) = py(A) = sup{ Xk (w); K is compact and K C A},

which is easy to be checked by considering first the case v¥(A) < oo then the general
case. Our assertion is now easy from Theorem 2.4.1. 1

PROPOSITION 4.2.2 [f A C M satisfies v(0A) = 0, then A is regular.

Proof. First, since v(0A) = 0 by assumption, we have that Xk has mean 0 for
any K C 0A. So Fga C N. Therefore, by Proposition 4.2.1,

fZ:on\/faA:on,

hence

B = ./’:'Z\/ f(z)c =Fpo V f‘(z)c.

Let {G,}nen be any sequence of monotone decreasing open sets satisfying

G, D A, N G, C A
n=1
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We show that Fao D o2 Far
First,

for any n > 1. So

(0 7) (0 )
n=1 m=1
c \_/1 {FazV Fane} = \_/115’ — B

Also, it is easy to see that Fg- D F4o for any n € N, hence

) Fo= D Fae. (4.2.3)

n=1

On the other hand, it is easy to see that
ﬁ F&- and i; .7:((7”)0 are independent.
m=1 n=1
This combined with (4.2.1), (4.2.2) and (4.2.3) gives us that
Fao D ﬁ Faos

n=1

which completes the proof. 1
PROPOSITION 4.2.3 There exists a good sequence.

Proof. Since M is separable, there exists a sequence {x,},en that is dense in
M. Let
R, = sup{r > 0;v(B(z,,7)) < 00} A L.

Then R, > 0, n > 1. For any n > 1, there are at most countablely many r € (0, R,,)
such that v(0B(z,,r)) > 0, so there exists a sequence {7,m}o_; such that it is
dense in (0, R,,) and v(0B(zp, 7mm)) = 0. Let

Bn,m,() = B<5Bna Tn,m)a
Bn,m,l =M \ B(xn, rn,m)7
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and let
N
CN - { m anm:in,m; in,m == O or 1} .
n,m=1

Then {Cn}%_; is a good sequence. In order to say so, we only need to check that
it satisfies all of the three conditions of Definition 4.1.10. We do it in the following.
The fact that C,, is a regular covering is trivial by definition and Proposition 4.2.2.
The second condition is also satisfied trivially. We show in the following that the
third one is also satisfied, i.e., for any K € O(M), we show that N,",[K]¢, D K.
Suppose not. Then there exists a © ¢ K and x € [K]¢, = U{C € Cy : KNC # (I}
for any N € N. Since K is closed, the fact x ¢ K gives us that there exists an
e > 0 such that B(z,e) N K = (. Also, the latter condition gives us that for any
N € N, there exists a family {i)\,, € {0,1}},,_; such that x € mﬁmlen,m,iﬁ,m and
ﬁﬁxm:an’m’iﬁrm N K # (). Since {x,}, is dense in M, there exists a sub-sequence
ny such that 7xnk — x as k — oo, hence there exists a K € N such that for any
k > K, we have B(zy,,5) N K = (. Also, since x,, converges, it is easy to see
that infy r,, > 0. Without loss of generality, we assume that this positive number
is greater than £. So since {R,,}p—; is dense in (0, R,), there exists a sequence
Tngmy, Such that 7, ., — 7 as k — oo. Then for k& € N large enough, we have

B(Zpy, Tnym, ) NV K = 0. Therefore, the condition By, NI # () implies that

iy = 1 for k large enough. So the condition x € B

- now becomes

nkvmkvié\[k,mk
T € By my,.1, hence v & B(xp,, Tnym,) O B(wn,, g) for any k large enough, which
contridicts with the fact that z,, — x. This gives us that N2, [K]c, D K, and

completes our proof. 1

In the second half of this section, let us discuss about strong Markov property.

Same as before, let M be a locally compact Polish space, let v be a o-finite Radon
measure with no atom, and let P, denote the Poisson point process on Conf(M)
with intensity measure v. Define

Fo=o0{v(A);Aec B(M),AC G} VX
THEOREM 4.2.4 Let T be a {Fg}-stopping time. Then
(1) po(ANT(w)) and v(ANT(w)) are Fr-measurable for any A € B(M),

(2) For any A; € B(M), i=1,---,m, disjoint with each other, we have that

EP {exp(\/—_li Ein(A; \ T))’]:T}

= exp(O (VT — (A4 \T)), P, —as.

=1

Proof. Let C, be a good sequence, which exists by Proposition 4.2.3. Also, for
any n € N, let T,, = [T¢,. Then T,,, n € N, are also stopping times by Proposition
4.1.9, and satisty T,, | T" as n — oo.
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Fix any n € N for a while. We have §(C,,) < oo by definition. Also, we have in

general that there exists an € > 0 such that
K,K'e€C,KJK = KJ (K)..
Therefore, for any K € C, and G open with K C G, we have
{T,, c K} ={T, C (K)-NG} € Fik).na C Fa-

The part ”€” in the equation above is easy since T, is a stopping time and (K
is open. We show the ”=" part. It is easy that {T,, ¢ K} C {T,, C (K

)-
We show that the opposite one also holds. Actually, by the definition of T,

U{C € C,; T NC # 0}, so with the help of (4.2.4),

T, C(K)NG
= T, C (K).
= for any C € C, satisfying TN C # ), we have C C (K).
= for any C € C, satisfying TN C # (), we have C C K
= T, C K,

i.e., {T,, C (K). NG} C{T, C K}. This gives us our assertion.
By using this fact, for any B € Fr,,, we have that

Bn{T,c K} =Bn{T, C (K).NG} € Fg,

)eN
N
T,

therefore,
BT, =K} = (Bn{T, C K})\ U (BN{T, c K'}) € Fe.
K'eCp,K'CK,K'#K
Claim.

B [eXp(\/—_li &t A\ T0))| Fr |
= (LT~ Dr(A\T). P - as.
j=1
Proof of Claim. For any B € Fr, , we have by Proposition 4.2.1
B™ (1 exp(VT Y. (4, \ T.)
= ¥ e/ T L4\ T, BN (T = K]

KeC,

— 3 B expl \/_Zauw A3\ K)), BT, = K}

KeCyp

(4.2.4)

nG
G}
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= lim " E"[exp( \/_Zgjuw \ (K).)), BN AT, = K}|

0 gec,
- i exp@(eﬁff — (4, \ (K))) (B ({T, = K))
= KZ(; E ”[1Bexp(§(€ﬁj Jw(A;\ K), T, K}
- EP [1 exp(i(eﬁ@ —1Dv(A;\ Tn)}

Also, in general, for any A € B(M), we have
v(ANT,) = > v(ANK)lg -k},
KeC,

SO

]-{TnCG}V(Aan) = Z V(AﬂK)l{Tn:K},
KeCn,KCG

which is Fg-measurable. In the same way, 17, caypw(A N T,) is Fe-measurable.
Therefore,
po(ANT,) and v(ANT,) are Fr, -measurable. (4.2.5)

As a result,

v(A4;\T) = v(4;) —v(A;NT,)

is also JFrp, -measurable. This completes the proof of our Claim.

Let n — oo in (4.2.5), and we get the first assertion of our Theorem by Propo-
sition 4.1.11.

Also, for any B € Fr, we have by our Claim that

E[1p exp(v=1 i &io(A\ T))]

= i B[y exp(v 1Y (A, \ 1)

j=1

- [1Bexp§: V718 — Du(A;\ T)].

This completes the proof of our Theorem. 1

COROLLARY 4.2.5 (1) Let f : M — [0,00) be measurable and let S be a
stopping time. Then

E[/S(w) fdu] = E[/S(w) fav).
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(2) Let f: M — [0,00) be measurable and S, T' be two stopping times satisfying
(i) T(w) C S(w) for any w € €,
(i) B[ fse) | fldv] < oo,

Then

E[/S(w) f(dp — dv)|Fr] = E[/T( f(dp, — dv)].

Proof. First, for A € B(M) with v(A) < oo, we have by Theorem 4.2.4 that

w)

Elja(A\ 8)|Fs] = v(A\ S)

So for any f that can be expressed as f = >_7_; apla, with a; > 0 and v(A;) < oo,
we have

B[, JalFs] = [ pav

M\S

hence

B| /M fu|Fs] = /M\S fdv+ /S . (4.2.6)

Also, it is easy by definition that

B /M fdu] = /M Fdv.

E[/S(w) fln] = E[[S(w) fav).

This gives us our first assertion by monotone convergence theorem.
Also, for any measureable f : M — [0, 00) satisfying [,, fdv < oo, by monotone
convergence theorem, we also get from (4.2.6) that

So

E[/M f(dp — dv)| Fs) = /SM F(dp — dv).
Therefore,

B /S o )| Fr]
- E[E[/M f(dp, — dv)|Fs]| 7]
= | /M f(dp, — dv)|F]

= FE )f(duw—du).

T(w

This completes the proof of our corollary. 1
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4.3 Existence of solution for ODE of infinite par-
ticle system

In this section, we prove the a.s. existence of the solution of the considered ODE.
(See Sinai [12], [13] for some related results).

As claimed in Chapter 1,let N > 1, d>2 m >0and M; >0,i=1,---,N.
Also, let U; € C5°(RY), and let R; be constants such that U;(z) > 0 if |z| > R;,
i=1,---,N. Forany X;o,Vip € R4 i=1,--- N, and w € Conf(R*), we consider
the following equation given in Chapter 1:

iX-(t' w) = Vi(t;w)

dt
M;— i V tw) /VU —z(t, x, v;w)) py (de, dv)
(Xi(0;w), Vi(0;w)) = (Xz,o,Vl,o)
(4.3.1)
ax(t,x,v;w) =v(t,x,v;w)
mjtv(t T, U;w) ZVU (t,z,v;w) — X;(t;w))

(@(0, 2, v:), (0,7, ;) = (. 0)
It is easy to see that if w € Fin(R?), then (4.3.1) has a unique solution

(X (t;w), V(t;w)), (x(t, 2, v;w), v(t, 7, v;w)).

Let p: R — [0,00) be a measurable function satisfying the following:

Assumption. / (1+]s))%p(s)ds < 0.
Notice that for any ¢ € R and a > 0, since d > 2, we have o + g —12>0,so0
L 0P ol + ydo
R
= Cd/ r? p(zr + )t tdr
= Cdm/ s (s + c)ds
0
Cdm/ s — [>T p(s)ds

< Cam [ el + s p(s)ds (4.3.2)

IN

for some constants Cy, Cy, > 0 independent to ¢, where when passing to the third
line, we used the change of variable s = 272, So

d
/Rd |v|2ap(%|v\2 + c)dv < 00, if0<a< 5T 1. (4.3.3)
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Let
d—1 m, o N
A (d, dv) = mTp<§|U| + > Ui(w = Xi))ddv,
i=1
and let Py, be the Poisson point process on Con f(R??) with intensity \,,.
THEOREM 4.3.1 There exists a unique solution to (4.53.1) for Py, -a.s. w.

Proof. Fix any 7' > 0. We only need to show the existence and the uniqueness
for t € [0,T]. For any open subset G of R*, we define

Oc : Conf(R*) — Conf(R*); w Og(w)=wnG.
Then 0 is & /E-measurable. Let

Ro = maX (|X270| + RZ + 1),

=1

and let
Gn = {(z,v) € R*;|z| < Ry +nT + |v|T}.

Let C; = N, ||Ui|lso- Then since
{; (z,v) € G} = 24 Ry +nT + T|v|)* < 44 Ry + nT)* + 49T |v|?,
we have by (4.3.2) and our Assumption

d—1

m~ 2z A\n(Gp)
m N

- /G IO(EIUP_"ZUi(-T—XZ’,o))dde

" i=1

N
< /|z§Ro p(%’UP + ZUz(x — X@',O))d&?dv + P(%Mz)dxdv
< (2R0)dcdm/ (Cl —|—| |)%’1p< )ds
+4% Ry + nT) / (% v )dv+4de/ 0| p( 0] )

< (2Re)'Cypm / (Cy+ )2~

Gn{|z|>Ro}

Yp(s)ds
+49(Ry + nT)Cy / T 15|37 p(s)ds + 49T, / 15 p(s)ds

< Q.
Let 0,, = 0, . Since §(0g,w) = 1, (G,) by definition, we have
EPn [8(06,0)] = An(G) < o0,

hence
Oc,w € Fin(R*), a.s. —w. (4.3.4)
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Therefore, (X (t,0,w), V(t,0,w)) is well-defined for a.s.-w.
Next, for any w € Fin(R??) and t € [0, 7], we define

1
— 2d' ) — . e 1 . — . —
Si(w) = {(z,v) e R*Ji=1,--- N, s.t.,orggt\Xz(s,w) (x 4+ sv)| < R; + 2}.

Claim. For any open set G and w € Fin(R??), we have

Proof of the Claim. Choose and fix any w € Fin(R2?). We first show {S;(w) C
G} C {Si(cw) C G}. Notice that by definition,

(z,v) ¢ Sp(w)
e Xi(s,0) — (2t s0)| > Ri+;, Vs [0,fi=1,- N

— z(s,v,r;w) =x+sv, v(s,v,z;w)=v, Vse€]|0,t]
So
(z,v) & Si(w)

= | Xi(s;w) — x(s,z,v;w)| > R; + ;, Vs e [0,t],i=1,--- N
= VU(Xi(s;w) —x(s,z,v;w)) =0, Vsel0,t]. (4.3.5)
Moreover, it is trivial that
(x,v) € G = py,(dz, dv) = pg,w(dz, dv). (4.3.6)
(4.3.5) and (4.3.6) combined with the definition (4.3.1) imply
Si(w) € G = (X(s,w),V(s,w)) = (X(s,00w),V(s,0cw)), Vsel0,t], (4.3.7)
(as long as w € Fin(R?)). Therefore,

The opposite one can be seen in exactly the same way. This completes the proof of
our Claim.
We next deal with general w € Conf(R?). Define

Fo = U{ecw} V N,
Then by (4.3.4) and the last Claim,

{8i(0,w) C G} = {Si(0g,ncw) C G}, a.s.,
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so by the definition of F., {S;(0,w) C G} € Fg,n¢ C Fg, i-e.,
Si(0pw) is a {Fg}-stopping time.
Let
To(w) = inf{t > 0; _max_ |Vi(t,0pw)| > n} AT.

We first show that the desired solution is well-defined if 7,,(w) = T for some

n € N. Notice that
Th(w) =T = Sp(0,w) C G,.

Actually, if 7,(w) = T, then |V;(t,0,w)] < n forany 0 <t < T andi=1,---,N,
so by the first equation of (4.3.1), | X;(s, 0,G)| < nT + | X, | for any 0 < s < T and
i=1,---,N. Also, if (z,v) ¢ G, then |x| > Ry +nT + |v|T, so |z + sv| > Ry +nT
for any 0 < s < T. Therefore, | X;(s,0,G) — (x + sv)| > R;, i.e., (z,v) ¢ Sr(0,G).
This gives us that Sr(f,w) C G,, under the assumption 7, (w) = T.

Also, we have in the same way as in the proof of the Claim that

{Si(Opw) C G} = {S:(O,w) C Gy}, for any k > n.
Therefore, if 7,,(w) = T, then we have by (4.3.7)
(X (t, 0hw), V (¢, Ohw)) = (X (L, 0,w), V (¢, 0,w)), V¢ € [0,T],
so we can define
(X(t,w), V(t,w)) = (X(t,0,w), V(t,0,w)),
(x(t, z,v,w),v(t,z,v,w)) = (z(t,z,v, 0,w),v(t, x,v, 0,w)),
which exists for a.s.-w by (4.3.4). Then (X(t,w),V(t,w), z(t, z,v,w), v(t, z,v,w))
satisfies (4.3.1).
Notice that 7,(w) = T = 7,,41(w) = T'. Therefore, to complete the proof of our

theorem, it suffices to show that

o0

P( U{Tn:T}) =

n=1

We show it from now on.
For any 0,w € Fin(R??), we have by the invariance of energy

Z M|V (t, 0,0)]% + / v(t, z, v, 0,w)|* e, o (dx, dv)
+Z/ i(t,0,w) — x(t, z,v,0,w)) e, w(dx, dv)

N

= 2 GMlViol + 5 / 17110, dv)

+Z/ Ui(Xi0 — @) o, (dz, dv).
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If (z,v) & Si(0,w), then |X;(s,0,w) — (z + sv)| > R; + 3 for any s € [0,¢] and
i=1,---,N,soby (4.3.1), v(t, x,v,0,w) = v and U;( X;(t, O,w) —x(t, x,v,0,w)) = 0.
Therefore, the equation above implies

N1 m
> —Mi]Vi(t, Opw)|* + — [o(t, z,v, 0,w)|* o, o (dx, dv)
i:1 2 St(ﬁnw)
+Z/ i(t,0,w) — x(t, 2,0, 0,wW)) e, w(dx, dv)
St(6nw)

N
> SMilViol? + / NEETCERD
z':l

z ooy Ui Xi0 = )t ).

So there exist constants C,Cy > 0 such that

—_

M;|Vi(t, 0,0)|?

™ =

2

=1

N
ZM Viol? —f—QZ Uil oo 46,00 (St (0rw))
=1 i=1

m

-
I

A
l\')\H

— v w(dz, dv
5 St(enw)\ 1?6, )

Co+Ci [ (1+[0P)pug,uldz, dv)

t\Unw

IN

— O+ C /S oy 162 (20 ), d). (4.3.8)
Let FV = Nes0 FSiso(0nw), 0 <t < T. Then {Ft(n)}te[o,T) is a filtration, and 7, is a
{ft(n)}te[o,T)—stopping time. Let

M™ _/S(G L (2, 0) (L o) (o (@, dv) = A (der, dv)).

Then {Mt(n)}te[o,T) is a {E(")}te[quﬂ)—martingale with mean 0. Actually, we have
that S;(#,w) is monotone non-decreasing with respect to ¢, also, since |{z; (z,v) €
G} = 24 Ry + nT + T|v|)¢ and there exists a constant C' > 0 (depending on Ry,
n,T, d) such that 2¢(Ry + nT + T|v))4(1 + [v|?) < C(1 + |[v]**?), we get by (4.3.2)
and our Assumption

1—d

1d 2
m2 /R% lg, (z,v)(1 + |v]*) A (dz, dv)

< /|x|g30(1+‘“| (% ]v|2+ZU X,0))dadv
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m
+ 14 o) o =v|?)dxd
oy L1 )o( ol derdo

= /|gg|<R0 dr /Rd(l + ]0]2);)(@@‘2 + ;Uz(l‘ — Xi,0)>dfu
+ [+ I ) p(F ) de
(2R Can [~ [(C+1s)F "+ (Cy + 1) o(s)ds

+C’C’dm/ “ |2 + |s] }p(s)ds

IN

< o0,

1.€.,

/ la, (z,v) (1 + |v[*) A (dz, dv) < oo
R2d
So Corollary 4.2.5 gives us that {Mt(n)}te[O,T) is a {ft(n)}te[o’T)—martingale with mean

0.
Hence E[M(™] = 0. So by (4.3.8),

N

1
> §Mz’EUVi(Tn,9nw)|Q]
=1

< Co+ ClE[ o) la, (2,0)(1 + |v[*) A (dz, dv)}.
St (Onw
Therefore, with C5 := (min %)™, we have
Plr, <T] = P[._rnax |Vi(7, Opw)| > n] (4.3.9)
02

< {Z S M| Vi(T, Opw))| ]

n2

2
< ﬁ@cﬁ ECQCHE[/S 16, (2,0)(1 + [0*) A (da, dv)|. (4.3.10)

™ (an)

Notice that by definition, A, (dz,dv) = p(%|v|*)dzdv if |z| > Ry. Also, there
exist constants C{), C] > 0 such that

{z € RY (x,v) € Sy(0,w)}|
1
= {zeR%3i=1,---,N, s.t.,omin |z + sv — X;(s,0,w)| < R; + §}|

= {zeR%3i=1,---,N,st., mln |x+/ Vi(r,0,w))dr| < R; + }|
!/ /
< Go+ Cillol + N%lgéwz(sa@nw)!)-
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Moreover, |V;(t,0,w)| < nift € [0,7,]. Therefore, by Assumption and (4.3.3), there
exist constants C{/, C{ > 0 such that

1 1+ [v]*) A (d, d
Lo g 1o 0 (U o An(dr )

n

< / (1 + [02) A (da, dv)
|z[<Ro

d—1

s [ (et + o) € R (2.0) € 5, (6,0

d—1

N
< 2 2 m 2 . B '
=" -/x|<RO dxAd(l + |’U| )p( 2 |’U| +;Uz($ XLO))dU
d—1 , , o M
+m /Rd(00+cl(|v| N1+ oo o)
< (2Ro)dm%0d,m/ [(01 + s+ (O + |3|)%}p(s)ds

—0o0

+m 7 (Clh+ CinN)Clam /oo [\5‘%71 + ‘5|g}p(5)d5
d+1

T o [ [I51°5 + 1515 ] ols)ds

—0o0

< Cy +Cin.
This combined with (4.3.10) implies
P(r, <T)—0, as n — 00,

which completes the proof. 1






Chapter 5

Preparations for Limit Theorems

As announced in Chapter 1, from now on, we consider the problem of convergence
under the following setting.
Letd>1, N > 1, M; >0and X,,Vip € Rifori=1,---,N. Let U; € C3°(R?)
satisfying U;(—x) = U;(z), and there exist constants R; > 0 such that U;(z) = 0 for
We define constants

N 1/2

i=1
1 N
A= 5(20@ + 1)2 + Z HUz”ooa
i=1
and let p: R — [0, 00) be a measurable function satisfying the following.
L. p(s) =0if s < ey,
2. for any ¢ > 0, there exists a p. : R — [0, 00) such that

sup p(s +a) < p.(s), for any s € R,

la|<c

and .
|0+ ol oo < oc.
R4 2

Again, we consider the ODE (4.3.1), with P,,(dw) the Poisson point process on
Conf(R??) with intensity m%p(%ww + SN Ui(x — Xip))dzdv.

We assume the following;:
Al. |X,o— Xjo| > R+ R; for any i # j.

