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1 Introduction

In this paper we discuss equivalent norms for the (vector-valued) Morrey spaces
with non-doubling measures. We consider the connection between the Morrey spaces
and the Campanato spaces with underlying measure µ non-doubling. The Morrey
spaces appeared in [4] originally in connection with the partial differential equations
and the Campanato spaces in [1] and [2]. We refer to [5] for the result of Morrey spaces
coming with the doubling measures. Before we state our main theorem, let us make
a brief view of the terminology of measures on Rd. We say that a (positive) Radon
measure µ on Rd satisfies the growth condition if

µ(Q(x, l)) ≤ C0 ln for all x ∈ supp (µ) and l > 0, (1)
1 The first author is supported by Research Fellowships of the Japan Society for the Promotion of

Science for Young Scientists. The second author is supported by the 21st century COE program at
Graduate School of Mathematical Sciences, the University of Tokyo and by Fūjyukai foundation.
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where C0 and n ∈ (0, d] are some fixed numbers, and µ is said to satisfy the doubling
condition if, for some constant C > 0,

µ(Q(x, 2l)) ≤ C µ(Q(x, l)) for all x ∈ Rd and l > 0.

A measure µ which satisfies the growth condition is called growth measure while a
measure µ with the doubling condition is said to be the doubling measure.

By a “cube” Q ⊂ Rd we mean a closed cube having sides parallel to the axes. Its
center will be denoted by zQ and its side length by `(Q). By Q(x, l) we will also denote
the cube centered at x of sidelength l. For ρ > 0, ρQ means a cube concentric to Q
with its sidelength ρ `(Q). Let Q(µ) denote the set of all cubes Q ⊂ Rd with positive
µ-measures. If µ is finite, we include Rd in Q(µ) as well. In [6], the authors defined
the Morrey spaces Mp

q(k, µ) for non-doubling measures normed by

‖f : Mp
q(k, µ)‖ := sup

Q∈Q(µ)
µ(k Q)

1
p
− 1

q

(∫

Q
|f |q dµ

) 1
q

, 1 ≤ q ≤ p < ∞, k > 1. (2)

The fundamental property of this norm is

‖f : Mp
q(k1, µ)‖ ≤ ‖f : Mp

q(k2, µ)‖ ≤ Cd

(
k1 − 1
k2 − 1

)d

‖f : Mp
q(k1, µ)‖ (3)

for 1 < k1 < k2 < ∞. With this relation in mind, we will denote Mp
q(µ) = Mp

q(2, µ).
The aim of this paper is to find some norms equivalent to this Morrey norm.

2 Equivalent norm of doubling type

In this section we investigate an equivalent norm related to the doubling cubes.
Although we now envisage the non-homogeneous setting, we are still able to place
ourselves in the setting of the doubling cubes. In [9], Tolsa defined the notion of
doubling cubes. Let k, β > 1. We say that Q ∈ Q(µ) is a (k, β)-doubling cube, if
µ(kQ) ≤ β µ(Q). It is well-known that, if β > kd, then for µ-almost all x ∈ Rd and for
all Q ∈ Q(µ) centered at x, we can find a (k, β)-doubling cube R from k−1Q, k−2Q, . . ..
In what follows we denote by Q(µ; k, β) the set of all (k, β)-doubling cubes in Q(µ).
We fix k, β > 1 so that they satisfy β > kd. Let 1 ≤ q ≤ p < ∞. For f ∈ L1

loc(µ) define

‖f : Mp
q(µ)‖d := sup

Q∈Q(µ;k,β)
µ(Q)

1
p
− 1

q

(∫

Q
|f(y)|q dµ(y)

) 1
q

.

Now we present the main theorem in this section.

Theorem 1 Let µ be a Radon measure which does not necessarily satisfy the growth
condition nor the doubling condition and let 1 ≤ q < p < ∞. If β > k

dpq
p−q , then

C−1 ‖f : Mp
q(µ)‖d ≤ ‖f : Mp

q(µ)‖ ≤ C ‖f : Mp
q(µ)‖d, f ∈Mp

q(µ)

for some constant C > 0.
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Before we come to the proof of Theorem 1, two clarifying remarks may be in order.

Remark 2 If p = q, this theorem fails in general. However, if we assume the growth
condition or the doubling condition, the theorem is still available for p = q. In fact,
under the growth condition or the doubling condition for any cube Q ∈ Q(µ) we can
find a large integer j À 1 such that 2jQ ∈ Q(µ; k, β).