Under these assumptions, by using the same method as in Theorem 4.3.1, we
first get the following existence.

THEOREM 5.0.2 Under our assumptions, (4.3.1) has a unique solution for P,,-

a.s. w.

42
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Proof. The proof is just a combination of ray representation and the method
in the proof of Theorem 4.3.1, so we give only a sketch. We use the same notations
as in the proof of Theorem 4.3.1.

First use the ray representation as in Section 3.3 (see Section 5.2 below for
details). (With a little abuse of notations, we write the corresponding & as w).

Write the intensity measure corresponding to m“z" p(Zlv]?+ XY, Us(z — X;p0))dadv
as A, 4.€., A (ds, dx, dv) = m_lp(%|v|2 + 38 Ui(x —m™ %50 — Xiio))dsy(da;, dv).
Let

G, ={(t,z,v) € R x E;|z| < Ro, [t| < T + Cy' Ry},

(the G,, defined here actually does not depend on n, never the less, we use the
subscript n to keep the notation same as in the proof of Theorem 4.3.1), and let
¢ =" |lUillc- Then by the calculation in Section 5.2,

Am(Gh)
—1 1 2 ol —1/2
= [R Lo <Ro tj<T 407 Ry p(§|v| + Z(w —m v — Xi,O))dtV(dxv dv)
x E i—1
1
< (R)AT+Ci Roym™ [ ol lof)de,
R

which is finite by our assumption. Let 6, = 6, , then as in the proof of Theorem
4.3.1, since E[f(0g,w)] = A\n(G,), the above implies that 6,w € Fin(R x E) a.s..
Let

. . 1
St(w) = {(u,x,v) e RxE;di=1,---, N’S't”orglglt | X (s, w)—(z—uv+sv)| < Ri+§}.

Then we have the following.
Claim. For any open set G and w € Fin(R x E), we have that {S;(w) C G} =
{St(QGw) C G}
Proof of the Claim. First, we have by definition
(u,z,v) & Sp(w)
1
— | Xi(s,w) — (z —uwv+sv)| > R; + 3 Vs e [0,t],i=1,---,N
= z(s,v,x —uv;w) = —uv + sv, v(s,v,r —uv;w)=v, Vsel0,t].

So

(u,z,v) ¢ Sp(w)
= | Xi(s;w) — x(s,x —uv,v;w)| > R; + ;, Vs e [0,t],i=1,--- N
= VU;(X;(s;w) —z(s,z —uv,v;w)) =0, Vse€|0,t]. (5.0.1)
Moreover, it is trivial that

(u,z,v) € G = p,(du,dx, dv) = pp..,(du, dx, dv). (5.0.2)
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(5.0.1) and (5.0.2) combined with the definition imply
Si(w) € G = (X(s,w),V(s,w)) = (X(s,0cw),V(s,0cw)), Vsel0,{, (5.0.3)
(as long as w € Fin(R x E)). Therefore,
Si(w) C G = Si(Ocw) C G.

The opposite one can be seen in exactly the same way. This completes the proof of
our Claim.

Let 7,(w) = inf{t > O;max;—y..n |Vi(t,0,w)] > n} AT. Notice that since
p(ZvP+ XN, Uiz —uv—X,)) # 0 only if |v] > 2Cy+1, without loss of generality,
we may and do assume that |[v| > 2Cy + 1. In order to ensure that the proof of
Theorem 4.3.1 is also valid here, we only need to check that the following hold.

1. Sr(O,w) C G, if 1 (w) =T,

2. la, (t,z,0)(1 + [v|*)\n(dt, dz, dv) < oo,
RxE

3. there exist constants Cy, C7 > 0 such that

/S o) la, (t, 2,0)(1 + [v]*) A (dt, dz, dv) < Cy + Cin.

n

Actually, 1. ensures that the solution of the considered equation is well-defined
a.s.’ly until o, for any n € N, 2. is used to show that the defined {Mt(n)}te[()’T]
is a martingale, and 3. is combined with the invariant of energy and Chebyshev’s
inequality to show that P,[r, < T] — 0 as n — oc.

We show 1 ~ 3 now. For the first one, first notice that if 7,(w) = T, then
|Vi(t,0,w)| < nforany t €[0,7] and i =1,---, N, hence | X;(t,0,w)| < nT + | X,
for any t € [0,7] and i = 1,---, N. Assume (u,z,v) ¢ G,,. Then either |z| > Ry or
lu| > Cy ' Ro+T. If |z| > Ry, then |z+rv| > |z| > Ry for any r € R, so | X;(s, O,w)—
(x —uv+sv)| > R; + 3 for any s € [0,T], which implies that (u,z,v) ¢ Sp(f,w). If
lu| > Cy 'Ry + T, then for any s € [0, T], we have |z — uv + sv| > Cy ' Rolv| > Ry,
so in this case, we also have | X;(s, 0,w) — (z —uv + sv)| > R; + 1 for any s € [0, 7],
which implies that (u,z,v) ¢ Sr(f,w). In conclusion, we have in either case that
(u, z,v) ¢ Sp(0,w). This completes the proof of our first assertion.

The second one and the third one are easy since

L et v) (1 + o) An(dt, do, do)
RxE

< (2Ro)™2T + C5 ' Ry)ym ™! /

1
2\~ 2
L U1+ [0)pe(5 v ) dv,

which is finite by our assumption, and does not depend on n € N. By applying
the same method as in the proof of Theorem 4.3.1, these complete the proof of our
Theorem. 1
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By Theorem 5.0.2, the solution of (4.3.1) is well-defined for P,,-a.s. w. Write it
as (X(t,w), V(tw)) = (X1t w), -+ Xn(t,w)), Vi(t,w), -+, Vy(t,w))).

From now on, we prove the convergence results announced in Chaper 1.

5.1 Basic facts

First, in this section, we recall some basic facts without proof about the space
D = D? given below and the tightness of the probability measures on it, which will
be used later. (See Billingsley [1] for more details).

5.1.1 Space D

Let
D = D%=D%o,1]
= {w:[0,1] - R% w(t) = w(t+) = limw(s),t € 0,1),
and w(t—) := 11%1 w(s) exists, t € (0, 1]},
and let

A= {)\ :10,1] — [0, 1]; continuous, non-decreasing, A(0) = 0, A\(1) = 1}.
For any A € A, we define

M= sup | log M 22

0<s<t<1 t—s
Also, for any w,w € D?, we define

0 ~\ 0 o~
@(w, @) = inf {JAI°V [l — @ o Mo},

where ||w]|o = supg<,<; [w(t)].
THEOREM 5.1.1 (D% d°) is a complete metric space.

We call the topology derived by this metric as Skorohod topology.
Let
C ={w:[0,1] — R% continuous}.

PROPOSITION 5.1.2 (1) C is closed in D?.

(2) If w, — we in D, w, — ws in D, and w, € C for anyn = 1,2,---, then
Wy, + Wy, — Weo + Wog-
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Remark 1 Notice that (D?,d°) is NOT a topological vector space.
For any w € D%, let
A(w;d) = sup{|w(t) —w(tr)| Alfw(tz) — w(t)];
0<t <t<ty<lty—t <6}
Then we have the following.
THEOREM 5.1.3 Let A C D?. Then the following are equivalent to each other.

(1) A is relative compact,

(2) The following 3 conditions are satisfied:
(i) supyea lwlloe < 00,
(i) lims_osup,eq A(w;d) =0,
(ifi) 1lims_osup,ea {[w(0) = w(d)] + [w(1 = §) — w(1-)[} = 0.

5.1.2 Tightness

Let M be a Polish space, and let P(M) denote the set of probability measures on
(M, B(M)).

DEFINITION 5.1.4 For pi,, fieec € P(M), n = 1,2,---, we say that p, — o

weakly in P(M) if
|t — [ fdne
M M

for any f: M — R that is bounded and continuous.
This gives the Prohorov metric on P(M).

DEFINITION 5.1.5 For any A C P(M), we say that A is tight if for any e > 0,
there exists a compact set K in M such that

p(K) >1—¢, for any p € A.
THEOREM 5.1.6 Let A C P(M). Then
A is relative compact <= A 1is tight.

Now, let (Q,, Fn, P), n = 1,2, - -, be probability spaces, and let X,, : Q,, — D%
n € N, be measurable. Let uyx, = P, o X !. Then we have the following.

THEOREM 5.1.7 Suppose that there exist constants €, 3,7, C > 0 such that
(1) B[ Xn( )] = C,

(2) Ef» [\Xn(r)—Xn(s)\ﬂ]Xn(s)—Xn(t)ﬂ < Clt—r|* forany0 <r <s<t <1,

(8) B [1X,(s) = X)) < Cle— sl for amy 0 < s < 1 < 1,
for any n € N. Then {ux,}or, is tight in P(D?).
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5.2 Ray representation

As before, let d > 1, N > 1, M; > 0 and X;,V;p € R? for i = 1,---,N. Let
U, € C(RY) satisfying U;(—x) = Uj(z), and let R; > 0 be constants such that
Ui(x) =0 for || > R;,i=1,---,N.

We consider the following ODE. Notice that we use w instead of w here, because
we will use ray representation to convert the problem into the one about R x E in
the second half of this section, and will consider the problem on the new space after
that.

g —X;(t;0) = Vi(t; o)

Mj » /VU ;@) — a(t,x,v;@)) us (de, dv)
(Xi(0; ), (0, w)) = (Xip, Vi )

%x(t,x,v;@) = u(t,z,v; @)

mjt (t,z,v;w) ZVU (t,x,v;@) — X;(t; @))

(2(0, z,v;@),v(0, z, v; w)) (x,v)

As before, let Q = Conf(R??), let

Mdz, dv) = A (dz, dv) = m E p(—|v|2 + Z Ui(x — Xlo))d.iﬁdv,

=1

and let P; be the Poisson point process with intensity Mo
We (30n81der the following ”change of co-ordinates”:

U, Rx E—Rx RIN{0}), (s,2,0) — U, (s,z,0) = U(s, z,m 2v).
Let
fnl,0) = f(,m™20),
1 N
po(z,v) = P(§|U|2 +> Uiz - Xz',o))-
i=1
Then we have
/Rm f(z,v)A(dzx, dv)
/ —|U!2+ZU x—Xzo))dxdv

/ (z,m " 2v) ( |U|2+ZU ))dxdv

t\.’)\»—‘
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= m_%/ fn (U (s, x,v))po(V(s, z,v))dsv(dz, dv)

= m! fm(\If(m’%s, x, v))po(\ﬂ(m’%s, x,v))dsv(dx, dv),

where we used Theorem 3.3.1 when passing to the forth line. But
fm(\Il(m_%s,x,v)) = f(z — m_%sv,m_%v) = f(Upn(s,z,0)).
Therefore,
/de flaz,v)A(dzx, dv) = /RXE f(W (s, z,v))A(ds, dz, dv),

where

Ads, dx, dv) = A\, (ds, dx, dv)
= m_lpo(\ll(m_%s,x,v))dsz/(dx,dv)

1 N
= m_lp(§|1)|2 + 3 Ui — m™2s0 — Xw))dxy(dx, dv).
i=1

Let Q = Conf(R x E). Then A is a measure on ). Notice that when restrict ¥,,
onQ, VU, : Q=Conf(RxE)— Conf(R%x (R¥\{0})). Let P,,(dw) = Py, (dw) be
the Poisson point process on Conf(R x E) with intensity function A, (ds, dx, dv).
Then since A\, (B) = A\ (¥, (B)) for any B € B(R x FE), we have that

Py, (A) = P; (U,(A),  forall A€ &,

Therefore, we can convert our problem with respect to Q to the problem on €.
Our new equation is the following.

d

Xt w) = Vilt;

o d,(t,w) Vi(t;w)

M ZViltsw) = = [ VUK {t5) = (e, 0o, 2, mH0))lds, o, o)
RxFE

(Xi(0;w), Vi(0;w)) = (Xi0, Vio)

—z(t,x,v;w) = v(t, z,v;w)

dt

d N
mav(t, r,v;w) = =Y VU(x(t,z,0;w) — X;(t;w))
i=1

(m(O,az,v;w),v(O,x,v';w)) = (z,v)

(5.2.1)
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5.3 Basic lemmas
Choose any T' > 0 and n > 1 and fix for a while. Let

0(w) = 0,(w) = inf {t > 0; max [Vi(t,w)| > n},

RO = Ro(n,T> = ‘maXN (Rz + ’X'i,O‘ + nT) + 1,

=1,
N 1/2
Co= {22 RillVUil}
i=1
7=1(n,T) = Cy" Ry,
Fi = t(Tm) = f(—oo,t+2m1/27—)><E \% N’
= o{w N (—oo,t + 2m?1) x E} VX,

Notice that the definition of R is different from before. We do so for the sake
of simplicity, since we will use max;_; .. y (R; + |X; 0| +nT) + 1 as a whole thing
only from now on. Then we will show that (X;(t A o), Vi(t Ao)),i =1,---, N, are
Fi-measurable.

Also, we define a new potential in the following way. Let

pt) =~ [ pls)ds.  teR,

1
fs) = [, A5l +s)dv.
and let

0(X) = [, (S0 =) - )

Then we can show that the value of U for any X satisfying |X; — Xj| > R; + R,
(1 # j) is a constant (See (5.4.9) below). Write this constant as Uy.
We are going to proof the limit theorems by showing the following lemmas.

Lemma 5.3.1 For anyi=1,---, N, there exist a R*-valued (F;);-adapted process
PO(t), a Ri-valued (F;)s-adapted C-class (in t) process PrL(t), a R-valued (F;)s-

7

martingale M;(t) and a R*-valued (F;)¢-adapted process n;(t) such that

(1)

M(Vi(t A o) = Vi(0) = PO + B () —m ™2 | ViU(X (5))ds,

and PO(t) = M;(t) + ni(t),
(2)

d
s sup 5| L ] < oo
me(0,1] t[0,T) t
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(3) there exists a constant C' indenpendent of m such that
(M}, M), < Cdt,  Pp-as.

forany k, 0 =1,---.d and m € (0,1], with |AM;(t)| < Cm?!/?,

(4)

EP[ sup |n:(t)|] — 0, as m — 0
te[0,T

foranyi=1,--- N.
In particular, P;°(t) and P (t) are tight in D([0,T];RY), and the limits are

continuous processes.

Lemma 5.3.2 Let D be any open subset of R¥™, and assume that for any i =

1,---, N, there exists a C’l}—class function g; : D — R satisfying
9:(X) - ViU(X) = |V,U(X)], forany X € D,i=1,---,N.
Let
op = inf{t > 0; X(t) € D}.
Then
(1)

TAOATD ~
sup EP’"[/ Dm’1/2]V¢U(X(t))\dt} < 00
0

me(0,1]

foranyi=1,--- N,

N
- _ M.
(2) m~1/2 (U(X(t Na Nop)) — UO) 2 71“/;(15 Ao Aap)|* is tight in C([0, T]; R).

i=1

Y

Lemma 5.3.3 Ifb;: R — R, i=1,---,N, are C¢-class, and

f:bi@) V,U(X) =0

i=1
for any X € RN then N b(X (t A o)) - Vi(t Ao) is tight in D,

Lemma 5.3.4 Let Dy = (suppU)© € R™N, and assume that f € C°(Dy x R™).

Then f(X (tAo),V (tA)) is tight in C([0,T]; R). Also, the limit process (X oo (t), Vo (t))
1s the solution of the L-martingale problem stopped at o.
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5.4 Preparations

We prepare some estimates, which will be used later. Fix any n > 1. Since by
definition
o(w) = op(w) = inf {t > 0; max |Vi(t,w)| > n},

it is trivial by definition that
| X;(t,w)| < | Xio| +nT, for any t € [0,0(w) A T]. (5.4.1)
PROPOSITION 5.4.1 Suppose that [v| > (2Co + 1)m~™Y2 and n < m~/2. Then
(Jo| ) - v(t, z,v;w) > m™Y3(Cy + 1), for any t € [0,0(w)].
Proof. Let n = |v|'v and let
€ =inf {t > 0;v(t,z,v;w) -n <m Y3(Cy+1)}.

We only need to show that £ > o(w). Suppose not. Notice that by definition,

(v(& z,v;w) —v) - = —m_lz/ (VU (z(t,z,v;w) — X;(t;w)) - n)dt.
Also, for any t € [0,£ A o(w)], we have by assumption

d
%(m(t T, v; w) - Xi(t; w)) N

= vu(t,z,v;w)-n—Vi(t;w)-n
> m Y2(Co+1) —n>m VHCy+ 1) —m™ V2 =m~ V2,

in particular, (z(t,z,v;w) — X;(t;w)) - n is monotone increasing with respect to t.
So since v - = |v] > (2C, + 1)m~1/2 by assumption,

m2C, < —(v(€ xvw) —v) -7

= 712/ VU (t,z,v;w) — X;(t;w)) - n)dt

< _IZ/ VU (z(t, z,v;w) — X;(t;w)) - 7
( TCo) (e (t v w) — Xt w)) )
< 12 m2Co) [V Uillo

dl(z(t,z,v;w) — X;(t;w)) -

< —lz m2Cy) VU | 2R
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which makes a contradiction. Therefore, £ > o(w). 1
We assume n < m~"? from now on.
Remember that in Section 3.4, we wrote the solution of

d
Ze(t) = v(t),
d N

%v(t) = — ;VUZ'(ZE(t) - Xi),
(2(0),0(0)) = (0, vo)

as

—

@(tv Zo, Vo; X) = (ZL‘(t), U(t))a

and defined

for any t € R, (z,v) € E.
Now, in our present setting, since

d
—a(t, U(s,z,m %)) = v(t, U(s,z,m " /?)),

dt
d N
m%v(t, U(s,z,m20)) = = VU (a(t, ¥(s,z,m ) — X,(t,w)),
i=1
we have

d2
ﬁx(mlﬂt + 5, W(s,x,m %))

N
= — Z VUZ-(:E(ml/Qt +s,VU(s,x, m_l/Qv)) — Xi(ml/Qt + s,w)).
i=1
Also, for any s > 0 and t € [0,7 A o(w)], we have by definition and (5.4.1) that
(m(t, (s, z,m™ %)), u(t, \Il(s,mm’l/zv))) = U(s —t,z,m %)

if t <s— (m 2Cy) 'Ry and |v| > 2C, + 1.

Therefore,
d
(w2t s, (s, 2, m ™ 20)), a(mVt 4 s, U(s,a,m ™ 20)
= (UO(=m*2t, z, m~Y20), mY2U (—m 2t o, m ) = (2 + to,v)

= U(—t,z,v) (5.4.2)

if t < —Cy 'Ry, [v] >2Cy+1,and 0 < m'2t + s < T Ao(w).
We recall the following famous Gronwall’s Lemma, for later use.
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Lemma 5.4.2 (Gronwall’s Lemma) Suppose that the continuous function g(t)
satisfies

ogﬂwgam+5ﬁbwm@ 0<t<T,

with >0 and « : [0,T] — R integrable. Then
t
g(t) < alt) + ﬂ/ a(s)e?t=9ds, 0<t<T.
0

In particular, if a(t) = « is a constant, then
g(t) <ae”,  0<t<T.

PROPOSITION 5.4.3 Fir any a € R. Suppose that 0 < s —am'/? < T A o(w)
and 0 < s —m'?r < T Ao(w). Let

y(t) = z(m*t + 5, U(s,z,m Y?0)) — (¢, z, v, X(s —am*?,w)).
Also, suppose that |v| > 2Cy + 1. Then
(1) yt) =0 if0<m'?t+s5s<TAo(w) andt < —7,

(2)
jtgy(t)
= - Z: {VUi (y(t) + 0t 2, v: X (s — am'?, w)) — X;(m?t + s,w))

—VU; (wo(t, 2,0 X (s —am'? w)) — X;(s — am1/2,w)) }

(3) there exists a constant C, depending only on n, T and SN, [|V2Ui||lso, such
that

d ~
W) + [yt < m 2027 + a]), (5.4.3)
if 0 <m'?t + s <TAo(w) and |t] < 27.

Proof. We first show the first assertion. We have by (5.4.2) that x(m'/?t +
5, W(s,z,m "/?v)) = z+tv under our setting. Also, notice that | X;(s —am!/?, w)| <
| X 0] +nT under our assumption, and since ¢t < —7 and |v| > 2Cj + 1, we have for
any s big enought

inf |z — 3v+ww| > |t]|v] > Cy'Ry(2C) + 1) > Ry,
w€[0,t+s]

therefore, 10(t, z, v, X (s—am!/?, w)) = lims_,__ °(t+5, 2 —35v,v, X (s—am/2,w)) =
x + tv. This gives us our first assertion.
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The second assertion is trivial by definition.
We show the last one. Notice that for any [¢t| < 27 satisfying 0 < m'/?t + s <
T A o(w), we have
’Xi(ml/Qt +s,w) — X;(s — aml/Q,w)’
< n|(m1/2t +3s)—(s— am1/2)| < nml/Q(QT + |al),

so by (2),
’dt?y ‘
< Z IV2Uillo|y(t) — [Xi(m'2t + 5,0) = Xils — am'?,w)] |
< ZHVQUlloommn(?THal (Z!\V2U|!oo)\y( )|
=1
Therefore,

2100 Sa0)] < ot | St

< m1/2(2 \|V2U¢Hoon)(27' + |a]) + (1 + ; HVQUiHoo) ‘(y(t)v jt?/(t))‘

if [t| <27 and 0 < m'?*t + s < T Ao(w). Also, by (1), y(—7) = Ly(—7) = 0. Let
g(t) = |(y(t — 1), %y(t —71))|, then we have ¢g(0) = 0 and

d d d
o) < | 2| (u(t =), 2yt =)

< A (SIV ) 2r + ol + (143 1961 a0

=1 =1

if —7 <t<3rand0<m%(t—-7)+s<TAoc(w). (Notice that t = 0 satisfies
these conditions since 0 < s —m!'/?7 < T'A ¢(w) under our assumption). Therefore,
if 0 <t<3rand 0 <m'?(t—7)+s5 < T Ac(w), then

t
g(t) < m1/2(z IV2Ui|oon) (2r + lal)37 + (1 + Z VU / g(s)ds,
i=1 i=1
so by Gronwall’s inequality, we get

N
9(t) < m*? (Y[ VUilloon) (27 + fal)3rel + Zim V0011,

=1
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The assertion for t € [—7,0] satisfying 0 < m'/2(t — 7) + s < T A o(w) is proved in
the same way. This completes the proof. 1

Now, choose any z,v € R? with |[v] > 2C; + 1, and X,V € (RN with |X;| <
| X;0| +nT,i=1,---,N. For any a € R, let Z(t) = Z(t;z,v, X,V ,a) € R be the
solution of the equation

j; Zv? (V02,0 X) = Xi)(Z(t) = (t+ a)Vi),
Z(-T1)= EZ(—T) = 0.

dt
It is easy to see that Z(t;z,v, X,V, a) is linear with respect to V.

PROPOSITION 5.4.4 Let a € R. Suppose that t > —a, 0 < s — m'/?1 <
TAo(w), —7<t<2rand 0 < s—am'? < s+m'* < T Ao(w). Also, let
|v| > 2Cy + 1. Then

’x(ml/Qt + 5, U(s, z,m™ %))
—(wo(t, 2,0, X (s —am'?)) + m2Z(t; x, v, X (s — am'?), V(s — am'/?), a))’
s+ml/2¢ 5

< omR{(1+ )P w2 V() — V(s — am?)[dr}.

s—aml/2
Here C is a constant depending only on 7, n, YN, |V3Uille and SN, [|V2Ui| .
Proof. Let
y(t) = x(m'?t + 5, U (s, 2,m ) — Ot x, v, )?(s —am!'/?,w))
as before, and let
E(t) = y(t) — m'2Z(t; v, X(s —am!/?), ‘7(3 —am'/?),a).
We need to estimate |£(t)|. By a simply calculation,

d2
ﬁy(t)

= SO0 + 00t w0 X s — am) = Xi(m P+ )
—VU;(4°(t, z,v; X(s —am'/?) — X;(s — am1/2))}
= - 2_:1 /01 V2U;(n[y(t) = {Xi(m' 2t + 5) = Xi(s = m'2a)} |

+0(t, 2,0, X (s — am'/?)) — X;(s — aml/Q))
[y(t) — {X,-(ml/Zt +5) — Xi(s — ml/Qa)} }dn,
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and so

d2
p7) (t)

= - ; /01 dn{VQUi (77 [y(t) - {Xi(m1/2t +5) — Xi(s — m1/2a)H
+ 00 (t, 2, v; X(S — aml/Q)) — Xi(s— aml/Q))
—V3U; <w0(t, x,; )?(s — aml/Q)) — Xi(s — am1/2)>}
'(?J(t> - {Xz'(ml/Qt +5) — Xi(s — m1/2a)})

- i V2U; (@Do(t, 2,0, X (s —am'?)) — X;(s — aml/Q))

(ﬁ(t) — {Xi(ml/zt +5) — Xi(s —m'%a) — m"2(t + a)Vi(s — m”%)}).

Therefore, since | X;(m'?t + s) — X;(s — m'/2a)| < n(t + |a|)m'/? in our domain,
and X;(m2t + s) — Xi(s — m'2a) = [T LVi(r)dr, we get

s—aml/2

d2

T (t) (5.4.4)

N N

< Y IVPUllao(ly ()] + nlt + [a)m' ) + 3 VUil ) I(1)]

=1 =1
N s+m1/2t

+Z||V2Ui||oo/ VA1) = Vils = m"2a)|dr. (5.4.5)
i—1 s—am

Let C be the constant in Proposition 5.4.3, and let
N ~
C, = Z IV3Ui||oe (C + n)*(27 + 1)?,
i=1

N
=1

Then (5.4.5) combined with Proposition 5.4.3 gives us

s+m1/2t

(0] < Com(1+Jal? + o [ Vilr) = Vils — m*2a) dr + Colé()],

s—aml/2

d2
at?

if 0 <m'2t+s<TAo(w),|t| <27 and t > —a. Let

Tet— ).

g(t) = |(€@t = 7). o
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Then the estimate above gives us

d d d?
- < | = _ - _
90| < [ = )] + |6 )
9 s+m1/2(t—7) 1/2
< Cim(1+ ) +c2/ e V) = Vils = mY2a)dr + (Ca + 1)g(2),

ift —7 > —a, |t —7| <2rand 0 < m'2(t —7) +5 < T A o(w). Since &(—7) =
L&(—7) = 0, we have g(0) = 0. Also, f;fgji;t_ﬂ Vi(r) — Vi(s — m'%a)|dr is

monotone non-decreasing with respect to t. Soif t — 7> —a and 0 <t < 37, then

s+m1/2(t77)

g(t) < 3r(Cim(1 + |a])? + 02/ Vi(r) = Vi(s —m"/a)|dr)

s—aml/?

+(Cy + 1) /Otg(u)du.

Therefore, by Gronwall’s inequality and the monotonicity of [ 8+m11//22t |Vi(r) — Vi(s —

s—am

m'/2a)|dr again, the above implies

s+m1/2(t—7')

g(t) < 3relC2t1)3r (C’lm(l + lal)? + 02/

s—am1/2

Vi(r) = Vi(s = m'/a) dr),

ift—7>—a, —7<t—7<2rand 0 < m'%(t—7)+s < T Ao(w). This completes
our proof. 1

PROPOSITION 5.4.5 Let |[v| > 2Cy + 1. Suppose that 0 < m'/*t+s < T Ao (w)
and that either t < —1 ort > 27. Then

VUi(x(ml/2t+ 5, W(s, 2, mY20)) — X,(m"? + S,w)) = 0.

Proof. Let n = |v|~'v. First notice that | X;(m'/?t + s,w)| < |Xo,| +nT if 0
m'/?t4+s5 < TAo(w). So we only need to show that |z(m'/%t+s, U(s, z, m~/?v))|
Ry for t satisfying our condition.

We show it from now on. First notice that by (5.4.2), if t < —7 = —Cy' Ry,
then |z(m!?t + s, U(s, z,m~Y2v))| = |z + tv| > |t|jv] > C; ' Ro(2Cy + 1) > Ry. For
t > 27, notice that since

d

S 2t 4 5, W(s, Y 0)) = u(m s, (s, m 7)),

<
>

and 0 < m'/?t + s < o(w) by assumption, we have by Proposition 5.4.1 that

i(n 2(m'Pt+ 5,0 (s, m_l/Qv))> > Cy. (5.4.6)

In particular, 7 - 2(m!/?t 4+ s, ¥ (s, z,m~/?v)) is monotone increasing with respect
to tif 0 < m'?t +s < o(w). So if n - x(s, ¥(s,z,m ?v)) > Ry, then for any
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t > 27 > 0, we have n-x(m'/?t + s, ¥ (s, z,m ?v)) > n-x(s, U(s,z,m"%v)) > Ry.
Also, if n - z(s, U(s,z,m~"/?v)) < Ry, then by (5.4.6), we get that for any ¢ > 27,

’77 - (mM?t 4 s, (s, x, m_l/zv))‘

= ’/ 77 x(m'Pu+ s, (s, z,m 1/2v))>du+77-x(s,@(s,x,m’l/zv))‘
> Cot—ROZOo 27 — Ry > 2Ry — Ry = Ry,

hence |z(m'/?t+s, U (s, z,m"*/?v))| > Ry. This completes the proof of our assertion,
hence the lemma. 1

_ Before closing this section, let us discuss a little bit more about the new potential
U. As in Section 5.3, let

p(t) =— /too p(s)ds, teR.

Then 45(t) = p(t). Also, let

ﬁ(i):ﬁ(xl,---,XN)z/RM( ( |U|Q+ZU )—p( [0]?)) ddv.

Then it is easy that

X :/RQd VU(X; — ( |v|2—|—ZU )dwdv (5.4.7)

Let .
J(s) = [ AP + s)do
Rd 2
Then by a simple calculation, there exists a global constant Cy such that
f(s) = C’d/ p(r + S)T%_ldr.
0
Also,
L N
U(X) = /R (f (Z Ui(x — XZ-)> —~ £(0))da. (5.4.8)
i=1

It is easy that if | X; — X;| > R; + R; for any ¢ # j, then

0F) =3 [, (F(U)) = £(0)da

therefore, N
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Moreover, we have
f'(s) = Oy /OO p(r+ s)retdr
0
~- /°° p(t)(t — s)31dt.

So if s < ey, then

fi(s) = Cy /0 T o)t — s)8 Nt (5.4.10)
f'(s) = Cull— ;l)/om p(t)(t — s)22dt, (5.4.11)
fr(s) = Calt— D=3 [ o)t~ )

Also notice that under the condition s < ey, if 0 <t < s, then t < e, hence p(t) = 0.
Therefore, we get that
<0, ifd>3,
Fi(s)d =0, ifd=2, (5.4.12)
>0, ifd=1.

—S

We remark that in reality, we have p(t) = e, so p(t) = —e " and f(s) = —Ce
with some constant C' > 0, so f”(s) < 0.






Chapter 6

Proof of Lemmas 5.3.1 ~ 5.3.3

We give the proofs of Lemmas 5.3.1 ~ 5.3.3 in this section. Sections 6.1 ~ 6.4
give the proof of Lemma 5.3.1, sections 6.6 and 6.5 prove Lemmas 5.3.2 and 5.3.3,
respectively. The proof of Lemma 5.3.4 will be given in the next chapter.

6.1 First decomposition
First, we have by (5.2.1)
M;(Vi(t) — Vi(0))
¢
= —/ ds/ VU(X;(s,w) — x(s, U(r, z,m™?0))) e (dr, dz, dv).
0 RxE
Let o(w) = o,(w) = inf{t > 0;max;—i.. x |Vi(t,w)| > n}, and 7 = C; 'Ry as
before.
Notice that under our condition, we have |v| > 2Cy + 1, P,,-a.s.. So for any s €
[0, TAc(w)), we have by Proposition 5.4.5 that VU;(X;(s,w)—x(s, ¥(r, z, m~/%v))) =

0 if |[s — r| > 2m!/?7.
For any t < T', we can decompose

—M;(Vi(t A o) = Vi(0)) = V2 (t) + Vi (1),
with

tAon
VA = [ Ve (s)ds
0

VU(Xi(s,w) — x(s, U (r, z,m™"?0))) o, (dr, dz, dv),
RxFE

tAoy
Vi) = /0 Lio,am1/27) (s)ds

VU(X(s,w) — x(s, O(r, 2, m™0))) u, (dr, dz, dv).

RXxFE

60
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6.2 The term V1(¢)

Let us deal with V;}(¢) in this section. We will show that it is negligible. Decompose
it into

Vi) = V) + V),

with
tAon
V;lo(t) = / 1[0,4m1/27)(8)d8
0
/ {VUi(Xi(s, w) — (s, U(r,z,m"?v)))
RxFE
—VU;(X;(0) — @O(m_l/%, \I/(m_l/QT, x,v); X(O)))}uw(dr, dx,dv),
tAon
VIR = [ L (9)ds
0

VU (X:(0) — @ (m =25, O(m~?r, z,v): X (0))) o (dr, dz, dv).

RxFE

Before discussing the behavior of V'%(¢), let us prepare the following result. Fix
any to > 0. Then we have the following:

Lemma 6.2.1 For any s € [0,t,] satisfying 0 < m'/?s < T A o, (w), we have that
[o(m 25, W (r, 2, m=0)) — s, W(m ™ 2r 2, 0); X (0)))]

N
< nm'%s 3 || V2U, | otoe i IV Ville Do,
=1

Proof. First notice that under our condition, |X;(m'/2s) — X;(0)| < nm!/?s.
Let
§(s) = w(m2s, W(r, 2, m ™1 20)) = @(s, Wlm™ 21,2, 0); X(0)).

Then we have
2
(3) = Z { - VUvZ‘<.T(”n’L1/237 W(T,{[‘) m_l/ZU)) o Xi<m1/28))

2
ds —

1=

VU (s, W (m 27, 2,0); X(0))) - X;(0) }.
Therefore, since V2U;, i = 1,---, N, are bounded, we have that

d2

7:2605) ; IV2Uilloo (€ (5)] + [ Xi(m'"2s) — X(0)])

IA

N
> IV2Uille(€(s)] + nm'2s).
i=1
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Let g(s) = |(£(s), £&(s))|. Then the above implies that

N
<] Leo) + |- |<nm1/2521|v2v||oo (S 192U +1)g(s).

=1

‘gg(s)
Also, g(0) = 0. So for any 0 < s < ¢, we get that
o(3) < mm 25 3 |90ty + (190l +1) [ gl
i=1 i=1
Therefore, by Gronwall’s Lemma, we have
N N s
0(5) < nm'/25 3" [ V2V atoe S 120
i=1

This gives us our assertion. 1
In particular, applying Lemma 6.2.1 to ¢ty = 47, we get that

(s, U(r,z,m~?0)) = §(m 25, W(m~?r, 2, 0); X(0)))|

N
s ns Z IV2U; ||oo47'e(zf-v:1 IV2Uilloo+1)47

=1

1Xi(s) — X;(0)] <ms, Vs €[0,4m*r AT Ao(w)). (6.2.1)
We use this to proof the next lemma.

Lemma 6.2.2 E™[ sup |V;'°(t)]] — 0 as m — 0.
0<t<T

Proof. First notice that in the definition of V;!) we are taking integral for s €
[0,4mY27 AT Ao (w)), so if r > 6m/27 or 1 < —2m'/27, then we have |u| > 2m'/2r
for any u € [r — s, 7], so since x - v = 0, we get by definition

@ (m 2, W(m 2, 3, 0); X(0)))
= |z — m_l/g(r — )| > m_1/2|7‘ — s|v| > 27|v|

> Ry.
Therefore, for any s € [0,4m!?7 AT A o(w)), we have
VU;(X;(0) — @ (m =25, U(m ™% z,0); X(0))) = 0 (6.2.2)

if 1 > 6m'27 or r < —2m!'/?7. Also, (6.2.2) holds if |z| > Ry + 1. Similarly, the
same holds with X (0) substituted by X(s) (since 0 < s < o). Let

N N
Ci= ||v2Ui||°°(Z ||v2UjHoo47'6(Zj:1 IV2Ujlloo+DdT 1)_

J=1
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Then by combining the above with (6.2.1), we get that for any s € [0,4m!/27 AT A

o(w)),
VU(Xi(s,w) — 2(s, U(r, 2, m ™))
—VU(Xi(0) = @ (m ™25, U (m~Yr, 2, 0); X(0)))|
< Ljo,ror 1) (|7 )1 _ami/2r gmi/z (1)1sCh.
Therefore, by the definition of V;!°(¢), we get that
V()]
tAon
/0 1[0,4m1/27')<8)d8 /RXE Cln81[0aR0+1) (’x‘)l[—le/QT,Gml/ZT] (r)luw(dra da:a dU)

C
< 7171(47”1/27)2 / L0,Ro+1) (12 ) L _am1/27-6mi1/20 (1) oo (dr, ez, dv).
RXxFE

IN

(6.2.3)

We need to discuss the expection of the integral on the right hand side above. Let
¢ =", |Ujls, and let

1
Cy = 87(2(Ry + 1)) /Rdﬁ;(i\v]2)|v\dv,
which is finite by our assumption. Then we have by definition that
/ 1[07R0+1) (|x|)1[—2m1/27,6m1/27'] (T))‘(dT’ d[E, dU)

RxE
= / 1[0’Ro+1)(’x‘)1[—2m1/27 6m1/27] (T)m_lpo(l' - m_l/2rv, U)dT’V(Cl.CE, d’l))

RxE ’

1

< / 1[07R0+1)(|x|)1[—2m1/27,6m1/27—] (T)m lpc(*|U|2)dTl/(d[L', dU)

RxE 2

1
< smrm (R + 1) [ RGP oldo
R

= Cgmil/Z.

Therefore, by the definition of Poisson point process, we have
2
Pp,
B [( [ Loyt (12D) 1 s argman (Mo (dr, da, dv))|
< | o (D amargran (PA(dr, da, dv)
RXE

2
+( / 10.801) ([2]) Lyt 27 61 27y (WA (dr, d, )
RXxFE
< Cym V24 Cimt (6.2.4)

This combined with (6.2.3) gives us that

1
Epm[ sup \Vilo(t)\] < fCln(4m1/27')2(Cgm’1/2 + Cgmfl)l/Q.
0<t<T 2
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The right hand side above converges to 0 as m — 0. This completes the proof of
our assertion. 1

For the term V;''(¢), we have the following:

Lemma 6.2.3 E™[ sup [V'(t)|] — 0 as m — 0.
0<t<T

Proof. We first notice that

VU (X:(0) — °(m~Y2s, U (m~Y?r, z,v): X(0))A(dr,dz,dv) =0  (6.2.5)

RXFE

for any s € [0,4mY27 AT Ac) and |v| > Cy. Actually, since | X;(0)—X;(0)| > Ri+R;
for any ¢ # j, we have by (5.4.7) and (5.4.9) that

R2d

1 N

VU (X;(0) — x)p(§|v|2 + > Uj(x = X;(0)))dadv = 0.
j=1
So by Theorem 3.2.2 (with t = m~/2s, N = 1, and f(z,v) = VU;(X;(0) — z)),
0 2 % 12, v
/de VUL(X:(0) = §°(m 25, 2,0 X(0))) o 5 o +j§:jl Uyl — X;(0))dadv = 0,

which, by Theorem 3.3.1, means that
VU (X:(0) — §°(m~"/%s, W (r, z,v); X (0)))

RxE

Xp(;|v|2 U0, 0) - X;(0)))dry(da, dv) = 0.

Changing variable ' = m~'/?r, we get (6.2.5).
By (6.2.5), we get that

tAoy
V;'H(t) = /0 1[0,4m1/27)<8)d3
/ VUL(X:(0) — F(m~2s, W(m~Y2r, 2, v): X(0)))
RxFE
(e (dr,dz, dv) — X(dr,dx, dv)). (6.2.6)

As in the proof of Lemma 6.2.2, (6.2.2) holds if r > 6m'/?r or r < —2m!/?7, or
if || > Ry + 1. Let

1
Cs = 87(2(Ro + 1)) VUil /Rd pe(5lv)lvlde,



6.3. THE TERM V(T) 65
which is finite by our assumption. Then we have that

B [ VUXG(0) = §0m s, W (m r ,0); X(0)))

RxE
(oo (dr, dz, dv) — N(dr, dx, dv)) ﬁ
- / VUAX(0) = §m ™2, W(m ™ 2r, 2, 0); X(0))| A(dr, de, dv)
RxE
< [ Yo (2Dl amienoman (1) VU 2 (dr, dr, do)

- HVUIHEO/ 1[07R0+1)(’x|)1[72m1/27,6m1/27] (T)
RXxE
Xm’lp( o] + Z Us (X0 — (2 — m™"?rv)))dr(da, dv)

1
< m”7'8m'?7(2(Ro + 1))d‘1IIVUiIIio/dbi(ilvlg)lvldv

R
= Cym™Y2 (6.2.7)

Therefore,

B, U0 - 900050
(o (dr.dr, dv) = A(dr. dr, dv))| | "

M2y 2\ 1/2 vz 14,
(Csm=12) " ds = 4C;

4m
S /

which converges to 0 as m — 0. This completes the proof of our assertion. 1
By Lemmas 6.2.2 and 6.2.3, we get the following main result of this section.

Lemma 6.2.4 E’Pm[ sup |V;1(t)|} — 0 asm — 0.
0<t<T

6.3 The term V'(¢)

Let us discuss the term V() in this section. For any r € R, let 7 = 7(w) =
(r —2m'21)VO) AT Ao(w).
We first decompose

V2(t) = V2 (t) + VO (t) + VI (t) + VO3(t) — VO(1),
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with
tAon
VR = [ L (9)ds

/RXE {VUZ- (Xi(s) — x(s, \P(r,x,m_lﬂv)))
—VU(X(7) — 0 (s — 1), 2,0, X (7)) )
o, (dr, dz, dv),
‘71;01<t> = /Ot/\an 1[4m1/27,oo)(8)d8

VU(X;(s) — 0°(m™ Y2 (s — 1), ,v; X (s)))A(dr, dz, dv),

RXxFE

tAon —
VPt = /0 Lgm1/27,00) (8)ds F2»(s,r,x,v)\(dr,dx, dv),

RXxFE

- tAon .
VR = s L VO = 0 m s ) X ()
0 2ml/271,00)x E
(o (dr, dz, dv) — \(dr, dx, dv)),

tAon
04 _
Vit@t) = /0 Lio ami/27)(s)ds /[2m1/27700)xE

VU(Xi(7) = 0 (m™ (s = r), 2, v; X (7))
(e (dr, dz, dv) — A(dr, dx, dv)),

where
PA’i&’(s,T,x,v) = —{VUZ-(Xi(S) — on(m_l/Z(S - T)a$»U§X(S)))
~VUX(F) = 0 (m™ (s = ), 2,0 X (7)) }-
Actually, to show that this decomposition is correct, we only need to notice that

VU;(Xi(F) = 0 (m 2 (s — 1), 2,0 X(F))) £ 0
= \m71/2(8 —r)| <27

Therefore, for s € [4m'/?1, 00),

r<2m'?r = VU (Xi(T) — 1/10(7”_1/2(5 - T),:L’,v;ff(?))) = 0.
So
V(1) = V(t)
tAon
= /0 Ligm1/27.00)(8)ds /(2m1/27—,oo)><E'

VU (X;(F) — 0% (m~2(s = 1), ,v; X (7)) (o, (dr, dzz, dv) — N(dr, dzz, dv))
= -/Ot/\a" 1[4m1/27—,oo) (8)d8/

RxFE

VU (X;(F) — 00(m ™Y (s — 1), z, 0; X (7)) (1o, (dr, daz, dv) — N(dr, dzz, dv)).
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We discuss each term in the above decomposition in the following. First, for the
term V%%(t), we have by definition

d

SV = Laen () [

; ﬁ(t,r,x,v;w)uw(dr, dx, dv),
dt RxE

where

fl(tJ T, T, U) = VUz (XZ(t) - I(ta ‘II<T7 Z, mil/Qv)))

—VU(Xi(7) = 92 (m™ 2 (t = r), 0,03 X(7)).
By definition and assumption, we have that M\, (dr,dz,dv) = 0 if |v| < 2Cp + 1.
Also, by Proposition 5.4.5 and Corollary 3.4.2, fi(t,r,z,v) = 0 if |r — t| > 2m!/?r.