Remark 3 This theorem readily extends to the vector-valued version. Let 1 ≤ q ≤
p < ∞ and r ∈ (1,∞). We define the vector-valued Morrey spaces Mp

q(l
r, µ) by the

set of sequences of µ-measurable functions {fj}j∈N for which

‖fj : Mp
q(l

r, µ)‖ := sup
Q∈Q(µ)

µ(2Q)
1
p
− 1

q

(∫

Q
‖fj : lr‖q dµ

) 1
q

< ∞. (4)

The theorem can be extended to the vector valued version. Let

‖fj : Mp
q(l

r, µ)‖d := sup
Q∈Q(µ;k,β)

µ(Q)
1
p
− 1

q

(∫

Q
‖fj(y) : lr‖q dµ(y)

) 1
q

.

Then C−1 ‖fj : Mp
q(l

r, µ)‖d ≤ ‖fj : Mp
q(l

r, µ)‖ ≤ C ‖fj : Mp
q(l

r, µ)‖d. The same
proof as the scalar-valued spaces works for the vector-valued spaces, so in the actual
proof we concentrate on the scalar-valued cases.

Proof. Given k > 1, we shall prove

C−1 ‖f : Mp
q(µ)‖d ≤ ‖f : Mp

q(k, µ)‖, ‖f : Mp
q(µ)‖ ≤ C ‖f : Mp

q(µ)‖d

for large β > 0. The left inequality is obvious, so let us prove the right inequality. We
have only to show that, for every cube Q ∈ Q(µ),

µ(2Q)
1
p
− 1

q

(∫

Q
|f(y)|q dµ(y)

) 1
q ≤ C ‖f : Mp

q(µ)‖d.

Let x ∈ Q ∩ supp (µ) and Q(x) be the largest doubling cube centered at x and
having sidelength k−j`(Q) for some j ∈ N. Existence of Q(x) can be ensured for
µ-almost all x ∈ Rd. Set

Q0(j) := {Q(x) : `(Q(x)) = k−j`(Q)}, j ∈ N.

By Besicovitch’s covering lemma we can take Q(j) ⊂ Q0(j) so that
∑

R∈Q(j)

χR ≤ 4dχ2Q

and that x ∈
⋃

R∈Q(j)

R for µ-almost all x ∈ Q with `(Q(x)) = k−j`(Q). Volume

argument gives us that ](Q(j)) ≤ 8d kjd. Since

(∫

Q
|f(y)|q dµ(y)

) 1
q ≤

∞∑

j=1

∑

R∈Q(j)

(∫

R
|f(y)|q dµ(y)

) 1
q

3



and µ(R) ≤ β−jµ(2Q) for all R ∈ Q(j), we have

µ(2Q)
1
p
− 1

q

(∫

Q
|f(y)|q dµ(y)

) 1
q

≤
∞∑

j=1

β
j
(

1
p
− 1

q

) ∑

R∈Q(j)

µ(R)
1
p
− 1

q

(∫

R
|f(y)|q dµ(y)

) 1
q

≤
∞∑

j=1

8d kjd β
j
(

1
p
− 1

q

)
‖f : Mp

q(µ)‖d

=
∞∑

j=1

8d exp
{

j

(
d log k +

(
1
p
− 1

q

)
log β

)}
‖f : Mp

q(µ)‖d ≤ C ‖f : Mp
q(µ)‖d,

where the constant C is finite, provided β > k
dpq
p−q .

3 Equivalent norms of Campanato type

Throughout the rest of this paper we assume that µ satisfy the growth condition
(1). We do not assume that µ is doubling. Before we formulate our theorems, let us
recall the definition of the RBMO spaces due to Tolsa [9]. Given two cubes Q ⊂ R
with Q ∈ Q(µ), we denote

δ(Q,R) :=
∫ `(QR)

`(Q)

µ(Q(zQ, l))
ln

dl

l
, KQ,R = 1 + δ(Q,R),

where QR denotes the smallest cube concentric to Q containing R. Here and below
we abbreviate the (2, 2d+1)-doubling cube to the doubling cube and Q(µ; 2, 2d+1) by
writing Q(µ, 2). Given Q ∈ Q(µ), we set Q∗ as the smallest doubling cube R of the
form R = 2jQ with j = 0, 1, . . ..2

Tolsa defined a new BMO for the growth measures, which is suitable for the
Calderón-Zygmund theory. We say that f ∈ L1

loc(µ) is an element of RBMO if it
satisfies

‖f‖∗ := sup
Q∈Q(µ)

1

µ
(

3
2Q

)
∫

Q
|f(x)−mQ∗(f)| dµ(x) + sup

Q⊂R
Q,R∈Q(µ,2)

|mQ(f)−mR(f)|
KQ,R

< ∞,

where mQ(f) :=
1

µ(Q)

∫

Q
f(y) dµ(y). Further details may be found in [9, Section 2].