So we only need to consider the case when t € [4m'/?r, T A o), r € [2m'?7, T A
o(w) +2m/?7] and |v| > 2C; + 1. We first show the following:

Lemma 6.3.1 Assume that t € [AmY 7, T A o], |r —2m%7| < T A o(w) and |v| >
2Cy + 1. Then
b1, 001 < Ny () (£ — 1) - o2

Proof. First, since t € [0,T A 0,), we have by Proposition 5.4.5 that
VU; (Xi(t) — a(t, \If(r,x,mfl/%))) =0ift —7>2m'2r or t —r < —m!/?7. Also,
since 7 € [0, T'Aoy,) by definition, we have |X;(7)| < | X, o|4+nT, so by Corollary 3.4.2,
VUi(XZ-(F) — (V2 (t—7), 2,0, X(?))) =0ift—r>2m'%rort —r < —m!/?r.
Combining the above, we get that f;(t,r,z,v) = 0 if r ¢ [t — 2m*/27 ¢ + m*/27].

Next, for r € [t —2m'/27, t +m!/27], if |x| > Ry +1, since - v = 0, we get easily
that |z(t, U(r,z,m~Y?0))| = |z — (r — t)m"?v| > |z| > Ry + 1, hence both of the
terms of ﬁ-(t,r, z,v) equal to 0.

Finally, we show, for |z| < Ry + 1 and r € [t — 2m'?7t + m!'/?7], that
| fi(t, 7, 2, v)| < Cm*2. For this kind of z and 7, since t € [4m'/7, T Ao (w)], we have
by definition 2m?7r < r < T Ao +m'/?7, so ¥ = r — 2m'/?7. We have

it r 2, 0)]
< IV oo (1500) = Xl + [t Wy, 20)) — 90V — 1), 2,05 X)),

The term of X is easy. Actually, since t,7 € [0, A o(w)], we have by definition
1X;(t) — X;(P)| < n|t — 7] = n|t — (r —2m*27)| < n(|t — r| +2m*/?7) < ndm!/?7.

We next deal with the second term. Notice that by assumption, 0 < r—2mt/?r <
Tho(w),0<r—m?r <TAco(w)and 0 < ¢ < TAc(w). Therefore, by Proposition
5.4.3 (3) (with (¢,s,a) given by (m~Y2(t —r),r,27)), there exists a constant C' such
that

[ (t, U, z,m™20)) = O (m™ 2 (= 1), 2,0, X (r = 2m' 7))
< m'2C(2r 4 27).

This completes the proof of our assertion. 1

Now we are ready to show that the term V%%(¢) is tight.
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Lemma 6.3.2 {{Vim(t)}te[o,ﬂ} _o 18 tight in D. Here D is the space defined in
Chapter 5.1.

Proof. By Lemma 6.3.1, we have

‘dtv;(m )‘ < Cm1/2 /R><E 1[O,Ro+1)(‘x|)1[—m1/2'r,2m1/27')(t - r)ﬂw<dr7 de, dv)

Notice that in general, it is easy by the definition of Poisson point process and a
simply calculation that Ef[([ gdu,)?] < [ g?d\, + (f gdh,)?. Therefore,

d 02
B || vl
Cm [ Lo (D1 sermtion(t = T)An(dr, d,dv)
2
+(cm'? / Lo.o+1) (1)Lt /27 gt /20) (E = ) A (dr, iz, ) )
RXxFE
Here, let ¢ := SN | ||Ui]|s0, then
/ Lo.01) (1) Lt 27 st /20y (£ = 1) A (dr, diz, )
RxFE
= [ Yoo (2Dl mamamsan (= 1)

1 N
xm_lp(§|v|2 + > Uiz — m"?ro — Xi70))d7“|21|17(d$; v)dv
i=1

N 1 _
< m73m 2 [ 1 meen (e DL+ 5 loP)lvlF(das v)do

1
< 3m PR+ DI [ B+ Sl ol

which, by assumption, is dominated by Cm~'/? with some constant C'.
Therefore,

d
C:= sup sup EOm “ V2 (t )‘ < 0.
me(0,1] 0<t<T dt
So
B[[V®(t) - VOQ( P < C|t—t|2
hence by Theorem 5.1.7 (with f ==~ =1) { (t) }eepo,m } o is tight in D.

The next result is about the term Vim (1).

Lemma 6.3.3 There exists an mg > 0 (depending on Xo,n, T andU;i=1,---, N)
such that for any m < my,

1701 _ o —1/2 the TV
V) = m 2 [ VO (R (s))ds,
0

where U is as defined in Sections 5.8 and 5.4.
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Proof. Suppose that VU;(X;(s) — ¢°(m~Y%(s — r),z,v; X(s)) # 0. Then s —

r < 2m!?r by Proposition 5.4.5, this combined with s > 4m'/?7 implies that

r > 2m'%2r = 2m/2Cy ' R. Since |[v| > 2Cy + 1 and z - v = 0, \(dr, dz, dv)-a.e., this

implies |z — m™2rv| > m~Y2rv| > Ry, hence U;j(X; o — (x — m~?rv)) = 0.
Therefore, by definition, Proposition 3.4.4 and (5.4.7),

—

VW = [ s [ UKL 0 ), 05 X))

1 N
m_lp(§|v|2 +3 Ui(z =m0 — Xi70))dry(dx, dv)
i=1

—

tAon

= [ e (5)s [ VU () = 00 (s — 1), 0 X ()
1

-1 2

m p(§|v| )drv(dm,dv)

tAon
= A 1[47)11/2‘1',00) (S)dS

R x

_ 1 -
m~1/? /R2d VU (X;i(s) — x)p(§|v|2 + ;;1 Ur(z — Xkﬁo))dxdv
tAon ~ -
— [ e (s)mAVO(K (5))ds,
0

where we used Proposition 3.4.4 in passing to the third equality, and used (5.4.7) in
passing to the last equality.

So in order to complete the proof of our assertion, it is sufficient to show that
V.U(X(s)) = 0 for any s € [0,4m/27 A o], if m is small enough. We show it from
now on. Notice that since |X;0 — X;0| > Ri + R; (i # j) for any i, =1,--- | N
by assumption, there exists a my > 0 (small enough) such that for any m < my,
1 Xio — Xjo| > Ri + R; +8m!2rn for any i # j. Also, by definition, we have
1Xi(s) — Xio] < sn < 4m'%mn for any s € [0,4m'?7 A o] and i = 1,---, N.
Therefore,

| Xi(s) — X;(s)] [ Xio — Xjol = [Xi(s) — Xiol — [Xj(s) — Xjol
R+ R; + sm%2rn — 4m%rn — 4m?rn

= R+ R,

>
>

so by (5.4.9), V;U(X(s)) = 0 for any s € [0,4m'/?7 A 5]. This completes our proof.

1
Before discussing the term V% (), let us first prepare the following continuity of

YO(t, x,v; X) with respect to X:

Lemma 6.3.4 For anyY > 0, there exists a constant C (depending on max.y | R;+
Y, 7, Co and N, |IV2Ui|leo) such that

[0 (t, 2,0, X1) — 00 (t, 2,0, X2)| < O X = X?||ga,
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for any x € R4, |v| > 2Cy + 1, |t| < 27 and \X?l\, |)€2| <Y.

Proof. Choose and fix any v € R¢ with |v] > 2Cy + 1, and let sq = maxisy Rty

27. Let g(t) = ¥°(t, x, v; Xl) —O(t, z, v; )52) Then by definition,

g(t) - Soo(t + S0, L — 801},1}§X1> - gpo(t + S0, L — SOU7U;X2)7

SO
d2 N .
@g(t) = =) VU, <<p?(t + S0, — Sov, v; X1) — Xil)
i=1
N —
+>_VU; (go?(t + 80, — Sou, v; X?) — Xf) .
i=1

Let C = SN, |V2U;||o, then

N
\dth ] < Y IVUillo(lg(®)] + 1] = X)) < Cllg(®)] + X" = X2l
=1

therefore,
D190, Lg)|| < |2 g0)] + | Lg)] < CIX — Xellga + (14 |(9(0), Lge)].
dt T dt - dt dt? T dt

Also, g(—s0) = %g(—s0) = 0. Let h(t) = |(g(t — s0), £9(t — s0))|. Then h(0) = 0,
and for any ¢ € [0, sp + 27,

= R t
h(t) < C|| X — X2|[ga(s0 +27) + (1 + 0)/0 h(s)ds,

so by Gronwall’s Lemma,

h(t) < C||)51 — )52||Rd(so + 27) eI+ (so+27), t €10, s+ 27].

maxi\’:1 R;+Y

Notice that since |v| > 2Cy + 1, we have 27 < s < ot

V 27. Therefore,
g(t) < h(t+so)

N ‘ maxiv: R;+Y — =g
< o(mam Y o on) a0 ) 1
2C) +1

for any t € [—27,27]. This complets the proof of our assertion. 1
We use Lemma 6.3.4 to prove the following:

Lemma 6.3.5 There exists a constant C' (which may different from before) such
that

i (S,T,ZL’,’U)‘ < Cm1/21[0,2m1/27](|8 - r|)1[0,R0+1)(|$|)

in the corresponding integral domain.
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Proof. First, since s,7 € [0,7 A o(w)] in our integral domain, it is easy to see
that ‘Fio‘r’(s,r,x,v)‘ = 0if || > Ry + 1. Also, by , | F} (s,r,x,v)‘ =0
if /m~Y2(s —r)| > 27. Finally, for |z| < Ry + 1 and |s — r| < 2m!'/27, by definition
and Lemma 6.3.4, we only need to show the following

1Xi(s) — X;(F)| < Cm!'?, s > 4m*/?r. (6.3.1)
To show (6.3.1), again, notice that in the present setting, 0 < r —2m!'/2r < T Ag, so
7 =r—2m'?7. So (LHS) of (6.3.1) = | X;(s)—X;(r—2m'/27)| < n|s—(r—2m!/27)| <
n(|s —r| + 2m'/27) < ndm'/?r.

This completes the proof of our assertion. 1

By Lemma 6.3.5, we get the following in exactly the same way as when deriving
Lemma 6.3.2 from Lemma 6.3.1.

Lemma 6.3.6 1. sup sup EP’"H
me(0,1] 0<t<T dt

2. {{‘71'05<t)}t€[0,T}}m>0 is tight in D.

VO (t )‘ ] < 00,

Let us discuss the term V% before V. We have the following;:
Lemma 6.3.7 E™[ sup [V"(t)|] — 0 as m — 0.
0<t<T

Proof. The proof is similar to the ones up to now. We have for any s &€
[0,4m/27] that

VU(Xi(F) = 42 (m (s = 1), 2,0 X (7))
< | VUilloo Lo ro4n) (1) Lig 2t 2y (Is = 71)
S ||VUi||001[07R0+1)(|x|)1[—2m1/27,6m1/27'] (T)

Let Cy = 8||VU;||27(2(Ro + 1))*! [ra pe(5]v]?)|v]dv, which is finite. Then we have
by the definition of A\ and assumption

—

EPm ‘/le/gToo VU(X;(F) = ¢°(m 1/2(8—1“),x,v;X(77)))
(oo (dr, dz, dv) — A(dr, dz, dv)) ﬂ
= /[2m1/2r,oo)xE VU; ( (7)) — ¢ (m 1/2(5 — r),x,v;X(f)))QA(dr, dx,dv)

/pmmmw VU2 0 41) (2122 (7)

( [v|? + Z Uj(z Py — XLO))dm/(dz, dv)

1
< |VUESm! 2By + 1)t | Bl lof?) vl
R
— Cym 2 (6.3.2)
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Therefore,

B sup [VH(t)]]

0<t<T
Aml/27 -
< [ e VUXi(F) = 0 (m ™2 (s = 1), 2,0 X (7))
0 [2m1/27,00)x E

211/2
(o (dr, dz, dv) — A(dr, dm,dv))‘ } ds
< C’i/zm_l/44m1/27
which converges to 0 as m — 0. This completes our proof. 1

Now, the only term left to be discussed is V. We deal with it in the next
section.

6.4 The term V%

We deal with the term ‘703 in this section. More precisely, we show that it is
equal to a martingale plus a negligible term. We first prepare some notations. Let
Fi = ]:tm" = Fleoopmi2riyxe ¥V R Then F; is increasing and right continuous.
Let

N((0,1] x A) := p,((2m?7,2m" %1 4 1] x A)

for any A € B(E). Notice that if p(3]v]* + S, Ui(Xj0 — (¢ — m™?rv))) > 0
and 7 > m'/?7, then |v| > 2C; + 1, hence |z — 1/27“U| > 7|v| > Ry, so p(%| > +
N Ui (X0 — (. —m™Y2r0))) = p(3]0]?). Therefore if we let

1
v(dz,dv) = p(§|v|2>y(da€, dv),

then N is the F;-adapted Poisson point process with intensity measure A(dt, dz, dv) =
m~dtv(dx, dv) = m~*dtp(5|v|*)v(da, dv). Notice that N((s,t] x A) is independent
to F, for any s <t and A € B(E). Let

N(dt,dz,dv) = N(dt,dz,dv) — m 'dtv(dz, dv).
Notice that X;(t A ¢) and V;(t A o) are Fi-measurable. Also, since VU; (Xi(?) —

WO (m=Y2(s = r), 2, v; X (7)) # 0 only if |m~"/2(s — r)| < 27, which combined with
r > 2m'?1 and s < T Ao implies ¥ = r — 2m'/?7, we get by definition

~ tN\o
VB(t) = / ds /
0 [2m1/27.2m1/274+(TAo)) ¥ E

VUL (Xi(r = 2m!27) = 02 (s = 1), 03 K (r = 2m27)))
(H’UJ(dra de, dU) - )\(d?", dl’, d'U))

tA\o
= / ds
0 [0,TNo)xE

VU (X;(r) — 0°(m~Y3(s — ) = 27, 2, v; X (r)) )N (dr, dz, dv).
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In the last expression, if r > tAc, then since s < tAo, we get m~/2(s—r)—27 < —7,
hence VU;(X;(r) — ¥°(m~2(s —r) — 27, 2,v; X(r))) = 0. Therefore,

tAo
V03 (¢) / ds /
[0,tAc)X E

VU (X;(r) — 0°(m~ Y3 (s — r) — 27, 2, v; X (r)))N(dr, d, dv).

Let

o t
VO3 (¢) /( IR (D /0 ds
VU(X;(r Ao) — 2 (m™ 2 (s —r) — 21, 2,0, X (1 A o).

Then -

V() = VPt A o).
By Corollary 3.4.2, VU;(X;(r A o) — wo(u,x,v;X(r A0o))) = 0if Ju| > 27. So the
integral domain s € [0,¢] in the definition of V03( ), i.e., s —r € [—r,t —r], can be
substituted by s —r € [0, (t —r) Adm!/27] = [0,4m' 27|\ [(t =) A (4m! /7)), 4m! /7).

Therefore, \Z@(t) can be decomposed into

V() = Mi(t) + (1),

where
— _ am1/27
Mi(t) = / N(dr, dx,dv)/ ds
(0,4]xE 0
VU(X;(r A o) — 2 (m™2s — 21, 2,0, X (r A o)),
aml/2 ¢
() = — N(dr, dz, d /
n() (0,t]xE ( ha U) (t—r)A(4m1/27)

VU(X;(r Ao) —°(m~ s — 21, 2,0, X (r A o).

By definition, (notice that the integral domain (0,t] x F in the definition of ‘72-0/3(15)
can always be converted into (0,7] x E whenever necessary, and the vice verse)

d—= .
Loy — / N(dr. dz. d
dt * ®) (0,{]xE (dr, dz, dv)

VU(Xi(r Ao) —2(m V2t —r) = 27,2, v: X (r A o)),

so there exists a constant C' > 0 such that

(| SV )]
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= / ‘VU (rAo) —O>(m Y2t —7) —27’,20,1};)2(7"/\0)))’2
0,t]xE
-1 2
m drp(§|'u\ )V(d:r;,dv)

1
= /(o,t]xE HVUi||§°1[0’R0+1)(|a7|)1[072ﬂ (|m_1/2(t —r)— 27|)m_1drp<§|v|2>y(dx7 dv)

IN

Am" 27| VU2 2(Bo + 1) m ™t [ p(G 1ol vldv
= Cm~ Y2 (6.4.1)

This fact will be used later.

Let us investigate the term M(t) now. First, it is easy to see by definition that
Mi(t) is a Fi-martingale, with its jumps satisfying |[AM?| < 4m!/?7||VU||w, and
there exists a constant C' > 0 independent of n such that for any 0 < s <t < T,

EP [|Mi(t) = Mi(s)]?| 7]
mt/2r
- EPm[/(s’t)XE)/; VU(X(r) = 00 (m ™0 — 7,2, 0, X(r)))du|
1[OVRO+1)(|x|)m_1drﬁ(dx, dv) 5}
< Ot — s, (6.4.2)

hence for any 0 <r <s<t<T,
EPm [|Mi(t) — Mi(s)[*|Mi(s) — Mi(r)P] < C?t = sl|s — 7. (6.4.3)
Also, by Doob’s inequality and (6.4.2), we get

[ sup (M) < B [( sup (1))

te[0,T] te[0,T]
— 1/2
< 2 sup B [A(0)P]
te[0,T
< 2 sup VOt =2vCT < 0. (6.4.4)
te[0,7

By Theorem 5.1.7 (with ¢ = 1, § = 2 and v = 1/2), (6.4.2), (6.4.3) and (6.4.4)
imply the following.

Lemma 6.4.1 {the distribution of {]T[i(t)}te[o,T] under Py, }me(o,1) 95 tight.

We next show that any of its cluster points must be continuous processes. We
first make the following preparation.
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Lemma 6.4.2 For any ¢ € (0, 1], let
A = Nsso{w € DU0,T)) : sup |w(t) —w(s)| > e},
jt—s<6

B = Naxofw € DU0,T]): sup fw(t) = w(s)| > S}

[t—s|<ed

Then
ACcAcC B°cC B.

Here A and B° means the closure of A and the interior of B in (D?,d°), respectively.

Proof. For any wy € A and w € D*([0, T]) with d°(w,wy) < £, we have that
w € B. Actually, by definition, we have that there exists a continuous non-decreasing

function A : [0, 7] — [0, 7] such that A(0) =0, A(T') = T, and

sup [A(t) = A(s)] < e/t —s| < eft — 5],

0<s<t<T
sup |wo(t) — w(A(t))| < /4.
0<t<T
Therefore,
sup |w(t) — w(s)]
[t—s|<ed
= sup  |w(A(t)) —w(A(s))] = sup [w(A(t)) —w(A(s))]
IA(D)—A(s)|<ed jt—s <5
> sup |wo(t) —wo(s)| — sup Jwo(t) —w(A(t))] — sup |wo(s) — w(A(s))l
[t—s|<d 0<t<T 0<s<T
€ €
I _—&/9
> =1 £/2,
which means that w € B. This completes our proof. 1

~ Now, we are ready to prove the continuity of process under cluster points of
{M(t)},c07) under P bine(o)-

Lemma 6.4.3 Any cluster point Of{{M(t)}te[O,T} under Py, }me(o,1) in D must have
continuous canonical processes.

Proof. Suppose there exists a sequence m,, — 0 (as n — 0) such that
P, o (]T[")*l (which we write as @, for the sake of simplicity) converge to Qs as
n — 00. we show that the canonical processes are continuous under (),,. Suppose
not. Then there exists a constant € > 0 such that

Qoo( Nsso {w € DY[0,T]) : sup |w(t) —w(s)| > 5}) =a>0.

jt—s| <6

Without loss of generality, we assume that ¢ < 1. Let A and B be the sets defined
in Lemma 6.4.2. Then Q+(A) = a > 0, so by Lemma 6.4.2, Q(B°) > a > 0. Also,
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B is an open set, and @Q,, — Qo weakly in P(D?), so we have lim inf,, .o, Q,(B°)
Qo (B°). Therefore, there exists an N € N such that for any n > N, Q,(B°) >

>
su :
hence Q,(B) > §, which means that P, (M? has a jump greater than £/2) > .
Since m, — 0 as n — oo, this makes a contradiction with the fact that all of the
jumps of M* under P,,, are small than 4m}/27||VU;]| .

This completes the proof of our assertion. 1

We next use Lemma 6.4.3 to show the following, which will be used later.

Lemma 6.4.4 For any € > 0, we have that

lim sup lim sup Pm( sup |Mi(t) — Mi(s)| > 8) = 0. (6.4.5)

6—0 m—0 0<s<t<T,|s—t|<d
Proof. Let a(m,d) = P, (SUpogsgtST,|s—t\§5 |Mi(t) — Mi(s)| > 5). If

lim sup lim sup a(m, §) > 0,
0—0 m—0
then there exists a constant a > 0 and sequences 6,, — 0, m, — 0 (as n — oo) such
that - -
P, ( sup [Mi(t) — Mi(s)| > ¢) > a (6.4.6)

0<s<t<T,|s—t|<dn

for any n € N. As before, let Q, = P, o (Mi)~!, n € N. Also, let

A, = {w € DY([0,T)) : sup lw(t) —w(s)| > 5},
OSSStSTJt*s‘SJn
P 5
B, = {weD0,7)): sup jw(t) — w(s)| > 5}
0<s<t<T,|t—s|<ebn 2

Then @,(A,) > a by assumption, and by the same argument as in the proof of
Lemma 6.4.2, we get that A, C A, C B% C B, for any n € N. Also, A, is monotone
decreasing with respect to n, hence for any k > n, we have that Qr(A,) > Qr(Ax) >
a. Therefore, since A, is a closed set, we get that

Qoo(Bn) > Quo(Ay) > limsup Qi (A,) > a.

k—o0
This is true for any n € N, so since B,, is monotone decreasing with respect to n,

we get that
Qoo(mzolen) Z CL7

which means that @ ({canonical process has jump > ¢/2}) > a, and contradicts
Lemma 6.4.3. This completes the proof of our assertion. 1

We next deal with 7;(¢). We first show that exists a constant independent of n
such that
EP(m0))% < cm®?, te[0,T],m € (0,1]. (6.4.7)
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In fact, notice that 7;(¢) can be expressed as

aml/27

ni(t) = — W(dr,dw,dv)/ ds

[(t—4m1/27)VOt]x E (t—r)A(4m1/27)

VU(X;(r A o) — 2 (m™2s — 21, 2,0, X (r A 0))).