The following lemma is due to Tolsa.

Lemma 4 [9, Corollary 3.5] Let f ∈RBMO.

2 By the growth condition (1) there are a lot of big doubling cubes. Precisely speaking, given a cube
Q ∈ Q(µ), we can find j ∈ N with 2jQ ∈ Q(µ, 2) (see [9]).
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1. There exist positive constants C and C ′ independent of f so that, for every λ > 0
and every cube Q ∈ Q(µ),

µ{x ∈ Q : |f(x)−mQ∗(f)| > λ} ≤ C µ

(
3
2
Q

)
exp

(
− C ′λ
‖f‖∗

)
.

2. Let 1 ≤ q < ∞. Then there exists a constant C independent of f , so that, for
every cube Q ∈ Q(µ),


 1

µ
(

3
2Q

)
∫

Q
|f(x)−mQ∗(f)|q dµ(x)




1
q

≤ C ‖f‖∗.

Elementary property of δ(·, ·) Below we list elementary properties of δ(·, ·) used
in this paper.

Lemma 5 Let and Q ∈ Q(µ). Then the following properties hold :

(1) For ρ > 1, we have δ(Q, ρQ) ≤ C0 log ρ.

(2) δ(Q,Q∗) ≤ C0 2n+1 log 2.

(3) Let k0 ∈ N and α > 0. Assume, for some θ > 0, α ≤ µ(Q) ≤ µ(2k0Q) ≤ θ α.

Then δ(Q, 2k0Q) ≤ 2n log 2 · θ C0 cn, where cn :=
∞∑

k=0

2−nk.

(4) Given the cubes P ⊂ Q ⊂ R with P ∈ Q(µ), then

|δ(P,R)− (δ(P,Q) + δ(Q,R))| ≤ C,

where C is a constant depending only on C0, n, d.

(5) Let Q,R ∈ Q(µ). Suppose that, for some constant c1 > 1, Q ⊂ R and `(R) ≤
c1 `(Q). Then there exists a doubling cube S ∈ Q(µ, 2) such that Q∗, R∗ ⊂ S and
δ(Q∗, S), δ(R∗, S) ≤ C, where C is a constant depending only on c1, C0, n, d.

Proof. In [8], we have proved (1)–(4). For reader’s convenience the full proof is
given here. (1) is obvious. To prove (2) we set Q∗ = 2k0Q0. We may assume that
k0 ≥ 1. The dyadic argument yields that

δ(Q, 2k0Q) =
∫ `(2k0Q)

`(Q)

µ(Q(zQ, l))
ln

dl

l
≤ 2n log 2

k0∑

k=1

µ(2kQ)
`(2kQ)n

.

Note that 2d+1 µ(2k−1Q) ≤ µ(2kQ) for k = 1, 2, . . . , k0, since 2k−1Q is not doubling,
which yields, together with the fact that d ≥ n,

δ(Q, 2k0Q) ≤ 2n log 2
µ(2k0Q)
`(2k0Q)n

k0∑

k=1

(2n−d−1)k0−k ≤ C0 2n+1 log 2.
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We prove (3). It follows by the dyadic argument and the assumption that

δ(Q, 2k0Q) ≤ 2n log 2
k0∑

k=1

µ(2kQ)
`(2kQ)n

≤ 2n log 2 · θα

`(Q)n

k0∑

k=0

2−nk ≤ 2n log 2 · θ C0 cn.

Now we prove (4). It suffices to prove that

A := |δ(PQ, R)− δ(Q,R)| ≤ C. (5)

We decompose A as

A =

∣∣∣∣∣
∫ `(PR)

`(PQ)

µ(Q(zP , l))
ln

dl

l
−

∫ `(QR)

`(Q)

µ(Q(zQ, l))
ln

dl

l

∣∣∣∣∣

≤
∫ `(PQ)

`(Q)

µ(Q(zQ, l))
ln

dl

l
+

∣∣∣∣∣
∫ min{`(PR),`(QR)}

`(PQ)
(µ(Q(zP , l))− µ(Q(zQ, l)))

dl

ln+1

∣∣∣∣∣

+
∫ max{`(PR),`(QR)}

min{`(PR),`(QR)}

(
µ(Q(zP , l))

ln
+

µ(Q(zQ, l))
ln

)
dl

l
=: A1 + A2 + A3.