Also, in general, if Z is a Poisson random variable with mean a, then we have
E[Z—a) =0, E[(Z—a)*] = E[(Z—a)?] = a, E[(Z—a)'] = 3a*+a, and E[(Z—a)°] =
15a® + 25a® 4+ a. Therefore, by definition of Poisson point process and a simple
calculation, there exists a global constant C' such that

EH/dem <C [(/f?dx)3+ (/f3dX)2+ (/f%ﬁ)(/f“cﬁ) +/f6d)\]

for any measurable function f. Actually, for any simple function f = 3 a;14, with
A; mutually disjoint and the summation finite, we have

EH/dem :E[‘/Zail&dﬁ‘ﬁ}
= E[{ X a(N(4) - X4}
= X e B[{N(AL) = MAn)} e (N (Ai) = A4}

Notice that E[N(Ail) —X(Ail)} =0, and N(A4;) and N(A;) are independent if ¢ # j.
So the terms above are not 0 only if {iy,---,ig} has the forms {j1, j1, jo, J2, J3, J3},

{j17j17j27.j27.j27j2}7 {j17j17j17j27j27.j2} or {jlajla.jl?jl?jlajl} with jl 7£ jQ % .j3'
Therefore,

___ 6
/ faN ||
= > alalal MADMNAL)AAy) + Y a af M(Ai)(3A(A,)* + A(Ay))
11719713 e
+ Z aiaf’z)\ X iz) + Z a?1 (15X(A11>3 + 25X(A21)2 + X(All))
1742 i1

By choosing the constant C' > 0 properly, this gives us our assertion for simple
functions. The assertion for general function f is now a easy result by approximation.

Let A = ‘f m A(m1/2r VUZ-(Xi(r/\U)—wo(m_l/Qs—QT,x,v;)?(r/\a)))ds‘. Then
since t —r > 0, we get that A < 4m'/27||VU;||s. Therefore,
E"{|mi(t)]°]
1 3
< 9 —1 L 12
< O[(-/[(t—llml/ZT)\/O,t]XEA m p(2|v| )drv(dm,dv))

1 2
A o202 drv(de. d
+(/[(t—4m1/27')\/0,t}><E m ,0(2|U’ ) 1”l/< T, 1}))
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1
n / A2 (= o 2)drv(da, dv)
( [(t—4m!/27)V0,t] x E m p(2]v rv(de, dv)

1
4, -1 (-~
X(/[(t—4m1/2r)\/0,t}xEA m p(2‘v Ydrv(dz, dv) )
1
6, —1 _(—
+</[(t4m1/2T)V0,t}><EA m p( |U dTV dﬂf d’U )
< C[(4m1/27(4m1/27—||VUz||oo)2 RO 1 d p(
<4m1/2 (AmY 27| VU ||loo)2m 1 (2(Ro + 1))
+<4m1/27(4m1/27'||VUi||00) m ' (2(Ro + 1))
- 1
 (4m 2 (4! 27 | U o) (2B + 1) [ p(G o) el
- 1
+H(Am 2 (4 B TV )™ 2B+ D) [ oGP leldo

which gives us our assertion.

By (6.4.7),
m= 311
FPm Z |77Z-(k:m4/3)|6 < Cm32m=437 0, as m — 0.
k=0
In particular,
Efr max |7 (km*3)|*| — 0, as m — 0. (6.4.8)
0<k<[m ™ 3T]

Since 7;(t) is a cadlag process (with jumps |A%;(t)] < 4m'/27||VUj||), there
exists a measurable & = &, : 2 — [0, 7] such that

OV ()] = suw [, (649

Let E: m4/3[m*4/3§]. Then 0 < £ — Eg m*/3. Therefore, by (6.4.1),

Epm[ V3 (€) - ?VOB@H
< 5[ [ 1) |57 0] af
T 1/2 d 2 is
< EPm[/O 1[§7£~](t)dt {/ EPm |dtV03( ) ] dt}
< m*3(TCm Y2 -, as m — 0. (6.4.10)
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So we have for any € > 0

VO (€n) = VOED| > ) = 0.

lim P, (
m—0
This combined with
lim Py (| Mi(ém) = Mi(6n)| > €) = 0,
which came from Lemma 6.4.4 and the fact that 0 < £ — & < m*3, implies that

i(Em) = (Em)| > ) = 0.

Ay P

On the other hand, limy,_o Py (]7:(&n)]) = 0 by (6.4.8) and the definition of &,,.
Also, since the jumps of 7; satisfy |Am;| < 4m!'/?7||VUi||s, we have |7;(&,—)| <
|75 (&) | + 4m%7|| VUl These combined with (6.4.9) give us the following.

Lemma 6.4.5 lim P,,( sup 771(25)‘ >e)=0.

0<t<T

We can show the following further more.

Lemma 6.4.6 lim EP'”[ sup
m—0 0<t<T

wi(t)] > ] = 0.

Proof. The calculations used essentially are the same as in Lemma 6.4.5.
Since the jumps of 7; satisfy [A7| < 4m!'?7||VUi|w, we have |7i(&n—)| <
75 (€m) | + 4m%7|| VU]l oe. So by (6.4.9) and the definition of &,,, we get that

EP] sup @ ()] = EP{|5:(&n) V |7 (6n—)]
0<t<T
< AMY2 7| VUil + B {|5:(60)]
< 4m' 7| VUil + EP | max | |5 (km*?)|| + BT (|7:(6m) — 5:(m)]-
0<k<[m™3T]

The first term above converges to 0 as m — 0 evidently. By (6.4.8), the sec-
ond term above is also converging to 0 as m — 0. So in order to show that
Efmsupge,er [7:(t)|] — 0, it is sufficient to show that the third term E=[|5;(&,,) —
77:(€m)]] converges to 0.

We have

B [[(6m) — (En)| < EP[[VE(E) = V)| + B [|Mi(gn) — M(6)]

We already showed that EPM[‘Z&(S) — IZ@(E)H — 0 in (6.4.10). For the term
EFm H]T[l({’m) — 1\71(5;) ], we first notice that since 0 < &€ — & < m*? by definition,
(6.4.5) gives us that

lim Po(|Mi(&) = Mi(&5)| > €) = 0, (6.4.11)
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This is true for any ¢ > 0. We have by (6.4.4) that for any & > 0,
EPr[|M(€n) = M (&)

EPn[|Mi(€n) = M (&n)|, [M(&n) = Mi(&)| > ] +¢
EPn[|0(6) = MiE[] 7 PUM ) — Mi(ER)| > ) +
287 [( sup |M(0)])]" PN () — Mi(EL)| > )2 +¢

t€[0,T

IA

IN

IN

IN

AVCTP(|Mi(&n) — Mi(&)| > )% + .
This combined with (6.4.11) gives us that
lim B [|Mi(&) = Mi(&a)|| =0,
and completes the proof of the fact that
lim EP[|(m) — 7(En)l] = 0,
hence completes the proof of our assertion. 1

Combining all of the results in Sections 6.1 ~ 6.6, we get Lemma 5.3.1, with

M(t) = —Mi(tAo),
P(t) = —VO(t) - VO(1),
n(t) = —ViHt)+ VO ) — (t A o).

6.5 Proof of Lemma 5.3.3

Let b; be as in Lemma 5.3.3. First notice that

ZM?) X(t Ao))Vi(t Ao) ZM() Vi(0)

t/\a - t/\U d

ZM/ (X ()V(s) ds+ZM/ (5)) 3= Vi(s)ds.
It is trivial that
(VX (EA )V (EA ) - Vilt Ao)| < [[Vhil|ocn

so the first term above is tight in D¢ by Theorem 5.1.7. For the second integral, we
have by Lemma 5.3.1 and our assumption that
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We discuss these three terms in the following.
Since b; is bounded, we have by Lemma 5.3.1 (2) that

o ood o,
sup  sup EPm“bi(X(t))d—Pil(t)” < .
me(0,1] 0<t<T t

Therefore, the first term [3" bi(f(s))%P*l(s)ds is tight.
Let N;(t) be the second term,

tAo
Nt = [ " bR () AM(s).
Then since {M;(t)}:>0 is a martingale and b; is bounded, we have that {N;(¢)}i>0
is also a F-martingale. Also, since |AM;(t)] < Cm!"/? and |d(MF, M!),| < Cdt P,-
a.s. by Lemma 5.3.1 (3), we have that [AN;(t)| < Cm"/?||bi||« and [d(NF, N1),| <
[|6i]l0||b; || cCdt. Therefore, same as in the proof of the proof of Lemmas 6.4.1 and
6.4.3, we get that the second term {N;(¢)} is also tight, with the limit processes

continuous.
For the third term, we have that

[ 0E )dnts)

Therefore,

tAo =
sup | [ (X () dn(s)] < (billoe + [ V0illT) stp | (1),
0 0<t<T

0<t<T
So by Lemma 5.3.1 (4),
tAo .
Epm[ sup ’/ bi(X(s))dm(s)H — 0, asm—0.
o<e<T ' Jo

This completes the proof of Lemma 5.3.3.

6.6 Proof of Lemma 5.3.2

To prove the first assertion, notice that for any ¢ > 0, we have by assumption and
integration by parts formula that

thoD 1/2 7l
/ m~ V29,0 (X (5))|ds
0

—

_ /0 T (R (5) - (m VTR (5)) ) ds

= g(X(tAoD)) /0 o m Y2V, U(X (s))ds

_/Ot/\ch ds(Vg()f(s))V(S))/jmlﬂ%ﬁ(ﬁ(ﬂ)dﬁ
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Therefore, by Lemma 5.3.1 (1), we get

[ e TR s as

= g(X(T Aop))( = Mi(Vi(T Ao Aap) = Vi(0)) + BT Aap) + PNT Adp))

TANoANop = =
- [ (Ve
x{ = Mi(Vi(t Ao AGp) = Vi(0)) + POt AGp) + P (t A o)
(lglloc + IVgllc - dnT){2Mm + sup [P°()|+ sup |P7(1)]}.
0<t<T 0<t<T

Therefore, we get our first assertion by Lemma 5.3.1 (2), (4) and (6.4.4).
Before giving the proof of the second assertion, let us first prepare the following.

Lemma 6.6.1 1. limy, o E™ [ sup,co 1 [m:(t)?] =0,

2. lim,,_o EPm [Supte[O,T] | fOt m(s)dMi(S)ﬂ =0

Proof. We use the same notations as in Sections 6.1 ~ 6.4. Then n;(t) =
—VH(t) + V() — m:(t). So to show the first assertion, we only need to show that
the sup of each of these three terms converges to 0 in L*(P,,).

As before, V}(t) = V1°(t) + V*(t). For V1°(t), we have by (6.2.3) and (6.2.4)
that 1

B[ sup V()] < (iCln(4ml/zT)2)2(Cgm_l/2~|—C’22m_1),

te[0,T

which converges to 0 as m — 0. For V;'*(¢), by (6.2.6) and (6.2.7), we have

Epm{ sup |Vi'(t) }
te[0,T)
< w7 VU (X(0) — @°(m~ 125, U (m 1/ ;X (0
< B Loamen (s)] H(Xi(0) = @°(m ™25, W (m P, 0); X(0)))
RxFE
(o (dr, dz, dv) — A(dr, d:z:,dv))‘ds}q
TNo N
S EPm {4 1/2 / 1[0,4m1/27)(8)‘ . VUz(XZ(O) _SOO(m /S \Ij( /7’ T U) X(O)))
(po(dr, dz, dv) — \(dr, da:,dv))’st}
amt/2r 5
< (4mM27)? / dsE™ | [ VU(X(0) = (m 2, Wm™?r, x,0); X (0)))
0 RxE

(e (dr, dz, dv) — X(dr,dx, dv)) ﬁ

< (4m1/27_)203m71/2’

which converges to 0 as m — 0. This completes the discussion about the term V! ().
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The discussion about the term V;%4(¢) is similar. By definition and (6.3.2), we

—

get
E"[ sup [VM(1)[?]
0<t<T
Amt/2r
< mfamie [ VUK — 9 — 1), 2,05 X))
0 [2ml/27,00)x E

(o (dr,dz, dv) — X(dr, dx, dv))fds}
< (4m1/27)204m_1/2,

which converges to 0 as m — 0.
Finally, we deal with the term 7;(¢). With the same notations as before, we have

B[ sup [i:(t)]?]

t€[0,T]

= EP[|(&n) PV 1i(&m—)P]
< 2(4m 27| Tullc)” + 287 [ ]

2 - - o~
= 2(4ml/QTHVuZ-HOO) +AE" | max [ (km" )P | + 4B [|5(6n) — :(Em) ]

0<k<[m~ 3T

By (6.4.8), the second term above converges to 0 as m — 0. So it suffices to show
that the third term E[|7;(&n) — 7:(En)]?] also converge to 0. We have

EP[[(6m) — (&) ) < 27 [V (&) = VI@[] + 287 [| M (&) -

By (6.4.1),

IA

IN

IA

<

EPm [

V03 5)‘2]
B / Leg®) v >\dt>ﬂ
(s t>dt> (] [Pl

mi/3 /OT EPm[ jtvzog( )‘ ]dt

m*3TCm™? = 0, as m — 0.

Mi(E)[ ]

. L~ 2
Finally, for the term Efm HM (m)—M Z(gm)‘ } , we first prepare the following result:
There exists a constant C' > 0 (not depending on m) such that

E"| sup [M(1)]'] < C.

te[0,T
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Actually, by the general fact that EH [ fdﬁm < 3([ deX)Q + [ fA4dX, we get with
the help of Doob’s inequality that

B[ sup [MI(1)[Y] < (4/3)* B [|MI(D)|']

t€[0,T]

ml/2r
— (4/3)4{3{ /(O,T]XE)\(dT7 d;v,dv)(/04 ds
242

VU; (X,-(r Ao)—p(m™2s — 27,z 0, X (r A U)))) }
_ Am1/2r
+ N(dr, de, dv)( / ds
(0,T]xE 0

VU, (Xi(r No)— @Z)(m_l/Qs — 27, 1, ; )?(r A 0))))4}

(4/3)[3{ /Mwm1p(;W)dw@zx,dv)(4m1/2Ty|VUi|\oo1[0,R0+1)(|x|>)2}2

IN

—1 1 2 1/2 1
+/<0,T]XE7" p(5 02 drv(da, dv) (4m 7|V Ui Lo mps () |
< (4/3) BUrIVU ) (TR + 1) [ dp(\;m?)mdvf
HATIV U T @(Ro + 1)) [ p(15 1) olae],

with the right hand side above bounded by a finite global constant C' > 0.
Therefore,

EPn [|M(6) — M(6)[]
B (| Mg, - MiE)|
EPn [|M(6) — M(E)[ ]

. 1/2 . L~
187 sup (M0 PP () - MI(E)| > )2+ &

AC2P(|M () — M(E)| > €)'/ + &

IA

Mi(En) — MY(Ey)
P P(Min) - M(E)| > )2 + €2

>€} +¢?

IN

IN

IA

With the help of Lemma 6.4.4, by taking first ¢ > 0 small enough then m > 0
: 2
small enough, this implies E'm HM’(Sm) — MZ(Sm)’ } — 0 as m — 0, so completes

the proof of the fact that ETm [SUPte[o,T] |ﬁz(t)|2] converge to 0 as m — 0, hence
completes the proof of the first assertion of this lemma.

We next show the second assertion. Since M; is a martingale, the first assertion
implies that [J7;(s)dM;(s) is also a martingale. By the definition of M;(t), (see
Lemma 7.3.1 for the details and the proof), if we let

2T

Ai(r) = Ay(r, z,0) = N VU(Xi(r) — 2w, z, v; X (r)))du,
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then we have that

{MZ-, MZ} = m/ Ai(r,z,v)2N (dr, dz, dv).
S [0,sAo]XE
Therefore, with the help of Doob’s inequality, we get that

B Sup‘/m VM (s <4EP’”‘/ mi(s)aMi(s)| ]

t€(0,7]
= 4B / m(s)Qd[Mi,Mi]s}
0
TAo
= 4mEP’" / /A r,T,v) ds,dx,dv)}

LAV U | o /
VU

A VU PT@(Ro + 1) [ p (1510 el B™ [ai(s)7]

IA

B 1197 e (2D (17, o)

This combined with the first assertion of this lemma completes the proof of our
second assertion. 1

We next show the second assertion of Lemma 5.3.2. First, by Lemma 5.3.1, we
have

Vit A o)+ ]\14 /OW ni(s)dMi(S)}

[t 1 [ o

i

m(o>|2+g{/0mw )jp*l ds+/m (5)dMy(s)

n /t/\a dnz /t/\a }

Since |V;(t A o)| < n by the definition of o, we have by Lemma 5.3.1 (2) that

-3

=1

2

. d
sup  sup EPm[|m<ma)dtP;1< )I°] < o0.
me(0,1] 0<t<T

Therefore, by Theorem 5.1.7, we get that [ V(s )<L Pyl (s)ds is tight for m € (0, 1].



36 CHAPTER 6. PROOF OF LEMMAS 5.3.1 ~ 5.3.3

For the term [3 1jo.01(s)Vi(s)dM;(s), recall that o = inf{t > 0; Vi(t)| = n}, so o
is a Fi-stopping time. Therefore, since {M;(s)}s is a martingale, we get that

/ Lio,0(s)Vi(s)dM;(s)

is also a F;-martingale. Notice that

tA\o
), = Z / VE(s A 0)Vi(s A o)d(ME, MDY (s).
k=1
So by Lemma 5.3.1 (3), we get that
d(N;); < n?d?Cdt,  |AN,| < n*d*C'm*/?

Therefore, same as in the proof of Lemmas 6.4.1 and 6.4.3, we get that {N;(¢)}; is
tight for m € (0, 1], with canonical limit processes continuous.

We next show that [{"7 V;(s)dni(s) + [i"" n;(s)dM;(s) is negligible. Notice that
by Lemma 5.3.1 (3),

tAo tAo
/ Vi(s)dni(s /
0

tAo 1 tAo
= Vit Ao)mi(t —/ J(5)dVi(s 7/ M,
enam® - [ v+ 5 [ e
1 tAo d .
- v;wo)m(t)—ﬁ n()(dpl Jas = o [ ns)ans
tN\o ~
/ ym~Y2v,0 (X (s))ds
= Vi(tA — 370+ 5 F ! +— " (m~72v,0(X( ))—ip.*l( ))d
2( 0->7]1<) an ) 7]1777115 i S ds’ i S S.
Since |V;(t A o)| < n, Lemma 6.6.1 (1) gives us that
1 1
lim Efm| su Vit Ao)n;(t) — —ni(t)* + —[n;, m:]e|| = 0.
Yy B sup [Vi(t A oyu(t) = (e + b il
Also, for any € > 0, we have for any A > 0,
tho ~ 5 d
P, su _1/2VZ-UX s)) — —Pr(s))ds| > ¢
(e [f (X(s)) = 3P (9)ds| > <)
< Pu(_sup |ni(s) >A)
s€[0,TAo]
+Pm( sup " (‘m’l/QV U(X( ))‘ + ‘iPi*l(s)Dds > E)
s€[0,TAo] ds A
1
< ZFEPn| su i (S
< 5 [Se[wpm} 7 )I}
A P TNo ~1/2 ~ = *1
+2B [/ (|12, (X(s) \+]d Pr(s)|)ds]-
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Combining this with Lemma 5.3.1 (2) (4) and Lemma 5.3.2 (1), by taking first A > 0
small enough then m > 0 small enough, we get that

lim P, ( sup ‘/t/\an-(s)(mlﬂv-ﬁ(f(s)) - ip“(s))ds’ > 5) =0
m=0"""\cl0.7n0] | S0 ' ' ds

for any ¢ > 0. This completes the proof of the fact that m /2 (ﬁ()z(t Na)) —
(7()2(0))) +3 N B\ Vi(tA) P+ 57 mi(s)dM;(s) under P, is tight, with canonical
limit processes continuous. This combined with Lemma 6.6.1 (2) gives us our second
assertion of Lemma 5.3.2. 1







Chapter 7

Convergence Until ”Near”

In Chapter 6, we showed that M;V;(t A 0y,) + m =12 [ ,U(X,)ds under P, is
tight in P(C([0,T]; RY)).

Let op(w) = inf{t > 0;min,.;{|X;(t) — X;(¢)| — (R; + R;)} < 0}. Then by
(5.4.9), V;U(X,) = 0 for any s < 0q. Therefore, Vi(t A o, A o) under P, have (at
least one) subsequence that converges in P(C([0, T]; R%)).

In this section, we give the proof of the fact that, any cluster point of it is
the stopped diffusion process as given in Chapter 1. For sake of simplicity, in this
chapter, we let o = 0, A 09. We use the notation Dy = (suppﬁ)c c R,

7.1 Decomposition

First, since we do not have enough information about the term 7;(t), we use the
following to convert the problem to the one without 7;(¢). Let

tAon =
Yi(t) = Vi(0) + M (Mi(t) + PA(1) —m—1/2/ V.0 (X.)ds)
0
= Vi(t)— M;'n;(¢), i=1,---,N,
and let Y (t) = (Y1(¢),---,Yn(t)). Then we have the following.
Lemma 7.1.1 For any f € C°(Dy x R¥), we have that {f(Xine,, Viren )}t and
{f(Xino,s Yino, ) }¢ converge or not for m — 0 at the same time, and when converge,

they have the same limit.

proof. Just notice that if we let fi, denote the partial differential of f with
respect to the second variables, then || f | < co and

1
’f(Xt/\an7 ‘/t/\an) - f(Xt/\onay;f/\Un)‘ S HfVHoo ._max 3, Sup ’771(5)’7
i=1N M; scjo,1]

88
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hence
EP[ sup |f(Xinon: Vinow) = F(Xinn, Yino, )]
0<t<T
1
< oo ax — I i(S)]1,
< Wl o, B[ sup fni(s)]
which, by Lemma 5.3.1, converges to 0 as m — 0. 1

In the same way, we can also convert between fy (X, Ys) and fy (X, V) when
considering limit.