By (1) the integrals A1 and A3 are easily estimated above by some constant C. So we
estimate A2. Bound A2 from above by

A2 ≤
∫ ∞

`(PQ)
µ(Q(zP , l)∆Q(zQ, l))

dl

ln+1
=

∫ ∞

`(PQ)

∫

Rd
χQ(zP ,l)∆Q(zQ,l)(y) dµ(y)

dl

ln+1
.

A simple geometric observation tells us that χQ(zP ,l)∆Q(zQ,l)(y) = 0 if

l /∈ [min{|y − zP |∞, |y − zQ|∞}, max{|y − zP |∞, |y − zQ|∞}] ,
where |y|∞ := max{|y1|, . . . , |yd|}. This observation and Fubini’s theorem yield

A2 ≤ C

∫

Rd\PQ

∣∣∣∣∣
1

|y − zP |∞n
− 1
|y − zQ|∞n

∣∣∣∣∣ dµ(y)

≤ C

∫

|y−zP |∞≥`(PQ)/2

|zP − zQ|∞
|y − zP |∞n+1

dµ(y) ≤ C
|zP − zQ|∞

`(PQ)
≤ C.

This proves (5).

Finally we establish (4). Let Q∗ = 2jQ. Then we claim δ(R, 2jR) ≤ C. Indeed, by
virtue of the fact that Q ⊂ R we see that if l ≥ `(R) then Q(zR, l) ⊂ Q(zq, 2l). As a
consequence we obtain

δ(R, 2jR) =
∫ 2j`(R)

`(R)

µ(Q(zR, l))
ln

dl

l

≤
∫ 2j`(R)

`(R)

µ(Q(zQ, 2l))
ln

dl

l
≤

∫ c1 2j+1`(Q)

`(Q)

µ(Q(zQ, l))
ln

dl

l
≤ C.

If we put S := (2j+1R)∗, then δ(R∗, S) ≤ C. (1) and (4) finally give us

δ(Q∗, S) ≤ δ(Q∗, 2j+1R) + δ(2j+1R, S) + C ≤ C.
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Scalar-valued Campanato space Having cleared up the definition of RBMO, we
will find a relationship between RBMO and the Morrey spaces. With the definition of
RBMO in mind, we shall define the Campanato spaces.

Let f ∈ L1
loc(µ). We set the norm of the Campanato spaces Cp

q (k, µ) by

‖f : Cp
q (k, µ)‖ := sup

Q∈Q(µ)
µ(kQ)

1
p
− 1

q

(∫

Q
|f(x)−mQ∗(f)|q dµ(x)

) 1
q

+ sup
Q⊂R

Q,R∈Q(µ,2)

µ(Q)
1
p
|mQ(f)−mR(f)|

KQ,R
, 1 ≤ q ≤ p ≤ ∞, k > 1.

Let k1, k2 > 1. Then Cp
q (k1, µ) and Cp

q (k2, µ) coincide as a set and their norms are
mutually equivalent. Speaking more precisely, we have the norm equivalence

‖f : Cp
q (k1, µ)‖ ∼ ‖f : Cp

q (k2, µ)‖. (6)

To prove (6) we may assume that k2 = 2k1 − 1 because of the monotonicity of ‖ · :
Cp

q (k, µ)‖ with respect to k. Then all we have to prove is

µ(k1Q)
1
p
− 1

q

(∫

Q
|f(x)−mQ∗(f)|q dµ(x)

) 1
q ≤ C ‖f : Cp

q (k2, µ)‖

for fixed cube Q ∈ Q(µ). Divide equally Q into 2d cubes and collect those in Q(µ). Let
us name them Q1, Q2, . . . , QN , N ≤ 2d. The triangle inequality reduces the matter to
showing

µ(k1Q)
1
p
− 1

q

(∫

Ql

|f(x)−mQ∗(f)|q dµ(x)
) 1

q ≤ C ‖f : Cp
q (k2, µ)‖, 1 ≤ l ≤ N.