By Lemma 7.1.1, we only need to consider the problem with V; substituted by
Y;. For any f € C5°(Dy x R™), (notice that all the terms involved except M;(t)
are continuous with respect to ¢ ), since

tA Ao ~
/ Fo (X, ) - VU (X,)ds = 0,
0
we have by Ito’s formula that
f(Xt/\O'a }/t/\O') - f(X(]; }/E])

tAo N tN\o
= [T Vs £ X o [ (X0 M) + (1) + (D) + (V)
i=1 g

with

N 1 tAo 1
(D) = Yqp [ XY -dps)

=1 ?

N d tAo Ky
(I]I) - h%lklzz: ) 2M11Ml2 /0+ fVl’;lvl’;z(XmY;)d[Mh 7M ]sa
N
1

(1Iv) = {F(X0Y0) = F(XYar) = 32 (X Yeo) - AMi(s) 7 -

0<s<tAo =1 l

al 1
-2 310, (X Yo (AM () (A (5) 37

It is easy to see that after taklng hmlt m — 0, the term [} fx(X,,Ys) - Vids
above gives us the term ¥~ ¢  Vk 9 axF of the generator L. Also, the term

()

SN A y7A I fv. (X, Ys) - dM;(s) is a martingale since {M;(t)};, i = 1,---, N, are
martlngales and fy is bounded. In the following sections, we study what do the
terms (I1), (I11), (IV') correspond to, respectively.

7.2 The term (IV)

Lemma 7.2.1 lim,, ., B/ {SUpogth |([V)|} = 0.
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Proof. Since f € C5°(Dy x R¥™), we have that the third partial derivatives
fvi, viyviys lisleyls = 1,--+ N, are bounded. Also, the jumps satisfy |AM;(s)] <
Cm!/2. Therefore, by Taylor’s expansion, there exists a constant C' > 0 (depending
on f) such that

N d
V]S 5 % gyl AME G IAMEG)AME ()

l1,l2,l13=1 k1,k2,k3=1

N
< Cm'2 Y] |AM(s)

=1

Therefore, to complete the proof of this lemma, it is sufficient to show that
EPm[Ycscrne |AM;(s)|?] is bounded for m > 0. We do it from now on.
We have by the definition of {M;(t)} that

am1/27
M;(t) = —/ N(dr, dx,dv)/ du
(0,tNcIxX E 0
VU, (Xl-(r Aa) —0(m Y — 27z, 0 X (1 A 0))),

SO

Am1/2¢

2 __
S AM(s)]? = /(O’tM]XEN(dr,d:v,dv)< / du

0<s<tAo 0

VU; (Xi(r Aa)— 2 (m VP — 27 2 v; )?(7“ A a))))g.

Notice that by definition, NV is the Poisson point process with intensity m =" p(3|v|?)drv(dz, dv).
Therefore, since

VU (Xi(r A o) = 40 (m ™ 2u = 27,2, 0; X (r A 0)))| < [[VUilso Lo,y ([2]),
we get that
EPn[ 3 |AMi(s)]

0<s<T Ao

amt/2r

= B™| / N(dr, da, dv) / du
(0,TAo|xXE 0

VU(Xi(r A o) — 02 (m™u — 27,2,0;X(r A 0)))]
_ 1
< [ m (G oo () (m? 2 VU Zdr(de, do)
[0,T]xE 2
1
< 1672 VU T (R + 1)) [ o(510) olde,
Rd \2

which is finite by our assumption.
This completes the proof of our assertion. 1
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7.3 The term (III)

For the term (I11), we will show that after taking m — 0 it is corresponding to the

N d )"( 92
term Ei,j:1 Zk,l:1 aik,jl( )8V,k8V,l .
i

We first calculate the quadratic variance of M;. For [ = 1,---,N and k =
1,---,d, let

2T

Ap(r) = Ay(r,z,v) = N ViU(Xi(r) — ¢ (u, z, v; X (r)))du.

Then we have the following.

Lemma 7.3.1 For any ly,lo=1,---,N and k1, ky = 1,---,d, we have that

[Ml]jl, Ml]ﬂ =m Apg, (1,2, 0) Apyry (1, 2, 0) N (drr, dz, dv).
S [0,sA\o|xE

Proof. Since the methods are totally the same, for the sake of simplicity, we
give the proof only for the case l; = Iy = i and ky = ko = k. Write Aj(r,z,v) =
A(r,z,v).

By the definition of quadratic variance, we have that {{MF, MF];}; is the only
process such that (MF)? — [MF, MF]; is a martingale with jumps A[MF, MF];, =
(AMF(t))?. Using variable change u' = m~/2u — 27, it is easy to see that A(r A
o,r,v) =m /2 féml/zT duVU; (Xi(T A o) —0(m Y2 — 27 & 0, X (1 A U)))~ So

MF(t) = —ml/Q/ N(dr,dx,dv)A(r, z,v),

i
(0,tAc]| X E

with N(dr,dx,dv) = N(dr,dz,dv) — X(dr,dx,dv), N(dr,dz,dv) the Poisson point
process with intensity A(dr, dz,dv) = m™'p(5|v|*)drv(dz, dv). Hence

EPn[ME(t)?]) = mE"™| / Ndr, de, dv) A(r, z,v)?],

(0,tAo| X E

which is a continuous process. Also,

S (AMf(s))* =m N(dr,dz, dv)A(r, z,v)?,

0<s<t (0,tAc|xX E

hence

B[ Y (AME(s))?] = mE| /

0<s<t (0,tAc|x E

Adr, dx, dv)A(r, z, U)Q} :

Combining the above, we get that
(MF, M) = B ME@ T+ Y (AMS(s)? = B | 3 (AMS(5))?]
0<s<t 0<s<t

= m N(dr,dz,dv)A(r, z,v)?.

(0,tAc|x E
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This completes the proof of our assertion. 1
By Lemma 7.3.1, we get that

tAo
/ Py (X, Yo [ M M2
t/\o
= m/ f vy (X, Ys) Ay gy (8, 2,0) Ay (8, 2, 0) N (ds, dx, dv).

Let

tAo
117 = / X, Y
( ) Z Z 2M11M12 0+ f l?lvl];z( ) )

I ,la=1 ky,ka=1
1
(/ Ahkl(S,x,v)Azsz(S,:U,v)p(ilvﬁ)u(dw,dv))d&
E
Then we have the following.

Lemma 7.3.2 lim,, .o B | supc,<r |(I11) — (I11')

| =0

Proof. We have by definition that N(ds,dz, dv) is the Poisson point process
with intensity A(ds, dz, dv) = m™p(3|v[*)dsv(dz, dv). Also, notice that there exists
a constant C' > 0 such that |A;(s Ao, z,v)| < Cly ry111(|2]). So by Doob’s inequal-
ity, for any ly,lo = 1,---, N and ky,ky = 1,---.d, there exist constants C1,Cy > 0
such that

B sp | /mo / m iyt (X, Vo) Ay (5 ) Ay () (N — X)(ds, dz, dv))|

0<t<T
- tho - 211/2
< B[ sup \/ /mf byt (X Yo) Ay (8) Ay ()N = X)(ds, de o)
0<t<T
- Tho _ 211/2
< 285 ([T [ i (X0 V) A (5) Ay ()N = X)(ds, di,dv)) |
_ 1/2
= 25| /0 A <mfvlklvlk2 (Xe, Vo) Auyiy () Avyia (5))2A(ds, de, dv)|
1 2
T 1 1/2
-1 2
< QC’lm(/O /El[O,Ro+1]<|37Dm p(§|vl )dsu(dx,dv))
This completes the proof of our assertion. 1

Lemma 7.3.2 implies that after taking limit m — 0, (I1]) is corresponding to

2

N d v)__ 9
? J

7.4 The term (II)

In this section, we deal with the term (I7). We use the same notations as in Chapter
6. Then P;' is given by Prl(t) = —V%(t) — V.%(t). Recall that fi(s,r,z,v) =

7
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—

VU (Xi(s) = x(s, W(r,z,m™2v))) = VU (Xi(7) = ¢2(m~12(s = ), 2, 0; X(7)). So
we have the decomposition

[ i ano

— /OMUfV(stYs)l[Zlm”QTvU)(s)(/

Rx
tAo
[ Y i (5)(
tAo
= 0 fV(XS7}/S>1[4m1/27',0')(5>
fils,r e, v) + FP(s,r,2,0) ) po(dr, dr, dv) )d
([RXE(f(srxv)—l— ) (srxv)),u(r x v)) s
tA\o
[ X Y e (8

(/RXE }*:;(E(s,r, z,v)(A(dr, dz, dv) — p,(dr, dzx, dv)))ds. (7.4.1)

fi(s, r, 2, 0) e, (dr, dr, dv))ds
E

}30/5(3, r,z, v)\(dr, dx, dv))ds

RXxFE

We first show in the following lemma that the second term on the right hand
side above is negligible.

Lemma 7.4.1

tAo
AziI—r}OEPm{ sup ‘/0 fV(Xsays)l[4m1/27,a)(S)

0<t<T

( N Eﬁi&’(s,r,x,v)(/\(dr, dx, dv) — p,(dr, d:v,dv)))dsu = 0.

Proof. Let

R(s,r,z,v)
= —F/?%(S,T, 1‘,1)) - VQUZ(Xl(?) - wo(mil/Z(S - 7’),%, v; )?(F)))

—

[ Xi(s) = Xu() — 00m~2(s — 1), 2,0 K (5)) + 4 (m (s — 1), 2,0 X () ).
Then we have the decomposition
tAo
| e Y L (9)

( .. ]*?1-0/5(5, r,z,v)(A(dr,dx, dv) — p,(dr, dz, dv)))ds
= (BI)+ (BII)+ (BIII),

where

tAo
6D = [ XY L (s)
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x(/ R(s,r,z,v)(uy,(dr,dz,dv) — \(dr,dz, dv)))ds,
RxE

tAo

(511) = A (X, Yo lymi/zr 0 (5)
([, V2UCKR) = wm™ (s = )., 0 X (7))
{(Xi(s) = Xi(F) = (s = ")Vi(7) — (VO (m~ (s = 1), 2,05 X (5))
—00(m (s =), 0 X(7) + (s = V(D)) |
(g (dr, dz, dv) — X(dr, dx, dv)))ds,

(5[[[) = Atmj fV(Xsa }{3)1[47711/27',0) (S)

(/RXEg(r, s, x,v) (e (dr, dz, dv) — X(dr, dz, dv)))ds,
with

g(T’,S,ZE,U) = VQUZ(XZ(N) _wO( _1/2( ) z,v; X( )2) =
{(s = )Vi(®) = ¢ (m ™ 2(s — 1), 2,0, X () + (s = P)V(7)
0 (m V2 (s — 1), 2, 0; )?(F))}

So Lemma 7.4.1 follows from the following three lemmas.

Lemma 7.4.2 lim,,_o B [supg<,<p |(5111)|] = 0.

Proof. First notice that 0 < 7 < &, hence |V (7)| < n. Therefore, we have by
Lemma 6.3.4 that there exists a constants C', C'; > 0 such that

l9(r; s, 2, 0)| IV2UillooLio 2m1/27) (|5 = T Cls = 7|V () Lo, mp41)(|2])

<
< Culigamuren(Is — rD2m">r 1y (o).

Also, it is easy to see that g(r,s,z,v) is F.-measurable. Therefore, there exists a
constant C' > 0 such that

B[ sup |(5111)]]

0<t<T
< fvlle B [/TAU ds‘ /Rng r, 8, z,0)(p(dr, dz, dv) — A(dr, da:,dv))H
< HfVHoo/ dsEPm ‘/ g(rys,x,v)(pe(dr, dz, dv) — \(dr, dav,dv))ﬂl/2
— HfVHoo/ ds / E"(|g(r, s, z,v)*]\(dr, dz, dv))1/2
0 RxE

< el [ as{ [ (o1 (Is = r)2m 271 gy (Ja]))
= Voo 0 S e 1i[0,2mt/2)\[S — T'[)2mM " T L{o,Ry+1)\|T
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( [v|? + Z Ui(x Py — Xiyg))d’f'l/(d[l?, dv)}1/2

which converges to 0 as m — 0. 1
Lemma 7.4.3 lim,,_o B [supy<,<p |(5)]] = 0.

Proof. By the definition of R(s,r,z,v), Taylor expansion and Lemma 6.3.4,
we get that there exists a constant C' > 0 such that

|R(s,7,z,v)|
VU | (Xi(s) = Xi(7))

_(¢O(m_1/2(8 - T)7 x, v, X(‘S)) - ¢0(m_1/2<3 - T): T, v; X(F))> ‘2
< OIXi(s) = Xi(P) PLip 2mizry(Is = ) o, ro41y (| 2]).

IN

Notice that when |s — 7| < 2m!/27, since s,7 € [0, 0], we get that | X;(s) — X;(7)| <
nls — 7] < ndm!?7. So the above gives us that

[R(s,7,2,0)]| < (4nm)*Cimlig g oy (15 — 1) Lo o (2.
Therefore, there exists a constant C' > 0 such that

E"] sup |(51)]]

0<t<T

< 2||fv|\oo/ ds | B {1 ()| R(s. 7., 0)|| Mdr, da.dv)
< 2l [ ds | <4m>20m1m,2mmﬂ<|s — 7)1y (2]
0 RxFE
1 N
1p(§]v\2 +> Uiz — m~Y2ry — XLO))drl/(dx, dv)
i=1
S le/?
which converges to 0 as m — 0. 1

Lemma 7.4.4 lim,, o B [supy<,<p |(517)]] = 0.

Proof. First, by Lemma 6.3.4, there exists a constant C' > 0 such that

WO (s = 1), 3,0, X (5)) — 00 (m 2 (s = 1), 3,0 X(7) + (s — 1)V ()]
< CIX(s) = X(7) = (s = V(D).
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Notice that if s > 4m'/?7 and |s — r| < 2m!/?7, then by the definition of 7, we
always have that 7 < s. Therefore,

S

X(s) =X = (s =PIV = [ ((w) = Vi(F)du.

For any | < s < o, we have that |X;(l) — X;(l)| > R; + Rj, i # j, which implies that
V.U(X())=0,i=1,---, N. Therefore, We have by Lemma 5.3.1 that

() - Vi)
= o (SR ) = )+ M) - M) = [V, (0)a)

_ Ai(/;“jlpgl(z)dzw( ) = mi(F) + Mi(u) = Mi(F)).

_

Let
a,, = 4m'*r + EPm[ sup |n;(u)]] + (4m1/27')1/2.
0<u<T
Then by Lemma 5.3.1, we have a,, — 0 as m — 0. Notice that for s € [0, 0],
|s — r| < 2m'/?7 implies |s — 7| < 4m'/27. Therefore, we get by Lemma 5.3.1 and
(6.4.2) that there exists a contant C' > 0 such that

Eﬂmfwy—fww—@—mvwm}

Z B

=1

IA

du —P*l dz\

[ du(Mi() = M)

?dmmmwwmaﬂ+

< N@m'*7)?sup sup Ef H
m<1te[0,T] dl

P ’ }1/2

s 2
+N4m212 sup EF[|n;(u)]] + N/~ duB"r HMZ(u) — Mz(F)’ }

0<u<T

< C(4m'*7)ay,.

Before going further, we notice that Ef»[[ fdu,] = EF"[[ fd\,] = [ E[f]d\n
by Corollary 4.2.5. Actually, for any A € & and B € B(M), taking S(w) = 1a(w)
and f(z) = 1p(z), Corollary 4.2.5 implies that

//13 )1a(w)p, (dz) P(dw) //13 ) a(w)v(de)P(dw).

Therefore, by the linearity and limit convergence theorem, we get our assertion.
So there exist constants C7, Cy, C3 > 0 such that

B[ sup |(511)]]

0<t<T
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4 P, 2 s e
< vl [ dsCLE™ [1oy(s) [ VUil X(5) = X
Lig.2m1/20) (I8 = 7)1 j0,Ro+1) (|2]) (1o (dr, dv, dv) + Ay (dr, di, dv))}
T yd > [~ T ¥~
= 2l [ ds [ B L)X () - £F) — (s - AT@)]
0 RxE
X 1o 2m1/20) (I8 = T) L0, ro11) (|2]) Am (dr, dv, dv))

T
< G ds [ (6mr)anlg e (s — 7))
1 N
><m_1p(§|v|2 + 3 Ui — m ™20 — Xiﬁo))drl/(dx, dv)
i=1
S CYi’)an%
which converges to 0 as m — 0. This completes the proof of Lemma 7.4.4. 1
Lemmas 7.4.2, 7.4.3 and 7.4.4 complete the proof of Lemma 7.4.1. 1

We next deal first term on the right hand side of (7.4.1). We first make the
decomposition

ﬁ-(s,r,x,v) + ]?Z-(%(s,r,x,v)

= VU(Xi(s) = 2(s, (r,2,m™" ) = VU(Xi(s) = ¢(m™ (s = 1), 2,0 X(5))
= fl(s.rz,v) + f2(s,r,2,0) + [ (5,7, 2,0),
with
E(s,r,x,v}
= VU(Xi(s) = s, Wlr, 0, m™20)) = VUXils5) — 9(m™2(s — 1), 2,05 X ()
S VUXils) — 02m ™2 ), 2,0 X(5)))
(s, Wi, m20)) = 2m~ (s — 1), 0 K (5)),
}?(s,r,x,v}
= SVPU(Xi(s) — m ™ (s — 1), 0 K (5))
(s, Uy w,m™20) = @O (m (s = 1), 2,0 X (s))
2 2(m s ), 2,0, K (5), V(s), —m (s — 1)),
}?(s,r,x,v)
= SVPU(Xi(s) — m s — 1), 0 K (s))

—

m 2 Z(m V2 (s — 1), 0, X (s), V(s), —m Y2 (s —1)).

We show in the following that E(s, r,x,v) and f?(s, r,x,v) are negligible.
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Lemma 7.4.5 We have that

tAo
lim EPm Sup ‘/ fV X37Y)1[4m1/7'0'}( )

m—0 0<t<T

( e fik(s,r,x,v)uw(dr, dac,dv))dsH =0, k=12

Proof.  We first show the assertion for & = 1. First notice that for s €
0, T Aol, fH(s,r,z,v) # 0 only if |2| < Ry +1 and s —r € [-m!/?7,2m'/?7]. Since
s € [4m'/?7, T A o], this implies that 7 — m!/?7 € [0,T A ¢]. So in this region, we
have by Proposition 5.4.3 that there exists a constant C' > 0 such that

‘a:(s, U(r,z,m ) —o(m™ Y2 (s —r), x,v; X(s))‘
< m2C 21 + Im V2 (r — s)|) < 4CTm!/?
So there exists a constant C' > 0 such that
JHOER0)]
I9°Uillo s, W, m ™ 20)) = 00 (m~ 2 (s = 1), 2,01 K (5))]

Cmlpzmi2g (s =)o, ro+yy(2])-

<
<

Therefore, by the definition of A, there exists a constant C'; > 0 such that

tAo
EPm sup ‘/ Jv (X, Yo liymi/r (8 )(/RXE fH(s,rx,v)p,(dr, dx,dv))dsH

0<t<T

< [ dslfloCm [ T (ls = o)
xm—1p< |U|2+ZU TU—Xi70))d’I°V(d£L‘,dU)

which converges to 0 as m — 0. N

The assertion for k = 2 is similar. Again, for s € [0, T Ac], f2(s,r, z,v) # 0 only
if || < Ry+1and s—r € [-m'/27,2m!/?7]. For any s, r satisfying |s —r| < 2m!/?r,
we have by Proposition 5.4.4 that

(s, W(r,w,m™20)) = 0 (m~ 2 (s — ), 2,0 X (s))
m 2 Z(m (s = r). 2,0, X (5), V(s), —m (s )|
< Cm'*(1 4 27)*m!/2.

Therefore, there exist constants C, Cy > 0 such that

P tAo
Em sup ‘
0<t<T

Jv (X, Yo) L ym/701(s )(/

. }?(s, T, 2, 0) iy, (dr, dz, dv))dsH
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T
< [ asI A IV Cim [ Ygmen(ls = Do)
0 RxFE
1 N
><m_1p(§|v|2 + 3 Ui =m0 — Xi,o))dru(d:v, dv)
i=1

which converges to 0 as m — 0.
This completes the proof of our lemma. 1
Before dealing with the main term f3(s,r, z,v), let us prepare the following
continuity of Z(t,z,v, X,V a) with respect to X and V.

Lemma 7.4.6 For any 177 > 0 and n,A,B > 0, there exists a constant C =
C(Ty,n, A, B) such that

Z(t, 2,0, X1,V a) — Z(t, 2,0, X2, V2, a)] < C(| X! — X2| +|[V! — V2|).
for any t € [~7,T1], |a] < A, | X1, || X2 < B, [[VY], |[V2]| < n.