Note that k2Ql ⊂ k1Q. We apply Lemma 5 (5) to obtain an auxiliary doubling cube
R which contains (Ql)∗, Q∗ and satisfies K(Ql)∗,R,KQ∗,R ≤ C. Thus, we obtain

µ(k1Q)
1
p
− 1

q

(∫

Ql

|f(x)−mQ∗(f)|q dµ(x)
) 1

q

≤ µ(k1Q)
1
p
− 1

q

(∫

Ql

|f(x)−m(Ql)∗(f)|q dµ(x)
) 1

q

+ µ(Ql)
1
p |m(Ql)∗(f)−mR(f)| + µ(Ql)

1
p |mR(f)−mQ∗(f)|

≤ C ‖f : Cp
q (k2, µ)‖.

As a result (6) is proved.

Since Cp
q (k1, µ) and Cp

q (k2, µ) are isomorphic to each other as Banach spaces, no
confusion can occur if we denote Cp

q (µ) = Cp
q (2, µ).

Note that C∞q (µ) = RBMO, if 1 ≤ q < ∞. This is an immediate consequence of
Lemma 4. Thus we can say that RBMO is a limit function space of Cp

q (µ) as p → ∞
with q ∈ [1,∞) fixed.
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Next, we observe Q(µ, 2) can be seen as a net whose order is induced by natural
inclusion. With the aid of the following proposition, we shall cope with the ambiguity
of constant functions in the semi-norm of the Campanato spaces.

Proposition 6 Let 1 ≤ q ≤ p < ∞. Then the limit M(f) := lim
Q∈Q(µ,2)

mQ(f) exists

for every f ∈ Cp
q (µ). That is, given ε > 0, we can find a doubling cube Q ∈ Q(µ, 2)

such that
|mR(f)−mQ(f)| ≤ ε

for all R ∈ Q(µ, 2) engulfing Q. In particular there exists an increasing sequence of
concentric doubling cubes I0 ⊂ I1 ⊂ . . . ⊂ Ik ⊂ . . . such that

{mIk
(f)}k∈N0 is Cauchy and

⋃

k

Ik = Rd. (7)

We remark that the condition like (7) appears in [3]. We are mainly interested in
the function f ∈ Cp

q (µ) such that M(f) = 0.

Before we come to the proof of Proposition 6, we note that

‖ |f | : Cp
1(µ)‖ ≤ C ‖f : Cp

1(µ)‖. (8)

Indeed, we have

µ

(
3
2
Q

) 1
p
−1 ∫

Q
||f(x)| −mQ∗(|f |)| dµ(x)

= µ

(
3
2
Q

) 1
p
−1 1

µ(Q∗)

∫

Q

∣∣∣∣
∫

Q∗
|f(x)| − |f(y)| dµ(y)

∣∣∣∣ dµ(x)

≤ µ

(
3
2
Q

) 1
p
−1 1

µ(Q∗)

∫

Q
intQ∗ ||f(x)| − |f(y)|| dµ(y) dµ(x)

≤ µ

(
3
2
Q

) 1
p
−1 1

µ(Q∗)

∫

Q

∫

Q∗
|f(x)− f(y)| dµ(y) dµ(x)

≤ µ

(
3
2
Q

) 1
p
−1 ∫

Q
|f(x)−mQ∗(f)| dµ(x) + µ(Q∗)

1
p
−1

∫

Q∗
|mQ∗(f)− f(y)| dµ(y)

≤ C ‖f : Cp
1(µ)‖.

In the same way we can prove

sup
Q⊂R

Q,R∈Q(µ,2)

µ(Q)
1
p
|mQ(|f |)−mR(|f |)|

KQ,R
≤ C ‖f : Cp

1(µ)‖.

As a consequence (8) is justified.

We now turn to the proof of Proposition 6. By the monotonicity of Cp
q (µ) with

respect to q, we may assume q = 1.
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Case 1 µ is infinite. Take a sequence of concentric doubling cubes {Qj}j∈N such
that for all j ∈ N

µ(Q1) ≥ 1, µ(Qj+1) ≥ 2µ(Qj), δ(Qj , Qj+1) ≤ C

for some C > 0 depending only on C0. Then by the definition of Cp
1(µ) it holds that

|mQj (f)−mQj+1(f)| ≤ C 2−
j
p ‖f : Cp

1(µ)‖, j ∈ N.

Thus we establish at least that the existence of M(f) := lim
j→∞

mQj (f) is proved. Let

Q ∈ Q(µ)(µ, 2) which contains Qj and does not contain Qj+1. Set Q′ = (Qj
Q)∗. Then

by using Lemma 5 it is easy to see that δ(Q,Q′) ≤ C for some absolute constant C > 0.
Then we have

|mQ′(f)−mQ(f)|, |mQ′(f)−mQj (f)| ≤ C 2−
j
p ‖f : Cp

1(µ)‖,
which implies

|mQ(f)−M(f)| ≤ C 2−
j
p ‖f : Cp

1(µ)‖.
Thus we finally establish M(f) = lim

Q∈Q(µ,2)
mQ(f).

Case 2 µ is finite. In this case, we have only to prove

Claim 7 If µ is finite and ‖f : Cp
1(µ)‖ < ∞, then f ∈ L1(µ).

In proving Claim 7, (8) allows us to assume f is positive.

We take an increasing sequence of concentric doubling cubes {Qj}j∈N such that
δ(Q1, Qk) ≤ C for all k ∈ N. Then we have

mQk
(f) ≤ mQ1(f) + µ(Q1)

− 1
p (1 + C)‖f : Cp

q (µ)‖.
Passage to the limit then gives

∫

Rd
f dµ ≤ µ(Rd)

(
mQ1(f) + µ(Q1)

− 1
p (1 + C)‖f : Cp

q (µ)‖
)

.

This establishes f ∈ L1(µ).

The main theorem in this section is the following.

Theorem 8 Let 1 ≤ q ≤ p < ∞. Assume that f ∈ Cp
q (µ) satisfies

M(f) = lim
Q∈Q(µ,2)

mQ(f) = 0.

Then
C−1 ‖f : Cp

q (µ)‖ ≤ ‖f : Mp
q(µ)‖ ≤ C ‖f : Cp

q (µ)‖
for some constant C > 0.
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The left inequality is obvious. To prove the right inequality we need a lemma.

Lemma 9 Under the assumption of Theorem 8, given R ∈ Q(µ, 2), there exists a se-
quence of increasing doubling cubes {Rk}K

k=1 such that

1. Rk is concentric and R1 = R.

2. If µ is finite, then so is K and RK = Rd.

3. For large K0 ∈ N, there exists Rk0 so that Rk0 ⊂ IK0 ⊂ Rk0+1.

4. µ(Rk) ≥ 2k−1µ(R), k < K.

5. δ(Rk, Rk+1) ≤ C, k < K.

Proof. Take R1 ∈ Q(µ, 2) so that it is contained in I0. Suppose we have defined
Rk. If µ(Rd) ≤ 2kµ(R), then we set Rk+1 = Rd and we stop. Suppose otherwise. We
define Rk+1 as the smallest doubling cube of the form 2lRk with l ≥ 3 whose µ-measure
exceeds 2kµ(R). By virtue of Lemma 5 (3) it is easy to verify that {Rk}K

k=1 obtained
in this way satisfies the property of the lemma.

Let us return to the proof of Theorem 8. Let R ∈ Q(µ). We shall estimate

µ(2R)
1
p
− 1

q

(∫

R
|f(x)|q dµ(x)

) 1
q

.

The triangle inequality enables us to majorize the above integral by

µ

(
3
2
R

) 1
p
− 1

q
(∫

R
|f(x)−mR∗(f)|q dµ

) 1
q

+ µ(R)
1
p |mR∗(f)|.

Consequently we can reduce the matters to the estimate of µ(R∗)
1
p |mR∗(f)|.

Now we invoke Lemma 9 for K0 taken so that µ(R)
1
p |mIK0

(f)| ≤ ‖f : Cp
q (µ)‖.

Using the sequence {Rk}K
k=1, we obtain

µ(R∗)
1
p |mRk

(f)−mRk+1
(f)|

≤ C 2−
k
p µ(Rk)

1
p
|mRk

(f)−mRk+1
(f)|

1 + δ(Rk, Rk+1)
≤ C 2−

k
p ‖fj : Cp

q (lr, µ)‖. (9)

We also have µ(R∗)
1
p |mRk0

(f)−mIK0
(f)| ≤ C 2−

k0
p ‖f : Cp

q (µ)‖, since by the properties
3 and 4 of Lemma 9 we see that δ(Rk0 , Rk0+1), δ(IK0 , Rk0+1) are majorized by some
constants dependent only on C0.