Proof. First notice that for any a, z, v, )Z', ‘7, by using the same method as in
the proofs of Lemmas 5.4.3, 6.3.4, etc., with the help of Gronwall’s Lemma, we get
easily that for any Ty > 0,

Z@OIV1Z' 0] < (To+ [a) |V [Toe M Zm 01Ty <10 (7.4.2)

For the sake of simplicity, we write Z*(t) = Z(t,x,v,)gk,fk,a), k=1,2, and
E(t) = ZYt) — Z%(t). Then we have that in our domain, there exists a constant
C = C(T,n,A,B) > 0 such that [Z'(t)] < C. So by definition and Lemma 6.3.4,
there exist constants C',C' > 0 such that

d2
a2 (t)‘

= [ = X V(w0 XY = X2~ (t+ V)
+ - VAUt 2,0 X2) = XP)(Z2(1) = (t + a)V2)|

i=1

= !—Z{ U (Ot 7, v; X1) = X[) = VU, 7,0, X2) = XD H(ZN (1) = (¢ + a)VY)
ZW (U0t 0, X2) = XD)(ZM (1) = 2°(8) — (t+ ) (VI = V2)]

N
< DIVl (C + DIIXT = X227 + (T + la) V)

i=1
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N
+Y VUil (12" = 22| 4 (T + |a)) [V = V2|])

=1
< C(IXT = X2+ VI = V2| + O 2" - 22
= C(| Xt = X2|| + |V = V2[|) + ClE()].

Let g(t) = |(£(t), $€(£))|. Then

0] < |eo]+| o)
< C(IXT = X2+ |V = V2) 4+ (C + 1)gr).

Hence if we let g(t) = g(t — 7), then g(0) = £G(0) = 0 by definition, and the above
gives us that

d
at?

So we have for any ¢ € [0,7] + 7]

g(t) < (XY = X2 + V1 = V2|)) + (C + 1)g(1).

= = = = t
g(t) < C(|X* = X2 + [V = V2||) + (C + 1)/0 g(s)ds.
This combined with Gronwall’s Lemma implies that
(1) < C(T+7)(| X = X2 + [V = V2[)el DI e [0, Ty + 7],

which completes the proof of our assertion. 1
Now, we come back to deal with the term corresponding to f7(s,r, z,v). Again,
we make decomposition
tAo

; Jv(Xe, Yol 0 (s / f3 (s,7,x,v)u,(dr,dx dv))ds = (V1) + (V2),

with

tAo
(V1) = fr(Xs, Yol / (5,7, 2, v)\(dr, dx, dv))ds,
0

[4m1/ T o']

tN\o
(V2) = / Jv(Xs, Yo) ligmi/r (8 / (s,r,z,0) (e — A)(dr, dx,dv))ds.
0 RxE

Notice that up to o,, V(t) and X (¢) are bounded. Also, m*/2|s — r| < 27 and
lz| < Ry + 1 if V2Ui(X;(s) — O (m~Y%(s — r),2,v; X(s))) # 0. So by (7.4.2), in
this case, Z(m Y2(s —r),z,v,X(s),V(s),—m~Y%(s — r)) is bounded. So by the
definition of E)’ and the boundedness of V2U;, we get that there exists a constant
C' > 0 such that

|2 (5,72, 0)| < CmY L0 ps2g (|5 — 7]) Lo re-ry (J2])-

As the following shows, the term (V2) is also negligible.
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Lemma 7.4.7 lim,,_o B [ supycpcq [(V2)]] = 0.
Proof. Let

—

R¥(s,r,x,v) = E’(s,r,x,v) — ;V2Ui(Xi(F) — wo(m_l/Q(s —r),x,v; X(F)))
m2Z(m V(s —r), 0, X(F), V(F), —m~*(s — r)).

Then
(V2) = (V21) + (V22),
with
tA\o
(V21 = [ X Yl () ( [ B (sm,0) (e = A)(dr da, dv) ) ds,
0 ’ RxE
tA\o
(V22) = 0 fV XSaY [4m1/7'cr](s)

([ 3VPUG() = 003 = 1), 2,05 X ()
m2Z(m=V2(s — 1), x,0, X(F), V(F), —m~?(s — 1))
(e — A)(dr, dx,dv))ds.

We first deal with (V21). For s € [0,7 A o] and |s — r| < 2m*/?7, we have by
definition |s — 7| < 4m!'/?7, so by (7.4.2), Lemmas 7.4.6 and 6.3.4, there exists a
constant C' > 0 such that

[R¥(s, 7, 2,0)|
= [5TRXLs) — 0 m 2 (s — 1), K (5))
! Z(m™2(s — ), 2,0, X (), V(s), —m~ (s — 7))
~Z(m™ (s = 1r),2,0, X(7), V(7), =m (s = 1)) }
PTG ) — 905 = 1), 0 K (9))
—V2U(Xi(F) — ¢ (m™2(s = 1), 2,0, X(7)) |
2 Z(m (s — 1), 2,0, X(7), V(F), —m~2(s 1))

< §|rv2UiHoom1/2|Z<m“2<s —1r),2,0,X(s), V(s),—m /(s = 1))
—Z(m (s — 1), 2,0, X (7), V(7), =m~ (s — 1))
VUi (1Xi5) — X))
H(m (s = 1), 2,0 X (5)) — 0 (m™2(s = ), 2,0 X (7))
xm?| Z(m™?(s —r),z,v, X(7), V(F), =m~Y?(s — 1))
< Cm*(|X(s) = X(®) + [V(s) = V@).
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Since |V| < n until o, we have | X(s) — X(7)| < n|s — 7| < 4m'/?rn. To estimate
the term for V, let

Q= 4mM?1 + EP’”{ sup |771(u)|] + (4m!/2r)1/2
0<u<T

as before. Then by Lemma 5.3.1 (4), b,, — 0 as m — 0. Also, there exists a constant
C' > 0 such that

Efr|[[V(s) = V()] < Cbp, |5 —7| <2m'?r
Actually, since s,7 € [0, 09 A 0,], we have by Lemma 5.3.1 (1)
Vi(s) = Vi(F) = AZ(/NS ;lei*l<l>dl +mi(s) = mi(F) + Mi(s) — Mz‘(?»,
hence by Lemma 5.3.1 (2) and (6.4.2)

Efm[[V(s) = V(7]

< Ci(ls =7+ EP| sup |mi(u)]] + EF[|M(s) — M(7)]])
0<u<T

< Cyls =7+ E™| sup |mi(u)|| +|s — 7'/?)
0<u<T

S CQbm7

which gives us our assertion.
Combining the above and the definition of A, we get that

Ef| sup |(V21)]]

0<t<T
T — —
< [ dslfvllE [Lorno(s) [ (Cm+Cm 2|V (s) = V(P)))
0 RxE
* 10,2127 (18 = 7)) 1o o 1) (12]) (1 + ) (dr, da, o)

T - -
= 2/0 dSHfVHOO/RxE B {1[0,T/\0](5>(Cm +Cm?V (s) — V(F)])}
X 1[0,2m1/27'](|8 - 7”|>1[07R0+1]<|1’|))\(d7"7 dCL’, dU)
< C(m'?+b,) — 0, as m — 0.

The term (V22) is easier. We have ’VQUZ-(Xi(F) — 0 (m~ V2 (s—7), x, v; )Z'('F)))‘ <
IV2Uilloo1(0.20m1/27) (I8 = 7[) Lo, Ro+1) (2]). Also, for s € [0,T] and |s — 7| < 2m?r, we
have that Z(m™Y2(s —r),z,v, X (7),V(F), —=m~Y2(s — r)) is bounded. Therefore,
since X(7) is F,-measurable, by the definition of Poisson point processes and the
definition of A, we have

E"| sup |(V21)]

0<t<T
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—

< [ aslvleB ]| [ VPG — 0m s = ). X (0)
/22 (m (s >va<>V<> m (s — 7))
(o (dr, dz, dv) — A(dr, der, dv))|']""*
= [Caslpelnd [ B [(GVRUGE) — s )0 X))
w2 Z(m (s = 1), 2,0, X(F), V), —m (s — ) | Adr, dz, dv)}
< [ sl [ (V0 lemC) 1y (o) gy (15 = A, da, do)

< C~’m1/2—>0, as m — 0.

This completes the proof of Lemma 7.4.7. 1

Up to now, we have shown that all of the terms of —(/1) except >V, y7A L (V1)

are negligible. Notice that in the integral domain of (V'1), we have s > 4m1/ 2

So if V2U;(Xi(s) — O (m™Y2(s — r), x,v; X (s)) # 0, then r > 2m*/27. If p(%]v\z +
SN Ui(z —m™Y2rv — X;0)) # 0 in addition, then |v| > 2Cy + 1. Therefore, in this
case, |m~1/%rv| > 27(2C) + 1) > Ry, hence since z - v = 0, we get |z — m~/?rv| >
Ry, which in turn gives us that p([v> + XX, Ui(z — m™"?rv — X;0)) = p([v]?).
Therefore, by definition,

(V1)
- /OMU fv(Xs,Ys)lmml/w]@)(/

RxFE

;V2Ui<Xi(s) — 0 (m™ (s = 1), 2,0, X (5)))

—

m2Z(m (s — 1), z,0, X (s), V(s), —=m~ V3(s — r))mlp(;|v|2)d'ru(dx, dv)
= [ R Y ()
(L) g VU(Xils) — 0w, 7,0 X(5)))
Z(u,x,0, X (s), V(s), —u))p(;|v|2>y(d:v, dv)),

where in the last equality, we used the change of variable u = m~'/2(s —r) for every
s fixed.
We divide this last expression into two parts again

(V1) = (V11) + (V12),

with
1 rtho

(Vi1) = 2/, (X, Y5)
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(/E (/_:)o duV?Uy(Xi(s) — wo(u,x,v;f(s)))

—

Z(u,z,v,X(s),V(s), —u))p(;|v|2)1/(dx,dv)),
(V12 = / XS,Y 1[04m1/27_](8)

(/. (/+ VU (Xi(s) = ¢ (w, 2, v; X (5))

—

Z(u, v, X(s), V(s), —u))p(;|v|2)y(dx, av)).

Notice that for s € [0,T A o], V2U;(Xi(s) — ¢°(u, x,v; X (s))) # 0 only if |u| < 27,
and Z(u,z,v, X(s),V(s), —u) is bounded in this domain. So

—

+o0 = = 1
/ ( / AuV2UL(Xi(5) =0 (u, 2,05 X (5)) 2 1, 2,0, X (), V(5), =) ) (5 o), o)
E —o0
is bounded. Therefore, there exists a constant C' > 0 such that
(V12)] < Cm!/?

This completes the proof that the term (I7) is converging to — Mi(Vll)
m — 0.

7.5 Result

Combining Sections 7.1, 7.2, 7.3 and 7.4, and take the limit n — oo at last (notice
that 0, — 00 a.s.), we get the desired Results 1 and 2 in Chapter 1.

Notice that this also gives us Lemma 5.3.4, by considering each time interval
[Mn—1, &, with n,, &, given by the following. 79 = 0,

&, = inf{t > nn_l;)z(t) € B(suppU, %)},

— inf{t > &,; X(t) ¢ B(suppU,e;)}, n>1.
. c
Here ¢ > 0 is chosen such that suppf C (B(suppU, 2e4) % RdN) .

Remark 2 In this chapter, we stopped the process at og(w) = inf {t > 0; min;;{|X;(t)—
X;(t)|—(R+R;)} < 0}, only because we wanted to keep the drift termm="2 [{" V,U(X (s))ds
equal to 0. However, as shown in the following, if d = 2, then VJ?()?) 15 always 0,
no matter whether min;«;{|X; — X;| — (R;+ R;)} is positive or not. So for d =2, we
do not need to stop the process at oo(w), and the same argument as in this chapter
gives us the convergence to the diffusion process until any T > 0.
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Actually, for d = 2, by using the same notation as at the end of Section 5.4,
since YN, |Uilloo < €0, we have by (5.4.10) that for any z, X; € R?,
N o0
P U =) = [ plt)a,
i=1

which is a constant. We write it as Cy. So by (5.4.8),

vV.U(X) = /R £ VX = ) VU(X; = @)do
- @/R VU(Xi — 2)dx

- @V(/m Ui(X; — z)dx) = 0.






Chapter 8

Case of Two Atoms

In this chapter, we consider a special case with two atoms and special potential
functions Uy, U,y, for d > 3. Precisely, in addition to all of the assumptions in
Chapters 5 ~ 7, we assume in further from now on that d > 3, and there exist
functions hy, hy : [0, 00) — R such that

Ui(x) = hi(|x]), 1=1,2,
and there exists a constant 3 > 0 such that
(—1)i71hi<8) > 0, (—1)i71h;/(8) > 0, ENS (Rl — €0, Rz),l =1,2.

We show that in this special case, as announced in Chapter 1, {(X(t),V(t))},
converges to a Markov process as m — 0.

We first show that in our present setting, the Condltlon of Lemma 5.3.2 is satis-
fied, and that when m — 0, the distribution of {(X X (tAoy),V(EAo,))} under P, is

tight in p(Wd) with the metric function dis of W¢ = C([0,00); RY) x D([0,0); RY)
given by

dis(wy,ws) Z 2 ( ( max |x1(t) — 2o ()| + (/On |1 (t) — vg(t)’n)l/n»

te[0,n]

for w; = (zi(),vi(+)) € W, i =1,2. We then discuss a little bit more about the
new potentials U. Finally, we use these to show the desired convergence.

8.1 Preparation

Same as before, we only need to make the discussion under condition |V;| < n, i.e.,
for t A 0, and finally take n — oo.

We first show that the condition of Lemma 5.3.2 is satisfied. Actually, by as-
sumption, we have U;(x) = h;(|z]), so VU;(z) = |i\h;(‘x|)7 hence

V.U(X)

106
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1
= VU(X; —x)p(f|v|2+U1(X1 — z) + Up(X, — 7)) dwdy

R2d

_ /de é — ’h’(]X z|)p (;W + UL (Xy — 2) + Uy(Xy — 2) ) dvd.
From this, we see easily that for X with | X; — X,| < Ry + Ry big enough, V,U(X) is
parallel to X1 X, in R?. Moreover, V, [7()?) has the opposite direction as X; — Xo,
and V,U (X) has the same direction as X; — X, (see Lemma 8.2.2 below for details).

Therefore, if we let g1 (X) = éz el g (X) = |§1 > and let D = {(X1, X5) ‘|X\ <
| Xiol +nT,| X1 — Xo| > R+ Ry — €0}. Then since Ry + Ry — g > 0, we have that
91,92 € CL(D) and ¢;(X) - V,U(X) = |V,U(X)| for any 2 € D. i.e., the condition
of Lemma 5.3.2 is satisfied.

We next give a brief proof of the tightness of {(X(t A o,),V(tAoyu))} under
P,, as m — 0. The only difficulty is for V. We deal with it now. Let A, = {Y; :
fOT |dY;| < k}, k € N. Then we have by Kusuoka [9, Corollary 8] that Ay is compact
in LP([0, T]; RY) with cluster points in D([0,T]; R?) for any k € N. Also, by Lemma
5.3.2, there exists a constant C' > 0 such that

(Poo (m™2 /0 " O(E ()ds) ) (A
_ 1o Pm(/OTM m V2,0 (X (5))|ds > k)

> 1B [ TR )]
C
Ea

> 1-

which converges to 1 as k — oo. Therefore, for m — 0, m~1/2 [;** V,U (X (s))ds
under P, is tight in p(D([0, 00); R?)) with metric of D([0,0); R%) derived by dis.
Therefore, since by Lemma 5.3.1,

tAo - 5
M;(Vi(t A o) — Vi(0)) = PPOt) + Pt — m~1/2 V.U (X(s))ds,
0

and the distributions of P%(¢) and P! under P, are tight in p(D([0, 00); R%)), we
get the conclusion that for m — 0, {V(t/\an)}t under P, is tight in p(D([0, c0); RY)).

8.2 The new potential U

As in Section 5.3, let
pt) = — [ pls)ds,
S
fis) = | A5+ s)av
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Then for any d € N, there exists a constant Cy > 0 such that f(s) = Cy [~ p(r +
s)r%’ldr. Section 5.4 also showed that

U(X1, X3) = /R (F(U2 (X0 — @) + Ua(Xz — ) — £(0))de.

Also, let Uy be the constant

00=3- [, (0= 0) - 7).
which, as claimed in Section 5.4, is the value of the potential U when X; and X,
are far enough, precisely, when |X; — X5| > Ry + Ry. Then
U(X1, Xs) — Uy
= [ A0 =) + (X = ) - £0)]
~[(FW (X1 = 2)) = £(0)) + (F(U2(X2 = 2)) = £(0))] }dar

U1 X1 T +U2(X2 x) U1(X1733) U2(X27£E)
dx / f'(s)ds — / f'(s)ds — / f’(s)ds}
0 0

d 0
/U1 Xi1—x)+Uz(X2—x)
ZL’

Us(Xo—z)

U1(X1—
d d:z:/ (s + Ua(Xo — 2)) — f(s))ds
Ui(X1—z) Us(X2—z)
dx/ / 1" (s + u)du.
0

o

Therefore,
~ Us(X2—z)
Va0 (X, Xs) = /R da / FUUNXL = 2) + w)duVUL Xy — ). (8.2.1)
0
Also, notice that the integrand in (8.2.1) is 0 out of
By = Bx, x, = {z € R% |z — X3 | < Ry, |z — Xo| < Ry},
therefore,
. Uz (X2—x)
ViU (X1, Xs) = / dx/ FUNX) — 2) + u)duVU (X — ). (8.2.2)
B, Jo

We will use this expression in the following calculations. First, we have the
following.
Lemma 8.2.1 Lete € (0,&¢]. Then there exists a C. > 0 such that for any Xy, Xo €
R satisfying | X, — Xo| € [R1 + Ry — &, Ry + Ry — 5), we have that

(X7 — Xo) - vlﬁ(XbXQ) <-C.,, (X1—Xy)- v2[7<X1>X2) > C.
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Proof. Since the proofs are the same, we only show the first assertion.

Notice that for any x € Bs, since | X7 — X5| > R;+ Ry—¢, we have that | X —z| >
Ry — e, | Xy — x| > Ry — €, hence by our assumption, Uy(X; — z) = hy(| X1 — ),
Uy( Xy — ) = ho(| X2 — z|).

Therefore, by (8.2.2),

Xl—ZE

_ ha(|X2—2l)
ViU(X1, Xy) = /B dr | T (1 = al) + w)dulin (X = o) 7 —

Notice that in this integral domain, (X; — X5) - éi:i' > 0, and by assumption,

h1(|X1—I|) >O, h2(|X2—l‘|) <0,
R (X1 —z]) <0, hy(| X2 — x|) > 0.
Also, since d > 3, we have by (5.4.12) that f”(s) < 0 for any |s| < ep. Therefore, if

we let - - -
BQZ{$;|X1—$|§R1—6,|X2—1E|§RQ—6}CBQ,

then
—(X1 — Xo) - VU (X4, X,)

ha(|X2—z|) X, —
> [ da | P (1%, — a]) + w)dub (1 X, — 2]) (X; = Xo) - LT

[ X1 —af
For any |s| < ||Ui]|ee + ||U2]|0e, We have by (5.4.11) that

—7(s) = Cals = 1) [ o)t — )2t > 0,

€0

also, —f”() is continuous in this closed interval. Therefore, there exists a constant
Co > 0 such that

inf { — f(s): 3] < [Vlloe + [Velloc} > Co.

Also, for any z € B., we have that

€ )
|X1—$‘ Z ’Xl—X2| — |X2—$| 2 (R1+R2—5)— (RQ—E) :Rl—éf,
i.e., | X1 —z| € [R — 3¢, Ry — £]. In the same way, | X, — 2| € [Ry — 2¢, Ry — £]. So
by assumption, there exists a constant C'! > 0 (which does not depend on z) such
that

h (| Xy —z|) > CL, ho(|Xo — z|) < =CL,
Ry (|1 Xy — z|) < =CL, hy(|1Xa — 2|) > C2.
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Also, we have that
Xl—ZL’ ><R1+R2—€)(R1—€)
‘Xl — :L'| o Rl

Actually, if we decompose X; — z into

(X1 — Xy) -

Xl—iL':Xl—f“—(x—f)

with X1 —Z || X1 —Xoand 2 —% L X;— X, then Xo—2 = Xo—T+ (x—7) is also a
perpendicular decomposition. So R3 > | X, — z|* = | Xy — Z|? + |z — Z|* implies that
| Xo —Z| < Ry. Also, | X1 —Xo| > Ri+Ry—e¢,50 | X5 —2| > | X5 —Xo| — | Xo— 2| >
(Ry + Ry — €) — Ry = Ry — €. Therefore,

Xl — X > ‘Xl—XQ‘ ‘Xl —f’ > <R1+R2—5)(R1 —6)

‘Xl — iL" o Rl - Rl ’
Combining these, we get that

—(X1 — Xo) - V41U (X4, X,)

(X1 — Xa) -

ha(|X2—al) , X, —x
> [ x| P (1X1 = a]) + u)dub (1X, — 2]) (X1 — Xp) - S
B, Jo | X7 — 2
Rl Be
which gives us our first assertion. 1

As a corollary of Lemma 8.2.1, we have the following.

Lemma 8.2.2 Let ¢ € (0,50, and let X, Xo € RY satisfying | X, — Xo| € [Ry +
Ry — e, Ry + Ry). Then we have that

(Xl—XQ)'le(Xl,Xg) <0, (Xl_XQ)’VQU(Xl,XQ) > 0.
Also, by Lemma 8.2.1, we get the following as an easy corollary.

COROLLARY 8.2.3 Assume thatty,ty € [0,0,] satisfy [t1—t2| < ¢, and | X1 (t1)—
Xo(t)| € [Ri+ Ry —¢,Ri + Ry — 5). Then

—(Xl(tg) — Xg(tg)) . V1ﬁ(X1(t1);X2(t1)) Z Ce(l - Rl—f—E/R22—5>

Proof. By using the general fact that (|‘Z’|Z) >1-— |“|;|b| for any a,b € R% and
the fact that Vlﬁ(Xl, X,) is parallel to X7 — X5, we get by Lemma 8.2.1 that for

()71,)72) near to (X1, Xs),
—(X1 — X3) - ViU (X1, Xs)

(X1 — X2, X1 — Xo)
[ X1 — Xof?
(X1 — Xa) — (X1 — X2)|>
| X1 — Xo '

= (X1 —Xy)-ViU(X1, X)

v

08(1 -
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In particular, under our assumption, we have |X(t;) — Xi(t2)| < nft; — to] < £,
similarly, | X5(t1) — Xa(t2)| < §. Therefore, by the argument above,

—(X1(t2) — Xa(t2)) - ViU (X1 (t1), Xa(t1))

[(Xi(t2) — Xo(t2)) — (Xa(t) — Xa(th))]
C(1- X,() — Xa(th)] )
£/2
= G0 R o)

8.3 Convergence to Markov process

Let us first recall the following existence and uniqueness theorem of Kusuoka [9,
Theorem 1]. Let ® : R? x D — R? be a smooth map satisfying the following.