The triangle inequality gives us

µ(R∗)
1
p |mR∗(f)|

≤ µ(R)
1
p

k0−1∑

k=1

|mRk
(f)−mRk+1

(f)|+ µ(R∗)
1
p

(
|mRk0

(f)−mIK0
(f)|+ |mIK0

(f)|
)

≤ C

( ∞∑

k=1

2−
k
p

)
‖f : Cp

q (µ)‖+ µ(R∗)
1
p |mIK1

(f)| ≤ C ‖f : Cp
q (µ)‖. (10)
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The proof of Theorem 8 is therefore complete.

Vector-valued extension Finally we consider the vector-valued extensions of The-
orem 8. Let ‖aj : lr‖ denote the lr-norm of a = {aj}j∈N. If possible confusion can
occur, then we write ‖{aj}j∈N : lr‖. For f ∈ L1

loc(µ), we define the sharp maximal
operator due to Tolsa by

M ]f(x) := sup
x∈Q∈Q(µ)

1

µ
(

3
2Q

)
∫

Q
|f(y)−mQ∗(f)| dµ(y) + sup

x∈Q⊂R
Q,R∈Q(µ,2)

|mQ(f)−mR(f)|
KQ,R

.

Lemma 4 can be extended to the following vector-valued version.

Lemma 10 [8, Corollary 13] Let fj ∈RBMO for j = 1, 2, . . .. For any cube Q0 ∈ Q(µ)
and q, r ∈ (1,∞), there exists a constant C independent of fj such that


 1

µ
(

3
2Q0

)
∫

Q0

‖fj(x)−m(Q0)∗(fj) : lr‖q dµ(x)




1
q

≤ C sup
x∈Rd

∥∥∥M ]fj(x) : lr
∥∥∥ . (11)

We now define the vector-valued Campanato spaces. Let 1 ≤ q ≤ p ≤ ∞ and
r ∈ (1,∞). We say that {fj}j∈N belongs to the vector-valued Campanato spaces
Cp

q (lr, µ) if each fj is µ-measurable and

‖fj : Cp
q (lr, µ)‖ := sup

Q∈Q(µ)
µ(2Q)

1
p
− 1

q

(∫

Q
‖fj(x)−mQ∗(fj) : lr‖q dµ(x)

) 1
q

+ sup
Q⊂R

Q,R∈Q(µ,2)

µ(Q)
1
p
‖mQ(fj)−mR(fj) : lr‖

KQ,R
< ∞. (12)

If we consider the vector-valued spaces, the norm equivalence of the Campanato
type still holds.

Theorem 11 Let 1 ≤ q ≤ p < ∞ and let {fj}j∈N be a sequence in Cp
q (µ). Assume that

there exists an increasing sequence of concentric doubling cubes I0 ⊂ I1 ⊂ . . . ⊂ Ik ⊂ . . .
such that

lim
k→∞

mIk
(fj) = 0 for all j and

⋃

k

Ik = Rd. (13)

Then there exists a constant C > 0 independent of {fj}j∈N such that

C−1 ‖fj : Cp
q (lr, µ)‖ ≤ ‖fj : Mp

q(l
r, µ)‖ ≤ C ‖fj : Cp

q (lr, µ)‖.

Using Lemma 10, we can say more about C∞q (lr, µ), which gives us a partial clue
to the definition of the vector-valued RBMO spaces. Speaking precisely, we obtain the
following proposition.

11



Proposition 12 Let {fj}j∈N be a sequence of L1
loc(µ) functions. Then

sup
Q⊂R

Q,R∈Q(µ,2)

‖mQ(fj)−mR(fj) : lr‖
KQ,R

≤ c sup
x∈Rd

‖M ]fj(x) : lr‖. (14)

In particular, we have

‖fj : C∞q (lr, µ)‖ ≤ c sup
x∈Rd

‖M ]fj(x) : lr‖. (15)

Proof. Fix Q ⊂ R such that Q ∈ Q(µ). Then
|mQ(fj)−mR(fj)|

KQ,R
≤ cM ]fj(x) for

all x ∈ Q. By taking the lr-norm of both sides we obtain

‖mQ(fj)−mR(fj) : lr‖
KQ,R

≤ c sup
x∈Q

‖M ]fj(x) : lr‖ ≤ c sup
x∈Rd

‖M ]fj(x) : lr‖.

Now since Q and R are taken arbitrarily, (14) is proved. (15) can be obtained with the
help of (11) and (14).
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