(1) ®(-,z) : R — R% is linear for all x € 4D,

(2) ®(v,x) = v for any x € 9D and v € T,(0D), i.e., (v,x) = v if x € 9D,
veRYand v-n(x) =0,

(3) ®(®(v,x),2) =v for all v € R and = € dD,
(4) ®(n(x),z) # n(x) for any z € 9D.
Then Kusuoka [9, Theorem 1] showed the following.

THEOREM 8.3.1 Let (z9,v9) € (D)°xR®. Then there exists a unique probability
measure ji over W< satisfying the following.

(1) u(w(0) = (0, v0)) =1,
(2) p(w(t) € DY x R4t €[0,00)) =1,

(3) Forany f € C((D)° xR, {f(w(t))— Ji Lof(w(s))ds;t > 0} is a martingale
under p(w),

(4) ,u(lap(w(t))(v(t) —®(v(t—),z(t))) =0 for all t €0, oo)) =1.
Here w(-) = (z(-),v(-)) € WH.

By using this, we get the following, which is just a slight variation. Recall that
Dy = {(X1,X3) € R*;|X; — Xy| > Ry + Ry} in our present setting.

THEOREM 8.3.2 There exists a unique probability measure Py over D([0, 00); R*9)
satisfying the following.
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(1) Pooo(w(0) = (20,v0)) =1,
(2) Paoo(X(t) € Dyt € [0,00)) = 1,

(3) For any f € Cg(Do x R*), {f(X(t), V() — Js(LF)(X(s), V(s))ds;t > 0} is
a martingale under Py,

(4) If f € C(R*) satisfies
M (Vi )X V) - (X0 = Xo) + My (Vi (XL V) - (X = X1) = 0
for any (X, V) € 0Dy x R2, then f(X(t),V(t)) is continuous in t, Psg-a.s.,

(5) My|Vi(t)|? + Ma|Va(t)]? is continuous in t, Psg-a.s..

— —

We have already shown in Section 8.1 that {(X(t A 0,), V(t A 0,,))}+ under P,
is tight as m — 0. We show from now on that, any cluster point of it satisfies all of
the conditions of Theorem 8.3.2.

That it satisfies (1) is trivial. The fact that it satisfies (3) is nothing but Lemma
5.3.4. So we only need to show that it satisfies (2), (4) and (5).

We show (2) first. Fix any € > 0 for a while, and let

3
Then (2) is implied if we can show the following,.

Lemma 8.3.3 Let ¢ € (0,¢¢] and let & be as defined above. Then

lim P, <TANo,) =0.

Proof. Notice that if £ < T A g, then | X;(€) — X5(§)| = R + Ry — 3¢, hence

€

X1 (t) — Xo(t)] € [Ry + Ro — &, Ry + Ro — g], for any t € [§ —

€.

We have by Ito’s formula and Lemma 5.3.1 that
| X1 (1) — Xa(t)[?
= 1X(0) = Xa(0) +2 | (Xi(s) — Xas))
[Mi(s) = Ma(s) +mi(s) = ma(s) + P (s) = P5'(s)
/2 /O ’ (ViU (X1 (u), Xa(u)) = VoU (X1 (w), Xa(u)))du)ds,
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SO

3
(R1 + RQ — 16)2 — (Rl + R2 — 6)2

3

X1() = Xa(OF — 1X1(§ = o) = Xal§ = )P

v

=20 () - Xals)
[Ma(s) = Mo(s) + m(s) = m(s) + P (s) = P5'(s)
IRV /O I LT (X0 (), Xa(u)) — Vol (X (), Xa(u)))du

L2 / (VAU (X1 (1), Xa(u) = VU (X1 (u), Xa(u)))du|ds

£
£—3n

v

2 1 {(Re+ B = (M) + )]+ ()] + (o) + [P7(5)] + 15 0)

+m /2 /OTA (VAT (X (), Xa ()] + VU (X1 (), Xa(w))|)du) hds

13 s
+2m_1/2/ ds/
—% — %

| — (Xi(s) = Xa(s)) - (V1T (Xa(u), Xa(u)) = VU (X (1), Xa(w))|du.

Let Cl = (Rl + R2 — 8)2 — (Rl + R2 — %5)2 and CQ = (8%)205(1 — legg—s) > 0,

where C. is the constant given in Lemma 8.2.1 and Corollary 8.2.3. Notice that C}
and Cy depend only on R; + R, € and n, and do not depend on m. Also, write
Yy = [Mi(s)| + [Ma(s)] + [m(s)] + [m2(s) + [Py ()] + [P5'(s)]. Then with the help
of Corollary 8.2.3, we get

E<T Aoy,

e, (¢ € €
2(Rl+R2—2)/£_Sily;ds+4n(R1+Rz—2)

x [ VB 6 ), X))+ (920X ), X))

3
(Rl + RQ - 5)2 — (Rl + RQ - 16)2

+2m /_7ds [ 006 - X0

(VAU (X1 (u), Xa(u)) = VU (X1 (u), Xa )))]du
—1/2 5/2
Cy+2m /C’s(l I /_als/5
/2 2
R1+R2—8>2 8n)

v

v

= 01 + 2m_1/205(1
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= O, +m 20,.

Let Cy =2 [ EP»[Yilds + £ X2, EPn | [ m™V2|V,0 (X (u), Xs(u))|du), which
is finite by Lemma 5.3.1 and Lemma 5.3.2. Then the above implies that

P, <TANoy)
< pm(Q(R1+R2—€)/§ Yids + (R, + Ry — =)
- 2" Je— g 4dn 2

X /OTA% m =21V U (Xa (u), Xa(u))| + [VoU (X0 (u), Xa(u)))])du

> O + m—1/202)

! E"[2(R, + R 5)/“0”1/61 + S (Ri+Ry— )

Ol + m_1/202 ! 2 2 5—& 4n ! 2 2
TANon -~ ~
x [ 90 (X (), Xalw)] + V20 (Xa (), Xa(u))) )]

1 €
— (R + Ry — =) C!
G+ mig, T T 2= 5)Cs

which converges to 0 as m — 0.
This completes the proof of our assertion. 1

We next show that the condition (5) of Theorem 8.3.2 is satisfied, i.e., M, |V;(t)]*+
M| Vi (t)]? is continuous in ¢, a.s.’ly, under the limit probability.
We first prepare the following.

Lemma 8.3.4 —Vlﬁ(Yl,Yz) : IQ:%\ 1s momnotone non-increasing with respect to

(Y1 = Ya| for |Y1 = Y5| € [Ry + Ry — €0, R1 + Ry].
Proof. As in the proof of Lemma 8.2.1, by (8.2.2), we have that in our present
setting,

. Y — Y-
—V1U(Y1,Y2)'ﬁ
Yi—z Yi-Y,

Vi —z| Y- Ya|

ha([Yz—zl) ,
-~/ F (Y2 = ) +w)dub’ (1Y = o)
By,v 0

Let By, y, = {(s,t)‘ﬂa: € By,yv,,s = |Y1 —z|,t = |Y2 — z|}, and for any (s,t) €
B;:YQ, let o, 3, 8 be the angles between Y;Y, and Yiz, Y5Y; and Ysox, zY; and
xYs, respectively. Write A = |Y; — Y3|. Finally, let [(s,t) denote the length of the
hyper-circle {x € R%|Y; — | = s,|Ys — 2| = ¢} in R¥2. Then by using variable
change,

Yi-Y,

~ViU(1,Ys) - Vi =Y,

—

By, vy ha(t)

_ dsdt [ (= £'(hi(s) + w))du( — By (5))I(s, £) cos asin©.
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Notice that all of the terms above are positive. The integration domain B;:YQ is
decreasing with respect to |Y; — Y3|. Also, for any fixed s and ¢, the term [(s,t) is
also decreasing with respect to |Y; — Ya|. Therefore, it is sufficient to show that for
any s,t fixed, cosasinf is decreasing with respect to A = |Y; — Y5|. We shall show
it from now on.

By sine formula, cos asin § = % sin v cos . So it suffices to show that A sin v cos
is monotone decreasing with respect to A, or equivalent, is monotone increasing
with respec to «, for a > 0 small enough. It is easy to see that A = scosa +

2 — s2sin” . So

Asin o cos a

= ssinacos® a + \/12 — s2sin? asin v cos «
2

= ssina(l —sin?a) + \/(t2 — s2sin? a)(1 — sin? ) sin? a.

Since a@ > 0 is small enough, we have sin?a > 0 small enough and monotone
increasing with respect to a. Also, since s/t is near to % > (), there exists an
g1 > 0 such that functions fi(z) = sz(1 — 2?) and fo(x) = (£* — s%2)(1 — x)x =
t?z(x —1)(x — i—;) are monotone increasing in = € [0,¢;]. Combining these, we get
the desired increasity of Asinacosa with respect to a for @ > 0 small enough,
equivalent, the decreasity with respect to A.

This completes the proof of our assertion. 1

Let & = &, = inf{t > 0; | X, (¢) — Xo(t)| < Ry + Ry — 30} Aoy, AT. Then as a
easy result of Lemma 8.3.3, P,,,(§y < T Ao,) — 0 as m — oco. We next use Lemma
8.3.4 to show the following.

Lemma 8.3.5 lim,, .o P, (fTM"/\fO —1/2 ([7()2(3)) - ﬁo)ds > 6) =0 for any § >
0.

Proof. By Lemma 8.2.2, we have that —V,U(Y;,Y5) - |Y YQ‘ is positive for
Y1 = Y3| € [Ry + Ry — g0, Ry + Ry). Also, by Lemma 8.3.4, it is monotone non-
increasing with respec to |Y; — Ya|. Notice that U(X;, X3) = U(X1 X5,0). So with
a little bit abuse of notation, we can write U(Xy, X5) = U(X; — X5). Then we have
that U(X1, Xa) — Uy = 0if | X; — X5| > Ry + R,. Also, for any | X; — Xo| < Ry + Ry,

we have U ({2 (X, — X,)) = Uy, and Z2+82, 4 t(l — fut) > 1 for t € [0,1],
hence

R+ Ry

U(X1,X,) = Uy =U(X; — Xo) — (7(|X1—X2|(X1 - X2)>
— /01 —V1ﬁ<|)}2j§2| (X, — X5) +t(1 — éi J_rf;;)(Xl — Xg))
(=14 p]“éfl;;;)(x1 _X,)dt
1 - R+ R
< /0 ~VU(X, — Xa) - (Xy— Xo) (— 1+ |X11LX22|)dt
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~ Ri+R
= V(X = X) - (X1 = X) (= 1+ =)
1 — 2
N R+ Ry — | X5 — Xy
e N v

- ’vll:j<X1 —XQ)‘<R1+R2— ’Xl—XQD
The first equation in the calculation above also gives us that U(Xy, X,) — Uy is

non-negative. Therefore, by Lemma 5.3.2, there exists a constant C' > 0 such that
for any € € (0, 3¢0),

Pu( | VO 112 (TR (s)) — D) > o)

TAonNo _1/2 -
< Pm(/o m Y2V, 0 (X, (s) — Xa(s))|
X(R1+ Ry — | X1(s) = Xa(5) )1 (1x1(6) Xt <R+ Ro) s > 0)
< 1 — < —
< Pm(se[&% () = Xo(s)| < Ba+ Ry e)
TAon N ~ 1)
+Pm(/ T2V, U (X0 (5) — Xo(s))|ds > )
0
g T/\Un/\EO ~
< Palgg <T A0+ B[ [ m 29,0 (X (5) - Xals))lds]
0
< Pul€s. <Thoy)+ gc.

But by Lemma 8.3.3, Pm(f%6 < T ANo,) — 0asm — 0 for any € > 0. Therefore,
taking first € > 0 small enough and then m > 0 small enough, we get our assertion.

1
We are now ready to show that the condition (5) of Theorem 8.3.2 is satisfied.

Lemma 8.3.6 M;|V;(t)]* + My|Va(t)|? is continuous in t almost suely, under the
limit probability.

Proof. Write the limit probability measure as P,,. Let
- L - 12
H" = m—1/2(U(X(s)) — UO) +5 > M;|Vi(s)|.
i=1
Then we have by Lemma 5.3.2 that under our present setting, (H[y, ,¢, )¢ under Py,
is tight in p(C([0,T]; RY)). i.e., there exists a H, € C([0,T]; R?) such that
(H")s under P,, — (H)s under Py

in @(C([O,T];Rd)) as m — 0. Also, as we have shown at the beginning of this
Chapter,
(V2(s))s under P, — (V;*(s))s under Pa.
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in p(D([0,T];RY), dist) as m — 0. So

12 1
(H™ — 3 ZM¢W(S)2)S under P, — (Hy — 3 ZMi‘/i(S)2>s under Py,

i=1 i=1

in p(D([0,T];R?)) as m — 0. However, for any § > 0, we have by Lemma 8.3.5
that

T NonNo 1 2
Pl [ I = DS MV ds > ) =0, asm 0.
=1

So
TAcHAE 12
Poo(/ °|HS—§ZMM(3)2|ds>5) —0
0 i=1

for any 6 > 0. Also, £, — oo as m — 0, hence
TNon 1 2
/ |H, — 3 > M Vi(s)?|ds =0, P —a.e.
0 i=1

This combined with the continuity of Hy and the fact that o, — oo a.e. gives us
that M;|Vi(t)|*> + My|Va(t)|? is continuous in ¢ P.-almost surely. "
We finally show that the condition (4) of Theorem 8.3.2 is satisfied. The method
is similar to that of the proof of (5).
Let Y;(t) = Vi(t) — M; 'n;(t), i = 1,2, where n;(t) is as given in Lemma 5.3.1.
Let Y (t) = (Yi(t), Ya(t)), and let

G = m P [ (0. T (5) - VAT (R (s)
+My ™ fi (X (), Y (5)) - VoU (X (5)) bds + F(X(2), V(1)).
We first show the following.

Lemma 8.3.7 (Gin,,): under Py, is tight in o(C([0,T]; R?)).

Proof. Let B . . . .
Gy =Gy — f(X(1), V(1) + [(X(@), Y (1))
Then B
G = Gi| < N flloo My (0] + || Fralloo My n2(2)].
Therefore, by Lemma 5.3.1 (4), the tightnessness of (G, ): under B, in p(C([0, T'; R%))
is equivalent to the tightnessness of (Gyn,, ); under B, in p(C([0,T]; R%)).
On the other hand, we have by Lemma 5.3.1 and Ito’s formula that
dGy = fx,(X(1),Y (1) - Vi(t)dt + fx, (X (1), Y (2)) - Va(t)dt
M fin (X (), Y () - (dM (1) + dPF(2)
+ My i (X(8), Y (1)) - (dMo(t) + dP5 (1))

So by Lemma 5.3.1 (2), (6.4.2) and Theorem 5.1.7, (Gyn,, ); under P, is tight in
©(C([0,T]; RY)). This completes the proof of our assertion. 1
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Lemma 8.3.8 Suppose that f € C$°(R*) satisfies the condition in (4) of Theorem
8.8.2. Then for any 6 > 0, we have that

2 [ (R(9), V() - 1D (X (s))
+ M5 fi, (X (5), Y (5)) - VoU(X(5)) hds|dt > &) = 0.

Proof. First notice that Vi[?(Xl,XQ) = 0if | X; — X5 > Ry + R,. For any

X1, X, € R? with | X, — Xy| < Ry + Ry, let X; = ‘§1+§2‘X1, i =1,2. Then | X, —

j(v2|~: R+ Ro, i.e., X = (5(/1,5(/2) € 0D,. Also, as shown before, —Vlﬁ(Xl,Xz) =
VoU (X1, Xs) is parallel with same direction to X; — X5, so

- IV, U (X1, X)) ViU (X, X)) -~

X, X = — X — X X, - X
VIU( 1, 2) |X1 —X2| ( 1 2) Rl +R2 ( 1 2)7

~ IVoU (X1, X)) ViU(X1, Xo)| =
X, X = X —Xo) = X, — X,).
VoU (X1, X3) e (X1 — X») R 1B (X1 — X5)

So by assumption, for any Y € R??,

M (X, Y) - VU (X, Xo) + My fu (X, Y) - VU (X, Xo)
|V1U(X1,X2)|(

R, + R, - MflfVl(j\(J7 Y) ’ (le - Y2) + M271fV2(5(17 Y) ’ (le - Y2))

— 0,
hence if we let O = M7 | fxvillso V My | fxvs || o, then
’Mflfvl(Xa Y) ViU (X1, Xo) + My ' fi, (XY - V2(7(X1,X2)‘
= ’Mfl(fvl(Xa Y) = fu(X,Y)) - ViU (X3, X)
+ My (fia(X,Y) = fu(X,Y) - VU (X1, Xo)|

< M| v oo X = XIIVAU (X0, Xo)| 4+ My fxvs [lsol X = X[ VU (X1, Xo)|

< CUVAT (X1, Xo)| + | Vol (Xl,XQ)\)(m 1) ],
Let Cy = 2(]Xo| + 2nT)(Ry + R») ™%, and let

Cy = OB [ m VLT (R ()] + V0 (X () s

which is finite by Lemma 5.3.2. Then by the calculation above, we have for any
€€ [O, %80 A %(Rl + RQ)) (hence Rl -+ RQ —&> (Rl + Rz))

TNonNo
Pu( /0

2 [0 (R(9), V() - 1D (K (s))
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+ M5 (X (5), Y (5)) - VoU(X(s)) fds|dt > o)

< Pm(/ommo m~ 2 (VAT (X (9))] + V2T (X(5))])
(1 Xol + 2nT)(,X1(}3 J_r iz(s), - 1)1{\X1<s>fxg<s>|<R1+Rz}d8 > 5)
< Pm(se[&%gn] [X1(s) = Xa(s)] < Ry + Ry —¢)
bR [ MR (VT (R )]+ 190 (X ) s
> §(|X0] + 2nT)W)_1)
< Pl <TAow) +CiCs %Epm [ /O e m ™20y (XL, ViU (X (s))]) ds]

< Pl <T Aow) + %CP,.
Since Pm(fgs <T ANo,) — 0asm — 0 for any ¢ > 0 by Lemma 8.3.3, we get our
assertion by taking first € > 0 small enough and then m > 0 small enough. 1
By using the same argument as in the proof of Lemma 8.3.6, from Lemma 8.3.7
and Lemma 8.3.8, we get the following, which means that the condition (4) of
Theorem 8.3.2 is also satisfied.

Lemma 8.3.9 Assume that f € Cg°(R) satisfies
M (Vi )X V) - (X0 = Xo) + My (Vi (XL V) - (X = X1) = 0

for any (X, V) € ODy x R, then f(X(t),V(t)) is continuous in t almost suely,
under the limit probability.

This completes the proof of the fact that under our present setting, any cluster
point of the distribution of (X, V;); under P,, as m — 0 satisfies all of the conditions
of Theorem 8.3.2. Therefore, by the uniqueness, the distribution of (X, V;); under
P, converges to Py o as m — 0.

Remark 3 The result of this chapter holds only for d > 3. Actually, as remarked at
the end of Chapter 7, when d = 2, the drift term m=2 [ \,U (X (s))ds is always
0, so the force of replusion between two atoms, given by the limit ofm_l/QVZIN]()?(s)),
s always 0.

The case for d = 1 is even more different. Notice that to keep the two atoms
replusive when |X; — Xo| € (Ry + Ry — €0, R1 + R2), the only way is to keep the
force —Vlﬁ(Xl,Xg) - (X1 — Xy) positive in this domain. This was also the main
idea of this chapter. However, when d = 1, if we make the same assumption as for
d > 3, then for | X1 — Xs| € (R1 + Ry — €0, R1 + R2), as shown below, the "limit
force between two atoms”, given by mfl/QVzU(Xl,Xg), becomes "attractive force”
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instead of "repulsive force”. This will certainly cause problem. Actually, by (8.2.2)
(with the set Bx, x, now given by Bx, x, = (X1 — Ry, Xo + Ry) for any X; > X,
and | X7 — Xs| € (R1 + Ry — €9, R1 + R2) ), we have that

—ViU(X1, X3) - (X1 — Xo)
ho (| X2—2|) X _
—— [  arf P (ha (150 = ) + ) dul (1, — )
BXl,X2 0

— (X5 — X9).

Since in the present setting, ho(|Xo—2z|) < 0, b (| X1 —2z|) <0, &(1:; (X1—X3) >0

and f" >0 by (5.4.12), we get that —V,U(X1, Xs) - (X1 — X,) is negative, i.e., X,
get the force —V,;U(X) towards X».

However, for d =1, e.g., if we assume that U;(x) = h;(|x|), and there exists a
constant g > 0 such that h;(s) > 0, h(s) >0, s € (R; — €¢, R;), i = 1,2, then by
the calculation above, the force will keep "repulsive”.

Remark 4 Let us consider a little bit more intuitively. Notice that

Xz' — X
—VU(X; —2) - (Xi —z) = —hi(|Xi— 1’|)m (X —x)

= X — b (| X — ).

So intuitively, for X; and x with distance in a certain domain, the assumption of
this chapter means the following: one of the two atoms has "repulsive force” with
the small particles, and the other one has ”attractive force” with the small particles.
The "attractive” one actually is more troublesome. When the space dimension d is
big enough, since the velocity of a certain small particle could be any direction, even
though it get attracted strongly by a atom when they are near, it can “escape” within
a short time. In space dimension 2, although not as nice as in the case d > 3, it still
can "escape” safely. However, when d = 1, all of the particles stay in and move on
only a line, so if there exists a attractive force, it will get no hope to escape. In order
to avoid this situation, we have to have that both of the two forces are repulsive. This
15 actually the case we introduced at the end of the last remark.
Certainly, this problem might also be caused by our cutoffs U; and p.
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